
Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and
Recursively Composable

(Full Version)

Martin R. Albrecht1∗†, Valerio Cini2‡†, Russell W. F. Lai3§†, Giulio Malavolta4¶†, and Sri
AravindaKrishnan Thyagarajan5‖†

1 Royal Holloway, University of London
2 AIT Austrian Institute of Technology

3 Aalto University
4 Max Planck Institute for Security and Privacy

5 Carnegie Mellon University

Abstract. A succinct non-interactive argument of knowledge (SNARK) allows a prover to produce
a short proof that certifies the veracity of a certain NP-statement. In the last decade, a large body of
work has studied candidate constructions that are secure against quantum attackers. Unfortunately,
no known candidate matches the efficiency and desirable features of (pre-quantum) constructions
based on bilinear pairings.
In this work, we make progress on this question. We propose the first lattice-based SNARK that
simultaneously satisfies many desirable properties: It (i) is tentatively post-quantum secure, (ii)
is publicly-verifiable, (iii) has a logarithmic-time verifier and (iv) has a purely algebraic structure
making it amenable to efficient recursive composition. Our construction stems from a general
technical toolkit that we develop to translate pairing-based schemes to lattice-based ones. At the
heart of our SNARK is a new lattice-based vector commitment (VC) scheme supporting openings to
constant-degree multivariate polynomial maps, which is a candidate solution for the open problem
of constructing VC schemes with openings to beyond linear functions. However, the security of our
constructions is based on a new family of lattice-based computational assumptions which naturally
generalises the standard Short Integer Solution (SIS) assumption.

1 Introduction

A succinct non-interactive argument of knowledge (SNARK) [Kil92,Mic94] allows a prover to convince a
verifier that they know a witness to an NP statement. The succinctness property demands that the size
of the proof and, after preprocessing, the work of the verifier are sublinear in (ideally independent of)
the time needed to check the validity of the witness. Over the last decade, SNARKs have witnessed a
meteoric rise in their efficiency and applicability [BCG+13,BCTV14b,PHGR13,BCC+09,CG08,GGM14].
More recently, SNARKs have found their way into real-world systems in the context of blockchain-based
cryptocurrencies [BCG+14,KMS+16,BGH19,BDFG21,BMRS20].

The looming threat of quantum computers has given rise to a movement in the cryptographic
community to investigate cryptographic constructions from assumptions that would plausibly withstand
the presence of a quantum attacker. Unfortunately, present SNARKs based on post-quantum assumptions
are in many ways inferior to pre-quantum constructions based on bilinear pairings. The goal of this work
is to make progress in this area.

∗The research of MA was supported by EPSRC grants EP/S020330/1, EP/S02087X/1 and by the European
Union Horizon 2020 Research and Innovation Program Grant 780701.

†This work was supported by Protocol Labs under PL-RGP1-2021-050.
‡This work was in part done while visiting Max Planck Institute for Security and Privacy. The research of

VC was in part funded by the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 830929 (CyberSec4Europe), No. 871473 (KRAKEN), and by the Austrian Science Fund (FWF)
and netidee SCIENCE grant P31621-N38 (PROFET).

§This work was done at Friedrich-Alexander-Universität Erlangen-Nürnberg.
¶This work has been partially supported by the German Federal Ministry of Education and Research BMBF

(grant 16K15K042, project 6GEM)
‖This work is supported in part by the DARPA SIEVE grant.



1.1 The Seascape of SNARKs6

To put our work into context, we give a brief outline of the current seascape of SNARK constructions. We
split the schemes depending on the underlying cryptographic assumptions used as the source of hardness.
Bilinear Pairings. To date, the most efficient and feature-rich SNARKs are constructed over bilinear
pairing groups (e.g. [Gro16]) with a trusted setup. Typically, a pairing-based SNARK proof consists of
only a small constant number of base group elements and is also publicly verifiable. Furthermore, offline
preprocessing can often be performed, such that the online verification time is sublinear in the size of the
statement being proved and the corresponding witness. Moreover, pairing-based SNARKs are favourable
because of their algebraic structures that is known to enable proof batching [LMR19,BMM+21] and
efficient recursive composition [BCTV14a]. However, due to their reliance on the hardness of problems
related to discrete logarithms, pairing-based SNARKs are not sound against a cheating quantum prover.
Random Oracles. Promising post-quantum candidate for SNARKs are constructions based on Micali’s
CS proofs paradigm: They are obtained by first building an interactive argument using (generalisations
of) probabilistically checkable proofs (PCP) [Kil92], then compiling it into a non-interactive one using
the Fiat-Shamir transformation [FS87] in the random oracle (RO) model.

A major difference between pairing-based and RO-based SNARKs, from both theoretical and practical
perspectives, is the algebraic structure of the verification algorithm. In RO-based SNARKs, the verification
algorithms query the RO, which is a combinatorial object. This is especially important when recursively
composing the SNARK: On the theoretical side, proving the knowledge of a valid RO-based SNARK
proof requires specifying the circuit computing the RO. This makes it challenging to formally argue about
soundness, even in the RO model. From a practical perspective, the RO is instantiated with cryptographic
hash functions, which typically have high multiplicative degree.7 Since the multiplicative degree of the
relation being proven often dominates the prover computation complexity in SNARKs, proving the
satisfiability of a cryptographic hash function becomes computationally expensive.
Lattices. A prominent source of hardness for post-quantum security are computational problems over
lattices. Not only do lattice-based assumptions allow us to build most standard cryptographic primitives,
e.g. [Reg05,GPV08], but also enable new powerful primitives [Gen09,GVW15,WZ17,GKW17], which are
currently out of the reach of group-based assumptions. Unfortunately, in the context of SNARKs, lattices
have yet to be established as competitive alternatives to group-based constructions. So far, lattice-based
SNARKs either require designated verifiers [GMNO18,ISW21] or linear-time verification [ACK21,BCS21].

Beyond their theoretical appeal, one additional motivation for constructing lattice-based SNARKs is
that they are potentially more compatible with other basic lattice-based primitives when composing them
to construct more advanced systems. More concretely, consider the task of proving the satisfiability of
certain algebraic relations over a ring R by a solution vector of norm bounded by some δ, a language
which arises naturally when composing lattice-based building blocks. Using an argument system for
proving algebraic relations over a finite field without norm constraints, arithmetisation would be needed
to express certain witness component in, say, binary representation and translate the bounded-norm
condition to the satisfiability of a potentially-high-degree polynomial, depending on the choice of the norm
and the norm bound δ. In contrast, the bounded-norm constraint could be proven natively if we have an
argument system which supports proving the satisfiability of algebraic relations over R by solutions of
norm bounded by some α ≤ δ. This is done by expressing the solution vector in a likely more compact
O(α)-ary representation such that, if the representation has norm bounded by α, then the original solution
has norm bounded by δ.

1.2 Our Contributions

In this work, we construct the first lattice-based SNARK for an NP-complete language defined over a
ring R. Specifically, the language being supported is the satisfiability of polynomial maps over R by
bounded-norm solutions. Our construction qualitatively matches pairing-based SNARKs, i.e. it is publicly
verifiable and can achieve sublinear verification time given preprocessing, while requiring a trusted setup.
In addition, it is tentatively post-quantum secure. Furthermore, our construction uses only algebraic

6It can be succinctly verified that SNARKs, like sharks, are creatures of the sea.
7Though we mention that there is recent progress [ARS+15,GKK+19] in crafting hash functions that are

friendlier to multiparty computation and argument systems.

2



operations over a ring R, and is therefore friendly to recursive composition. The soundness of our scheme
is based on new lattice-based (knowledge) assumptions. The introduction of new knowledge assumptions
is, to some extent, necessary: The work of Gentry and Wichs [GW11] shows that the soundness of any
SNARK cannot be based on falsifiable assumptions in a black-box manner. We summarise the main steps
of our work in the following.
(1) Translation Technique. We put forward a new paradigm for translating pairing-based constructions
to the lattice world. Our constructions stem from techniques from the literature on pairing-based
cryptography [LY10], while simultaneously exploiting the ring structure offered by the lattice setting. We
develop the necessary technical toolkit that helps us mimic operations of pairing-based VC constructions
in the lattice setting. We view this translation strategy as a major conceptual contribution of our work
and we expect it to be instrumental in enabling new applications of lattice-based cryptography.
(2) Vector Commitments for Constant-Degree Polynomials. A vector commitment (VC) allows a
committer to commit to a vector of w values x := (x0, . . . , xw−1) ∈ Rw and then reveal selected portions
of the input vector, or more generically a function f : Rw → Rt over the input vector, along with a
proof π that can be publicly verified. We require both the commitment and the opening proof to be
compact. In terms of security, we want to ensure an adversary cannot output a valid opening proof for
an incorrect function evaluation of the input vector. VCs have been established as a central primitive
in cryptography [CF13,LRY16,Fis19,LM19,GRWZ20,CFG+20]. As a central technical contribution, we
present the first (lattice-based) VC that supports openings beyond linear functions. Specifically, our VC
commits to short vectors of ring elements x ∈ Rw and supports openings to constant-degree d multivariate
polynomial maps. We then show how this VC is sufficient to construct SNARKs for the satisfiability of
degree-d polynomial maps (which is NP-complete for d ≥ 2) by bounded-norm solutions.
(3) New Assumptions and Analysis. Our translation techniques (and consequently the resulting
cryptographic schemes) rely on a new family of assumptions that we refer to as the k-Ring-Inhomogenous
Short Integer Solution (or k-R-ISIS for short) assumptions. Roughly, a k-R-ISIS assumption says that it is
hard to find a short preimage ug∗ satisfying ⟨a,ug∗⟩ = g∗(v) mod q, where g∗ is a Laurent monomial8 and v
is a random point, given short preimages of other Laurent monomials G evaluated on the same random point.
Our new assumptions can be viewed as inhomogenous ring variants of the k-SIS assumption [BF11,LPSS14]
(where the rational functions are zeros). The key difference to k-SIS is that we allow to hand out more
preimages than the dimension of a but these preimages are all of different images.

In fact, the assumptions we introduce, k-M -ISIS, are slightly more general in being defined over
modules rather than rings. Our generalisation to modules is motivated by the knowledge assumptions
that we also introduce. In the knowledge assumptions images live in a moderately sized submodule.

We consider the introduction and study of the k-R-ISIS assumptions as a contribution to the programme
of charting the territory between LWE and multilinear maps assumptions called for in [Agr20].

To gain confidence in our newly introduced assumptions, we initiate their study. We show that certain
subclasses of the k-R-ISIS problems (parameterised by the algebraic structure on the k-R-ISIS images)
are as hard as the R-SIS problem. We show that, as expected, the k-M -ISIS problems are as hard as
their k-R-ISIS counterparts, although the former have slightly skewed parameters. We also show that
certain k-M -ISIS problems are as hard as the k-M -SIS problem, the natural module variant of the k-SIS
problem, where the former have higher module ranks. Furthermore, we show that the k-M -ISIS problems
for (G, g∗) is as hard as those for (G, 0), and that the hardness is preserved when scaling both G and g∗

multiplicatively by any non-zero Laurent monomial.
However, since none of the reductions from well-established problems cover the case we rely upon in

our constructions, we perform cryptanalysis to assess the hardness of general k-M -ISIS problems. While
we did not identify any structural weaknesses, we encourage independent analysis to gain confidence in or
invalidate our assumptions.
(4) Post-Quantum Security. As a contribution of independent interest, we show that our VC satisfies a
strong notion of binding known as collapsing (as an ordinary commitment, not with respect to functional
openings), a recently introduced security notion in the quantum setting [Unr16]. For this, we introduce a
new technique of embedding NTRU ciphertexts into the public parameters of our VC. To the best of our
knowledge, this is the first VC not based on Merkle trees that is shown to satisfy such a notion.

8A Laurent monomial is a monomial where negative powers are allowed. Generally, one could consider k-R-ISIS
problems for rational functions.

3



(5) New Applications. Our SNARK supports proving the satisfiability of polynomial maps over R by
bounded-norm solutions, a language which directly captures those statements which naturally arise in
lattice-based cryptographic constructions. We highlight two native applications of our SNARK which do
not rely on expensive conversions between different NP-complete languages.

The first application is the recursive composition of our SNARK, which refers to the process of using
the SNARK to prove knowledge of another SNARK proof and the satisfiability of a polynomial map;
for details see Section 7.2. This is natively supported because the verification algorithm of our SNARK
construction is itself checking the satisfiability of certain algebraic relations over R by a bounded-norm
solution. Recursive composition of SNARKs is a general purpose technique for aggregating proofs or
proving complex statements in a piece-by-piece fashion. The technique is also useful for constructing
incremental verifiable computation [Val08] and verifiable delay functions [BBBF18,Gro21].

The second application is the aggregation of GPV signatures [GPV08]. While it is folklore that
any signatures can be aggregated by a SNARK for an NP-complete language, we stress that the GPV
verification algorithm, again, checks the satisfiability of certain algebraic relations over R by a bounded-
norm solution which our SNARK natively supports. We discuss how to handle relations inRq in Section 7.1.
Apart from obtaining short aggregated GPV signatures, in the setting where a set of n signers are signing
a common message at a time, the verification of the aggregated signatures could be preprocessed, resulting
in an online verification time sublinear in n. As a bonus result on GPV signatures, we further show how
to construct lattice-based adaptor signatures [AEE+21,EEE20,AME+21]based on the GPV paradigm.
Combining the two results, we obtain the first aggregatable adaptor signatures from any assumption.
Open Problems. Our work paves the way for what we believe to be an exciting line of research. As we
initiate the study of inhomogenous variants of the k-SIS assumptions, we ask whether better (possibly
quantum) algorithms can be found for solving this problem that exploit the additional algebraic structure.
We also presume that for further families of rational functions the k-R-ISIS assumption can be shown to
be as hard as standard hard lattice problems. Another compelling question is to study new cryptographic
applications of the k-R-ISIS family. We expect that such an abstraction will be useful in transferring
techniques from pairing-based cryptography into the lattice world.

1.3 Technical Overview

We give a concise overview of the process of obtaining our lattice-based SNARK.
From Vector Commitments to SNARKs. In this work, we are interested in VCs supporting openings to
constant-degree-d w-variate t-output polynomial maps with bounded coefficients. The standard properties
of interest for VCs are:

Compactness. Commitments and opening proofs are of size poly(λ, logw, log t).
Binding. It is infeasible to produce a commitment c and proofs for polynomials maps, such that the

system of equations induced by them is not satisfiable.9

In addition, we require the following stronger notion of binding.

Extractability. To produce a commitment c and a proof that the image of a polynomial map f at the
committed vector is y, one must know a preimage x such that c is a commitment of x and f(x) = y.

It is well known that one can construct SNARKs from VCs supporting linear openings in the RO
model [LM19]. However, in this work we take a different route and adopt a more structured approach
to construct SNARKs. Specifically, recall that the satisfiability of systems of degree-d polynomials is
NP-complete for any constant d ≥ 2. As such, a SNARK can be trivially constructed from a compact and
extractable VC for degree-d polynomials: The prover simply commits to the root of the system (f,y)
and immediately produces an opening proof for (f,y). As a concrete example, a popular NP-complete
language supported by existing SNARKs is rank-1 constraint satisfiability (R1CS). An R1CS instance
consists of three matrices (A,B,C) over a field or in general a ring. The instance is satisfied by a vector
x if (A · (1,x)) ◦ (B · (1,x)) = (C · (1,x)), where ◦ denotes the Hardamard product. It is easy to see
that an R1CS instance is a special case of an instance (f,y) of degree-2 polynomial satisfiability where
f(X) := (A · (1,X)) ◦ (B · (1,X))− (C · (1,X)) and y = 0. For a full description of our SNARK we refer
the reader to Section 7.

9This generalises position binding.

4



Throughout the rest of this overview, we therefore focus on constructing lattice-based VCs supporting
degree-d openings. Since known constructions are restricted to positional openings, we turn our attention
to pairing-based schemes (which support linear openings) and develop a new strategy to translate them
into lattice-based VCs and simultaneously to extend the degree to d > 1.
General Translation Strategy. Our strategy for constructing a lattice-based VC is a novel translation
technique that lets us port techniques from the pairing-land to the lattice-land. We describe a general
translation strategy for translating not only VC but also potentially other pairing-based constructions
to the lattice setting. For the group setting, we adopt the implicit notation for bilinear groups G1, G2,
and Gt of prime order q, i.e. the vector of elements in Gi with (entry-wise) discrete logarithm x ∈ Zq

base an arbitrary fixed generator of Gi is denoted by [x]i, with group operations written additively, and
the pairing product between [x]1 and [y]2 is written as ⟨[x]1, [y]2⟩. For the lattice setting, we let R be a
cyclotomic ring, q ∈ N be a large enough rational prime such that random elements in Rq := R/qR are
invertible with non-negligible probability.

Consider a pairing-based construction where the elements { [1]1, [g(v)]t }g∈G are publicly available to
all parties, where G is a set of linearly-independent rational functions and v is a vector of secret exponents.
An authority, knowing the secret exponents v, is responsible for giving out secret elements { [g(v)]2 }g∈G
to user A. In turn, user A can compute [u]2 :=

∑
g∈G cg · [g(v)]2 and present it to user B, who can then

check the correctness of [u]2 by checking

⟨[1]1, [u]2⟩
?=
∑
g∈G

cg · [g(v)]t.

Note that in this check one side of the pairing (i.e. [1]1) is public, while the other side (i.e. [u]2) is computed
from secrets delegated by the authority to user A. This property will be crucial for our translation technique
to apply.

The above structure can be seen in many pairing-based constructions. For example, the secret vector
v could be a trapdoor, a master secret key of an identity-based encryption scheme, or a signing key;
the delegated secrets { [g(v)]2 }g∈G could be hints given alongside the public parameters of a VC, an
identity-based secret key, or a signature; and the pairing-product check could be for opening proof
verification, decryption, or signature verification.

Our strategy of translating the above to a lattice-based construction is as follows. First, the public
elements { [1]1, [g(v)]t }g∈G over G1 and Gt are translated to the public vector and elements {a, g(v) }g∈G ,
where a and v are random vectors over Rq and R×

q respectively. Since { g(v) }g∈G does not necessarily
hide v in the lattice setting (e.g. when G consists of many linear functions), the authority might as well
publicly hand out the vectors {a,v } directly. Next, the secret elements { [g(v)]2 }g∈G are translated to
the short secret vectors {ug }g∈G satisfying ⟨a,ug⟩ = g(v) mod q. These short preimages can be sampled
given a trapdoor of a, which the authority should have generated alongside a. Given {ug }g∈G , user A
can similarly compute u :=

∑
g∈G cg · ug, although the coefficients cg are now required to be short. The

pairing-product check is then translated to checking

⟨a,u⟩ ?≡
∑
g∈G

cg · g(v) mod q and u is short.

The same strategy can also be used to translate (conjectured-)hard computational problems over
bilinear groups to the lattice setting to obtain also seemingly-hard problems. For example, consider a
variant of the ℓ-Diffie-Hellman Exponent problem, which asks to find [vℓ]2 given ([1]1, [1]2, [v]2, . . . , [vℓ−1]2).
A natural lattice-counterpart of the problem is to find a short preimage uℓ satisfying ⟨a,uℓ⟩ ≡ vℓ mod q
given short preimages (ui)i∈Zℓ

each satisfying ⟨a,ui⟩ = vi mod q.
We remark that a direct translation of pairing-based constructions does not necessarily yield the most

efficient lattice-based scheme. For this reason, it will be useful to generalise pairing-based constructions
into a family parameterised by the function class G. We will then have the freedom to pick G to optimise
the efficiency of translated lattice-based scheme.
Translating Vector Commitments. We next demonstrate how the above translation strategy can
be applied to translate pairing-based VCs, using the following pairing-based VC with openings to linear
forms f : Zw

q → Zq adapted from [CF13,LRY16,LM19] as an example.

5



– Public parameters:
(

[1]1, [1]2, ([vi]1)i∈Zw
, ([v̄j ]2)j∈Zw

, ([vi · v̄j ]2)i,j∈Zw:i ̸=j , [v̄]t
)

where v̄ =
∏

k∈Zw
vk

and v̄j = v̄/vj .
– Committing x ∈ Zq: [c]1 :=

∑
i∈Zw

xi · [vi]1 = ⟨[v]1,x⟩
– Opening f : [u]2 :=

∑
i,j∈Zw:i ̸=j fj · xi · [vi · v̄j ]2

– Verifying (f, y): ⟨[1]1, [u]2⟩
?=
〈

[c]1,
∑

j∈Zw
fj · [v̄j ]2

〉
− y · [v̄]t

The weak binding property of the scheme, i.e. the infeasibility of opening a commitment c to both (f, y)
and (f, y′) with y ̸= y′, relies on the hardness of computing [v̄]2, whose exponent corresponds to evaluating
the “target monomial”

∏
k∈Zw

Xk at v. Notice that the target monomial is set up in such a way that
[v̄]t = [vi]1 ·[v̄i]2 holds for all i ∈ Zw, where [v̄i]2 can be viewed as a “complement” of [vi]1. Consequently, the
value y = ⟨f ,x⟩ appears as the coefficient of [v̄]t in the inner product

〈∑
i∈Zw

xi · [vi]1,
∑

j∈Zw
fj · [v̄j ]2

〉
.

While the above pairing-based scheme is ready to be translated to the lattice setting using our
translation strategy, to prepare for our generalised scheme for higher-degree polynomials, we divide the
target and complement monomials by

∏
k∈Zw

Xk. The complement of Xi becomes X−1
i and the target

monomial becomes the constant 1. Concretely, we divide the opening and the verification equation by v̄
to obtain

[u′]2 :=
∑

i,j∈Zw:i ̸=j

fj · xi · [vi/vj ]2

⟨[1]1, [u′]2⟩
?=
〈

[c]1,
∑

j∈Zw

fj · [v−1
j ]2

〉
− y · [1]t.

Recall that in the VC construction above we relied on the hardness of computing [v̄]2. What we have
done here might seem absurd, since the element [1]2 now is given in the group setting, but finding a short
pre-image of a fixed image, say 1, is seemingly hard in the lattice setting. Indeed, translating the modified
scheme, we derive the following lattice-based scheme.

– Public Parameters:
(

a,v, (ui,j)i ̸=j∈Zw

)
where ⟨a,ui,j⟩ ≡ vi/vj mod q, ui,j are short

– Committing x ∈ Rw: c := ⟨v,x⟩ mod q
– Opening f : u :=

∑
i,j∈Zw:i ̸=j fj · xi · ui,j

– Verifying (f, y): ⟨a,u⟩ ?≡
(∑

j∈Zw
fj · v−1

j

)
· c− y mod q and u is short

For correctness, we require that the committed vector x and the function f both have short coefficients.
The weak binding property of the translated lattice-based scheme relies on the hardness of finding a

short preimage of (a small multiple of) 1 given short preimages of vi/vj for all i, j ∈ Zw with i ̸= j – a
new computational assumption obtained by translating its pairing-counterpart, which belongs to a new
family of assumptions called the k-R-ISIS assumption family.

Furthermore, the computation of
∑

j∈Zw
fj · v−1

j in the verification equation can be preprocessed
before knowing the commitment c and the opening proof u, such that the online verification can be
performed in time sublinear in w.
Supporting Higher-Degree Polynomials. Notice that in the group setting the (modified) verification
algorithm can be seen as evaluating the linear form f at ([v−1

0 ]2 ·[c]1, . . . , [v−1
w−1]2 ·[c]1) where [c]1 supposedly

encodes x. In the group setting, f has to be linear since we cannot multiply two G1 elements together to
get an encoding of the Kronecker product x⊗ x.

In the lattice setting, however, the commitment c is a ring element and thus we can evaluate a
non-linear polynomial f at (v−1

0 · c, . . . , v−1
w−1 · c). Moreover, we notice that each degree-d monomial xe

is encoded in cd as (a factor of) the coefficient of ve, which has a natural complement v−e satisfying
(ve) · (v−e) = 1, our modified target monomial. This suggests the possibility of generalising the translated
lattice-based scheme above to support openings to higher-degree polynomials. Indeed, this technique
allows us to generalise the scheme to support bounded-coefficient polynomials of degrees up to a constant,
whose weak binding property is now based on another member of the k-R-ISIS assumption family.
Achieving Compactness and Extractability. The VC scheme obtained above achieves succinctness,
i.e. commitments and opening proofs are of size sublinear in w (not t), and weak binding, which fall short

6



of the compactness and extractability required to construct a SNARK. Indeed, a black-box construction
of SNARK using this VC is unlikely since, so far, we are only relying on falsifiable assumptions. To resolve
this problem, we propose a knowledge version of the k-R-ISIS assumptions. For concreteness, we will use
the following member of the knowledge k-R-ISIS assumption family:

Let a′←$Rℓ
q and v←$Rw

q be random vectors and t←$Rq be a random element such that |t · Rq|
is super-polynomial in λ and |t ·Rq|/|Rq| is negligible in λ. If there exists an efficient algorithm A
which, given short vectors u′

i satisfying ⟨a′,u′
i⟩ = vi · t mod q for all i ∈ Zw, produces (c,u′) such

that u′ is a short vector satisfying ⟨a′,u′⟩ = c · t mod q, then there exists an efficient extractor EA
which extracts a short vector x ∈ Rw such that ⟨v,x⟩ = c mod q.

Equipped with this k-R-ISIS of knowledge assumption, we can upgrade our VC construction to achieve
extractability as follows. First, we let the public parameters to additionally include (a′, (u′

i)i∈Zw , t). Here
t generates an ideal that is small enough for random elements in Rq not to be contained within it, but
big enough to provide sufficient entropy. Next, we let the committer also include u′ =

∑
i∈Zw

xi · u′
i in an

opening proof. Finally, we let the verifier additionally check that u′ is short and ⟨a′,u′⟩ = c · t mod q.
To see why the modified scheme is extractable, suppose an adversary is able to produce a commitment

c and a valid opening proof for (f, y). By the k-R-ISIS of knowledge assumption, we can extract a short
vector x ∈ Rw such that ⟨v,x⟩ = c mod q. Now, if f(x) = y′ ≠ y, we can use the extracted x to compute
a valid opening proof for (f, y′). However, being able to produce valid opening proofs for both (f, y) and
(f, y′) with y ̸= y′ violates the weak binding property. We therefore conclude that f(x) = y.

It remains to show how we can achieve compactness. Since our lattice-based VC schemes preserve the
property of the original pairing-based schemes that the verification algorithm is linearly-homomorphic
in the opening proofs, a natural strategy towards compactness is to aggregate multiple opening proofs
into one using a random linear combination, with coefficients generated using a random oracle. The
binding property of an aggregated opening proof can be proven using a classic rewinding argument which
involves inverting a Vandermode matrix defined by the randomness used for aggregation. This strategy
works particularly well in the prime-order group setting since scalars are field elements and Vandermonde
matrices defined by distinct field elements are always invertible. In the lattice setting, however, the
coefficients used for aggregation have to be chosen from a set where the difference between any pair
of elements is (almost) invertible (over R) for an analogous argument to go through. This is a severe
limitation since sets satisfying this property cannot be too large [AL21].

To achieve compactness in the lattice setting, we are forced to use a different strategy. Specifically,
the coefficients h = (hi)i∈Zt

∈ R that we use to aggregate opening proofs are given by an instance of
the R-SIS problem over Rp (taking smallest R-representatives of Rp elements) sampled as part of the
public parameters, where p is chosen such that the R-SIS assumption is believed to hold over Rp while p
is small relative to q.

To see why extractability still holds, suppose an adversary is able to produce a commitment c
and a valid opening proof for (f, y) where f =

∑
i∈Zt

hi · fi and y =
∑

i∈Zt
hi · yi. By our previous

argument, we can extract x satisfying f(x) = y. Suppose it is not the case that fi(x) = yi for all
i ∈ Zt, then (fi(x)− yi)i∈Zt is a short vector satisfying

∑
i∈Zt

hi · (fi(x)− yi) = 0 over R, which implies∑
i∈Zt

hi · (fi(x)− yi) = 0 mod p, breaking the R-SIS assumption over Rp.
Discussion and Generalisations. We discuss the resulting VC scheme obtained through the aforemen-
tioned series of transformations. Our VC scheme supports openings to w-variate t-output constant-degree
polynomial maps with bounded coefficients. The scheme achieves compactness and extractability, where
the latter is based on the standard R-SIS assumption over Rp and our two new assumptions: k-R-ISIS
and the k-R-ISIS of knowledge assumption over Rq, where p is short relative to q. The construction uses
only algebraic operations over R and Rq. Furthermore, a major part of the verification equation can be
precomputed, so that the online verification time is sublinear in w and t.

Our construction and the k-R-ISIS (of knowledge) assumption families admit natural generalisations
to the module setting, where the vector a is replaced by a matrix A and other components are modified
accordingly. Expectedly, we show that the module versions of the k-R-ISIS assumptions are at least as
hard as the ring versions for certain parameter choices.

In many applications (e.g. aggregating signatures), often only a main part (e.g. a set of signature
verification keys) of the function-image tuple (f, y) is known in advance, while the remaining small part
(e.g. a message signed by all parties) is known when it comes the time to perform verification. It is

7



desirable to preprocess the main part of (f, y) offline, so that the online verification cost is only dependent
on the size of the small part. In our formal construction, we capture this flexibility by considering y itself
to be a polynomial map, and allowing f and y to take an (additional, for f) public input z. This allows
the maps (f, y) to be preprocessed, such that the online cost depends mostly on z.

1.4 Application

We highlight an application of interest of our VC, and in particular of the resulting SNARK, in aggregating
GPV signatures [GPV08]. As a bonus result, we also show how to build adaptor signatures [AEE+21]
based on GPV signatures while preserving aggregatability. For more comprehensive details we refer the
reader to Sections 6 and 7.2.
Aggregate GPV Signatures. GPV signatures [GPV08] are a lattice-based signature scheme paradigm
of which an instantiation is a finalist in the NIST Post-Quantum Process (Falcon [PFH+20]). On a high
level, a GPV signature on a message m is a short vector u such that A · u ≡ v mod q, where A is the
public key, v = H(m) with the hash function H modelled as a random oracle in the security analysis.
The verification is simply the check of the linear relation A · u ≡ v mod q and that u is short.

Our SNARK can be used to prove knowledge of GPV signatures natively given the signature verification
involves algebraic operations only. For instance, to aggregate n signatures (ui)i∈Zn

on the same message
m (a scenario that arises in a PoS consensus protocol [DGNW20]), the aggregator can compute a SNARK
proof of knowledge of short (ui)i∈Zn

satisfying Ai · ui = v mod q, where Ai is the public key of the i-th
signer. The aggregated signature i.e. the SNARK proof, can be verified in time sublinear in the number of
signers and signatures n by first preprocessing the part of the verification equation depending on (Ai)i∈Zn .
In fact, this preprocessing step is one-time for the given set of signers, and the online verification after
knowing m is only logarithmic in n. If the signers sign different messages, a similar SNARK but now
over the different messages results in a compact proof, but with verification time linear in n (similar to
the case of BLS signatures [BDN18]). Such aggregation can result in compact blocks in a blockchain as
shown for the case of BLS signatures [BDN18], but now with post-quantum security.
Aggregate Adaptor Signatures. Adaptor signatures [AEE+21,EEE20,AME+21]let a user generate an
encryption σ̂ of a signature σ on a message m with respect to an instance Y of a hard language L. Here σ̂
is also referred to as a pre-signature. Given the public key, it is efficient to verify if a given pre-signature
σ̂ is indeed valid with respect to the instance and the message. One can adapt the pre-signature σ̂ into a
valid signature σ given the witness y for the instance Y , and given σ̂ and σ one can efficiently extract
the witness y. The primitive has found itself useful in enhancing efficiency and privacy of conditional
payments in cryptocurrencies [AEE+21,AME+21],and aggregation of signatures adds clear benefits to
this primitive. In the following we discuss how GPV signatures can be turned into adaptor signatures,
which consequently implies that they can be aggregated via our newly constructed SNARK.

We consider the lattice trapdoor from [MP12] for our GPV signatures, and view the GPV signatures
as follows. The public parameters are given by a uniformly random matrix A, the signing key is
sk := X, where X is a short norm matrix such that the public key, Y := A ·X mod q, is distributed
statistically close to random. The signature is simply (z, c) such that during verification we have
[A|G + Y] · [z|c]T = H(m) mod q and ∥(c, z)∥ is small as stipulated by GPV signatures. Here G is the
gadget matrix. We choose the hard language

L := {(A,v′) : ∃ u′ s.t. A · u′ = v′ ∧ ∥u′∥ ≤ β∗},

where A ∈ Rη×ℓ
q , v′ ∈ Rη

q . A pre-signature σ̂ is simply (c, ẑ) with v′ as the hard instance, such that
during pre-signature verification, it holds that [A|G + Y] · [ẑ|c]T = H(m)−v′ mod q and ∥(c, ẑ)∥ is small.
It is easy to adapt σ̂ given the witness u′ by setting z := ẑ + u′ and σ := (c, z). To extract a witness one
can simply compute u′ := z− z′. Similar to [EEE20] wehave that the extracted u′ has a slightly higher
norm than that was used to adapt the pre-signature. The security of our scheme only relies on the M -SIS
problem and the RO model.

1.5 Related Work

Apart from applications to succinct arguments [LM19], VCs have found numerous applications, such
as verifiable databases [CF13], verifiable decentralized storage [CFG+20], updatable zero-knowledge

8



sets [MRK03,Lis05], keyless Proofs of Retrievability (PoR) [Fis18,Fis19], pseudonymous credentials [KZG10],
and cryptocurrencies with stateless transaction validation [CPZ18]. Several works have studied various
extensions to VC, with updatable commitments and proofs [CF13], aggregatable opening proofs for
different commitments [GRWZ20], and incremental aggregatable proofs [CFG+20].

Libert, Ramanna, and Yung [LRY16] showed that a VC for linear functions over Zq implies a polynomial
commitment for polynomials over Zq. The result was obtained by VC-committing to the coefficient vector
of the polynomial and opening it to a linear function whose coefficients are evaluations of monomials
at the evaluation point. Since our VC only allows committing to a short vector x ∈ Rw and opening to
a polynomial map f with short coefficients, we need to suitably tune the norm bound α of f and x to
obtain similar applications. Concretely, by setting α ≈ δd+1 · γd

R where γR is the ring expansion factor of
R, we obtain a polynomial commitment for degree-d multivariate polynomials with coefficients bounded
by δ which supports evaluations at vectors of norm also bounded by δ. Note that only constant-degree
polynomials are supported by our polynomial commitment since α depends exponentially on d.

In the same work [LRY16], Libert, Ramanna, and Yung also showed that the polynomial commitment
constructed from a VC for linear functions over Zq implies an accumulator for Zq elements, the construction
requires committing to the polynomial p(X) =

∏
a∈A(X − a) encoding the set A of elements to be

accumulated. The polynomial commitment obtained via our VC unfortunately does not support committing
to p(X) since its degree is as large as |A|.

In a recent work [PPS21], Peikert, Pepin, and Sharp proposed a VC for positional openings based
on the standard SIS assumption. Relative to our construction outlined in Section 1.3, their construction
can be interpreted as follows. Instead of handing out preimages ui,j with ⟨a,ui,j⟩ = vj/vi mod q, they
sample multiple ai for i ∈ Zw and let ui,j satisfy ⟨ai,ui,j⟩ = vj mod q. To verify an opening to position
i, the vector ai is used. The removal of the non-linear term vj/vi allows proving security from the SIS
assumption. On the flip side, using a different vector ai to verify openings to different positions i forbids
the standard technique of aggregating openings using a random linear combination. Furthermore, there
seems to be no natural way of generalising their construction to support functional openings without
significantly changing the VC model, e.g. introducing an authority responsible for issuing functional
opening keys [PPS21]. Even if we consider the model with an authority, the resulting VC only satisfies
weak binding (using the terminology of our work) making it unsuitable to be transformed into a SNARG:
There is in fact an explicit attack when compiling their VC (with authority) into a SNARG.10

In another recent work [AKSY21] Agrawal, Kirshanova, Stehlé, and Yadav constructed a blind signature
scheme from a novel SIS-like assumption of the “one-more” flavour. Here the adversary can query ℓ
arbitrary preimages for an ISIS instance and must then output ℓ+ 1 preimages of random images returned
by an oracle. While this assumption is in the same “spirit” as those introduced in this work, they seem
incomparable: being adaptive makes one-more-SIS potentially easier, requiring preimages of random
images (hence without structure) seems to make it harder.

Prior to our work, all lattice-based SNARKs were in the designated-verifier setting. These construc-
tions [GMNO18,ISW21] are based on “linear-only” assumptions which are similar in spirit to the knowledge
k-M -ISIS assumptions introduced in this work but with a key difference: While linear-only assumptions
are with respect to specific encryption schemes, our assumptions are with respect to general rings. In terms
of applications, linear-only encryption has always been used to construct designated-verifier primitives. In
contrast, knowledge k-M -ISIS naturally leads to constructions of publicly verifiable primitives.

2 Preliminaries

Let λ ∈ N denote the security parameter. Define N0 := N ∪ { 0 }. Let R be a ring. We write R[X] for the
(multivariate) polynomial ring over R and R(X) for the ring of (multivariate) rational functions over R
with intermediates X = (Xi : i ∈ Zw). We write ⟨G⟩ for the ideal resp. module spanned by the elements
of the set G ⊂ Rη for η ∈ N. When G is a singleton set we may suppress the { · } notation. We write |⟨G⟩|
for size of the ideal ⟨G⟩ as a set.

For m ∈ N, let ζm ∈ C be any fixed primitive m-th root of unity. Denote by K = Q(ζm) the cyclotomic
field of order m ≥ 2 and degree n = φ(m), and by R = Z[ζm] its ring of integers, called a cyclotomic
ring for short. We have R ∼= Z[x]/ ⟨Φm(x)⟩, where Φm(x) is the m-th cyclotomic polynomial. If m is

10We stress that this does not contradict any of the claims made in [PPS21], but rather exemplifies the difference
between their approach and ours.

9



a power of 2, we call R a power-of-2 cyclotomic ring. If m is a prime-power, we call R a prime-power
cyclotomic ring. Let q ∈ N be prime, we write Rq := R/qR and R×

q for all invertible elements in Rq.
We have that Rq splits into f fields of degree ϕ(m)/f . We write vec(r) ∈ Zn for the coefficient vector
of r (with the powerful basis). For any r ∈ R there exists a matrix rot(r) ∈ Zn×n s.t. ∀s ∈ R we have
vec(r · s) = rot(r) · vec(s). For elements x ∈ R we denote the infinity norm of its coefficient vector as
∥x∥ := ∥ vec(x)∥. If x ∈ Rℓ we write ∥x∥ for the infinity norm of x. We write ∥ · ∥p for the ℓp-norm,
e.g. ∥ · ∥2 for the Euclidean norm. We write MG(·) for a function that takes vectors indexed by G and
returns a matrix where each column corresponds to one such vector. We write In for the identity matrix
of dimension n over whatever ring is clear from context.

For w ∈ N, x = (xi : i ∈ Zw) ∈ Rw, and e = (ei : i ∈ Zw) ∈ Zw, we write xe :=
∏

i∈Zw
xei

i whenever
it is defined. For v = (vi : i ∈ Zw) ∈ (R×

q )w, we write v̄ := (v−1
i : i ∈ Zw) for the entry-wise inverse of

v. A Laurent monomial g(X) ∈ R(X) is an expression g(X) = Xe :=
∏

i∈Zw
Xei

i with exponent vector
e = (ei : i ∈ Zw) ∈ Zw.

We may suppress arbitrary subscripts and superscripts from problem and advantage notations when
those are clear from context. We write x← D for sampling from the distribution D and x←$S to sample
an element from the finite space S uniformly at random. We write U(S) for the uniform distribution over
S and {uG } := {ug }g∈G .

Definition 1 (Ring Expansion Factor). Let R be a ring. The expansion factor of R, denoted by γR,
is γR := maxa,bR

∥a·b∥
∥a∥·∥b∥ .

Proposition 1 ([AL21]). If R = Z[ζm] is a prime-power cyclotomic ring, then γR ≤ 2n. If R = Z[ζm]
is a power-of-2 cyclotomic ring, then γR ≤ n.

Proposition 2. Let q = ω((w · f)f/ϕ(m)) be a rational prime such that Rq splits into f fields each of
size qφ(m)/f . For v←$Rw

q , we have v ∈ (R×
q )w with non-negligible probability.

Proof. The probability that v ∈ (R×
q )w is (1− 1/qφ(m)/f )w·f ≥ 1−(w ·f)/qφ(m)/f which is non-negligible.

⊓⊔

For the rest of this work, we implicitly assume q is large enough so that a uniformly random v←$Rw
q

satisfies v ∈ (R×
q )w with non-negligible probability.

2.1 Lattices

We write Λ(B) for the Euclidean lattice generated by the columns of B ∈ Zn×d = [b0| . . .bd−1],
i.e. { zi · bi | zi ∈ Z }. When B has full rank we call it a basis and when n = d we say that Λ(B) has full
rank. The determinant of a full rank lattice is the absolute value of the determinant of any of its bases.
Minkowski’s theorem implies that there is a vector x ∈ Λ ⊂ Rd of (infinity) norm ∥x∥ ≤ det(Λ)1/d when
Λ has full rank. The Gaussian heuristic predicts that a random full-rank lattice Λ contains a shortest
vector of (Euclidean) norm ≈

√
d

2π e · det(Λ)1/d.
For any c ∈ Rn and any real σ > 0, the (spherical) Gaussian function with standard deviation

parameter σ and centre c is:

∀x ∈ Rn, ρσ,c(x) = exp
(
−π · ∥x− c∥2

2
σ2

)
.

The Gaussian distribution is Dσ,c(x) = ρσ,c(x)/σn. The (spherical) discrete Gaussian distribution over a
lattice Λ ∈ Rn, with standard deviation parameter σ > 0 and centre c is:

∀x ∈ Λ,DΛ,σ,c = ρσ,c(x)
ρσ,c(Λ) ,

where ρσ,c(Λ) :=
∑

x∈Λ ρσ,c(x). When c = 0 we omit the subscript c. We may write DR,σ where we
interpret R to be the lattice spanned by R.

10



The dual of a lattice Λ is defined by Λ∗ = {y ∈ Rn : yT · Λ ⊆ Z}. The smoothing parameter of
an n-dimensional lattice Λ with respect to ϵ > 0, denoted ηϵ(Λ), is the smallest σ > 0, such that
ρ1/σ(Λ∗ \ { 0 }) ≤ ϵ.

Lattice reduction with parameter κ returns a vector of Euclidean norm ≈ δd−1 · det(Λ)1/d where δ is
the root Hermite factor δ and a function of κ.11 A root Hermite factor δ ≈

(
κ

2 π e

)1/(2κ) can be achieved
in time 20.292 κ+o(κ) classically using the BKZ algorithm [SE94] with block size κ and sieving as the SVP
oracle [BDGL16] (quantum algorithms do not promise a sufficiently substantial speed-up [Laa15,AGPS20]).
Concretely, for λ = 128 we require κ ≥ 484 and thus δ ≤ 1.0034.

2.2 Sampling Algorithms

The following relies on analogues of the Leftover Hash Lemma over rings attesting that given ai←$U(Rη
q )

and ri←$D where D is a small uniform [Mic07,SSTX09] or discrete Gaussian distribution [SS11,LPR13],
we have that

(
a0, . . . ,aℓ−1,

∑
0≤i<ℓ ai · ri

)
is close to uniform. In what follows, we will write lhl(R, η, q,D)

for an algorithm that outputs a minimal ℓ ∈ N ensuring that the resulting distribution is within negl(λ) to
uniform. We may also write lhl(R, η, q, β) for someD outputting elements bounded by β (with overwhelming
probability). In many cases the reader may think ℓ ∈ O(η logβ(q)). Let (TrapGen,SampD,SampPre) be
PPT algorithms with the following syntax and properties [GPV08,MP12,GM18]:

– (A, td) ← TrapGen(1η, 1ℓ, q,R, β) takes dimensions η, ℓ ∈ N, a modulus q ∈ N, a ring R, and a
norm bound β ∈ R. It generates a matrix A ∈ Rη×ℓ

q and a trapdoor td. For any n ∈ poly(λ) and
ℓ ≥ lhl(R, η, q, β), the distribution of A is within negl(λ) statistical distance of U(Rη×ℓ

q ).
– u ← SampD(1η, 1ℓ,R, β′) with ℓ ≥ lhl(R, η, q, β) outputs an element in u ∈ Rℓ with norm bound
β′ ≥ β. We have that v := A · u mod q is within negl(λ) statistical distance to U(Rη

q ).
– u← SampPre(td,v, β′) with ℓ ≥ lhl(R, η, q, β) takes a trapdoor td, a vector v ∈ Rη

q , and a norm bound
β′ ≥ β. It samples u ∈ Rℓ satisfying A · u ≡ v mod q and ∥u∥ ≤ β′. Furthermore, u is within negl(λ)
statistical distance to u← SampD(1η, 1ℓ,R, β′) conditioned on v ≡ A · u mod q. The syntax can be
extended in the natural way for SampPre to take a matrix V as input, in which case SampPre is run
on each column of V and the output vectors are concatenated column-wise to form a matrix.

For all algorithms we may replace β by D where it is understood that D outputs samples bounded by β
(with overwhelming probability).

Proposition 3 (adapted from Lemma 5 of [AKSY21]). For any k > 1/
√

2π,

Pr
[
∥z∥2 > k · σ ·

√
2π n; z← DZn,σ

]
< (k ·

√
2π)

n
exp

(n
2 ·
(
1− 2π k2)) ,

Pr [∥z∥∞ > k · σ; z← DZn,σ] < 2n · exp(−πk2).

2.3 Rényi Divergence

Definition 2. Let P and Q be any two discrete probability distributions such that Supp(P ) ⊆ Supp(Q).
Then for a ∈ (1,∞), the Rényi Divergence (RD) of order a is defined by

Ra(P∥Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

Lemma 1 (in Lemma 2.9 of [BLR+18]). Let P and Q be any two discrete probability distributions
such that Supp(P ) ⊆ Supp(Q) and let a ∈ (1,∞).

– Let E ⊆ Supp(Q) be an arbitrary event, then Q(E) ≥ P (E)
a

a−1 /Ra(P∥Q).

11The literature routinely simplifies the first expression to ≈ δd · det(Λ)1/d

11



– Assume P and Q are two distributions of a pair of random variable (Y0, Y1). For i ∈ {0, 1} let Pi (resp.
Qi) denote the marginal distribution of Yi under P (resp. Q), and let P1|0(·|y0) (resp. Q1|0(·|y0))
denote the conditional distribution of Y1 given that Y0 = y. Then we have

Ra(P ||Q) = Ra(P0||Q0) ·Ra(P1||Q1) if Y0 and Y1 are independent.

Lemma 2 ([BLR+18]). For any n-dimensional lattice, Λ ∈ Rn and σ > 0, let P be the distribution
DΛ,σ,c, and Q be the distribution DΛ,σ,c′ for some fixed c, c′ ∈ Rn. If c, c′ ∈ Λ, let ϵ = 0. Otherwise fix
ϵ ∈ (0, 1) and assume that σ > ηϵ(Λ). Then for any a ∈ (1,∞)

Ra(P∥Q) ∈
[(

1− ϵ
1 + ϵ

) 2
a−1

,

(
1 + ϵ

1− ϵ

) 2
a−1
]
· exp

(
a · π

∥c− c′∥2
2

σ2

)
.

2.4 Hard Problems

The Short Integer Solution problem was introduced in the seminal work of Ajtai [Ajt96]. It asks to find
a short element (of Euclidean norm β2) in the kernel of a random matrix mod q. An inhomogeneous
version, asking to find a short solution to a linear algebra problem mod q was formalised later [Mic07].

For both problems, it was shown [GPV08] that solving the problem for q ≥ β2 · ω(
√
n · logn) implies

solving certain presumed hard lattice problems (finding a short basis) to within approximation factor
β2 · Õ(

√
n). Thus, since β2 ≥ β∞, an appropriate choice of parameters is n = poly(λ), q ≥ β∞ · n · logn

and ℓ ≥ 2n logβ∞
q. An algorithm solving ISIS can be used to solve SIS (by making one of the columns of

A the target) and solving ISIS twice allows to solve SIS by considering the difference of these solutions.
Ring variants were introduced in [Mic07,PR06,LM06]; module variants in [LS15].

Definition 3 (M-SIS, adapted from [LS15]). Let R, η, q, ℓ, β depend on λ. The Module-SIS (or M-
SIS) problem, denoted M -SISRq,η,ℓ,β∗ , is: Given a uniform A←$Rη×ℓ

q , t ≡ 0 mod q find some u ̸= 0 ∈ Rℓ

such that ∥u∥∞ ≤ β∗ and A · u ≡ t mod q. We write Advm-sis
Rq,η,ℓ,β∗(λ) for the advantage of any algorithm

A in solving M -SISRq,η,ℓ,β∗ . We assume Advm-sis
Rq,η,ℓ,β∗,A(λ) ≤ negl(λ) for appropriately chosen Rq, η, ℓ, β

∗

and PPT A. When t ̸= 0 we speak of the Module-ISIS or M-ISIS problem, denoted M -ISISRq,η,ℓ,β∗ . When
η = 1 we speak of Ring-(I)SIS or R-(I)SIS, denoted R-SISRq,ℓ,β∗ or R-ISISRq,ℓ,β∗ .

In [LS15] it was shown that solving Module-SIS is as hard as finding a short basis in modules.
In [LM06,PR06] it was shown that solving Ring-SIS is as hard as find a short vector in any ideal in
R. A similar result was established for Ring-ISIS [Mic07]. From a cryptanalytic perspective, no known
algorithm solves Ring/Module-(I)SIS significantly faster than those solving (I)SIS. Our assumption is a
generalisation and adaptation to more general rings of the k-SIS assumption.

Definition 4 (k-M-SIS, generalised from [BF11,LPSS14]). For any integer k ≥ 0, an instance of the
k-M -SISRq,η,ℓ,β,β∗ problem is a matrix A ∈ Rη×ℓ

q and a set of k vectors u0, . . .uk−1 s.t. A ·ui ≡ 0 mod q.
A solution to the problem is a nonzero vector u ∈ Rℓ such that

∥u∥∞ ≤ β, A · u ≡ 0 mod q, and u /∈ K- span({ui }0≤i<k).

If B is an algorithms that takes as input a matrix A ∈ Rη×ℓ
q and vectors ui ∈ Rℓ for 0 ≤ i < k, we define

Advk-m-sis
Rq,η,ℓ,β,β∗,B(λ) to be the probability that B outputs a solution to the k-M -SISRq,η,ℓ,β,β∗ problem instance

A,u0, . . . ,uk−1 over uniformly random A ∈ Rη×ℓ
q and ui drawn from SampD(1η, 1ℓ,R, β) conditioned

on A · ui ≡ 0 mod q.

In [BF11,LPSS14] it is shown that if SIS is hard for Zn×(ℓ−k)
q and norm bound β then k-M -SISZq,n,ℓ,β′,β′′

is hard for any k < ℓ, and certain β′, β′′ ∈ poly(β). Looking ahead, here we are interested in k-R-SISRq,ℓ,β,β∗ :=
k-M -SISRq,1,ℓ,β,β∗ .

12



2.5 Vector Commitments

We define a non-interactive variant of vector commitments with preprocessing.

Definition 5 (Vector Commitments (VC)). A (preprocessing non-interactive) vector commitment
(VC) scheme is parameterised by the families

F = {Fs,w,t ⊆ { f : Rs ×Rw → Rt } }s,w,t∈N and
Y = {Ys,t ⊆ { y : Rs → Rt } }s,t∈N

of functions over R and an input alphabet X ⊆ R. The parameters s, w, and t are the dimensions of
public inputs, secret inputs, and outputs of f respectively. The VC scheme consists of the PPT algorithms
(Setup,Com,Open,PreVerify,Verify) defined as follows:

– pp← Setup(1λ, 1s, 1w, 1t): The setup algorithm generates the public parameters on input the security
parameter λ ∈ N and the size parameters s, w, t ∈ N.

– (c, aux)← Com(pp,x): The commitment algorithm generates a commitment c of a given vector x ∈ Xw

with some auxiliary opening information aux.
– π ← Open(pp, f, z, aux): The opening algorithm generates a proof π for f(z, ·) for the public input

z ∈ X s and function f ∈ Fs,w,t.
– ppf,y ← PreVerify(pp, (f, y)): Given functions f ∈ Fs,w,t and y ∈ Ys,t, the verification preprocessing

algorithm generates the preprocessed public parameters ppf,y for verifying proofs for (f, y).
– b← Verify(ppf,y, z, c, π): The verification algorithm inputs a preprocessed public parameters ppf,y, a

public input z ∈ X s, a commitment c, and an opening proof π. It outputs a bit b deciding whether to
accept or reject that the vector x committed in c satisfies f(z,x) = y(z).

Definition 6 (Correctness). A VC scheme for (F ,X ,Y) is said to be correct if for any λ, s, w, t ∈ N,
any pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, z,x, y) ∈ Fs,w,t × X s × Xw × Ys,t satisfying f(z,x) = y(z), any
(c, aux) ∈ Com(pp,x), any π ∈ Open(pp, f, z, aux), and any ppf,y ∈ PreVerify(pp, (f, y)), it holds that
Verify(ppf,y, z, c, π) = 1.

Informally, a VC scheme is extractable if, whenever an adversary A is able to produce a commitment c
and a valid opening proof π for some (f(z, ·), y(z)), then it must “know” a preimage x which is committed
in c and satisfies f(z,x) = y(z). Clearly, an extractable VC must also be binding, i.e. it is infeasible to
open a commitment c to a set { (fi(zi, ·), yi(zi)) }i of inconsistant function-image tuples.

Definition 7 (Extractability). Let κ : N4 → [0, 1]. A VC scheme for (F ,X ,Y) is said to be κ-
extractable if for any PPT adversary A there exists a PPT extractor EA such that the following probability
is at most κ(λ, s, w, t):

Pr


(
Verify(ppf,y, z, c, π) = 1

)
∧ ((f, z, x, y) /∈ Fs,w,t ×X s ×Xw × Ys,t

∨ c′ ̸= c ∨ f(z, x) ̸= y(z))

∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ, 1s, 1w, 1t)
(f, y, z, c, π)← A(pp; rA)
(x, r)← EA(pp; rA)
(c′, aux′)← Com(pp, x; r)
ppf,y ← PreVerify(pp, (f, y))

 .

In case Com is deterministic, we suppress the output r of EA. We say that the scheme is extractable if it
is κ-extractable and κ(λ, s, w, t) is negligible in λ for any s, w, t ∈ poly(λ).

Definition 8 (Compactness). A VC scheme for (F ,X ,Y) is said to be compact if there exists
p(λ, s, w, t) ∈ poly(λ, log s, logw, log t) such that for any λ, s, w, t ∈ N, any pp ∈ Setup(1λ, 1s, 1w, 1t), any
(f, z,x, y) ∈ Fs,w,t ×X s ×Xw ×Ys,t, any (c, aux) ∈ Com(pp,x), and any π ∈ Open(pp, f, z, aux), it holds
that max{|c|, |π|} ≤ p(λ, s, w, t), where | · | denotes the description size.

13



2.6 Adaptor Signatures
Next, we recall the formal definitions of adaptor signatures [AEE+21].
Definition 9 (Adaptor Signatures). An adaptor signature scheme ΠAS w.r.t. a couple of hard re-
lations R, R̃, with R ⊆ R̃, and a signature scheme ΠDS = (KGen,Sign,Verify) consists of algorithms
(pSign,Adapt,PreVerify,Ext) defined as:
σ̂ ← pSign(sk,m, Y ): The pre-sign algorithm takes as input a secret key sk, message m ∈ {0, 1}∗ and
statement Y ∈ LR, outputs a pre-signature σ̂.
0/1← PreVerify(pk,m, Y, σ̂): The pre-verify algorithm takes as input a public key pk, message m ∈ {0, 1}∗,
statement Y ∈ LR and pre-signature σ̂, outputs a bit b.
σ ← Adapt(σ̂, y): The adapt algorithm takes as input a pre-signature σ̂ and witness y, outputs a signature
σ.
y ← Ext(σ, σ̂, Y ): The extract algorithm takes as input a signature σ, pre-signature σ̂ and statement
Y ∈ LR, outputs a witness y such that (Y, y) ∈ R̃, or ⊥.

The correctness definition of adaptor signatures is described below.
Definition 10 (Pre-signature Correctness). An adaptor signature scheme ΠAS satisfies pre-signature
correctness if for every λ ∈ N, every message m ∈ {0, 1}∗ and every statement/witness pair (Y, y) ∈ R,
the following holds:

Pr


PreVerify(pk,m, Y, σ̂) = 1

∧ Verify(pk,m, σ) = 1

∧ (Y, y′) ∈ R̃

∣∣∣∣∣∣∣∣
(sk, pk)← KGen(1λ)
σ̂ ← pSign(sk,m, Y )
σ := Adapt(σ̂, y)
y′ := Ext(σ, σ̂, Y )

 = 1.

Next, we formally define the security properties of an adaptor signature scheme. We relax the
definition of unforgeability, introduced in [AEE+21], by restricting the adversary to query any given
message m ∈ {0, 1}∗ only once to one of the two oracle, either SignO(·) or pSignO(·, ·). Looking ahead, we
require this relaxation in order to prove the security of our adaptor signature scheme. Our instantiation
is based on the GPV signature scheme [GPV08], and it is proven secure in the random oracle model, by
relying on the programmability of the RO. The above restriction allows us to apply the same technique
to prove the security of the adaptor signature scheme, as the random oracle needs to be programmed
at most once for any given message m. However, this relaxation does not seem to lead to any practical
security consequence as in real-world application, typical signed messages contain a time-stamp, and thus
users never get to sign the same message more than once. Moreover, one could rely on the probabilistic
FDH version of the GVP signature in order to overcome such drawback: every time the pSign or Sign
algorithms are executed on input a message m, a fresh salt t is sampled, the message m||t is signed, and
t is appended to the so produced signature. This modification is in fact equivalent to the introduced
restriction of the adversary as the introduced salt forces the adversary, with high probability, to only get
signatures of different messages (i.e., different (m||t)).
Definition 11 (Weak Unforgeability). An adaptor signature scheme ΠAS is aEUF-CMA secure if
for every PPT adversary A there exists a negligible function negl such that:

Pr
[
aSigForgeA,ΠAS

(λ) = 1
]
≤ negl(λ)

where the experiment aSigForgeA,ΠAS
is defined as follows:

Definition 12 (Weak Pre-signature Adaptability). An adaptor signature scheme ΠAS satisfies weak
pre-signature adaptability if for any λ ∈ N, any message m ∈ {0, 1}∗, any statement/witness pair (Y, y) ∈ R,
any key pair (sk, pk) ← KGen(1λ) and any pre-signature σ̂ ← {0, 1}∗ with PreVerify(pk,m, Y, σ̂) = 1 we
have:

Pr[Verify(pk,m,Adapt(σ̂, y)) = 1] = 1
Definition 13 (Weak Witness Extractability). An adaptor signature scheme ΠAS is witness ex-
tractable if for every PPT adversary A, there exists a negligible function negl such that the following
holds:

Pr[aWitExtA,ΠAS(λ) = 1] ≤ negl(λ)
where the experiment aWitExtA,ΠAS is defined as follows

14



aSigForgeA,ΠAS
(λ)

Q := ∅

(sk, pk)← KGen(1λ)

m← ASignO(·),pSignO(·,·)(pk)

(Y, y)← GenR(1λ)
σ̂ ← pSign(sk, m, Y )

σ ← ASignO(·),pSignO(·,·)(σ̂, Y )
return (m ̸∈ Q ∧ Verify(pk, m, σ))

SignO(m)

if m ∈ Q
return ⊥

σ ← Sign(sk, m)
Q := Q∪ {m}
return σ

pSignO(m, Y )

if m ∈ Q
return ⊥

σ̂ ← pSign(sk, m, Y )
Q := Q∪ {m}
return σ̂

Fig. 1. (Weak) Unforgeabiltiy experiment of adaptor signatures

aWitExtA,ΠAS (λ)

Q := ∅

(sk, pk)← KGen(1λ)

(m, Y )← ASignO(·),pSignO(·,·)(pk)
σ̂ ← pSign(sk, m, Y )

σ ← ASignO(·),pSignO(·,·)(σ̂)
y′ := Ext(pk, σ, σ̂, Y )

return (m ̸∈ Q ∧ (Y, y′) ̸∈ R̃

∧ Verify(pk, m, σ))

SignO(m)

if m ∈ Q
return ⊥

σ ← Sign(sk, m)
Q := Q∪ {m}
return σ

pSignO(m, Y )

if m ∈ Q
return ⊥

σ̂ ← pSign(sk, m, Y )
Q := Q∪ {m}
return σ̂

Fig. 2. (Weak) Witness extractability experiment for adaptor signatures

2.7 Argument Systems
Definition 14 (Hard Relation). For a relation R, with statement/witness (Y, y), let LR be the associated
language defined as {Y | ∃ y s.t. (Y, y) ∈ R}. We say that R is a hard relation if the following holds:
i) There exists a PPT sampling algorithm GenR that on input 1λ outputs a statement/witness pair

(Y, y) ∈ R,
ii) The relation is poly-time decidable,

iii) For all PPT A the probability of A on input Y outputting a valid witness y is negligible.
We recall the definition of a non-interactive zero-knowledge proof of knowledge (NIZK) with online

extractors as introduced in [Fis05].
Definition 15 (NIZK-PoK). A tuple (Setup,Prove,Verify) of PPT algorithms is called a NIZK with
an online extractor for a relation R, and random oracle H, if the following holds:

i) Completeness: For all λ ∈ N and any (Y, y) ∈ R, it holds that

Verify(crs, Y,Prove(crs, Y, y)) = 1

except with negligible probability,
ii) Zero knowledge: If there exists a negligible function µ, a PPT simulator S = (S1,S2), such that for

all λ ∈ N, any (Y, y) ∈ R, and any PPT adversary A, such that the following probability is bound by
a negligible function µ.

Pr


b′ = A(pp, Y, π)
∧b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
If b = 0
pp← Setup(1λ)
π ← Prove(pp, Y, y)

else if b = 1
(pp, state0)← S1(1λ)
π ← S2(pp, state0, Y )


15



iii) Online Extractor: There exist a PPT online extractor K with access to the sequence of queries to the
random oracle and its answers, such that given (Y, π), the algorithm K can extract the witness y with
(Y, y) ∈ R.

2.8 SNARKs for Polynomial Map Satisfiability

We define the NP language of the satisfiability of systems of multivariate polynomials overR with bounded
coefficients. It is straightforward to check that the language is NP-complete. In particular, it contains the
NP-complete language of rank-1 constrant satisfiability (R1CS) over R [BCS21] as a subset.

Definition 16. Let d, α ∈ N with d ≥ 2. The satisfiability of systems of degree-d polynomials over R
with norm bound α is the language PolySATR,d,α =

⋃
s,w,t∈N Ls,w,t where

Ls,w,t := { (f, y, z) ∈ Fs,w,t × Ys,t ×X s : ∃ x ∈ Xw, f(z,x) = y(z) } .

where Fs,w,t, Ys,t, and X are defined as in Table 1.

We recall the definition of succinct non-interactive arguments of knowledge (SNARKs). For concreteness,
we state the defintions with respect to the language PolySATR,d,α.

Definition 17 (Preprocessing Non-Interactive Arguments). A preprocessing non-interactive
argument system Π for PolySATR,d,α is a tuple of PPT algorithms (Setup,Prove,PreVerify,Verify) defined
as follows:

– pp← Setup(1λ, 1s, 1w, 1t): The setup algorithm generates the public parameters on input the security
and size parameters λ, s, w, t ∈ N.

– π ← Prove(pp, (f, y, z),x): The proving algorithm generates a proof π on input the public parameters
pp, a statement (f, y, z), and a witness x.

– ppf,y ← PreVerify(pp, (f, y)): The preverification algorithm inputs the public parameters pp and a
partial statement (f, y). It outputs the preprocessed public parameters ppf,y.

– b← Verify(ppf,y, z, π): The verification algorithm returns a bit b (denoting acceptance or rejection)
on input the preprocessed public parameters ppf,y and a proof π.

In the following definitions, we use “a system” to refer to a preprocessing non-interactive argument
system for PolySATR,d,α.

Definition 18 (Completeness). A system Π is said to be complete if for any λ, s, w, t ∈ N, any
pp ∈ Setup(1λ, 1s, 1w, 1t), any (f, y, z) ∈ Fs,w,t × Ys,t × X s and x ∈ Xw satisfying f(z,x) = y(z), any
π ∈ Prove(pp, (f, y, z),x), and any ppf,y ∈ PreVerify(pp, (f, y)), it holds that Verify(ppf,y, z, π) = 1.

Definition 19 (Succinctness). A system Π is said to be succinct if for any λ, s, w, t ∈ N, any pp ∈
Setup(1λ, 1s, 1w, 1t), any (f, y, z) ∈ Fs,w,t × Ys,t × X s and x ∈ Xw satisfying f(z,x) = y(z), any
π ∈ Prove(pp, (f, y, z),x), and any ppf,y ∈ PreVerify(pp, (f, y)), the runtime of Verify(ppf,y, z, π) is upper-
bounded by a fixed polynomial in poly(λ, s, logw, log t).

Definition 20 (Knowledge Soundness). Let κ : N4 → [0, 1]. A system Π is said to be κ-knowledge-
sound if for any PPT adversary A there exists a PPT extractor EA such that the following probability is
at most κ(λ):

Pr



(
Verify(ppf,y, z, π) = 1

)
∧(

(f, y, z) /∈ Fs,w,t × Ys,t ×X s)

∨ (x /∈ Xw)

∨ f(z,x) ̸= y(z)
)

∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ, 1s, 1w, 1t)
((f, y, z), π)← A(pp; rA)
x← EA(pp, rA)
ppf,y ← PreVerify(pp, (f, y))


We say that the SNARK is knowledge-sound if it is κ-knowledge-sound and κ(λ, s, w, t) is a negligible in
λ for any s, w, t ∈ poly(λ).

Definition 21 (Preprocessing SNARKs). A preprocessing non-interactive argument system Π is
said to be a preprocessing SNARK if it is complete, succinct, and knowledge-sound.

16



Sometimes SNARKs are required to be zero-knowledge (zk-SNARKs), in which case we also require
the existence of a simulator that is able to generate valid proofs without knowing the witness. Contrary
to standard zero-knowledge proofs, SNARKs are already non-trivial to construct without zero-knowledge,
so we treat this aspect as tangential to our main result. We refer the reader to Definition 15 for a formal
definition of this property.

3 The k-M -ISIS Assumption

We first introduce a family of assumptions over modules – k-M -ISIS – which we then specialise to rings
to obtain k-R-ISIS mentioned above.

We note that the most immediate candidate notion for k-ISIS, i.e. generalising k-SIS, is to simply hand
out short preimages of random images and then ask the adversary to solve ISIS. This notion is trivially
equivalent to ISIS since short preimages of random images can be efficiently sampled by sampling short
u ∈ Zℓ and computing t := A ·u mod q. The same reasoning can be lifted to R. On the other hand, k-SIS
is trivially insecure when k ≥ ℓ in the intuitive sense since then {ui } constitutes a trapdoor for A when
the ui are linearly independent [GPV08]. Formally, the problem as stated is impossible to solve since all
vectors will be in Q- span({ui }0≤i<k), i.e. there are no valid solutions.

Our variants are neither trivially equivalent to M -ISIS nor immediately broken when k > ℓ by imposing
on the images an algebraic structure which is independent of the challenge matrix A. Before stating our
family of assumptions, we define a notion of admissibility to formally rule out trivial wins.

Definition 22 (k-M-ISIS-Admissible). Let g(X) ∈ R(X) be a Laurent monomial, i.e. g(X) = Xe :=∏
i∈Zw

Xei
i for some exponent vector e = (ei : i ∈ Zw) ∈ Zw. Let G ⊂ R(X) be a set of Laurent monomials

with k := |G| and let G be a vector of those monomials. Let g∗ ∈ R(X) be a target Laurent monomial. We
call a family G k-M -ISIS-admissible if (i) all g ∈ G have constant degree, i.e. ∥e∥1 ∈ O(1); (ii) all g ∈ G
are distinct, i.e. G is not a multiset; and (iii) 0 ̸∈ G. We call a family (G, g∗) k-M -ISIS-admissible if G is
k-M -ISIS-admissible, g∗ has constant degree, and g∗ /∈ G.

Remark 1. Condition (i) rules out monomials that depend on the ring R, such as Xϕ(m). Condition (ii)
rules out that trivial linear combinations of known preimages produce a preimage for the target. Condition
(iii) rules out trivially producing multiple preimages of the same image. On the other hand, we do not
target full generality here but restrict ourselves to a slight generalisation of what we require in this work.
It is plausible that we can replace Laurent monomials by Laurent “terms”, i.e. with coefficients ̸= 1 in
Rq, or rational functions.

Definition 23 (k-M-ISIS Assumptions). Let ℓ, η ∈ N. Let q be a rational prime,R the m-th cyclotomic
ring, and Rq := R/qR. Let T ⊂ Rη

q be such that, for any t = (ti)i∈Zη ∈ T , ⟨{ ti }⟩ = Rq. Let G ⊂ R(X)
be a set of w-variate Laurent monomial. Let g∗ ∈ R(X) be a target Laurent monomial. Let (G, g∗)
be k-M -ISIS-admissible. Let Ḡ := G ∪ { g∗ }. Let β ≥ 1 and β∗ ≥ 1 be reals. For η, ℓ ∈ N, g ∈ Ḡ,
ℓ ≥ lhl(R, η, q, β), A ∈ Rη×ℓ

q , t ∈ T , and v ∈ (R×
q )w, let Dg,A,t,v be a distribution over

{ug ∈ Rℓ : A · ug ≡ g(v) · t mod q, ∥ug∥ ≤ β } .

Let D := {Dg,A,t,v : η, ℓ ∈ N, g ∈ Ḡ,A ∈ Rη×ℓ
q ,v ∈ (R×

q )w } be the family of these distributions. Write
pp := (Rq, η, ℓ, w,G, g∗,D, T , β, β∗). The k-M -ISISpp assumption states that for any PPT adversary A
we have Advk-r-isis

pp,A (λ) ≤ negl(λ), where

Advk-m-isis
pp,A (λ) := Pr


A · ug∗ ≡ s∗ · g∗(v) · t mod q
∧ 0 < ∥s∗∥ ≤ β∗

∧ ∥ug∗∥ ≤ β∗

∧ (g∗,ug∗) ̸= (0,0)

∣∣∣∣∣∣∣∣∣
A←$Rη×ℓ

q mod q
t←$ T ; v←$ (R×

q )w

ug ←$Dg,A,t,v, ∀ g ∈ G
(s∗,ug∗)← A (A, t, {uG } ,v)

 .
Remark 2. Since for any t′ ∈ T there exist matrices X,Y s.t. X ·Y ≡ I, X · t′ ≡ (1, 0, . . . , 0)T mod q and
Y · (1, 0, . . . , 0)T ≡ t′ mod q, we can assume that T = { (1, 0, . . . , 0)T } without loss of generality.

Definition 24 (k-R-ISIS). When η = 1 we may write

k-R-ISISRq,ℓ,w,G,g∗,D,T ,β,β∗ := k-M -ISISRq,1,ℓ,w,G,g∗,D,T ,β,β∗ .

17



Remark 3. Analogous to the ℓ-Diffie-Hellman exponent assumption, an example of (w,G, g∗) is w = 1,
G = { 1, X, . . . ,Xℓ, Xℓ+2, . . . , X2ℓ }, and g∗(X) = Xℓ+1 for some ℓ ∈ N.

As written above we have a separate assumption for each family of (G, g∗) which are application
dependent. As we will show below, there are (G, g∗) that are as hard as M -ISIS and our discussion of
admissibility indicates that some (G, g∗) are trivially insecure. However, to encourage analysis and to
avoid “bodacious assumptions” [KM10] we make the following, strong, meta assumption.

Definition 25 (k-M-ISIS Meta Assumption). For any k-M -ISIS-admissible (G, g∗), k-M -ISISpp is
hard.

3.1 Knowledge Variants

We next propose a “knowledge” version of the k-M -ISIS assumption. It captures the intuition that if the
images are restricted to scalar multiples of t then the only way to produce preimages of them under A is
to perform a linear combination of the given preimages under A with small coefficients.

Definition 26 (Knowledge k-M-ISIS Assumption). Adopt the notation from Definition 23, but let
pp := (Rq, η, ℓ, w,G,D, T , α, β, β∗) where α ≥ 1 is real and η > 1. The knowledge k-M -ISISpp assumption
states that for any PPT adversary A there exists a PPT extractor EA such that Advk-m-isis

pp,A (λ) ≤ negl(λ),
where

Advk-m-isis
pp,A (λ) := Pr



A · u ≡ c · t mod q
∧ ∥u∥ ≤ β∗

∧ ¬


c ≡

∑
g∈G

xg · g(v) mod q

∧
∥∥∥(xg)g∈G

∥∥∥ ≤ α


∣∣∣∣∣∣∣∣∣∣∣∣∣

A←$Rη×ℓ
q

t←$ T ; v←$ (R×
q )w

ug ←$Dg,A,t,v, ∀ g ∈ G(
(c,u), (xg)g∈G

)
← (A∥EA) (A, t, {uG } ,v)


where the notation (A∥EA) means that A and EA are run on the same input including the randomness,
and (c,u) and (xg)g∈G are the outputs of A and EA respectively.

The knowledge k-M -ISIS assumption, as stated, only makes sense for η ≥ 2, i.e. not for k-R-ISIS. To
see this, consider an adversary A which does the following: First, it samples random short u and checks
whether A · u mod q is in the submodule of Rη

q generated by t. If not, A aborts. If so, it finds c such
that A · u = c · t mod q and outputs (c,u). When η = 1 and assuming without loss of generality that
T = { (1, 0, . . . , 0)T }, we observe that t = 1 generates Rq, which means A never aborts. Clearly, when A
does not abort, it has no “knowledge” of how c can be expressed as a linear combination of { g(v) }g∈G .
Note that when η ≥ 2 the adversary A aborts with overwhelming probability since A ·u mod q is close to
uniform over Rη

q but the submodule generated by t is only a negligible faction of Rη
q . However, in order

to be able to pun about “crises of knowledge”, we also define a ring version of the knowledge assumption.
In the ring setting, we consider proper ideals rather than submodules.

Definition 27 (Knowledge k-R-ISIS Assumption). Let the parameters pp be as in Definition 23
except that η = 1 and T contains elements t ∈ Rq s.t. 1/| ⟨t⟩ | = negl(λ) and | ⟨t⟩ |/|Rq| = negl(λ).12 The
knowledge k-R-ISISpp assumption states that for any PPT adversary A there exists a PPT extractor EA
such that Advk-r-isis

pp,A (λ) ≤ negl(λ), where

Advk-r-isis
pp,A (λ) := Pr



⟨a,u⟩ ≡ c · t mod q
∧ ∥u∥ ≤ β∗

∧ ¬


c ≡

∑
g∈G

xg · g(v) mod q

∧
∥∥∥(xg)g∈G

∥∥∥ ≤ α


∣∣∣∣∣∣∣∣∣∣∣∣∣

a←$Rℓ
q

t←$ T ; v←$ (R×
q )w

ug ←$Dg,a,t,v, ∀ g ∈ G(
(c,u), (xg)g∈G

)
← (A∥EA) (a, t, {uG } ,v)


.

Definition 28 (k-M-ISIS Meta Knowledge Assumption). For any k-M -ISIS-admissible G, the
knowledge k-M -ISISpp assumption holds.

12Concretely, let T be the set of all Rq elements t where half of the components of t in the Chinese remainder
theorem (CRT) representation are zero and the other half are non-zero. Note that this is well-defined only when
⟨q⟩ is not a prime ideal in R.

18



4 Analysing the k-R-ISIS Assumption

We give reductions studying the properties of our new assumptions. We first show that there exist hard
instances of the k-R-ISIS problem. In particular, in Lemmas 3 and 4 we show that k-R-ISIS (with g∗ ≡ 1)
is as hard as R-SIS when w ≥ k and when the system generated by G is efficiently invertible. In both
lemmas, we use that g(v) ∼ U((R×

q )w) ≈ U(Rw
q ) and these reductions do not apply to k-M -ISIS, i.e. η > 1.

In Theorem 1 we show that k-M -ISIS is at least as hard as k-R-ISIS. This, on the one hand, formalises
the intuition that increasing the module rank does not make the problem easier but, on the other hand,
also shows that the additional structure (restricting to multiples of t := (1, 0, . . . , 0)T) preserves hardness.
Using the same techniques, in Theorem 2 we also show that k-M -ISIS is a true generalisation of k-R-SIS.
We stress, however, that none of the above reductions cover the case we use for our example application
in Section 5.

We next study the relations between k-M -ISIS (but not just k-R-ISIS) problems for different choices
of (G, g∗). In Lemma 6 we show that (G, g∗) is as hard as (G, 0) for any G, formalising the intuition that
the non-homogeneous variant is no easier than the homogeneous variant. Then, in Lemma 7 we show that
scaling (G, g∗) multiplicatively by any non-zero Laurent monomial does not change the hardness, e.g. we
may choose to normalise instances to g∗ ≡ 1.

Finally, in Section 4.1, we investigate attacks on the k-M -ISIS problem. These attacks do not outperform
standard attacks on SIS and we will use them to set parameters in Section 5.1.

Some k-R-ISIS ≥ R-SIS. First, we show that giving out up to w constraints and when g∗ ≡ 1 then
k-R-ISIS is no easier than R-SIS. Under this condition, we can simply sample random preimages and solve
for the right v to satisfy the G constraints.

Lemma 3. Let the parameters pp be as in Definition 23. Furthermore, let g∗ ≡ 1, G = {gi(X)}i∈Zk
⊂

R(X) be of size k ≤ w, the number of variables, and D be such that the distribution{
(a, t, {ui } ,v)

∣∣a←$Rℓ
q; t←$ T ; v←$ (R×

q )w; ui←$Dgi,a,t,v, ∀i ∈ Zk

}
is statistically close to the distribution{

(a, t, {ui } ,v)

∣∣∣∣∣a←$Rℓ
q; t←$ T ; v←$ (R×

q )w

ui←$ SampD(11, 1ℓ,R, β) : ⟨a,ui⟩ ≡ gi(v) · t mod q, ∀i ∈ Zk

}
.

Write gi(X) = Xei , E = (ei)i∈Zk
∈ Zk×k, and (gi(v))i∈Zk

= vE. IfRq is a field, let gcd (det (E) , qn − 1) =
1. Otherwise let det (E) = ±1. Then for any PPT adversary A against k-R-ISISpp there exists a PPT
adversary A′ against R-SIS with

Advr-sis
Rq,ℓ+1,β∗,A′(λ) ≥ 1

poly(λ) · Advk-r-isis
pp,A (λ).

Proof. Wlog we consider k = w by simply only submitting a subset of our preimages to the adversary. Also
wlog we assume T = { 1 } as discussed in Remark 2. We construct an R-SIS solver as follows: On input of
an R-SIS instance a′, write a′ = (ā, a′) and set a = 1

a′ · ā. If no a′ is invertible in Rq the reduction aborts.
By our choice of q, with non-negligible probability over the randomness of a′ the reduction does not abort,
and in which case a is uniformly distributed over Rℓ

q. For i ∈ Zk sample ui←$ SampD(11, 1ℓ,R, β) and
compute ti = ⟨a,ui⟩. Since ℓ ≥ lhl(R, 1, q, β), t ∈ Rk

q is distributed within negligible statistical distance
to uniform. By our choice of q, we have t ∈ (R×

q )k with non-negligible probability. Compute v = (t)E−1
.

We can write E−1 because E−1 = F/r where F is over Z and r := |det(E)| ∈ Z. If det(E) = ±1
compute v directly. Otherwise, note that every element in a finite field of order qn has an r-th root if
gcd (r, qn − 1) = 1 and computing r-th roots can be accomplished by computing r−1 mod (qn − 1). Note
that this implies r-th roots are unique under these conditions and the map is a bijection. Thus, the map
defined by gi(X) is a bijection, implying our sampling procedure produces well distributed inputs.

Run the k-R-ISIS solver on (a, {ui}i∈Zk
,v) to obtain (u∗, s∗) satisfying ⟨a,u∗⟩ ≡ s∗ mod q. Output

u′ = (u∗,−s∗). We observe that

⟨a,u∗⟩ ≡ s∗ mod q

19



⟨(a, 1), (u∗,−s∗)⟩ ≡ 0 mod q
⟨a′ · (a, 1), (u∗,−s∗)⟩ ≡ 0 mod q

⟨a′,u′⟩ ≡ 0 mod q

Our R-SIS solver runs in time proportional to our k-R-ISIS solver. Finally, observe that ∥u′∥ ≤ β∗ if
the k-M -ISIS adversary succeeded. ⊓⊔

Next, we show that for some additional forms of G, too, k-R-ISIS is equivalent to R-SIS. Here we use
the freedom to sample vi to fix up images.

Lemma 4. Let the parameters pp be as in Definition 23. Furthermore, let w = w′ + k for some w′ ∈ N,
G be of the form

G = { gi(X) }i∈Zk
= {Xw′+i ·

∏
j∈Zw′

X
ej

j }i∈Zk
,

and D be such that the distribution{
(a, t, {ui } ,v)

∣∣a←$Rℓ
q; t←$ T ; v←$ (R×

q )w; ui←$Dgi,a,t,v, ∀i ∈ Zk

}
is statistically close to the distribution{

(a, t, {ui } ,v)

∣∣∣∣∣a←$Rℓ
q; t←$ T ; v←$ (R×

q )w

ui←$ SampD(11, 1ℓ,R, β) : ⟨a,ui⟩ ≡ gi(v) · t mod q, ∀i ∈ Zk

}
.

For any PPT adversary A against k-R-ISISpp there exists a PPT adversary A′ against R-SIS with

Advr-sis
Rq,ℓ,β∗,A′(λ) ≥ 1

poly(λ) · Advk-r-isis
pp,A (λ).

Proof. Let a be a R-SISRq,ℓ,β∗ instance. By assumption, a is uniformly distributed over Rℓ
q. Sample

v←$ (R×
q )w′ and ui←$ SampD(11, 1ℓ,R, β) for all i ∈ Zk. Compute yi ≡ ⟨a,ui⟩ mod q and vw′+i ≡

yi ·
∏

j∈Zw′ v
−ej

j mod q for all i ∈ Zk.
If yi is not invertible for any i ∈ Zk the reduction aborts. If the reduction does not abort, which

happens with non-negligible probability, since ℓ ≥ lhl(R, 1, q, β), for each i ∈ Zk, yi is uniformly distributed
over R×

q , and so is vw′+i. We therefore conclude that v is uniformly distributed over (R×
q )w. Run the

k-R-ISIS adversary on the input
(
a, {ui }i∈Zk

,v
)

to obtain (s∗,ug∗). By construction ug∗ satisfies
⟨a,ug∗⟩ ≡ 0 mod q if the k-R-ISIS adversary succeeded. ⊓⊔

k-M-ISIS ≥ k-R-(I)SIS. We show that k-M -ISIS is no easier than k-R-ISIS. The analogous reduction
for M -ISIS and R-ISIS is trivial. Here we face the complication that we have to map the known preimages
to k-M -ISIS while preserving a mapping back to make use of the returned k-M -ISIS solution in k-R-ISIS.
We do this by constructing a lower-triangular matrix that satisfies our constraints and hide its structure
by multiplying with a short upper triangular matrix (with a short inverse). We then use Rényi divergence
arguments to break thus introduced dependencies. Our reduction has several limitations: (i) It requires
ℓ ≥ lhl(R, η, q, β) rather than ℓ > lhl(R, 1, q, β) for the input k-R-ISIS instance and (ii) it produces an
output distribution D for k-M -ISIS that is non-spherical. For ease of exposition and because we do not
require the more general case in this work, we give our reduction for η = 2.

Theorem 1. Let the parameters ppM and ppR for k-M -ISIS and k-R-ISIS respectively be as in Defi-
nition 23, such that they share the same ring Rq, number of variables w, and monomials (G, g∗). Dif-
fering parameters are distinguished by subscripts, e.g. ℓM and ℓR. Furthermore, let ηM = 2, β∗

∆ ∈ R,
σ, σ∆ > ηϵ(R) ∈ R, βx ≥ σx be s.t. u ∼ DRℓ,σx

satisfy ∥u∥∞ ≤ βx for x ∈ {R,M,∆ }, ℓ∆ := ℓM − ℓR ≥
lhl(R, 1, q, β∆), σR > γR · (ℓ∆ · n)3/2 · γR · σ∆ · σ, β∗

R ≥ 2 ℓ∆ · γR ·
√
n · σ · β∗

∆, ℓR ≥ lhl(R, 1, q, σ) and
≥ lhl(R, 2, q, βR). Let DR be such that the distribution{

(a, t, {ui } ,v)
∣∣a←$RℓR

q ; t←$ T ; v←$ (R×
q )w; ui←$Dgi,a,v, ∀i ∈ Zk

}
20



is statistically close to the distribution{
(a, t, {ui } ,v)

∣∣∣∣∣a←$RℓR
q ; t←$ T ; v←$ (R×

q )w

ui←$DRℓR ,σR
: ⟨a,ui⟩ ≡ gi(v) · t mod q, ∀i ∈ Zk

}
.

Let DM be such that the distribution{
(A, t, {ui } ,v)

∣∣A←$RηM ×ℓM
q ; t←$ T ; v←$ (R×

q )w; ui←$Dgi,A,t,v, ∀i ∈ Zk

}
is statistically close to the distribution{

(A, t, {ui } ,v)

∣∣∣∣∣A←$RηM ×ℓM
q ; t←$ T ; v←$ (R×

q )w

ui←$DRℓR ,σR
×DRℓ∆ ,σ∆

: A · ui ≡ gi(v) · t mod q, ∀i ∈ Zk

}
.

Let SampD and SampPre output samples following a Discrete Gaussian distribution of appropriate width
σx given βx. For any PPT adversary A against k-M -ISISppM

there exists a PPT adversary A′ against
k-R-ISISppR

with

Advk-r-isis
ppR,A′(λ) ≥ 1

poly(λ) · Advk-m-isis
ppM ,A (λ).

Using the same proof strategy, we show that some k-M -ISIS adversaries can break k-M -SIS. To ease
readability, the formal statement below is for k-R-SIS, i.e. k-M -SIS with η = 1. The only non-trivial step
is to argue that the output solution satisfies the additional constraint imposed by k-M -SIS. Here we use
an unrelated R-SIS instances to argue that the adversary either broke R-SIS or the solution satisfies the
required constraint that it is not in K- span({ui }0≤i<k).

Theorem 2. Let the parameters ppM for k-M -ISIS be as in Definition 23. Furthermore, let ηM = 2,
g∗

M = 0, β∗
∆ ∈ R, σ, σ∆ > ηϵ(R) > 1 ∈ R, βx ≥ σx be s.t. u ∼ DR,σx satisfy ∥u∥∞ ≤ βx for

x ∈ {R,M,∆ }, ℓ∆ := ℓM −ℓR ≥ lhl(R, 1, q, β∆), σR > (4 γR ·σ∆ ·σ ·ℓ∆ ·n), β∗
R ≥ 2 ℓ∆ ·γR ·

√
2πn ·σ ·β∗

∆,
ℓR ≥ lhl(R, 1, q, σ) and ≥ lhl(R, 2, q, βR). Let DM be such that the distribution{

(A, t, {ui } ,v)
∣∣A←$RηM ×ℓM

q ; t←$ T ; v←$ (R×
q )w; ui←$Dgi,A,t,v, ∀i ∈ Zk

}
is statistically close to the distribution{

(A, t, {ui } ,v)

∣∣∣∣∣A←$RηM ×ℓM
q ; t←$ T ; v←$ (R×

q )w

ui←$DRℓR ,σR
×DRℓ∆ ,σ∆

: A · ui ≡ gi(v) · t mod q, ∀i ∈ Zk

}
.

Let SampD and SampPre output samples following a Discrete Gaussian distribution of appropriate width
σx given βx. For any PPT adversary A against k-M -ISISppM

there exists a PPT adversary A′ or A′′

against k-M -SISRq,1,ℓR,βR,β∗
R

or R-SISRq,1,ℓR,β∗
R

respectively with

Advk-r-sis
Rq,ℓR,β,β∗

R
,A′(λ) + Advr-sis

Rq,ℓR,β∗
R

,A′′(λ) ≥ 1
poly(λ) · Advk-m-isis

ppM
(λ).

We first state and prove a technical lemma that we will rely on in both proofs. It allows us to argue,
using Rényi and statistical distance arguments, that the structured inputs we provide to the k-M -ISIS
adversary are sufficiently close to what this adversary expects for it to succeed.

Lemma 5. Consider

A :=
(

a 0
r b

)
·
(

I R
0 I

)
=
(

a a ·R
r b

)
,

U :=
(

I −R
0 I

)
·
(

UR

W∆

)
=
(

UR −R ·W∆

W∆

)
,

where a, r←$RℓR
q , b←$Rℓ∆

q , R ∈ RℓR×ℓ∆ with each entry sampled independently from DR,σ, UR ∈
RℓR×k with each entry sampled independently from DR,σR

, W∆ ∈ Rℓ∆×k with entry is sampled indepen-
dently from DR,σ∆

.

21



Let σ, σ∆ > ηϵ(R) ∈ R, βx ≥ σx be s.t. u ∼ DRℓ,σx
satisfy ∥u∥∞ ≤ βx for x ∈ {R,M,∆ },

ℓ∆ := ℓM−ℓR ≥ lhl(R, 1, q, β∆), σR > γR ·(ℓ∆ · n)3/2 ·γR ·σ∆ ·σ, ℓR ≥ lhl(R, 1, q, σ) and ≥ lhl(R, 2, q, βR).
Let ppM ′ be as in Definition 23 except that A is sampled as above and ui are sampled as the columns of

U subject to A ·U ≡ G · t mod q where G :=MG(g). Let SampD and SampPre output samples following
a Discrete Gaussian distribution of appropriate width σx given βx. Let A be a k-M -ISIS adversary solving
instances sampled as in Definition 23 with non-negligible probability, then A also solves instances with
ppM ′ with non-negligible probability.

Proof. We argue this by defining a series of hybrid experiments for sampling (A, t,U,v):

Hyb0: The input (A0, t,U0,v) is sampled as above.
Hyb1: In this experiment (A1, t,U1,v) is sampled such that U1 is sampled independent of R, i.e. ug :=

(u(R)
g ,u(∆)

g ) where u(R)
g ∼ DRℓR ,σR

and u(∆)
g ∼ DRℓ∆ ,σ∆

.
Hyb2: In this experiment (A2, t,U2,v) is sampled as in the k-M -ISIS definition.

We first establish the closeness between the distributions Hyb0 and Hyb1.

Claim. The Rényi divergence between Hyb0 and Hyb1 is at most a constant.

Proof. We first show how we can sample from Hyb1. Let R1←$RℓR×ℓ∆ be sampled as in Hyb0. Sample
(X, td)← TrapGen(2, ℓR, q,R, βR), y←$RℓM

q , write xi for the i-th row of X, and set

A1 :=
(

x0 0
x1 y

)
·
(

I R1
0 I

)
=
(

x0 x0 ·R1
x1 y

)
.

Note that x0, x1, and y play the roles of a, r, and b in Hyb0 respectively. Then, sample W∆,1←$DRℓ∆×k,σ∆

and UR,1←$ SampPre
(

td,G · t−
(

x0 ·R1
y

)
W∆,1, βR

)
so that they satisfy

A1 ·
(

UR,1
W∆,1

)
≡ G · t mod q.

We next argue about the closeness of Hyb0 and Hyb1. Write

U0 = ((UR,0 + R0 ·W∆,0)T∥WT
∆,0)

T
.

Since ℓR ≥ lhl(R, 2, q, βR) and by the properties of TrapGen we have that A0 and A1 are statistically
close. We also note that W∆,0 and W∆,1 are identically distributed. Next, we consider the distribution
DHyb1

:= DRℓR×k,σR
of UR,1 and the distribution DHyb0 of UR,0 + R0 ·W∆,0, where we recall that

UR,0 ∼ DRℓR×k,σR
, W∆,0 ∼ DRℓ∆×k,σ∆

and R0 ∼ DRℓR×ℓ∆ ,σ. By Proposition 3 ∥W∆,0∥ ≤
√
ℓ∆ · n · σ∆,

each column r of R0 satisfies ∥r∥ ≤
√
ℓ∆ · n · σ and thus ∥R0 ·W∆,0∥2 ≤ (ℓ∆ · n)3/2 · γR · σ∆ · σ.

By Lemma 2, the Rényi divergence of order a ∈ (1,∞) is thus

Ra

(
DHyb1∥DHyb0

)
≤ exp

(
a π · ((ℓ∆ · n)3/2 · γR · σ∆ · σ)

2
/(σR)2

)
.

By assumption σR > γR · (ℓ∆ · n)3/2 · γR · σ∆ · σ and thus the Rényi divergence Ra

(
DHyb1∥DHyb0

)
, and

hence Ra (Hyb1∥Hyb0), is bounded by a constant. ⊓⊔

Next, let E be the event that the k-M -ISIS adversary is successful when given (A, t,U,v), and denote
the probability of this event happening when (A, t,U,v) is sampled from Hyb1 by Hyb1(E). By Lemma 1
we have that Hyb0(E) ≥ Hyb1(E)a/(a−1)

/Ra(Hyb0∥Hyb1). Taking any constant a > 1 establishes that
(A0, t,U0,v) sampled from Hyb0 is sufficiently well distributed for the adversary to succeed if it does for
(A1, t,U1,v) sampled from Hyb1.

It remains to show that Hyb1(E) and Hyb2(E) are (statistically) indistinguishable. For this, we use that
ℓR ≥ lhl(R, 1, q, σ) and the distributions of a,b, r to conclude that A1 and A2 are statistically close, which
implies that the distributions Hyb1 and Hyb2 are statistically close. The statistical indistinguishability
between Hyb1(E) and Hyb2(E) follows. ⊓⊔

22



Proof (of Theorem 1). Let (a, t, {uG } ,v) ∈ RℓR
q ×Rq ×Rw

q ×RℓR×k be a k-R-ISIS instance. Without
loss of generality (Remark 2), suppose t = 1. Our reduction samples: (b, td)← TrapGen(1, ℓ∆, q,R, β∆),
r←$RℓR

q and a short matrix R ∈ RℓR×ℓ∆ where each entry is sampled independently from DR,σ.
Let U ∈ RℓR×k :=MG({uG }). For each g ∈ G, sample short preimages wg ←$ SampPre(td,−⟨r,ug⟩ , β∆).

Note that 0 ≡ ⟨r,ug⟩+ ⟨b,wg⟩ mod q. Let W ∈ Rℓ∆×k :=MG({wG }) and G ∈ R1×k
q :=MG({ g(v) }).

We construct

A′ :=
(

a 0
r b

)
·
(

I R
0 I

)
=
(

a a ·R
r b

)
,

U′ :=
(

I −R
0 I

)
·
(

U
W

)
=
(

U−R ·W
W

)
.

Without loss of generality (Remark 2), suppose that t = (1, 0)T. By construction we have

A′ ·U′ ≡ G · t mod q

as required. Our reduction runs the k-M -ISIS adversary on (A′, t,U′,v). When the adversary returns a
short preimage u∗ of s∗ · g∗(v) · t we have

s∗ · g∗(v) · t ≡ A′ · u∗ mod q

≡
(

a 0
r b

)
·
(

I R
0 I

)
·
(

u∗
0

u∗
1

)
mod q

≡
(

a 0
r b

)
·
(

u∗
0 + R · u∗

1
u∗

1

)
mod q

s∗ · g∗(v) ≡ ⟨a,u∗
0 + R · u∗

1⟩ mod q,

i.e. u∗
0 + R · u∗

1 is a solution for k-R-ISIS. By Proposition 3 the entries of R are bounded by
√
n · σ with

overwhelming probability. Thus, ∥u∗
0 + R · u∗

1∥ ≤ 2 ℓ∆ · γR ·
√

2πn · σ · β∗
M ≤ β∗

R.
Finally, to show that the input (A′, t,U′,v) to the k-M -ISIS adversary is (sufficiently) well distributed,

we apply Lemma 5.

Proof (of Theorem 2). Let (a, {ui }) ∈ RℓR
q × RℓR×k be a k-R-SIS instance. Our reduction samples:

v ∈ (R×
q )w, (b, td) ← TrapGen(1, ℓ∆, q,R, β∆), r←$RℓR

q and a short matrix R ∈ RℓR×ℓ∆ where each
entry is sampled independently from DR,σ. Let U ∈ RℓR×k be the matrix where ui are the columns.
For each 0 ≤ i < k, sample short preimages wgi ←$ SampPre(td,−⟨r,ui⟩+ gi(v), β∆). Note that gi(v) ≡
⟨r,ugi

⟩+ ⟨b,wgi
⟩ mod q. Let W ∈ Rℓ∆×k :=MG({wG }) and G ∈ R1×k

q :=MG({ g(v) }). We construct

A′ :=
(

a 0
r b

)
·
(

I R
0 I

)
=
(

a a ·R
r b

)
,

U′ :=
(

I −R
0 I

)
·
(

U
W

)
=
(

U−R ·W
W

)
.

Without loss of generality (Remark 2), suppose that t = (0, 1)T. By construction we have

A′ ·U′ ≡ G · t mod q

as required. Our reduction runs the k-M -ISIS adversary on (A′, t,U′,v). When the adversary returns a
short preimage u∗ of s∗ · g∗(v) · t we have

s∗ · g∗(v) · t ≡ A′ · u∗ mod q

≡
(

a 0
r b

)
·
(

I R
0 I

)
·
(

u∗
0

u∗
1

)
mod q

≡
(

a 0
r b

)
·
(

u∗
0 + R · u∗

1
u∗

1

)
mod q

0 ≡ ⟨a,u∗
0 + R · u∗

1⟩ mod q,

23



i.e. u∗
0 + R · u∗

1 is a candidate solution for k-R-SIS. First, we bound its norm. By Proposition 3 the entries
of R are bounded by

√
n·σ with overwhelming probability. Thus, ∥u∗

0 + R · u∗
1∥ ≤ 2 ℓ∆ ·γR ·

√
2πn·σ ·β∗

M ≤
β∗

R.
Second, we establish that the solution is a valid k-R-SIS solution, i.e. not in the span of the ui. We

distinguish two cases.

u∗
1 = 0. In this case we also have ⟨r,u∗

0⟩ ≡ g∗
M (v) ≡ 0 mod q, i.e. u∗

0 is solution to the R-SISRq,ℓR,β∗
R

instance r. In other words, if this case happens with non-negligible probability, we could construct a
PPT algorithm for R-SISRq,ℓR,β∗

R
.

u∗
1 ̸= 0. It remains to be argued that u∗ /∈ K- span({ui }0≤i<k) with non-negligible probability. First,

note that R is information-theoretically hidden from the k-M -ISIS adversary. Now, suppose the
contrary is true, i.e. that we have u∗

0 + R · u∗
1 =

∑
i∈Zk

ai · ui for some ai ∈ K. If this relation holds
over K it must also hold mod 2. By [GPV08, Corollary 2.8], the distribution of R mod 2 is statistically
close to U(RℓR×ℓ∆

2 ) and thus R · u∗
1 is uniform mod 2. Moreover in the worst case R2 splits into n

copies of Z2. It suffices to consider only one copy. We thus may ask when
∑

i∈Zk
ai ·ui ≡ R ·u∗

i mod 2
for any ui ∈ ZℓR

2 has a solution ai ∈ {0, 1}k. Consider the matrix spanned by ui and consider its
echelon form. It has at most k pivot positions and thus at least ℓR − k non-pivot positions. Thus, the
probability (over the randomness in R) of satisfying the constraint is ≤ 1/2ℓR−k ≤ 1/2 since k < ℓR.
Thus with probability > 1/2 we have u∗ /∈ K- span({ui }0≤i<k).

Finally, to show that the input (A′, t,U′,v) to the k-M -ISIS adversary is (sufficiently) well distributed,
we apply Lemma 5. ⊓⊔

(G, g∗) ≥ (G, 0). The next lemma shows that solving for any (G, g∗) is as hard as solving for (G, 0).

Lemma 6. Let the parameters pp = (Rq, η, ℓ, w,G, g∗,D, T , β, β∗) be as in Definition 23. Furthermore,
let β ≤ β∗, g∗ ≠ 0, and D be such that H∞ (Dg∗,A,t,v) ≥ λ for all (A, t,v). Define p̂p = (Rq, η, ℓ, w,G ∪
{g∗}, 0, D̂, T , β, β̂∗) where D̂ = D ∪ {Dg∗,A,t,v }A,t,v and β̂∗ = 2 γR · (β∗)2. For any PPT adversary A
against k-M -ISISpp there exists a PPT adversary A′ against k-M -ISISp̂p with

Advk-m-isis
p̂p,A′ (λ) ≥ 1

poly(λ) · Advk-m-isis
pp,A (λ).

Proof. Upon receiving a k-M -ISISp̂p instance
(

A,v, {ug }g∈G∪{g∗}

)
,A′ runs A on the k-M -ISISpp instance(

A,v, {ug }g∈G

)
and receives from it a vector (s∗,u′

g∗).
Our algorithm A′ then outputs (1,u′

g∗ − s∗ · ug∗). We argue that if (s∗,u′
g∗) is a valid solution

to the k-M -ISISpp instance then (1,u′
g∗ − s∗ · ug∗) is a valid solution to the k-M -ISISp̂p instance with

non-negligible probability.
Clearly, the k-M -ISISpp instance given to A is well-distributed. By our assumption on A, with non-

negligible probability, it holds that A · u′
g∗ ≡ s∗ · g∗(v) · t mod q, 0 < ∥s∗∥ ≤ β∗, and

∥∥u′
g∗

∥∥ ≤ β∗. Since
A · ug∗ ≡ g∗(v) · t mod q, we have A · (u′

g∗ − s∗ · ug∗) ≡ 0 mod q. Furthermore, by our assumption on
Dg∗,A,t,v, we have ∥ug∗∥ ≤ β ≤ β∗. We therefore have

∥∥u′
g∗ − s∗ · ug∗

∥∥ ≤ 2 γR · (β∗)2 = β̂∗. It remains to
argue that u′

g∗ − s∗ ·ug∗ ≠ 0 with non-negligible probability, which is immediate from H∞ (Dg∗,A,v) ≥ λ.
⊓⊔

(G, g∗) ≥ (r · G, r · g∗). We show that the k-M -ISIS assumption is invariant under multiplication by
any non-zero Laurent monomial r(X).

Lemma 7. Let the parameters pp = (Rq, η, ℓ, w,G, g∗,D, T , β, β∗) be as in Definition 23. Let r(X) ∈
R(X) be a non-zero Laurent monomial and denote r · G := { r · g : g ∈ G }. Define p̂p = (Rq, η, ℓ, w, r ·
G, r · g∗,D, T , β, β∗). For any PPT adversary A against k-M -ISISpp there exists a PPT adversary A′

against k-M -ISISp̂p with

Advk-m-isis
p̂p,A′ (λ) ≥ 1

poly(λ) · Advk-m-isis
pp,A (λ).

24



Proof. Upon receiving a k-M -ISISp̂p instance
(

A, t,v, {ug }g∈G

)
, A′ sets B := r(v) ·A, which is well-

defined since v ∈ (R×
q )w. It then runs A on the k-M -ISISpp instance

(
B, t,v, {ug }g∈G

)
and receives

from it a tuple (s∗,ug∗). Our algorithm A′ then outputs (s∗,ug∗). We argue that if (s∗,ug∗) is a valid
solution to the k-M -ISISpp instance

(
B, t,v, {ug }g∈G

)
, then it is also a valid solution to the k-M -ISISp̂p

instance
(

A, t,v, {ug }g∈G

)
.

Note that r(v) ∈ R×
q and A is uniformly random over Rη×ℓ

q . Therefore A is also uniformly random
over Rη×ℓ

q . Next, note that B · ug = r(v) ·A · ug ≡ (r · g)(v) · t mod q. The k-M -ISISpp instance given to
A is therefore well-distributed.

By our assumption on A, with non-negligible probability, it holds that B · ug∗ ≡ s∗ · g∗(v) · t mod q,
0 < ∥s∗∥ ≤ β∗, ∥ug∗∥ ≤ β∗, and (g∗,ug∗) ̸= (0,0). The first equation implies

s∗ · (r · g∗)(v) · t ≡ r(v) ·A · ug∗ mod q
≡ B · ug∗ mod q. ⊓⊔

4.1 Attacks

Our first attack simply solvesM -ISIS (more precisely ISIS). It thus simply ignores the algebraic dependencies
among the { g(·) }g∈G . Our further attacks attempt to find short linear combinations among the { g(v) }g∈G .

Direct SIS Attack. First, we can reduce the problem of finding ug∗ s.t. A · ug∗ ≡ s∗ · g∗(v) · t mod q
to finding a A′ · u′

g∗ ≡ 0 mod q with A′ := (A,−g∗(v) · t). Then the last entry of u′
g∗ becomes s∗. The

analysis here is completely standard.
We will write this as A · u ≡ 0 mod q with A ∈ Zn·η×(n·η·(ℓ+1)). This task is equivalent to finding a

short vector in Λ(L) with A ·L ≡ 0 mod q and L ∈ Z(n·η·(ℓ+1))×(n·η·ℓ)
q . Thus, we are trying to find a short

vector in a d ≤ n · η · (ℓ+ 1) dimensional lattice with volume Vol(Λ) = qn·η. Our problem formulation is
for the infinity norm but lattice reduction naturally considers the ℓ2 norm. We thus consider it a win if
lattice reduction finds a vector of norm

√
d · β∗, which is generous to the attacker. That is, we are trying

to establish the root-Hermite factor δ s.t.
√
d · β∗ ≈ δd−1 ·Vol(Λ)1/d

.

The minimum of the right hand side attained at d ≈
√
n · η · log q/ log δ.13 Overall, we obtain a vector of

norm 22·
√

n·η·log(δ)·log(q)−log(δ).

A Solution in SpanR({ ug }g∈G). We note that v←$Rw
q is critical for security. If all vi are small

then e.g. v0/v1 · t ≡ A · uX0/X1 and v2/v1 · t ≡ A · uX2/X1 (which corresponds to the form of G which
we will consider below) allows to compute A ·

(
v2 · uX0/X1 − v0 · uX2/X1

)
≡ 0 mod q. If k > ℓ linearly

independent such preimages of zero can be constructed then this constitutes a trapdoor for A and solves
k-M -ISIS.

More generally and for v←$Rw
q , we may attempt to find a short z = (zg0 , . . . , zgk−1) s.t.

⟨(g0(v), . . . , gk−1(v)) , z⟩ ≡ s∗ · g∗(v) mod q,

for gi ∈ G. We then compute ug∗ =
∑

g∈G zg · ug which gives

A · ug∗ = A ·

∑
g∈G

zg · ug

 =
∑
g∈G

zg ·A · ui =
∑
g∈G

zg · g(v) · t = s∗ · g∗(v) · t mod q.

Write G = [rot(g0(v))| . . . | rot(gk−1(v))| rot(g∗(v))] ∈ Zn×(n·(k+1))
q . As above, we cost finding a short

vector in Λ(W) where G ·W ≡ 0 mod q. The analysis proceeds exactly as above.
13The minimum is d =

√
n log q/ log δ for βℓ = δd ·Vol(Λ)1/d which is what the literature typically considers.

However, normalising δ by d − 1 instead of d makes sense from the analysis of lattice algorithms. Note that
d ≥ 1000 and δ < 1.02 so that discrepancy is tiny.

25



One the one hand, the final solution will have a larger expected norm ≤
√
k · γR ·maxg∈G(βg) · βz

when ∥z∥ ≤ βz: we are adding up k terms, each being the product of two elements, and consider the
expected norm. On the other hand, note that this attack is independent of η. This implies that while
k-M -ISIS is at least as hard as k-R-ISIS it cannot, in general, be strictly harder.

A Solution in SpanRq
({ ug }g∈G). We can generalise the previous approach to finding any, i.e. not

necessarily short, z ∈ Rk
q s.t.∑

zi · gi(v) ≡ s∗ · g∗(v) mod q and
∑

zi · ugi
= uz with ∥uz∥ ≤ β∗.

Write G =
(
rot(g0(v)) · · · rot(gk−1(v))

)
∈ Zn×(n·k)

q

U =


rot
(
(ug0)0

)
· · · rot

(
(ugk−1)0

)
. . .

rot
(

(ug0)ℓ−1

)
· · · rot

(
(ugk−1)

ℓ−1

)
 ∈ Z(n·ℓ)×(n·k)

and consider the lattice spanned by the columns of

S :=

 τ 0 0 0
g∗ q In 0 G
0 0 q In·ℓ U


where τ is some “embedding factor” optimised by the solving algorithm (the reader may simply assume
τ = 1.) Then Λ(S) contains a short vector (−τ · s∗,0T,uT

z)T. Computing the column Hermite normal
form of S produces a basis in Zd×d with d := ℓ · (n+ 1). Assuming full row rank of [GT,UT] mod q, the
determinant of Λ(S) is qT with t := (ℓ−min(k, ℓ) + 1) · n.

Thus, by the Gaussian heuristic, i.e. assume the lattice generated behaves like a random lattice, we
expect a shortest vector to have norm ≈

√
d/2π e · qt/d and lattice reduction with root Hermite factor δ

to find a vector of norm δd−1 · qt/d. This is minimised when t = φ(m), i.e. when k = ℓ.

Knowledge Assumption. Finally, we evaluate these attack strategies with respect to the knowledge
assumption. An adversary that succeeds with the Direct SIS strategy breaks our knowledge assumption
while also breaking the M -ISIS assumption. The second approach – finding a solution in SpanR({ug }g∈G)
immediately implies the extractor in Definition 26 by computing xg directly. The third attack approach
– finding a solution in SpanRq

({ug }g∈G) – initially seems most promising to invalidate our knowledge
assumption by generalising the attack to find large xg such that u∗ :=

∑
g∈G xg ·ug is small. While finding

such xg given u∗ and ug is easy, finding a suitable target u∗, i.e. one satisfying c · t ≡ A ·u∗ mod q, seems
hard, as outlined above.

5 Compact Extractable Vector Commitments

We construct compact extractable vector commitments with openings to constant-degree multivariate
polynomial maps from the knowledge k-M -ISIS assumption.

5.1 Construction

A formal description of our VC construction is in Fig. 3 where important parameters and shorthands are
listed and explained in Table 1.

The public parameters consists of a k-M -ISIS instance (A0, t0,v, (u0,g)g∈G0
) over Rq, a correlated

k-M -ISIS of knowledge instance (A1, t1,v, (u1,g)g∈G1
) over Rq sharing the same v as the k-M -ISIS

instance, and a R-SIS instance h over Rp, where p is short relative to q. Intuitively, the k-M -ISIS instance
is for weak binding, the knowledge k-M -ISIS instance is for upgrading weak binding to extractability, and
the R-SIS instance is for compactness. The commitment c to a vector x is simply c := ⟨v,x⟩ mod q.

26



Table 1. Parameters and shorthands with λ as security parameter.

s ∈ N Dimension of public input z

w ∈ N Dimension of v and secret input x

t ∈ N Number of outputs

d ∈ N O(1) Degree of polynomial maps

n ∈ N poly(λ) Degree of R

α ∈ R poly(λ) Norm bound for f and x

β ∈ R poly(λ) Norm bound for public preimages

δi ∈ R poly(λ, s, w, t) (Theorem 3) Norm bound for opening proof ui

δp ∈ R (s + w + d)d · αd+1 · γd
R Norm bound of evaluation of a degree-d (s + w)-variate polynomial with coefficients

of norm bounded by α at a point of norm bounded by α

p ∈ N ≥ δp n log n Moduli for Rp

q ∈ N ≥ max { δ0, δ1 } · n log n Moduli for Rq

ηi ∈ N O(1) Number of rows of Ai

ℓi ∈ N ≥ lhl(R, ηi, q, β) Number of columns of Ai

X ⊆ R { x ∈ R : ∥x∥ ≤ α } R elements with norm bound α

Fs,w,t Degree-d (s + w)-variate t-output homogeneous polynomial maps over X

Ys,t s-variate t-output polynomial maps over X

Ek ⊆ Nw
0 { e ∈ Nw

0 : ∥e∥1 = k } Non-negative integer vectors of 1-norm k, for k ∈ [d]

G0 ⊆ R(X)
⋃d

k=1
{ Xe′−e : e′ ̸= e ∈ Ek } Laurent monomials expressible as ratios of distinct degree-k monomials, for k ∈ [d]

G1 ⊆ R(X) { Xi : i ∈ Zw } Degree-1 monomials(
k
e

) (
k

e0,...,ew−1

)
Multinomial coefficient, for e ∈ Ek and k ∈ [d]

Ti Subset of Rηi
q (Definition 23)

fi,e For f(Z, X) ∈ Fs,w,t, fi,e(Z) is the coefficient of the monomial Xe of the i-th output

We next explain the opening and verification mechanism. Suppose for the moment that f(z, ·) is a
single-output polynomial, i.e. t = 1. Consider the commitment c of x and the evaluation of f(z, ·) at
(v−1

0 ·c, . . . , v−1
w ·c) as polynomials in v. The value f(z,x) is encoded as the constant term in the evaluation

polynomial. To open the commitment c of x to a function f(z, ·), the committer computes the coefficient
of each non-zero Laurent monomial g ∈ G0 in the evaluation polynomial, and use these coefficients to
compute a linear combination of (u0,g)g∈G0 to produce u0. In general, for t ≥ 1, the committer further
compresses the multiple instances of u0 into a single one using a linear combination with coefficients
given by h. To enable extraction (in the security proof), the committer also provides u1 which is a linear
combination of (u1,g)g∈G1 using x as coefficients. Given the above, the meaning behind the verification
algorithm is immediate.

Finally, we explain the choice of p and q in Table 1. First, p is chosen such that the element f(z,x)−y(z)
is considered short (in the context of R-SIS problems) relative to p for all f ∈ Fs,w,t, y ∈ Ys,t, z ∈ X s,
and x ∈ Xw. By some routine calculations, we can see that for such choice of (f, z,x, y), we have
∥f(z,x)− y(z)∥ ≤ (s+ w + d)d · αd+1 · γd

R. As mentioned in Section 2.4, a standard choice for R-SIS
problems over Rp is for p to be at least n logn times the norm bound; we thus simply pick this. Similarly,
q is chosen such that δ0 and δ1 are both considered short relative to q, concretely by setting q to be
n logn times the maximum among them.14

Remark 4 (Updating Commitments and Opening Proofs). We discuss the cost of updating a commitment of
x to that of x′, and an opening proof for f(z,x) to that of f ′(z′,x′), omitting fixed poly(λ) factors. Due to
the linearity of the commitment c = ⟨v,x⟩ mod q and opening proof component u1 =

∑
i∈Zw

xi·u1,Xi
in the

committed vector x, they can be updated for a new committed vector x′ easily by adding ⟨v,x′ − x⟩ mod q
and

∑
i∈Zw

(x′
i−xi) ·u1,Xi respectively. The computation complexity of the update is O(∆), where ∆ is the

Hamming distance between x and x′. Updating the u0,e terms is more computationally expensive due to
its non-linearity in x. The cost of computing the difference term for u0,e is linear in

(
w
k

)
−
(

w−∆
k

)
= O(∆k)

for each e ∈ Ek and each k ∈ [d]. The total work needed for updating {u0,e }e∈Ek,k∈[d] is thus O(wd ·∆d).

14In practice the gap may be smaller or larger and when picking parameters we optimise over these gaps.

27



Setup(1λ, 1s, 1w, 1t)

v←$ (R×
q )w

h←$Rt
p

for i ∈ {0, 1} do
(Ai, tdi)← TrapGen(1ηi , 1ℓi , q,R, β)
ti ←$ Ti

ui,g ← SampPre(tdi, g(v) · ti, β), ∀g ∈ Gi

return pp :=

A0, t0, (u0,g)g∈G0
,

A1, t1, (u1,g)g∈G1
,

v, h



Open(pp, f, z, aux)

u0 :=
∑
i∈Zt

d∑
k=1

∑
e∈Ek

hi · fi,e(z) · u0,e

return π := (u0, u1)

Verify(ppf,y, z, c, π)

b0 :=
(

A0 · u0
?
≡ f̂y(z, c) · t0 mod q

)
b1 :=

(
A1 · u1

?
≡ c · t1 mod q

)
b2 :=

(
∥u0∥

?
≤ δ0

)
; b3 :=

(
∥u1∥

?
≤ δ1

)
return b0 ∧ b1 ∧ b2 ∧ b3

Com(pp, x)

c := ⟨v, x⟩ mod q; u1 :=
∑

Xi∈G1

xi · u1,Xi

for e ∈
⋃

k∈[d]

Ek do u0,e := d! ·
∑

e′∈Ek\{ e }

(
k
e′

)(
k
e

) · xe′
· u0,Xe′−e

aux :=
(

(u0,e)e∈
⋃

k∈[d]
Ek

, u1

)
return (c, aux)

PreVerify(pp, (f, y))

if (f, y) /∈ Fs,w,t × Ys,t then return ⊥

f̂y(Z, C) := d! ·

(∑
i∈Zt

hi ·

(
d∑

k=1

∑
e∈Ek

(
k

e

)−1

· fi,e(Z) · v−e · Ck − yi(Z)

))
ppf,y :=

(
A0, t0, A1, t1, f̂y

)
return ppf,y

Fig. 3. Our VC Construction.

For fixed x and hence fixed {u0,e }e∈Ek,k∈[d], updating u0 by the same method costs computation linear
in the Hamming distance between the coefficient vector of f(z, ·) and that of f ′(z′, ·).

We show that our VC construction is correct, extractable under a knowledge k-M -ISIS assumption,
and compact.

Theorem 3. For d = O(1), ℓ0 := ℓ1 := lhl(R, η, q, β),

δ0 = 2 · p · t · (s+ d)d · (w + d)2d · α2d+1 · β · γ2d+2
R and δ1 = w · α · β · γR,

our VC construction in Fig. 3 is correct.

Proof. The multinomial theorem states that (z0 + · · ·+ zw−1)k =
∑

e∈Ek

(
k
e
)
·ze. Let (c, aux) = Com(pp,x)

so that c = ⟨v,x⟩ = v0 · x0 + · · · + vw−1 · xw−1. Substituting z = (v0 · x0, . . . , vw−1 · xw−1) we have
ck =

∑
e∈Ek

(
k
e
)
· ve · xe.

Fix any f ∈ Fs,w,t and any y ∈ Ys,t. Write f(Z,X) = (
∑d

k=1
∑

e∈Ek
fi,e(Z) ·Xe)i∈Zt

and y(Z) =
(yi(Z))i∈Zt

. For i ∈ Zt, let

f̄i,k(Z, C) :=
∑
e∈Ek

(
k

e

)−1
· fi,e(Z) · v−e · Ck

28



so that f̂y(Z, C) =
∑

i∈Zt
hi · d! · (

∑d
k=1 f̂i,k(Z, C)− yi(Z)).

For any (z,x) ∈ X s ×Xw and any (c, aux) ∈ Com(pp,x), we observe that

f̄i,k(z, c) =
∑
e∈Ek

(
k

e

)−1
· fi,e(z) · v−e · ck

=
(∑

e∈Ek

(
k

e

)−1
· fi,e(z) · v−e

)
·

(∑
e∈Ek

(
k

e

)
· xe · ve

)

=
∑

e,e′∈Ek

(
k
e′

)(
k
e
) · fi,e(z) · xe′

· ve′−e

=
∑
e∈Ek

fi,e(z) · xe +
∑

e,e′∈Ek:e̸=e′

(
k
e′

)(
k
e
) · fi,e(z) · xe′

· ve′−e.

Suppose y(z) = f(z,x). We have

f̂y(z, c) =
∑
i∈Zt

hi · d! ·

(
d∑

k=1

f̂i,k(z, c)− yi(z)

)

=
∑
i∈Zt

hi · d! ·

(
d∑

k=1

∑
e∈Ek

fi,e(z) · xe +
d∑

k=1

∑
e,e′∈Ek:e ̸=e′

(
k
e′

)(
k
e

) · fi,e(z) · xe′
· ve′−e − yi(z)

)

=
∑
i∈Zt

d∑
k=1

∑
e,e′∈Ek:e ̸=e′

hi · d! ·
(

k
e′

)(
k
e

) · fi,e(z) · xe′
· ve′−e.

Let (u0,u1) ∈ Open(pp, f, z, aux). We have

u0 =
∑
i∈Zt

d∑
k=1

∑
e̸=e′∈Ek

hi · d! ·
(

k
e′

)(
k
e
) · fi,e(z) · xe′

· uXe′−e and

u1 =
∑

Xi∈G1

xi · u1,Xi
.

We check that the following indeed hold:

A0 · u0 = A0 ·

∑
i∈Zt

d∑
k=1

∑
e̸=e′∈Ek

hi · d! ·
(

k
e′

)(
k
e
) · fi,e(z) · xe′

· uXe′−e


≡
∑
i∈Zt

d∑
k=1

∑
e̸=e′∈Ek

hi · d! ·
(

k
e′

)(
k
e
) · fi,e(z) · xe′

· ve′−e · t0 mod q

≡ f̂(z, c) · t0 mod q,

A1 · u1 = A1 ·

( ∑
Xi∈G1

xi · u1,Xi

)
≡
∑

Xi∈G1

xi · vi · t1 mod q ≡ c · t1 mod q.

We next analyse the norm of u0 and u1. Examining the form u0 and writing down an upper bound of
the norm of each term, we have

u0 =
∑
i∈Zt︸︷︷︸

t

d∑
k=1︸︷︷︸

d

∑
e̸=e′∈Ek︸ ︷︷ ︸
(w+d

d )2

hi︸︷︷︸
p/2

d! ·
(

k
e′

)(
k
e
)︸ ︷︷ ︸

(d!)2

fi,e(z)︸ ︷︷ ︸
(d+1)·(s+d

d )·γd
R·αd+1

xe′︸︷︷︸
γd−1

R ·αd

uXe′−e︸ ︷︷ ︸
β

.

Using
(

w+d
d

)2 ≤ (w+d)2d

(d!)2 ,
(

s+d
d

)
≤ (s+d)d

d! , and d+1
(d−1)! ≤ 3, and taking into account the expansion factor

γ3
R for multiplying 4 R elements, we have

∥u0∥ ≤ 2 · p · t · (s+ d)d · (w + d)2d · α2d+1 · β · γ2d+2
R .

29



Similarly, examining u1, we have
u1 =

∑
Xi∈G1︸ ︷︷ ︸

w

xi︸︷︷︸
α

u1,Xi︸ ︷︷ ︸
β

.

Taking into account the expansion factor γR for multiplying 2 R elements, we have ∥u1∥ ≤ w ·α ·β ·γR. ⊓⊔
Theorem 4. Our VC construction for (F ,X ,Y) is extractable if it is correct, β ≥ α, ℓi ≥ lhl(R, ηi, q, β)
for i ∈ {0, 1}, and the k-M -ISISRq,η0,ℓ0,w,G0,1,D0,T0,β,2δ0 assumption, the knowledge k-M -ISISRq,η1,ℓ1,w,G1,D1,T1,α,β,δ1

assumption, and the R-SISRp,t,2δp assumption hold, where Di is such that the distribution{
(Ai, ti, {uGi

} ,v)

∣∣∣∣∣Ai←$Rηi×ℓi
q ; ti←$ Ti; v←$ (R×

q )w

ug ←$D0,g,Ai,ti,v, ∀g ∈ Gi

}
is statistically close to the distribution{

(Ai, ti, {uGi
} ,v)

∣∣∣∣∣Ai←$Rηi×ℓi
q ; ti←$ Ti; v←$ (R×

q )w

ug ←$ SampD(1ηi , 1ℓi ,R, β) : Ai · ug ≡ g(v) · ti mod q, ∀g ∈ Gi

}
.

Proof. Suppose A is a PPT adversary which, on input honestly generated pp and some randomness,
outputs (f, y, z, c, π). We construct an extractor EA which, on input pp and the same randomness given
to A, outputs x.

For the sake of clarity of exposition, let us denote the public parameters pp of the vector commitment
scheme as

pp :=
(pp0(v) := (A0, t0, (u0,g)g∈G0

,v),
pp1(v) := (A1, t1, (u1,g)g∈G1

,v),h

)
,

where pp0(v) and pp1(v) are correlated in that they share the same v.
We define an algorithm BA[pp] which has oracle access to A and is parameterised by an instance

of the VC public parameters pp = (pp0(v), pp1(v),h). Our algorithm BA[pp] takes as input some
pp′

1(v′) = (A′
1, t′

1,
(
u′

1,g

)
g∈G1

,v′) and some randomness rA. If v′ ̸= v, BA[pp] outputs some arbitrary
(c,u1). Otherwise, v′ = v, and BA[pp] runs A on (pp0(v), pp′

1(v),h) and the given randomness rA, and
obtains (f, y, z, c, π). It parses π as (u0,u1) and outputs (c,u1).

Let Ek-M-ISIS
BA[pp] be a PPT extractor whose existence is guaranteed by the knowledge k-M -ISISRq,η1,ℓ1,w,G1,D1,T1,α,β,δ1

assumption. We construct our extractor EA as follows.
Our extractor EA takes as input some public parameters pp and some randomness rA. Parse pp =

(pp0(v), pp1(v),h). It runs Ek-M-ISIS
BA[pp] on input pp1(v) and the given randomness rA, and obtains from

them a vector x. Finally, EA outputs x.
We argue that for pp← Setup(1λ, 1s, 1w, 1t), if (f, y, z, c, π)← A(pp; rA) satisfies Verify(ppf,y, z, c, π) =

1 with probability ρ, then the probability of EA(td; r) not outputting x with ∥x∥ ≤ α such that c =
Com(pp,x) (for some aux suppressed from the output) and f(z,x) = y(z) is at most κ(λ, s, w, t) =
negl(λ)(λ), where the probabilities are taken over the randomness of Setup and that of rA.

Consider the following hybrid experiments for generating (pp, (f, y, z, c, π),x) on input (1λ, 1s, 1w, 1t; (r, rA)):
Hyb0: This is the “real” experiment with procedures as described above. Specifically, it runs pp ←

Setup(1λ, 1s, 1w, 1t; r), (f, y, z, c, π)← A(pp; rA), and x← EA(pp; rA), and outputs (pp, (f, y, z, c, π),x).
Hyb1: This experiment is the same as Hyb0 except that the pp = (pp0(v), pp1(v),h) passed to A

and EA is replaced by pp′ = (pp0(v), pp′
1(v),h) where pp′

1(v) is sampled as in the definition of
k-M -ISISRq,η1,ℓ1,w,G1,D1,T1,α,β,δ1 .

Hyb2: This experiment is the same as Hyb1 except that the pp′ = (pp0(v), pp′
1(v),h) passed to A

and EA is replaced by pp′′ = (pp′
0(v, pp′

1(v),h)) where pp′
0(v) is sampled as in the definition of

k-M -ISISRq,η0,ℓ0,w,G0,1,D0,T0,β,2δ0 .
By our assumption on D0, the distributions Hyb0 and Hyb1 are statistically close. Similarly, by our

assumption on D1, the distributions Hyb1 and Hyb2 are statistically close. Since the distributions Hyb0,
Hyb1, and Hyb2 are all statistically close to each other, for any i, j ∈ Z3, if the output of Hybi satisfies
certain properties with some probability, the output of Hybj also satisfies the same properties with similar
probability.

The following lemma about the outputs of Hyb1 is immediate by the knowledge k-M -ISISRq,η1,ℓ1,w,G1,D1,T1,α,β,δ1

assumption.

30



Lemma 8. Let (pp, (f, y, z, c, π),x)← Hyb1(1λ, 1s, 1w, 1t; (r, rA)). Parse pp = (pp0(v), pp1(v),h). If the
knowledge k-M -ISISRq,η1,ℓ1,w,G1,D1,T1,α,β,δ1 assumption holds, then c = ⟨v,x⟩ mod q and ∥x∥ ≤ α except
with negligible probability.

The next lemma is about the outputs of Hyb2.

Lemma 9. Let (pp, (f, y, z, c, π),x)← Hyb2(1λ, 1s, 1w, 1t; (r, rA)). Parse pp = (pp0(v), pp1(v),h). If all
of the following hold:

– the k-M -ISISRq,η0,ℓ0,w,G0,1,D0,T0,β,2δ0 assumption,
– the R-SISRp,t,2δp

assumption,
– c = ⟨v,x⟩ mod q, and
– ∥x∥ ≤ α,

then f(z,x) = y(z) except with negligible probability.

Proof. Parse pp to obtain (A0, t0,v,h) and parse π as (u0,u1). We notice that h is distributed identically
as R-SISRp,t,2δp

instances. By our assumption on A, with non-negligible probability, it holds that

A0 · u0 ≡

(
f̂0(z, c)− d! ·

∑
i∈Zt

hi · yi(z)
)
· t0 mod q,

and ∥u0∥ ≤ δ0.
Suppose towards a contradiction that the event f(z,x) = y′ ̸= y(z) for some y′ happens with non-

negligible probability. Let (c′, aux) = Com(pp,x). By assumption, c′ = c. Let (u′
0,u′

1) = Open(pp, f, z, aux).
By the correctness of the VC, it holds that

A0 · u′
0 ≡

(
f̂0(z, c)− d! ·

∑
i∈Zt

hi · y′
i

)
· t0 mod q.

and ∥u′
0∥ ≤ δ0. Let ũ0 := u0 − u′

0. We have

A0 · ũ0 ≡ d! ·
∑
i∈Zt

hi · (y′
i − yi(z)) · t0 mod q.

and ∥ũ0∥ ≤ 2 δ0. One (or both) of the following two cases must be true: (i)
∑

i∈Zt
hi ·(y′

i−yi(z)) ≡ 0 mod q
with non-negligible probability, or (ii)

∑
i∈Zt

hi · (y′
i − yi(z)) ̸≡ 0 mod q with non-negligible probability.

Note that ∥y′ − y(z)∥ ≤ 2 δp. If Case (i) is true, we can construct a PPT algorithm for the R-SISRp,t,2δp

problem which succeeds with non-negligible probability, which contradicts the R-SISRp,t,2δp
assumption.

If Case (ii) is true, we can construct a PPT algorithm for the k-M -ISISRq,η0,ℓ0,w,G0,1,D0,T0,β,2δ0 problem
which succeeds with non-negligible probability, which contradicts the k-M -ISISRq,η0,ℓ0,w,G0,1,D0,T0,β,2δ0

assumption.
Since none of the two cases could be true, we must have f(z,x) = y′ = y(z). ⊓⊔

Cominbing the two lemmas, we conclude that for (pp, (f, y, z, c, π),x) generated by Hyb0, where
pp = (pp0(v), pp1(v),h), it holds that c = ⟨v,x⟩ mod q, f(z,x) = y(z), and ∥x∥ ≤ α except with
negligible probability. ⊓⊔

Theorem 5. For n ∈ poly(λ), q, δ0, δ1 ∈ poly(λ, s, w, t), and ℓ0, ℓ1 ∈ Θ(log q) = polylog(λ, s, w, t), cover-
ing the choices of parameters in Theorems 3 and 4, the VC construction in Fig. 3 is compact.

Concretely, let R be a power-of-2 cyclotomic ring so that γR = n. For s = w = t ≥ n and for the
following choices of parameters,

d, η0, η1 = O(1), β ≥ α

δ0 = 2 · p · t · (s+ d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

δ1 = w · α · β · γR,

p ≈ δp · n · logn, q ≈ δ0 · n · logn, and
ℓ0 = ℓ1 = lhl(R, 1, q, β) ≈ 2 logβ q,

a commitment and openings are of size O(n log s), and O(n · (log s+ log β)2
/ log β), respectively. The

minimum is attained at β = Θ(s), where an opening proof is of size O(n log s).

31



211 213 215 217 219 221 223 225 227 229 231 233 235 237 239

26

210

214

218

statement size s

pr
oo

fs
iz

es

k-R-ISIS
1/2 Shockwave 256
1/2 Brakedown 256
Aurora
Ligero

Fig. 4. Combined size (in KB) of a commitment and an opening proof for the concrete parameters chosen
in Theorem 5, setting λ = 128, optimising for ρ and comparing with SNARK proof sizes in prior works [GLS+21,
Fig. 5]. We picked α = s.

Proof. For the general case, we observe that a commitment c ∈ Rq is of description size n log q ∈
poly(λ, log s, logw, log t), and an opening proof (u0,u1) is of description size n · (ℓ0 log δ0 + ℓ1 log δ1) ∈
poly(λ, log s, logw, log t).

For the concrete case, we have

p ≈ (s+ w + d)d · αd+1 · γd
R · n · logn = O(sd · αd+1 · nd+1 · logn),

δ0 = 2 · p · t · (s+ d)d · (w + d)2d · α2d+1 · β · γ2d+2
R

= O(sd · αd+1 · nd+1 · logn) ·O(s3d+1 · α2d+1 · β · n2d+2)
= O(s4d+1 · α3d+2 · β · n3d+3 · logn),

δ1 = w · α · β · γR = O(s · α · β · n),
q ≈ δ0 · n · logn = O(s4d+1 · α3d+2 · β · n3d+4 · log2 n),

log δ0, log δ1, log q = O(log s+ logα+ log β + logn) = O(log s+ log β),
ℓ0 = ℓ1 = 2 log q/ log β = O((log s+ log β)/ log β),

|c| = n · log q = O(n log s), and
|ui| = n · ℓi · log δi

= n ·O((log s+ log β)/ log β) ·O(log s+ log β)
= O(n · (log s+ log β)2

/ log β). ⊓⊔

To translate these into concrete sizes we need to pick n such that solving k-R-ISIS and R-SIS
costs ≈ 2λ operations. Here it can be beneficial to set q = δρ

0 · n · logn for some parameter ρ ∈ N.
Specifically, we require that R-SISRq,ℓ0,2·

√
n·δ0 , R-SISRq,ℓ1,2·

√
n·δ1 and R-SISRp,t,2·

√
n·δp

are hard where
δp := (s+ w + d)d · αd+1 · γd

R. The factor of two arises from our reduction and the factor
√
n translates

between ℓ∞ and ℓ2. In Fig. 4 we report the concrete combined size (in KB) of a commitment and an
opening proof for the concrete parameters chosen in Theorem 5, specifically setting d = 2, η0 = η1 = 1,
and β = s = w = t ∈ { 210, 211, . . . , 240 }.15

To analyse compution complexity, we assume the concrete parameter choices in Theorem 5 with the
exception that s, w, t are treated as free variables for more fine-grained complexity measures and to
highlight the benefits of preprocessing. For simplicity, we assume max { s, w, t } ≥ n. The computation
complexities (in number of R orRq operations) of Com, Open, PreVerify, and Verify are reported in Table 2.
Note that each R or Rq operation takes at most poly(λ, log s, logw, log t) time. In summary, the combined
time needed to commit to x and open to f(z, ·) is quasi-quadratic in the time needed to compute f(z,x),
and the time needed to pre-verify (f, y) is quasi-linear in the time needed to compute f(z,x). We highlight

15 and embedded.

32


		s		1/2 Shockwave 256		1/2 Brakedown 256		Aurora		Ligero		kRISIS

		2										9406

		4										8440

		8										7837

		16										10120

		32										13794

		64										14269

		128										14930

		256										19515

		512										20200

		1024		72		1279		447		546		21281

		2048		95		1597		510		628		26851

		4096		122		1974		610		1076		29863

		8192		160		2200		717		1169		30378

		16384		210		2710		810		2100		41951

		32768		284		3165		931		3169		44348

		65536		386		3926		1069		5788		46745

		131072		523		4824		1179		5662		47386

		262144		721		6122		1315		10527		49697

		524288		990		7899		1473		10736		52007

		1048576		1384		10230		1603		19828		65374

		2097152		1914		13737						68155

		4194304		2695		18145						70936

		8388608		3751		25068						73717

		16777216		5309		33685						74141

		33554432		7415		47385						76836

		67108864		10522		64399						95938

		134217728										99189

		268435456										99739

		536870912										102904

		1073741824										106859

		2147483648										148668

		4294967296										152946

		8589934592										157224

		17179869184										161501

		34359738368										165779

		68719476736										170056

		137438953472										167342

		274877906944										171448

		549755813888										175554

		1099511627776										179659




from sage.all import ceil, log, pi, e, sqrt, RR


class SNARKParams:
    def __init__(self, s, w, t, alpha=2, beta=2, d=2, power=1):
        self.s = s
        self.w = w
        self.t = t
        self.alpha = alpha
        self.beta = beta
        self.d = d
        self.power = power

    def gamma(self, n):
        return n

    def dp(self, n):
        s, w, alpha, d, gamma = self.s, self.w, self.alpha, self.d, self.gamma(n)
        return (s + w + d) ** d * alpha ** (d + 1) * gamma ** d

    def p(self, n):
        return self.dp(n) * n * log(n, 2)

    def d0(self, n):
        s, w, t, alpha, beta, d, gamma = (
            self.s,
            self.w,
            self.t,
            self.alpha,
            self.beta,
            self.d,
            self.gamma(n),
        )
        return ceil(
            2
            * self.p(n)
            * t
            * (s + d) ** d
            * (w + d) ** (2 * d)
            * alpha ** (2 * d + 1)
            * beta
            * gamma ** (2 * d + 2)
        )

    def d1(self, n):
        w, alpha, beta, gamma = self.w, self.alpha, self.beta, self.gamma(n)
        return w * alpha * beta * gamma

    def q(self, n):
        return self.d0(n) ** self.power * n * log(n, 2)

    def l(self, n):
        return ceil(2 * log(self.q(n)) / log(self.beta))

    def c(self, n):
        return ceil(n * log(self.q(n)))  # commitment size

    def u0(self, n):
        return ceil(n * self.l(n) * log(self.d0(n), 2))  # proof size

    def u1(self, n):
        return ceil(n * self.l(n) * log(self.d1(n), 2))  # proof size

    def size(self, n):
        """
        Combined commitment and opening size in bits.
        """
        return RR(ceil((self.c(n) + self.u0(n) + self.u1(n))))

    def rhf(self, secparam):
        kappa = ceil(secparam / 0.292)
        rhf = RR(sqrt(kappa / 2 / pi / e) ** (1 / 2 / kappa))
        return rhf

    def __call__(self, secparam=128):
        rhf = self.rhf(secparam)
        n = 2 ** 8
        while n < 2 ** 20:
            n = 2 * n
            N = n
            q = self.q(n)
            dim = ceil(sqrt(N * log(q) / log(rhf)))

            # |u_0| < δ_0
            t0 = RR(sqrt(dim) * 2 * self.d0(n))
            s0 = RR(rhf ** (dim) * q ** ((N) / dim))
            if t0 > s0:
                continue

            # |u_1| < δ_1
            t1 = RR(sqrt(dim) * 2 * self.d1(n))
            s1 = RR(rhf ** (dim) * q ** ((N) / dim))
            if t1 > s1:
                continue

            # |extr| < δ_p
            p = self.p(n)
            dim = ceil(sqrt(N * log(p) / log(rhf)))
            t2 = RR(sqrt(dim) * 2 * self.dp(n))
            s2 = RR(rhf ** (dim) * p ** ((N) / dim))
            if t2 > s2:
                continue

            # print(
            #     f"t_0/s_0: 2^{log(t0/s0,2):.2f}, t_1/s_1: 2^{log(t1/s1,2):.2f}, t_2/s_2: 2^{log(t2/s2,2):.2f}"
            # )
            return n, self.size(n)


def snark_params(s, alphaf=None, betaf=None, d=2):
    best, n, size = None, None, None

    if alphaf is None:

        def alphaf(s):
            # somewhat arbitrary
            return ceil(s)

    if betaf is None:

        def betaf(s):
            # numerically optimised
            return ceil(alphaf(s) ** (6 * d))

    for power in range(1, 17):
        res = SNARKParams(s, s, s, alpha=alphaf(s), beta=betaf(s), d=d, power=power)()
        if (best, n, size) == (None, None, None):
            n, size = res
            best = power
        if size > res[1]:
            n, size = res
            best = power
    return best, n, size


def snark_table(log_S, alphaf=None, betaf=None, d=2):
    R = []

    for log_s in log_S:
        s = 2 ** log_s
        best, n, size = snark_params(s, alphaf=alphaf, betaf=betaf, d=d)
        print(f"s: 2^{log_s}, n: {n:6d}, size: {size / 8.0 / 1024 ** 2:7.1f}MB, power: {best}")
        R.append((2 ** log_s, size))
    return R


SNARKTables = {
    "1/2 Shockwave 256": list(
        zip(
            [2 ** i for i in range(10, 27)],
            [
                72,
                95,
                122,
                160,
                210,
                284,
                386,
                523,
                721,
                990,
                1384,
                1914,
                2695,
                3751,
                5309,
                7415,
                10522,
            ],
        )
    ),
    "1/2 Brakedown 256": list(
        zip(
            [2 ** i for i in range(10, 27)],
            [
                1279,
                1597,
                1974,
                2200,
                2710,
                3165,
                3926,
                4824,
                6122,
                7899,
                10230,
                13737,
                18145,
                25068,
                33685,
                47385,
                64399,
            ],
        )
    ),
    "Aurora": list(
        zip(
            [2 ** i for i in range(10, 21)],
            [447, 510, 610, 717, 810, 931, 1069, 1179, 1315, 1473, 1603],
        )
    ),
    "Ligero": list(
        zip(
            [2 ** i for i in range(10, 21)],
            [546, 628, 1076, 1169, 2100, 3169, 5788, 5662, 10527, 10736, 19828],
        )
    ),
}


def python_plot(fn=None):
    import matplotlib.pyplot as plt

    krisis = snark_table(range(10, 51, 5))
    plt.plot([x for x, y in krisis], [y / 8 / 1024 for x, y in krisis], label="kRISIS of Knowledge")

    for name, data in SNARKTables.items():
        plt.plot([x for x, y in data], [y for x, y in data], label=name)

    plt.xlabel("Statement Size")
    plt.ylabel("Proof Size in KB")
    plt.xscale("log", base=2)
    plt.yscale("log", base=2)
    plt.xticks([2 ** i for i in range(10, 50, 5)])
    plt.yticks([2 ** (2 * i + 6) for i in range(0, 8)])
    plt.rcParams["figure.figsize"] = (15, 10)
    plt.legend()
    if fn:
        plt.savefig(fn)
    else:
        plt.show()


def latex_plot(fn):
    import csv

    with open(fn, "w") as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(["s"] + list(SNARKTables.keys()) + ["kRISIS"])
        for i in range(1, 41):
            row = [2 ** i]

            for scheme in SNARKTables:
                d = dict(SNARKTables[scheme])
                row.append(d.get(2 ** i, ""))
            power, n, size = snark_params(2 ** i)
            print(f"s: 2^{i}, n: {n:6d}, size: {size / 8.0 / 1024 ** 2:7.1f}MB, power: {power}")
            row.append(ceil(size / 8 / 1024))
            writer.writerow(row)




Table 2. Computation complexities (in number of R or Rq operations) of our VC.

Com O(w2d · (log s + log w + log t + log β)/ log β)

Open O(t · (s + w)d · (log s + log w + log t + log β)/ log β)

PreVerify O(t · (s + w)d)

Verify O(sd + (log s + log w + log t + log β)/ log β)

that the online verification cost, i.e. the computation complexity of Verify, is dominated additively by
sd where s is the dimension of the public input. In applications where sd = O(logw + log t) and setting
β = Θ(w + t), the online verification cost (in number of bit operations) is O(n logw + n log t).

6 GPV Adaptor Signatures

We consider the hard languages of the form

L := {(A,v′) | ∃u′ s.t. ,A · u′ = v′ ∧ ∥u′∥ ≤ β∗},

where A ∈ Rη×ℓ
q , v′ ∈ Rη

q , and u′ ∈ Rℓ.

Setup(1λ)

A←$Rη×ℓ
q

return pp := A

KGen(pp)

XT ← (SampD(1η, 1ℓ,R, d))ℓ

sk := X
pk := Y := A ·X mod q

return (pk, sk)

Sign(sk, m ∈M)

u← DRℓ,ρ

v := A · u mod q

c := G−1(v−H(m))
z := u + X · c
return σ := (c, z)

Verify(pk, m, σ)

return

{
A · z− (G + Y) · c ?= H(m) mod q

∥(c, z)∥ ≤ γ2

pSign(sk, m, Y = (v′, πY ))

if V(v′, π) = 0
return ⊥

u← DRℓ,ρ

v := A · u mod q

c := G−1(v + v′ −H(m))
ẑ := u + X · c
return σ̂ := (c, ẑ)

PreVerify(pk, m, v′, σ̂)

return

{
A · ẑ− (G + Y) · c ?= H(m)− v′ mod q

∥(c, ẑ)∥ ≤ γ1

Adapt(σ̂, u′)

z := ẑ + u′

return σ := (c, z)

Ext(σ, σ̂, v′)

return u′ := z− ẑ

Fig. 5. GPV based adaptor signatures

We will consider the following hard relations R, R̃, that capture witnesses used to adapt and extracted
witnesses respectively, are given by

RA := {(v′,u′) | v′ = A · u′ and ∥u′∥ ≤ β},

and
R̃A := {(v′,u′) | v′ = A · u′ and ∥u′∥ ≤ β̃},

33



where β ≤ β̃. As done Aumayr et. al. in [AEE+21], we slightly modify the hard relation for which the
adaptor signature is defined in order to be able to extract the corresponding witness in the security
experiments. Let R+

A be a relation whose statements are pairs (Y, π), where Y ∈ RA, and π is a NIZK-PoK,
with online extractor, that Y ∈ RA.

R+
A := {((Y = v′, π),u′) | v′ = A · u′ mod q, ∥u′∥ ≤ β, and V(Y, π) = 1},

and denote P the prover and V the verifier of the proof system for RA. Since RA is a hard relation, so is
R+

A. In order to ease readability and avoid introducing too many different notations, in our construction
we replace RA with R+

A.

Parameters. The scheme parameters

- ρ ≥ (dℓ
√
ℓ+ β)

√
Q, where Q is the maximum number of oracle queries allowed in the experiment,

- β, witness norm bound,
- γ1 ≥ ρ

√
ℓ, norm bound for pre-signature,

- γ2 ≥ γ1 + β, norm bound for signature,
- β̃ ≥ γ1 + γ2, norm bound of extracted witnesses,

have to be chosen so that M -SISRq,η,ℓ,2γ2+2dℓ
√

ℓ and M -SISRq,η,ℓ,γ1+γ2+β+2dℓ
√

ℓ are hard.

6.1 Security Analysis

Pre-signature correctness follows via a straightforward investigation, using the fact that A · u′ = v′.

Lemma 10 (Weak Pre-signature Adaptability). The adaptor signature scheme described in Fig. 5
satisfies weak pre-signature adaptability with respect to the relation RA.

Proof. Let σ̂ = (c, ẑ) be a valid pre-signature with PreVerify(pk,m,v′, σ̂) = 1, and u′, with ∥u′∥ ≤ β be
a witness corresponding to v′. Since σ̂ is valid, we have ∥ẑ∥ ≤ γ1. Then, Adapt(σ̂,u′) = (c, ẑ + u′) = σ.
Therefore, we have

∥z∥ = ∥ẑ + u′∥ ≤ ∥ẑ∥+ ∥u′∥ ≤ γ1 + β ≤ γ2.

We further have

A · z− (G + Y) · c = A · (ẑ + u′)− (G + Y) · c
= (A · ẑ− (G + Y) · c) + A · u′

= (H(m)− v′) + v′ = H(m) mod q.

From the above two equations, it follows that σ is a valid signature for message m, i.e., Verify(pk,m, σ) = 1.
⊓⊔

Lemma 11 (Weak Unforgeability). Assuming M -SISRq,η,ℓ,2γ2+2dℓ and that ρ ≥ (dℓ+ β)
√
Q, where

Q is the maximum number of oracle queries an attacker can make, the adaptor signature from Fig. 5 is
weakly unforgeable in the random oracle model.

Proof. We prove the unforgeability of the adaptor signature scheme by reduction to the M-SIS problem.
Let (A,v∗) be the given M-SIS instance. Consider the following sequence of hybrids. In all of them let
σ∗ = (c∗, z∗) be the forgery signature output by A on message m∗. Without loss of generality, we can
assume that the adversary always queries the random oracle H on every message m before making a
presigning/signing query on m.

– Hybrid Hyb0: This is identical to the real experiment.
– Hybrid Hyb1: This is identical to the real experiment except that whenever the adversary outputs a

challenge message m∗, the simulator samples (v∗,u∗)← GenR(1λ), runs the NIZK-PoK simulator S
to obtain a simulated proof π∗, and returns (σ̂, (v∗, π∗)) to the adversary.

– Hybrid Hyb2: Here the simulator S works as follows:
• The simulator records a list Q of all H queries made by A with their responses. Let Q = |Q| be

the number of hash queries made by A.

34



• Whenever A queries the random oracle H on input m, the simulator samples v← Rℓ
q, z← DRℓ,ρ,

sets c := G−1(v), programs the random oracle H(m) := A · z− (G + Y) · c mod q, and returns
σ = (c, z), stores (m,H(m), σ) in Q, and returns H(m) to the adversary.

• Whenever the adversary queries the SignO(·) oracle on input m, the simulator finds the corre-
sponding entry (m,H(m), σ) in Q, and returns σ to the adversary.

• Whenever the adversary queries the pSignO(·) oracle on input (m, (v′, π)), the simulator checks
the validity of (v′, π)), extracts the witness u′ of v′ from the proof π, finds the corresponding
entry (m,H(m), σ = (c, z)) in Q, and returns σ̂ = (c, ẑ := (z− u′)) to the adversary.

• Whenever the adversary outputs a challenge message m∗, the simulator finds the corresponding
entry (m∗, H(m∗), σ = (c, z)) in Q, runs (v∗,u∗) ← GenR(1λ), and returns (σ̂ := (c, ẑ :=
z− u∗), (v∗, π∗)) to the adversary, where π∗ is the corresponding simulated NIZK-PoK.

– Hybrid Hyb3: This is identical to hybrid Hyb2, except that this time the simulator samples XT ←
(SampD(1η, 1ℓ,R, d))ℓ, and sets Y := A ·X−G mod q.

Let δi denote the probability of an adversary winning in hybrid Hybi. Hybrids Hyb0 and Hyb1 only differ
in the way the proof π∗ is generated. By the zero-knowledge property of the NIZK-PoK, one has that
the distribution of simulated proofs is computationally indistinguishable to the distribution of real ones.
Therefore, we obtain

δ0 ≤ δ1 + negl(λ).

Claim. If there is an adversary that makes at most Q oracle queries and can win the game in hybrid Hyb1
with probability δ1, then its probability of winning in hybrid Hyb2 is polynomial in δ1, if ρ ≥ (dℓ+ β)

√
Q.

Proof. The only difference between the two hybrids is in the value of z or ẑ. For i ∈ [Q], in hybrid Hyb1
we have zi or ẑi equal to ui + X · ci with ui ← DRℓ,ρ, while in hybrid Hyb2, we have zi ← DRℓ,ρ and
ẑi ← DRℓ,ρ,−u′ . Let us refer to the joint distribution of all z and ẑ in Hyb1 as D1 and that in Hyb2 as D2.
Let E denote the event that the adversary wins the game. Then, by our assumptions, we have D1(E) = δ1.
From the probability preservation property (Lemma 1) of the Rényi divergence, we get

D2(E) ≥ δ
a

a−1
1

Ra(D1||D2) , for any a ∈ (1,∞).

In order to compute Ra(D1||D2), notice that, for i ∈ [Q], the vectors zi or ẑ are drawn from distribution
D1i = DRℓ,ρ,X·ci

in hybrid Hyb1, and from distribution D2i = DRℓ,ρ or D2i = DRℓ,ρ,−u′ in hybrid Hyb2.
Notice that D1 = (D11, . . . , D1Q), and D2 = (D21, . . . , D2Q). By Lemma 2, we have

Ra(D1i||D2i) ≤ exp
(
aπ

(||X · ci||+ ||u′||)2

ρ2

)
, for any a ∈ (1,∞).

Since each row of X has norm bounded by d, and ∥ci∥ ≤
√
ℓ, we have ∥X · ci∥ ≤ dℓ. Moreover, the

extracted witness must have ∥u′∥ ≤ β as the NIZK π verifies correctly. Using the multiplicativity property
of the Rényi divergence (Lemma 1), we get

Ra(D1||D2) ≤ exp
(
aπ
Q(dℓ+ β)2

ρ2

)
.

Using the assumption ρ ≥ (dℓ+ β)
√
Q, we get that Ra(D1||D2) ≤ exp(aπ). Therefore, we obtain that

δ2 := D2(E) ≥ δ
a

a−1
1 / exp(aπ). Taking any value of a > 1 yields the result. ⊓⊔

Hybrids Hyb2 and Hyb3 only differ in the way the public key Y is generated. By the properties of SampD,
we have that A ·X mod q is statistically close to uniform. Thus, the same holds for A ·X−G mod q,
which implies that

δ2 ≤ δ3 + negl(λ).

Claim. If there is an adversary A that makes at most Q oracle queries, and succeeds in forging a valid
signature with probability δ3 is hybrid Hyb3, then we can define an algorithm B which given A← Rη×ℓ

q ,
finds a non-zero short u ∈ Rℓ such that ||u|| ≤ 2γ2 + 2dℓ and A · u = 0 mod q.

35



Proof. Let σ∗ = (c∗, z∗) be the forgery signature output by A on message m∗, v∗ the challenge statement
provided to A, and σ = (c, z) the corresponding signature created when the adversary queried the random
oracle on message m∗. Let u := z∗ − z−X(c∗ − c). We have

A · (z∗ − z + X · (c∗ − c)) = A · (z∗ − z)− (G + Y) · (c∗ − c)
= H(m)−H(m)
= 0 mod q.

Moreover, since ∥z∗∥ ≤ γ2, ∥z∥ ≤ γ2, and ∥X · c∗∥, ∥X · c∥ ≤ dℓ, we obtain ∥u∥ ≤ 2γ2 + 2dℓ. It remain to
argue that u ̸= 0. We distinguish 2 cases:

Case 1: c∗ = c. In this case we have A · (z∗ − z) = 0. Recall that presignature given to A corre-
sponding to statement v∗ was of the form σ̂ = (c, z− u∗). We obtain

A · (z∗ − z) = A · (z∗ − (ẑ + u∗))
= A · ((z∗ − ẑ)− u∗)
= 0 mod q,

which implies that A · (z∗ − ẑ) = v∗ = A · u∗ mod q. As argued by Gentry et. al in [GPV08], the
min-entropy of u∗ given v∗ (and also ẑ in our case) is ω(log k). Thus, z∗ − ẑ ≠ u∗, except with negligible
probability.

Case 2: c∗ ̸= c. In this case, we can apply the same arguments as in Lemma 5.4 of [Lyu12], to
get that u ̸= 0 with high probability. This proves the claim and thus, by showing that δ3 ≤ negl(λ),
finishes the proof. ⊓⊔

Lemma 12 (Witness Extractability). Assuming M -SISRq,η,ℓ,γ1+γ2+β+2dℓ and that ρ ≥ (dℓ+ β)
√
Q,

where Q is the maximum number of oracle queries an attacker can make, the adaptor signature from
Fig. 5 is witness extractable in the random oracle model.

Proof. We prove the witness extractibility of the adaptor signature scheme by reduction to the M-SIS
problem. Let A be the given M-SIS instance. The proof is very similar to that of Lemma 11. Consider the
following sequence of hybrids. In all of them let σ∗ = (c∗, z∗) be the forgery signature output by A on
message m∗, and let (v∗, π∗) be the challenge statement. Without loss of generality, we can assume that
the adversary always queries the random oracle H on every message m before making a presigning/signing
query on m.

– Hybrid Hyb0: This is identical to the real experiment.
– Hybrid Hyb1: Here the simulator S works as follows:
• The simulator records a list Q of all H queries made by A with their responses. Let Q = |Q| be

the number of hash queries made by A.
• Whenever A queries the random oracle H on input m, the simulator samples v← Rℓ

q, z← DRℓ,ρ,
sets c := G−1(v), programs the random oracle H(m) := A · z− (G + Y) · c mod q, and returns
σ = (c, z), stores (m,H(m), σ) in Q, and returns H(m) to the adversary.

• Whenever the adversary queries the SignO(·) oracle on input m, the simulator finds the corre-
sponding entry (m,H(m), σ) in Q, and returns σ to the adversary.

• Whenever the adversary queries the pSignO(·) oracle on input (m, (v′, π)), the simulator checks
the validity of (v′, π)), extracts the witness u′ of v′ from the proof π, finds the corresponding
entry (m,H(m), σ = (c, z)) in Q, and returns σ̂ = (c, ẑ := (z− u′)) to the adversary.

• Whenever the adversary outputs a challenge message-statement tuple (m∗, (v∗, π∗)), the simulator
works as if it was responding to a presignature query: it makes use of the extractability property of
the zero knowledge proof π∗, in order to extract the witness u∗ corresponding to the statement v∗, it
finds the entry (m∗, H(m∗), σ = (c, z)) inQ corresponding to m∗, and returns σ̂ = (c, ẑ := (z−u∗))
to the adversary.

– Hybrid Hyb2: This is identical to hybrid Hyb1, except that this time the simulator samples XT ←
(SampD(1η, 1ℓ,R, d))ℓ, and sets Y := A ·X−G mod q.

36



Let δi denote the probability of an adversary winning in hybrid Hybi.

Claim. If there is an adversary that makes at most Q oracle queries and can win the game in hybrid Hyb0
with probability δ0, then its probability of winning in hybrid Hyb1 is polynomial in δ0, if ρ ≥ (dℓ+ β)

√
Q.

Proof. The proof is identical to that of the analogous claim used in the proof of Lemma 11. ⊓⊔

Hybrids Hyb1 and Hyb2 only differ in the way the public key Y is generated. By the properties of SampD,
we have that A ·X mod q is statistically close to uniform. Thus, the same holds for A ·X−G mod q,
which implies that

δ1 ≤ δ2 + negl(λ).

Claim. If there is an adversary A that makes at most Q oracle queries, and succeeds winning with
probability δ2 in hybrid Hyb2, then we can define an algorithm B which given A← Rη×ℓ

q , finds a non-zero
short u∗ such that ||u∗|| ≤ γ1 + γ2 + β + 2dℓ and A · u∗ = 0.

Proof. Let σ∗ = (c∗, z∗) be the forged signature output by A. We distinguish 2 cases:

Case 1: c∗ = c. Since both pre-signature and signature verify, we have that

A · z∗ − (G + Y) · c = H(m) mod q and A · ẑ− (G + Y) · c = H(m)− v∗ mod q,

from which we obtain that
A · (z∗ − ẑ) = v∗ mod q.

As ∥z∗ − ẑ∥ ≤ γ1 + γ2 ≤ β̃, the output of the Ext algorithm u∗ := z∗ − ẑ is a valid witness for v∗.

Case 2: c∗ ̸= c. In this case, we make use of the extractability property of the zero knowledge proof π∗,
in order to extract u∗ and obtain from the forged signature a M-SIS solution. Let u∗ ← K(v, π,H), where
H is the list of random oracle queries made by A. With high probability, it holds that ((v∗, π∗),u∗) ∈ RA.
Using that

A · z∗ − (G + Y) · c∗ = H(m) mod q and A · ẑ− (G + Y) · c = H(m)− v∗ mod q,

we obtain

[A|AX] ·
[
z∗ − ẑ + u∗

c∗ − c

]
= 0 mod q,

which leads to the non-zero M-SIS solution r := z∗ − ẑ + u∗ + X · (c∗ − c), with ∥r∥ ≤ γ1 + γ2 + β + 2dℓ,
by relying again on the analysis done in Lemma 5.4 of [Lyu12]. ⊓⊔

7 SNARK for Polynomial Maps Satisfiability

We construct a SNARK Π for PolySATR,d,α in Fig. 6, based on the vector commitment Γ for (F ,X ,Y)
that we developed in Section 5. The following theorem establishes the properties of our construction.

Theorem 6. If Γ is correct, then the SNARK Π presented in Fig. 6 is complete. If Γ is extractable,
then Π is knowledge-sound. If the computation complexity of Γ.Verify is in poly(λ, s, logw, log t) (implying
that Γ is compact), then Π is succinct.

Proof. (Sketch) Completeness and succinctness are immediate. For knowledge soundness, by the ex-
tractability of Γ , for any adversary A producing a commitment c and a valid opening prood for (f, y, z),
there exists an efficient procedure to extract from A a short vector x such that f(z,x) = y(z), except
with negligible probability.

37



Π.Setup(1λ, 1s, 1w, 1t)

return pp← Γ.Setup(1λ, 1s, 1w, 1t)

Π.Prove(pp, (f, y, z), x)

(c, aux)← Γ.Com(pp, x)
π′ ← Γ.Open(pp, f, z, aux)
return π := (c, π′)

Π.PreVerify(pp, (f, y))

return ppf,y ← Γ.PreVerify(pp, (f, y))

Π.Verify(ppf,y, z, π)

return Γ.Verify(ppf,y, z, c, π′)

Fig. 6. Construction of SNARK Π for PolySATR,d,β from a VC Γ for (F ,X ,Y).

7.1 Proving Relations over Rq

In Section 7, we constructed a SNARK for proving knowledge of a short vector x with ∥x∥ ≤ α satisfying
f(x) = y, where the polynomial map f and vector y both have coefficients of norm also at most α.16

There are, however, natural applications where we want to prove algebraic relations which involve R
elements of high norm (> α) and where arithmetic is performed modulo q.

For example, the verification equation of a GPV signature [GPV08] is of the form A ·u = H(m) mod q,
where A is a random public key matrix over Rq, H(m) is a random vector over Rq encoding the public
message m, and the signature u is a short vector over R satisfying the relation. The verification equation
of our VC and SNARK constructions A0 · u0

?= f̂(c) · t0 mod q have a more complicated form involving
the evaluation of a polynomial f̂ with large coefficients at a large Rq element c.

In general, consider the task of proving

{ (f,y) : ∃ (x, c) ∈ Rw ×Rℓ
q, f(x, c) = y mod q ∧ ∥x∥ ≤ δ }

for some δ ∈ R and q ∈ N, where the polynomial map f and the vector y have coefficients of norm at
most q. Here, c represent part of the witness which is not necessarily short, e.g. a commitment in our
VC construction. We outline a series of transformations on (f,y) and (x, c) to obtain slightly relaxed17

statement and witness respectively satisfying a relation natively supported by our SNARK.
We will assume that there exists an odd rational integer p ∈ N with p ≤ 2α + 1 and either δ ≤ α

or 2δ + 1 is a power of p. Since α for our VC and SNARK and (usually) δ for the application can be
chosen freely from a wide range of values, we view this as a mild assumption. The resulting statement
and witness will be larger than their original counterparts by a multiplicative factor of poly(logα q).

Handling Modular Reduction. To remove the modular reduction step, let r ∈ R be such that
f(x, c) + q · r = y. Let q′ ∈ N be the smallest such that r ∈ Rq′ . By absorbing r into c and renaming q′

to q, we obtain an equivalent language of the form

{ (f,y) : ∃ (x, c) ∈ Rw ×Rℓ
q, f(x, c) = y ∧ ∥x∥ ≤ δ } .

Handling Long Witness Components. Next, we transform the witness (x, c) into an equivalent
witness of norm at most α. Write d = 2δ + 1. Let p ∈ N be an odd rational integer satisfy the following
conditions: (i) p ≤ 2α+ 1, (ii) if δ ≤ α then p ≤ 2δ + 1, and (iii) if δ > α then pk = 2δ + 1 = d for some
k ∈ N.

For any x, h ∈ N, define the p-ary ‘Gadget” matrix Gx,h = (pi)T
i∈Z⌈logp x⌉

⊗ Ih ∈ R
h×h·⌈logp x⌉
q . Let

G−1(·) denote the component-wise balanced p-ary decomposition, i.e. it outputs a vector with entries in
{−(p− 1)/2, . . . , 0, . . . , (p− 1)/2 }. Note that x = Gd,w′ ·G−1(x) and c = Gq,ℓ ·G−1(c). By construction,
if
∥∥G−1(x)

∥∥ ≤ α, then we must have ∥x∥ ≤ δ. Given a polynomial map f(X,C), define

f ′(X′,C′) := f(Gd,w ·X,Gq,ℓ ·C).
16We dropped the public input z for the ease of exposition.
17In the sense that the norm of the transformed witness has a looser upper bound which is polynomial in the

original.

38



By renaming f ′ to f and absorbing c into x, we obtain an equivalent language of the form

{ (f,y) : ∃ x ∈ Rw, f(x) = y ∧ ∥x∥ ≤ α }

Note that unlike the previous and the original languages f likely contains large coefficients not contained
in Rq.

Handling Long Coefficients in Statements. It remains to transform (f,y) with long coefficients to
an equivalent statement containing only coefficients of norm at most α. Let q′ ∈ N be the smallest such
that all coefficients of f and y are contained in Rq′ . We first replace f,y by (f ′,y′) := (G−1(f),G−1(y))
where G−1(f) denotes the coefficient-wise balanced p-ary decomposition of f by viewing f as a linear
map on monomials with coefficient vectors in Rt

q′ . Note that if x were to satisfy f ′(x) = y′, then it also
satisfies f(x) = y because

f ′(x) = y′

G−1(f)(x) = G−1(y)
Gq′,t ·G−1(f)(x) = Gq′,t ·G−1(y)

f(x) = y.

However, this transformation is not complete as f(x) = y does not necessarily imply f ′(x) = y′.
To address above the issue, we consider any parity-check matrix H of Gq′,t, i.e. Gq′,t ·H = 0 and H is

full-rank. Suppose x satisfies f(x) = y. Consider w := f ′(x)− y′. We have G ·w = G · f ′(x)−G · y′ =
f(x)− y = 0. Therefore there exists unique z such that w = H · z.

With the above observation, we pick a specific H which has p on the main diagonal, −1 in the entries
just below the diagonal and zero everywhere else, and define

f ′′(X,Z) := f ′(X)−H · Z.

By the previous argument, with the knowledge x satisfying f(x) = y, one could find a unique z satisfying
f ′′(x, z) = y′. Conversely, suppose (x, z) satisfies f ′′(x, z) = y′. We have

f ′(x)−H · z = y′

Gq′,t · f ′(x)−Gq′,t ·H︸ ︷︷ ︸
0

·z = Gq′,t · y′

f(x) = y.

Note that the coefficients of f ′′ and the entries of y′ have norm upper-bounded by α by construction. It
remains to upper-bound ∥z∥ given that ∥x∥ ≤ α and f ′′(x, z) = y′. Let w := f ′(x)−y′ so that H · z = w
and ∥w∥ ≤ α′ := (w+ d)d ·αd+1 · γd

R. By the construction of H, we have w0 = p · z0 and wi = p · zi− zi−1
for i > 0. Consequently, we have ∥z0∥ < ∥w0∥ ≤ α′ and ∥zi∥ ≤ (∥wi∥+ ∥zi−1∥)/2 ≤ α′ for i > 0.

By renaming f ′′ to f , y′ to y, and α′ to α, and absorbing z into x, we obtain a relaxed language of
the form

{ (f,y) : ∃ x ∈ Rw, f(x) = y ∧ ∥x∥ ≤ α }

which is natively supported by our SNARK. Note that the resulting language is relaxed in the sense
that it only requires ∥x∥ to be upper-bounded by α′ = γd

R · αd+1 instead of by α required in the original
language.

7.2 Applications

Although a SNARK for an NP-complete language can in principle be used to prove any NP relation, the
computation and verification of the proof may not be concretely efficient due to NP reductions. In the
following, we highlight languages which are natively supported by our SNARK construction.

39



Aggregating GPV Signatures. GPV [GPV08] is a lattice-based signature scheme paradigm of
which an instantiation is in the process of being standardised [PFH+20]. GPV signatures are a prime
candidate for aggregation as it is unclear how to perform aggregation efficiently in other lattice-signature
paradigms based on Schnorr-like paradigms, due to how the random oracle is used there and how it is
typically instantiated with hash functions of high multiplicative degree (when viewed as an arithmetic
circuit) [DHSS20,BR21,BK20]. On a high level, GPV signatures work as follows. A signature is a short
vector u, with respect to a public key A. To verify the signature, the verifier computes v = H(m), checks
that the linear relation A · u ≡ v mod q holds and that u is short, where H is modeled as a random
oracle.

As motivated in Section 7.1, our SNARK construction can be used to prove knowledge of GPV
signatures natively given the verification is a linear relation. The high level idea is to use our SNARK
construction to prove knowledge of n signatures where each of them are short vectors satisfying a linear
relation. Consider the scenario where the same set of signers, identified with the public keys (Ai)i∈Zn

,
periodically issue signatures (ui,j)i∈Zn on a common message mj with vj = H(mj) at each time j.18 An
aggregator can aggregate the n signatures issued at each time j by computing a SNARK proof for the
knowledge of short (ui,j)i∈Zn

satisfying Ai · ui,j ≡ vj mod q. The aggregated signature, i.e. the SNARK
proof, can be verified in time sublinear in the number of signers and signatures n by first preprocessing
the part of the verification equation depending on (Ai)i∈Zn

. This preprocessing step only needs to be
done once for the same set of signers. Then, when the message mj becomes known at or after time j, the
online verification time is only logarithmic in n.

The above idea can also be extended to the case where multiple signers sign different messages. In
this case, one can still preprocess the public keys (Ai)i∈Zn

of users if they are known ahead of time.
The verification time is linear in n since we have to check relations with respect to different messages.
However, we are still set to gain from the compactness of the SNARK proof. Such aggregation can aid in
the blockchain setting, where an aggregator can aggregate signatures on different transactions included in
a block; resulting in smaller blocks to mitigate the effects on the ever-growing size of blockchains.

Recursive SNARK Composition. Since our SNARK construction is purely algebraic over R and Rq,
it can be used to natively prove knowledge of a committed witness and a SNARK proof that satisfy the
verification equation. Furthermore, since the verification time of our SNARK construction is sublinear after
preprocessing, our SNARK construction can be recursively composed without blowing up the proof size.
This makes our SNARK construction suitable for the constructions of verifiable delay functions [BBBF18]
and incrementally verifiable computation [Val08] based on the recursive composition of SNARKs. Below,
we outline a naive recursive composition strategy which only achieves provable soundness for constant-
depth composition. We refer to the literature [Val08,BCCT13,BBBF18] for more advanced composition
strategies to support higher-depth composition.

Consider a long computation which involves iteratively applying a computation C on an initial input
x0 for t times to obtain xt = Ct(x0), where xi+1 = C(xi) for i ∈ Zt. Let pp be the public parameters
sampled by the SNARK construction of a sufficient for the following language L = Lpp,C with relation
R = Rpp,C : A statement in L consists of a vector x′. A witness is of the form (π,x) where x. The relation
R is satisfied if {

π = x ∨ Verify(ppR,x, π) = 1
x′ = C(x)

where ppR = PreVerify(pp, R).
To prove that a statement (C,xt) and a witness x0 satisfy xt = Ct(x0), the prover computes:

– Set wit0 := x0.
– For i ∈ Zt:
• Compute xi+1 = C(xi).
• Compute πi+1 ← Prove(pp, (R,xi+1),witi).
• Set witi+1 := (πi+1,xi+1)

18Signing the same message twice produces a solution for M -SIS on Ai, so we may assume a deterministic
signature scheme here to avoid this issue.

40



– Output πt.

The proof can then be verified by checking that Verify(ppR,xt, πt) = 1.
To show succinctness, we observe that the computation required for checking the relation R given ppR

is of size polylog(|R|, |C|, λ) · poly(λ) + |C|, and the computation required for verifying a SNARK proof of
the satisfiability of R given ppR is of size polylog(|R|, |C|, λ) · poly(λ). However, this composition strategy
is not known to be provably sound for large t, say t = Ω(λ), since the knowledge extractor may run in
time exponential in t (unless the underlying SNARK has a very efficient extractor EA which runs only an
additive factor longer than the the runtime of A). Fortunately, this issue is discussed and circumvented in
many prior works (e.g. [Val08,BCCT13,BBBF18]) where the techniques should also be applicable to the
recursive composition of our SNARK construction.

References

ACK21. Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ-protocol theory for lattices. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 549–579,
Virtual Event, August 2021. Springer, Heidelberg. 2

AEE+21. Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostáková, Matteo Maffei,
Pedro Moreno-Sanchez, and Siavash Riahi. Generalized channels from limited blockchain scripts and
adaptor signatures. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 635–664. Springer, 2021. 4, 8, 14, 34

AGHS13. Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. Discrete Gaussian leftover hash lemma
over infinite domains. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume
8269 of LNCS, pages 97–116. Springer, Heidelberg, December 2013. 46

AGPS20. Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M. Schanck. Estimating
quantum speedups for lattice sieves. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part II, volume 12492 of LNCS, pages 583–613. Springer, Heidelberg, December 2020. 11

Agr20. Shweta Agrawal. Unlikely friendships: The fruitful interplay of cryptography assumptions. Invited
talk at ASIACRYPT 2020, December 2020. https://youtu.be/Owz8UuWTsqg. 3

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC,
pages 99–108. ACM Press, May 1996. 12

AKSY21. Shweta Agrawal, Elena Kirshanova, Damien Stehle, and Anshu Yadav. Can round-optimal lattice-
based blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565, 2021. https:
//eprint.iacr.org/2021/1565. 9, 11

AL21. Martin R. Albrecht and Russell W. F. Lai. Subtractive sets over cyclotomic rings - limits of Schnorr-like
arguments over lattices. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume
12826 of LNCS, pages 519–548, Virtual Event, August 2021. Springer, Heidelberg. 7, 10, 50

AME+21. Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Siavash Riahi, Kristina
Hostáková, and Pedro Moreno-Sanchez. Bitcoin-compatible virtual channels. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 901–918. IEEE, 2021. 4, 8

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015. 2

ARU14. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof systems:
The hardness of quantum rewinding. In 55th FOCS, pages 474–483. IEEE Computer Society Press,
October 2014. 51

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
757–788. Springer, Heidelberg, August 2018. 4, 40, 41

BCC+09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Randomizable proofs and delegatable anonymous credentials. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer, Heidelberg, August 2009. 1

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and bootstrap-
ping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 111–120. ACM Press, June 2013. 40, 41

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer, Heidelberg, August
2013. 1

41

https://youtu.be/Owz8UuWTsqg
https://eprint.iacr.org/2021/1565
https://eprint.iacr.org/2021/1565


BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014. 1

BCS21. Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and their applications.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages
742–773, Virtual Event, August 2021. Springer, Heidelberg. 2, 16

BCTV14a. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via
cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 276–294. Springer, Heidelberg, August 2014. 2

BCTV14b. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero
knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 781–796. USENIX Association, August 2014. 1

BDFG21. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite: Proof-carrying data from
additive polynomial commitments. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 649–680, Virtual Event, August 2021. Springer, Heidelberg. 1

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th SODA, pages
10–24. ACM-SIAM, January 2016. 11

BDN18. Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains.
In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 435–464. Springer, Heidelberg, December 2018. 8

BF11. Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields and
new tools for lattice-based signatures. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 1–16. Springer, Heidelberg, March 2011. 3,
12

BGH19. Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/2019/1021. 1

BK20. Dan Boneh and Sam Kim. One-time and interactive aggregate signatures from lattices. https:
//crypto.stanford.edu/~skim13/agg_ots.pdf, 2020. 40

BLR+18. Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien Stehlé, and Ron Steinfeld.
Improved security proofs in lattice-based cryptography: Using the Rényi divergence rather than the
statistical distance. Journal of Cryptology, 31(2):610–640, April 2018. 11, 12

BMM+21. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for inner pairing
products and applications. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,
Part III, volume 13092 of LNCS, pages 65–97. Springer, Heidelberg, December 2021. 2

BMRS20. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized cryptocurrency
at scale. Cryptology ePrint Archive, 2020. 1

BR21. Katharina Boudgoust and Adeline Roux-Langlois. Compressed linear aggregate signatures based
on module lattices. Cryptology ePrint Archive, Report 2021/263, 2021. https://eprint.iacr.org/
2021/263. 40

CDH+20. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M. Schanck,
Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Yamakawa, and Keita
Xagawa. NTRU. Technical report, National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 51

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72. Springer, Heidelberg,
February / March 2013. 3, 5, 8, 9, 47

CFG+20. Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo. Incrementally
aggregatable vector commitments and applications to verifiable decentralized storage. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 3–35. Springer,
Heidelberg, December 2020. 3, 8, 9

CG08. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 345–356. ACM Press, October
2008. 1

CLMQ21. Yilei Chen, Alex Lombardi, Fermi Ma, and Willy Quach. Does fiat-shamir require a cryptographic
hash function? In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 334–363, Virtual Event, August 2021. Springer, Heidelberg. 46

CMSZ22. A. Chiesa, F. Ma, N. Spooner, and M. Zhandry. Post-quantum succinct arguments: Breaking the
quantum rewinding barrier. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 49–58, Los Alamitos, CA, USA, feb 2022. IEEE Computer Society. 51

42

https://eprint.iacr.org/2019/1021
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://eprint.iacr.org/2021/263
https://eprint.iacr.org/2021/263
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


CPZ18. Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. Edrax: A cryptocurrency
with stateless transaction validation. Cryptology ePrint Archive, Report 2018/968, 2018. https:
//eprint.iacr.org/2018/968. 9

DGNW20. Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multi-signatures for
consensus. In 29th USENIX Security Symposium (USENIX Security 20), pages 2093–2110. USENIX
Association, August 2020. 8

DHSS20. Yarkın Doröz, Jeffrey Hoffstein, Joseph H. Silverman, and Berk Sunar. MMSAT: A scheme for
multimessage multiuser signature aggregation. Cryptology ePrint Archive, Report 2020/520, 2020.
https://eprint.iacr.org/2020/520. 40

EEE20. Muhammed F Esgin, Oğuzhan Ersoy, and Zekeriya Erkin. Post-quantum adaptor signatures and
payment channel networks. In European Symposium on Research in Computer Security, pages 378–397.
Springer, 2020. 4, 8

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, Heidelberg,
August 2005. 15

Fis18. Ben Fisch. PoReps: Proofs of space on useful data. Cryptology ePrint Archive, Report 2018/678,
2018. https://eprint.iacr.org/2018/678. 9

Fis19. Ben Fisch. Tight proofs of space and replication. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 324–348. Springer, Heidelberg, May 2019.
3, 9

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987. 2

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
41st ACM STOC, pages 169–178. ACM Press, May / June 2009. 2

GGM14. Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous credentials. In NDSS 2014.
The Internet Society, February 2014. 1

GKK+19. Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian Rechberger, and Markus
Schofnegger. Starkad and Poseidon: New hash functions for zero knowledge proof systems. Cryptology
ePrint Archive, Report 2019/458, 2019. https://eprint.iacr.org/2019/458. 2

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans, editor,
58th FOCS, pages 612–621. IEEE Computer Society Press, October 2017. 2

GLS+21. Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby. Brakedown:
Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/1043,
2021. https://eprint.iacr.org/2021/1043. 32

GM18. Nicholas Genise and Daniele Micciancio. Faster Gaussian sampling for trapdoor lattices with arbitrary
modulus. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 174–203. Springer, Heidelberg, April / May 2018. 11

GMNO18. Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-based zk-SNARKs from
square span programs. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 556–573. ACM Press, October 2018. 2, 9

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC,
pages 197–206. ACM Press, May 2008. 2, 4, 8, 11, 12, 14, 17, 24, 36, 38, 40

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer,
Heidelberg, May 2016. 2

Gro21. Jonathan Gross. Practical snark based vdf, 2021. https://zkproof.org/2021/11/24/
practical-snark-based-vdf/. 4

GRWZ20. Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Pointproofs: Aggregating proofs
for multiple vector commitments. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 2020, pages 2007–2023. ACM Press, November 2020. 3, 9, 50

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from
LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 503–523. Springer, Heidelberg, August 2015. 2

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM
Press, June 2011. 3, 50

HPS96. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A new high speed public key
cryptosystem, 1996. Draft Distributed at Crypto’96, available at http://web.securityinnovation.
com/hubfs/files/ntru-orig.pdf. 51

43

https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2020/520
https://eprint.iacr.org/2018/678
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2021/1043
https://zkproof.org/2021/11/24/practical-snark-based-vdf/
https://zkproof.org/2021/11/24/practical-snark-based-vdf/
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf


HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem.
In ANTS, pages 267–288, 1998. 51

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation
with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM, January 2015. 50,
52

ISW21. Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum designated-verifier zkSNARKs
from lattices. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 212–234. ACM Press,
November 2021. 2, 9

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th
ACM STOC, pages 723–732. ACM Press, May 1992. 1, 2

KM10. Neal Koblitz and Alfred Menezes. The brave new world of bodacious assumptions in cryptography.
Notices of the American Mathematical Society, 57(3):357–365, 2010. 18

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE Symposium
on Security and Privacy, pages 839–858. IEEE Computer Society Press, May 2016. 1

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials
and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
177–194. Springer, Heidelberg, December 2010. 9

Laa15. Thijs Laarhoven. Search problems in cryptography: From fingerprinting to lattice sieving. PhD thesis,
Eindhoven University of Technology, 2015. 11

Lis05. Moses Liskov. Updatable zero-knowledge databases. In Bimal K. Roy, editor, ASIACRYPT 2005,
volume 3788 of LNCS, pages 174–198. Springer, Heidelberg, December 2005. 9

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knapsacks are collision resistant.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006, Part II,
volume 4052 of LNCS, pages 144–155. Springer, Heidelberg, July 2006. 12

LM19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct
arguments. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume
11692 of LNCS, pages 530–560. Springer, Heidelberg, August 2019. 3, 4, 5, 8, 47, 50

LMR19. Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct arguments for bilinear group
arithmetic: Practical structure-preserving cryptography. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2057–2074. ACM Press, November
2019. 2

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
35–54. Springer, Heidelberg, May 2013. 11

LPSS14. San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-LWE and applications
in traitor tracing. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 315–334. Springer, Heidelberg, August 2014. 3, 12

LRY16. Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From polyno-
mial commitments to pairing-based accumulators from simple assumptions. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016, volume 55 of
LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016. 3, 5, 9, 47

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography, 75(3):565–599, June 2015. 12

LY10. Benoît Libert and Moti Yung. Concise mercurial vector commitments and independent zero-knowledge
sets with short proofs. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 499–517.
Springer, Heidelberg, February 2010. 3

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Heidelberg,
April 2012. 36, 37

Ma20. Fermi Ma. Quantum-secure commitments and collapsing hash functions. https://www.cs.princeton.
edu/~fermim/talks/collapse-binding.pdf, April 2020. 53

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer Society
Press, November 1994. 1

Mic07. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
Comput. Complex., 16(4):365–411, 2007. 11, 12

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
700–718. Springer, Heidelberg, April 2012. 8, 11

MRK03. Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In 44th FOCS, pages 80–91.
IEEE Computer Society Press, October 2003. 9

44

https://www.cs.princeton.edu/~fermim/talks/collapse-binding.pdf
https://www.cs.princeton.edu/~fermim/talks/collapse-binding.pdf


MS04. Thom Mulders and Arne Storjohann. Certified dense linear system solving. J. Symb. Comput.,
37(4):485–510, 2004. 50

PFH+20. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions. 8, 40

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable
computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE Computer
Society Press, May 2013. 1

PPS21. Chris Peikert, Zachary Pepin, and Chad Sharp. Vector and functional commitments from lattices. In
Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages 480–511.
Springer, Heidelberg, November 2021. 9

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 145–166.
Springer, Heidelberg, March 2006. 12

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.
Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005. 2

SE94. Claus-Peter Schnorr and Michael Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program., 66:181–199, 1994. 11

SS11. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 27–47. Springer,
Heidelberg, May 2011. 11, 51

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption
based on ideal lattices. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
617–635. Springer, Heidelberg, December 2009. 11

Unr16. Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 497–527. Springer,
Heidelberg, May 2016. 3, 50, 51

Val08. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency.
In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer, Heidelberg, March
2008. 4, 40, 41

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE. In
Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society Press, October 2017. 2

45

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


A On Achieving (Functional) Hiding

We discuss potential approaches to modify the VC construction in Section 5 to achieve hiding and
functional hiding.

Definition 29 ((Functional) Hiding). A VC scheme for (F ,X ,Y) is said to be statistically/computationally
hiding if for any λ,w, t ∈ N, any pp ∈ Setup(1λ, 1w, 1t), and any x,x′ ∈ Xw, the distributions

{ c : (c, aux)← Com(pp,x) } and { c : (c, aux)← Com(pp,x′) }

are statistically/computationally indistinguishable.
A VC scheme for (F ,X ,Y) is said to be statistically/computationally functional hiding if there exists

a tuple of PPT simulators S = (S0,S1) such that, for any λ,w, t ∈ N and any (f,x, y) ∈ Fw,t ×Xw ×Yt

satisfying f(x) = y, the distributions(pp, c, π) :
pp← Setup(1λ, 1w, 1t)
(c, aux)← Com(pp, x)
π ← Open(pp, f, aux)

 and
{

(pp, c, π) :
(pp, td)← S0(1λ, 1w, 1t)
(c, π)← S1(td, f, y)

}

are statistically/computationally indistinguishable.

In the VC construction in Fig. 3, a commitment of x is of the form ⟨v,x⟩ mod q as in essentially every
lattice-based commitment schemes. A well-known technique for achieving hiding is to commit instead to
the concatenation of x and a short random vector r. If the randomness vector r has sufficiently many
dimensions one could argue that ⟨v, (x, r)⟩ mod q is statistically close to uniform. This can be done,
relying on the regularity lemmas discussed in Section 2.2. Achieving functional hiding requires more work.
In the following, we discuss three (potential) approaches on top of introducing r.

Notice that the verification algorithm in Fig. 3 is simply checking that an opening proof (u0,u1)
satisfies two SIS relations. An approach of achieving functional hiding is therefore to replace the opening
proof (u0,u1) with a zero-knowledge proof of knowledge of (u0,u1). This can be done efficiently using
Schnorr-like proofs in the random oracle model, without affecting compactness since the witness (u0,u1)
and the relation that it satisfies are of size independent of (f, y). Due to the use of a random oracle, the
resulting scheme may no longer be purely algebraic (depending on how the random oracle is heuristically
instantiated) and therefore might not be recursively composed natively. However, in applications where
a single party performs the entire recursive composition, it is possible to first recursively compose the
non-functional-hiding scheme in Fig. 3, and finish off with a zero-knowledge proof of the final opening
proof.

Another approach, related to the first and inspired by [CLMQ21], is to (provably) instantiate the
random oracle in a Schnorr-like proof with a function that outputs short preimages of the inputs with
respect to a linear function. While this technique preserves the algebraic structure of the scheme, it
requires each of the witness components u0 and u1 to be a short square matrix instead of a short vector.
In other words, to achieve functional hiding using this approach, we need to either introduce dummy
relations or prove ℓ openings in batch.

The third approach is to argue directly that (u0,u1) leaks no information about x. This is intuitively
plausible since both u0 and u1 consists of linear combinations of Gaussian vectors with coefficients
depending on r. Indeed, for d = 1, we could apply a Gaussian-version of the Leftover Hash Lemma [AGHS13]
and rejection sampling to argue this formally. For d ≥ 2, unfortunately, the distributions of u0 and u1
become much more complicated, making generalising the argument for d = 1 to d ≥ 2 difficult. Furthermore,
we remark that this approach relies on making the variance of u0 and u1 super-polynomially wide to
“smudge” the contribution of x. This means the modulus q would also need to be super-polynomially
large.

B Vector Commitments without Knowledge Assumptions

We strip off components for compactness and extractability from our main VC construction in Section 5.
The resulting scheme supports the same class of openings. It achieves the weaker notions of succinctness
and weak binding but does not rely on any non-falsifiable assumption.

46



B.1 Definitions

Since our goal is to achieve succinctness, we fix t = 1 everywhere and omit it from the syntax. The
definition of correctness is modified accordingly. Next, we formalise (weak) binding and succinctness.

Definition 30 ((Weak) Binding). Let ρ : N3 → [0, 1]. A VC scheme for (F ,X ,Y) is said to be weakly
ρ-binding if for any pair of PPT adversary A and any s, w ∈ poly(λ) it holds that the following expression
is upper-bounded by ρ(λ, s, w):

Pr


∀ i ∈ {0, 1},

Verify(ppfi,yi
, zi, c, πi) = 1,

∧ f0(z0, ·) = f1(z1, ·)
∧ y0(z0) ̸= y1(z1)

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ, 1s, 1w)(

c, (fi, zi, yi, πi)1
i=0

)
← A(pp)

∀ i ∈ {0, 1},
ppfi,yi

← PreVerify(pp, (fi, yi))

 .

We say that the scheme is weakly binding if it is weakly ρ-binding and ρ(λ, s, w) is negligible in λ for any
s, w ∈ poly(λ).

The scheme is said to be ρ-binding if for any PPT adversary A and w, t = poly(λ) it holds that the
following expression is upper-bounded by ρ(λ):

Pr


(
∀ i ∈ I, Verify(ppfi,yi

, zi, c, πi) = 1
)

∧ ¬ (∃ x ∈ Kw, ∀ i ∈ I, fi(zi, x) = yi(zi))

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ, 1s, 1w)(

c, I, (fi, zi, yi, πi)i∈Zt

)
← A(pp)

∀ i ∈ I

ppfi,yi
← PreVerify(pp, (fi, yi))

 .

We say that the scheme is binding if it is ρ-binding and ρ(λ, s, w) is negligible in λ for any s, w ∈ poly(λ).

Note that in the binding definition the existence of x is checked over the base field K rather than
the ring R. The reason for this choice will become clear when we discuss the binding property of our
construction.

For positional openings [CF13] weak binding and binding are trivially equivalent. Using linear algebra,
it is also not difficult to that the equivalence also holds for openings to linear functions over finite
fields [LRY16,LM19].19 The equivalence does not seem to hold, however, for openings to linear functions
over rings nor for high-degree openings over rings or fields.

Definition 31 (Succinctness). A VC scheme for (F ,X ,Y) is said to be succinct if there exists
p(λ, s, w) ∈ poly(λ, log s, logw) such that for any λ, s, w ∈ N, any pp ∈ Setup(1λ, 1s, 1w), any (f, z,x, y) ∈
Fs,w×X s×Xw×Ys, any (c, aux) ∈ Com(pp,x), and any π ∈ Open(pp, f, z, aux), it holds that |c| ≤ p(λ, s, w)
and |π| ≤ p(λ, s, w), where | · | denotes the description size.

B.2 Construction

A formal description of the stripped-down construction is in Fig. 7. The proof of correctness is completely
analogous to that of Theorem 3 and is therefore omitted.

Theorem 7. For d = O(1), ℓ ≥ lhl(R, η, q, β) and

δ = 3 · (s+ d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

the VC construction in Fig. 7 is correct.

Theorem 8. The construction of vector commitments for (F ,X ,Y) in Fig. 7 is weakly-binding if ℓ ≥
lhl(R, η, q, β), β ≥ α, and the k-M -ISISRq,η,ℓ,w,G,1,D,T ,β,2δ assumption holds, where D is such that the
distribution {

(A, t, {uG } ,v)

∣∣∣∣∣A←$Rη×ℓ
q ; t←$ T ; v←$ (R×

q )w

ug ←$Dg,A,t,v, ∀g ∈ G

}
19In [LM19], the generic group model is used to prove the binding property of the compact linear map commitment

construction. If the compactness requirement is dropped, binding could be proven in the plain model.

47



Setup(1λ, 1s, 1w)

v←$ (R×
q )w

(A, td)← TrapGen(1η, 1ℓ, q,R, β)
t←$Rη

q

ug ← SampPre(td, g(v) · t, β), ∀g ∈ G

return pp :=
(
A, t, (ug)g∈G , v

)
Com(pp, x)

c := ⟨v, x⟩ mod q

for e ∈
⋃

k∈[d]

Ek do

ue := d! ·
∑

e′∈Ek\{ e }

(
k
e′

)(
k
e

) · xe′
· uXe′−e

aux := (ue)e∈
⋃

k∈[d]
Ek

return (c, aux)

Open(pp, f, z, aux)

u :=
d∑

k=1

∑
e∈Ek

fe(z) · ue

return π := u

Verify(ppf,y, z, c, π)

b0 :=
(

Au ?= f̂(z, c) · t mod q
)

b1 :=
(
∥u∥

?
≤ δ

)
return b0 ∧ b1

PreVerify(pp, (f, y))

if (f, y) /∈ Fs,w × Ys then return ⊥

f̂(Z, C) := d! ·

(
d∑

k=1

∑
e∈Ek

(
k

e

)−1

· fe(Z) · v−e · Ck − y(Z)

)
ppf,y :=

(
A, t, f̂

)
return ppf,y

Fig. 7. Stripped-Down VC Construction.

is statistically close to the distribution{
(A, t, {uG } ,v)

∣∣∣∣∣A←$Rη×ℓ
q ; t←$ T ; v←$ (R×

q )w

ug ←$ SampD(1ηi , 1ℓi ,R, β) : A · ug ≡ g(v) · t mod q, ∀g ∈ G

}
.

Proof. Let A be an adversary against the weakly binding property of the construction in Fig. 7. We
construct an algorithm B for the k-M -ISISRq,η,ℓ,w,G,1,D,T ,β,2δ problem. Our algorithm B inputs a prob-
lem instance

(
A, t,v, {ug }g∈G

)
, sets pp :=

(
A, t,v, {ug }g∈G

)
, and runs A on pp to obtain a tuple

(c, (fi, zi, yi,ui)1
i=0). Our algorithm B outputs (s∗,ug∗) = (d! · (y1(z1)− y0(z0)),u0 − u1).

Suppose A is a successful adversary against the weak-binding property of our VC construction. By our
assumption on D, the distribution of the public parameters pp passed to A by B is statistically close to
that generated by Setup. Therefore, with non-negligible probability, the tuple that A returns to B satisfies{

A · ui = f̂i(zi, c) · t mod q,
∥ui∥ ≤ δ.

for i ∈ {0, 1} with f0(z0, ·) = f1(z1, ·) but y1(z1) ̸= y0(z0), which implies A · ug∗ = s∗ · t mod q,
0 < ∥s∗∥ ≤ 2 δ, and ∥ug∗∥ ≤ 2 δ. ⊓⊔

Theorem 9. For n ∈ poly(λ), q, δ ∈ poly(λ, s, w), and ℓ ∈ Θ(log q) = polylog(λ, s, w), covering the
choices of parameters in Theorems 7 and 8, the VC construction in Fig. 7 is succinct.

Concretely, let R be a power-of-2 cyclotomic ring so that γ = n. For s = w ≥ n and for the following
choices of parameters,

d = O(1), β ≥ α,

48



δ = 3 · (s+ d)d · (w + d)2d · α2d+1 · β · γ2d+2
R ,

q ≈ δ · n · logn, and
ℓ = lhl(R, η, q, β) ≈ 2 logβ q,

a commitment is of size O(n log s), and an opening proof is of size O(n · (log s + log β)2/ log β). The
minimum is attained at β = Θ(s), where an opening proof is of size O(n log s).

Proof. For the general case, we observe that a commitment c ∈ Rq is of description size n log q ∈
poly(λ, log s, logw), and an opening proof u is of description size n · ℓ · log δ ∈ poly(λ, log s, logw).

For the concrete case, we have

δ = 3 · (s+ d)d · (w + d)2d · α2d+1 · β · γ2d+2
R = O(s3d · α2d+1 · β · n2d+2),

q = δ · n · logn = O(s3d · α2d+1 · β · n2d+3 · logn),
log δ, log q = O(log s+ log β),

ℓ = 2 log q/ log β = O((log s+ log β)/ log β),
|c| = n · log q = O(n log s), and
|u| = n · ℓ · log δ

= n ·O((log s+ log β)/ log β) ·O(log s+ log β)
= O(n · (log s+ log β)2/ log β). ⊓⊔

B.3 On Binding

We study to what extent binding can be achieved without relying on non-falsifiable assumptions.
In the following informal discussion we omit the public input z for readability. As mentioned previously,

in the case where F consists of only position maps, then weak binding is trivially equivalent to binding.
This is because, if fi are position maps, i.e. fi(x) = xi, for i ∈ I then the only way to force that no
x ∈ Kw satisfies fi(x) = yi for all i ∈ I is to set fi′ = fi′′ but yi′ ̸= yi′′ for some distinct i′, i′′ ∈ I.

In fact, even if F consists of only linear maps, i.e. d = 1, the equivalence between weak binding and
binding still holds without considering the norm bound constraint, e.g. when the linear maps are defined
over a finite field. Indeed, suppose that fi(x) = yi for all i ∈ I is not satisfiable by any x ∈ Kw, then by
Gaussian elimination one can find a coefficient vector r′ ∈ KI such that

∑
i∈I r

′
ifi ≡ 0 and

∑
i∈I r

′
iyi = 1.

Multiplying r′ by the least common multiple ∆ of the denominators in r′ to obtain r ∈ RI , we have∑
i∈I rifi ≡ 0 and

∑
i∈I riyi = ∆. Since the verification algorithm Verify is linear in (f, y), we obtain

openings for (fi, yi) and (fi, yi +∆).
In the lattice setting, however, we need to argue that ∆ is not too large relative to (a large enough) q,

so that we can use the technique in the proof of Theorem 8 to turn an adversary against binding into
an algorithm for solving certain k-M -ISIS problems. The following theorem states that binding can be
achieved for d = 1 and an exponentially large q.

Theorem 10. In addition to the assumptions made in Theorem 8, let d = 1, δ∗ := |I| · γR · δ · νν · α2ν ,
and q ≥ ω

(
|I| · γR · δ · νν · α2ν

)
where ν := (w + 1) · n. If the VC construction in Fig. 7 is weakly-binding

for δ∗ then it is also binding for δ.

Proof. Suppose there exists a PPT adversary A against binding, we construct a PPT adversary B against
weak binding as follows. Our adversary B receives the public parameters

(
A, t,v, {ug }g∈G

)
and forwards

it to A. By assumption, A outputs a tuple
(
c, I, { fi, zi, yi,ui }i∈I

)
which satisfies the following with

non-negligible probability:

(i) For all i ∈ I, A · ui ≡ f̂i(zi, c) mod q.
(ii) For all i ∈ I, ∥ui∥ ≤ δ.
(iii) There does not exist x ∈ Kw such that, for all i ∈ I, fi(zi,x) = yi.

Since fi is a homogeneous linear polynomial, we have f̂i(zi, ·) = fi(zi, ·)− y(zi) and fi(zi, ·) can be
represented by a vector f i ∈ Rw such that fi(zi,x) = ⟨f i,x⟩ for any x ∈ Kw. Let F be the matrix with the

49



i-th column being f i, U be the matrix with the i-th column being ui, and y = (yi(zi))i∈I . Consequently,
we can rewrite the equations in Item 1 above as

AT ·U ≡ t ·
(
c · v̄T −1

)(F
yT

)
mod q.

By assumption there exists an r′ ∈ K|I| s.t.
(

F
yT

)
· r′ = (0, . . . , 0, 1). Thus, we have r := ∆ · r′ ∈ R|I|

s.t.
(

F
yT

)
· r = (0, . . . , 0, ∆) where ∆ is the least common multiple of the denominators in r′. Note

that a solution in R maps to a solution over Z by the map g 7→ rot(g). To bound ∥r∥ and ∆, assume
|I| = w+1, which represents the worst case, and apply known bounds for solutions over Z [MS04, Fact 25]:
∆ ≤ νν/2 · αν and ∥r∥ ≤ νν/2 · αν−1 ·∆.

Let u′
0 := U · r. We have

Verify(ppf0,y0 , z0, c,u0) = 1
Verify(ppf0,y0+∆, z0, c,u′

0) = 1
∥u0∥ < ∥u|I|∥ ≤ δ∗

but y0 ̸= y0 +∆. ⊓⊔

We next discuss why proving binding in the case d > 1 from falsifiable assumptions seems unlikely.
Indeed, if we were given a compact and binding VC for degree-d openings for d ≥ 2, we can construct a
SNARG for the NP-complete language of degree-d polynomial maps satisfiability (Section 7), where a
SNARG is almost a SNARK but only satisfies soundness instead of knowledge soundness. Due to the
impossibility result of Gentry and Wichs [GW11], who showed that certain flavour of SNARG requires
non-falsifiable assumption or non-black-box reduction, we obtain the same impossibility for compact and
binding VC with openings to non-linear polynomial maps.

B.4 On Compactness

We discuss the difficulty of achieving compactness without relying on the knowledge k-M -ISIS assumption.
For VC constructions where the verification equation is linear in the opening proof, such as the

constructions presented in Section 5.1 and Appendix B.2, a natural strategy to achieve compactness is to
aggregate multiple opening proofs using a random linear combination. Instantiating the strategy involves
deciding how the random coefficients of the linear combination are generated.

For schemes where the verification equation is defined over prime-order cyclic groups, provably binding
ways of instantiating the strategy includes (i) embedding the random coefficients in the public parameters
and prove soundness in the generic [LM19] or algebraic [GRWZ20] group model, (ii) making the verification
interactive and let the verifier sample the coefficients, or (iii) generate the coefficients using a random
oracle. The proofs of binding in all three approaches rely crucially on the fact that Vandermonde matrices
defined by distinct elements in a finite field are always invertible.

In the lattice setting, the random coefficients need to be chosen from a subtractive set, i.e. a set where
the difference between any pairs of distinct elements is always invertible, for a similar proof strategy to
work (see, e.g. [AL21]). Unfortunately, it has been shown [AL21] that over many cyclotomic rings R, the
size of (even relaxed variants of) subtractive sets is at most O(n), which is insufficient for aggregating an
unbounded polynomial number t of opening proofs into a single proof of size poly-logarithmic in t.

B.5 Post-Quantum Security

We analyse the security of our stripped-down construction against quantum attackers. We show that our
construction, viewed as an ordinary commitment scheme, satisfies the notion of collapsing [Unr16]. This
is done is two steps: First, we show that our VC scheme satisfies the notion of somewhere statistically
binding (SSB) [HW15]. Next, we rely on a previous result, reproduced in Appendix B.5 that an SSB VC
is also collapsing.

50



KGen(1λ)

f ′ ← SampD(11, 11,R, β); f := p · f ′ + 1
if f ̸∈ R×

q resample
g ← SampD(11, 11,R, β)if g ̸∈ R×

q resample
return pk := h = p · g/f, sk := f

Enc(pk, m ∈ Rp)

(s, e)← SampD(11, 12,R, β′)
return c := h · s + p · e + m

Dec(sk, c)

return m := (f · c mod q) mod p

Fig. 8. NTRU Encryption. n, q, p, β, β′ are parameters ∈ poly(λ).

Assumptions. For showing post-quantum security, we will rely on the pseudorandomness and correctness
of the NTRU encryption scheme [HPS96,HPS98].

Definition 32 (NTRU Encryption Assumption). Consider the NTRU encryption scheme parame-
terised by n, q, p, β, β′ ∈ poly(λ) as given in Fig. 8.

(i) We say that NTRU ciphertexts are w-pseudorandom if the following expression is negligible in λ for
any PPT A, arbitrary mi ∈ Rp for i ∈ Zw, and (pk, sk)← KGen(1λ).

Pr
[
A(pk, { ci }i∈Zw

) = 1
∣∣ci ← Enc(pk, mi)

]
− Pr

[
A(pk, {ui }i∈Zw

) = 1
∣∣ui ←$Rq

]
.

(ii) Let w,α ∈ poly(λ) be additional parameters. We say that NTRU decryption is (w,α)-correct if the
following expression is negligible in λ for any PPT A, mi ∈ {0, 1} for i ∈ Zw, and (pk, sk)← KGen(1λ).

Pr

 xi ← A(pk, { ci }i∈Zw
);

∀i ∈ Zw, ∥xi∥ ≤ α ∧ Dec(sk,
∑

xi · ci) ̸=
∑
i∈Zw

xi ·mi

∣∣∣∣∣∣ci ← Enc(pk, mi)

 .

The NTRU encryption assumption holds for the parameters n, q, w, α if there exist p, β, β′ ∈ poly(λ) such
that NTRU ciphertexts are w-pseudorandom and NTRU decryption is (w,α)-correct for these parameters.

The pseudorandomness of NTRU ciphertexts can be reduced to the decision NTRU assumption
(asserting that NTRU public keys are pseudorandom) and the Ring-LWE assumption [CDH+20]. The
decisional NTRU assumption can be dropped when β ≈ √q [SS11]. For any α ∈ poly(λ), there exist
parameters n, q, p, β, β′ ∈ poly(λ) such that NTRU decryption is unconditionally correct [CDH+20].

Quantum Information. A (pure) quantum state is a unit vector |ψ⟩ in a complex Hilbert space H.
Hilbert spaces are commonly divided into registers, e.g., H = H0⊗H1. A unitary operation is represented
by a complex matrix U such that UU† = I. The operation U transforms the pure state |ψ⟩ to the pure
state U |ψ⟩. In this work, a quantum adversary is a family of quantum circuits {Aλ}λ∈N represented
classically using some standard universal gate set. A quantum adversary is polynomial-size if there exists
a polynomial p and some λ0 ∈ N such that for all λ > λ0 it holds that |Aλ| ≤ p(λ).

Collapsing. It is well known that the classical (computational) notion of binding is not meaningful against
quantum attackers [Unr16,ARU14]. For compressing commitment schemes, where statistical binding is
simply impossible, a more useful notion is that of collapsing. In the following, we adapt the definition of
collapsing for hash functions [Unr16] to one for VCs. Essentially, our definition requires the commitment
algorithm of the VC to be collapsing when viewed as a hash function. Note that our definition is weaker
than that of [CMSZ22], who requires the collapsing property to hold with respect to positional openings.

Definition 33 (Collapsing). A VC scheme Γ is said to be collapsing if for any QPT adversary A and
any w = poly(λ) it holds that∣∣∣∣∣ Pr

[
CollapsExp0

Γ,A(1λ, 1s, 1w, 1t) = 1
]

− Pr
[
CollapsExp1

Γ,A(1λ, 1s, 1w, 1t) = 1
]∣∣∣∣∣ ≤ negl(λ).

where the experiment CollapsExpb
Γ,A(1λ, 1s, 1w, 1t) is defined as follows:

51



– The challenger samples pp← Setup(1λ, 1s, 1w, 1t) and sends it to A.
– A replies with a classical message c (a commitment) and a quantum register V, which contains strings

x ∈ Zw.
– Let U be the unitary that acts on V and some ancilla register and computes the bit

(
c

?= Com(pp,V)
)

,
where the auxiliary output aux is suppressed. The challenger applies U to V and measures the ancilla
register containing the output bit in the computational basis. If such bit is 0 abort the experiment, else
apply U†.

– If b = 0 the challenger does nothing. If b = 1 the challenger measures the register V in the computational
basis.

– Return the (possibly measured) register V to A.
– A returns a bit which is also the output of the experiment.

Somewhere Statistically Binding (SSB) We introduce the notion of somewhere statistically binding
(SSB) [HW15] for VCs. Similar to the treatment for collapsing above, our definition of SSB essentially
requires that the commitment algorithm of the VC to be SSB as an ordinary commitment.

Definition 34 (Somewhere Statistically Binding (SSB)). A VC scheme Γ is said to be somewhere
statistically binding (SSB) if there exists a binding setup algorithm pp← BSetup(1λ, 1s, 1w, 1t, i), which
takes an additional input i ∈ Zw, such that the following properties are satisfied:

– (Mode Indistinguishability) For all λ ∈ N, all s, w, t = poly(λ), and all i ∈ Zw the following distributions
are computationally indistinguishable

Setup(1λ, 1s, 1w, 1t) ≈ BSetup(1λ, 1w, 1t, i).

– (SSB) For all λ ∈ N, s, w, t = poly(λ), i ∈ Zw, and pp ∈ BSetup(1λ, 1s, 1w, 1t, i),

Pr

∃x0,x1 ∈ Xw :

(c0, aux0)← Com(pp,x0)
∧ (c1, aux1)← Com(pp,x1)
∧ c0 = c1

∧ x0,i ̸= x1,i

 ≤ negl(λ).

Our central technique of achieving SSB is to replace entries of the public vector v with ciphertexts of
(the provable variant of) the NTRU encryption scheme. Concretely, we construct BSetup(1λ, 1s, 1w, 1t, i) by
setting vi to be an NTRU ciphertext encrypting 1, while setting vj to be an NTRU ciphertext encrypting
0 for all j ̸= i. Since NTRU ciphertexts are indistinguishable from uniformly random Rq elements,
mode indistinguishability follows. For the main SSB property, we notice that if two vectors x0,x1 ∈ Xw

generate the same commitment, we have ⟨v,x0⟩ = ⟨v,x1⟩ . Since the NTRU encryption scheme is linearly
homomorphic, the left-hand-side is a ciphertext encrypting x0,i, while the right-hand-side is encrypting
x1,i. The correctness of NTRU then forces x0,i = x1,i.

Theorem 11. If the NTRU encryption assumption (Definition 32) holds for n, q, w, α, the VC construc-
tion Γ in Fig. 7 is SSB.

Proof. Following the treatment in Appendix B, we assume without loss of generality that t = 1 and
omit the input 1t to the setup algorithms. We begin by constructing the binding setup algorithm
BSetup(1λ, 1s, 1w, i) as follows, where mi denotes the i-th unit vector.

Mode Indistinguishability. Fix any i ∈ Zw. To show that Setup(1λ, 1s, 1w) ≈ BSetup(1λ, 1s, 1w, i) it
suffices to show that the distributions of v induced by the two algorithms are indistinguishable, which is
immediately implied by the assumption that NTRU ciphertexts are w-pseudorandom.

SSB. Fix any i ∈ Zw and pp ∈ BSetup(1λ, 1s, 1w, i). We show that if x0,x1 ∈ Xw satisfy Com(pp,x0) =
Com(pp,x1) (suppressing aux), then it holds that x0,i = x1,i. Let sk be the NTRU secret key generated
when generating the pp. Since x0,x1 ∈ Xw, we have that ∥x0∥ ≤ α and ∥x1∥ ≤ α. Let c := Com(pp,xb) =
⟨v,xb⟩ mod q. By the assumption that NTRU decryption is (w,α)-correct, it holds that Dec(sk, c) =
⟨mi,xi⟩ = xb,i for b ∈ {0, 1}. Consequently, x0,i = x1,i. ⊓⊔

52



BSetup(1λ, 1s, 1w, i)

(A, td)← TrapGen(1η, 1ℓ, q,R, β)
t← T

(pk, sk)← KGen(1λ)
vi ← Enc(pk, 1)
vj ← Enc(pk, 0), ∀j ∈ Zw \ { i }
v := (vj : j ∈ Zw)
ug ← SampPre(td, g(v) · t, β), ∀g ∈ G

return pp :=
(
A, t, v, {ug }g∈G

)
SSB Implies Collapsing. We now show that an SSB VC is also collapsing. This implication was first
shown in an oral presentation of Ma [Ma20] but, to the best of our knowledge, it does not formally appear
in any prior work. For completeness, we present the proof below.

Theorem 12. An SSB VC Γ is collapsing.

Proof. Let V = V0 ⊗ · · · ⊗ Vw−1 denote the registers sent by the attacker in the collapsing experiment.
The proof consists of a hybrid argument where we define the hybrids Hi for i ∈ { 0, 1, . . . , w } to be the
same experiment as CollapsExpb

Γ,A except that the challenger measures the registers (V0, . . . ,Vi−1). Note
that the hybrid H0 corresponds to the original experiment with the bit b = 0, whereas hybrid Hw is
identical to the original experiment with the bit set to b = 1. It therefore suffices to show that for all
i = [w] the hybrids Hi−1 and Hi produce distributions that are computationally close. This is done by
defining the following intermediate distributions:

– Hybrid G0: This experiment is identical to Hi−1.
– Hybrid G1: In this hybrid we compute the public parameters as pp← BSetup(1λ, 1s, 1w, 1t, i). By the

mode indistinguishability of the setup algorithm, we can conclude that the view of the adversary is
computationally indistinguishable from that induced by the previous hybrid.

– Hybrid G2: This hybrid is identical to the previous one, except that the challenger additionally
measures the i-th register Vi. Let us analyse the content of the registers after the third step of the
experiment. If the challenger aborts, then the adversary is not returned any register and therefore the
views are trivially identical. On the other hand, if the challenger does not abort, then the state in the
V register consists of

χ =
∑

x s.t. c=Com(pp,x)

αx |x⟩

where the amplitudes are suitably normalized and c is the classical string returned by A. By the SSB
property of the VC, it holds that, except with negligible probability, all pre-images of c have the same
i-bit xi. Thus we can rewrite (up to a rearrangement of the registers)

χ =
∑

x s.t. c=Com(pp,x)

αx |x⟩ = |xi⟩ ⊗
∑

x s.t. c=Com(pp,x)

αx |x−i⟩

where x−i denotes the vector x without the i-th bit xi. It follows that measuring the register Vi

returns xi with probability 1 and it does not disturb the state. Thus the adversary’s view of this
hybrid is statistically close to that of the previous one.

– Hybrid G3: This is identical to the previous experiment, except that we undo the modification
done in the G1 (i.e., we sample the public parameters as pp← Setup(1λ, 1s, 1w, 1t)). Computational
indistinguishability follows by the same argument.

The proof is concluded by observing that the experiment G3 is identical to Hi.

53


	Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable
	Introduction
	The Seascape of SNARKsIt can be succinctly verified that SNARKs, like sharks, are creatures of the sea.
	Our Contributions
	Technical Overview
	Application
	Related Work

	Preliminaries
	Lattices
	Sampling Algorithms
	Rényi Divergence
	Hard Problems
	Vector Commitments
	Adaptor Signatures
	Argument Systems
	SNARKs for Polynomial Map Satisfiability

	The kMISIS Assumption
	Knowledge Variants

	Analysing the k-R-ISIS Assumption
	Attacks

	Compact Extractable Vector Commitments
	Construction

	GPV Adaptor Signatures
	Security Analysis

	SNARK for Polynomial Maps Satisfiability
	Proving Relations over Rq
	Applications

	On Achieving (Functional) Hiding
	Vector Commitments without Knowledge Assumptions
	Definitions
	Construction
	On Binding
	On Compactness
	Post-Quantum Security



