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What is PQC?

▶ PQC = any cryptography that withstands attacks from large-scale quantum computers

▶ basic (asymmetric) primitives: PKE/KEM and signatures

▶ advanced primitives: (F)HE, ZKP etc.

▶ this talk: PQC (only basic primitives) in the embedded world
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The Embedded World

not embedded
servers, laptops

embedded
smartcards, distributed sensor systems (IoT, cars, industry), . . .

“Every computer that has no fan.”
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PQC and Embedded Systems: Requirements

small

▶ software: program memory and stack usage

▶ FPGAs: slices, LUTs, FFs, DSPs, BRAMs

▶ ASICs: area

fast

▶ latency

▶ throughput

secure

▶ passive side-channel attacks

▶ active side-channel attacks
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Embedded Software Implementations: KEMs

scheme
NIST key gen encaps decaps program memory key gen encaps decaps

ref.
security level (avg. kcycles) (kB) stack (kB)

ECDH – 327 906 8.9 ≤2 [1]
Kyber 1 442 542 494 15 2.7 2.8 2.8 [2]
Saber 1 422 591 581 20 3.2 3.1 3.1 [2]
NTRU 1 2867 565 538 192 21 14 15 [2]
sNTRUp 1 6714 631 486 238 92 13 16 [2]
SIKE 1 48265 78911 84275 30 6 6 7 [2]
BIKE 1 65551 4963 116657 35 44 32 91 [2]
McEliece 1 1430811 582 2707 621 115 1.4 18 [3]

▶ Kyber and Saber are competitive to ECDH!

▶ NTRU variants may be used for use cases without key generation

▶ McEliece suitable for encaps-only use cases

▶ McEliece: lower memory footprint possible by streaming in the public key from a master
device [4]
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Embedded Software Implementations: Signature Schemes

scheme
NIST key gen sign verify program memory key gen sign verify

ref.
security level (avg. kcycles) (kB) stack (kB)

ECDSA – 327 375 976 8.9 ≤2 [1]
Dilithium 2 1597 4095 1572 18 38 49 36 [2]
Falcon 1 162463 38999 474 121 1.4 2.6 0.4 [2]
Picnic 1 60 303854 203717 81 0.8 32 32 [2]
SPHINCS+ 1 16112 400443 22548 4.5 2.1 2.2 2.7 [2]
XMSS (1) 243255 247726 3207 – 4.0 4.0 3.8 [5]

▶ Falcon well-suited for verify-only use cases

▶ Dilithium has very balanced performance – verify can run with <8 kB [6]
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Hardware Implementations: Targets

FPGA

▶ “field-programmable gate
array”

▶ reconfigurable hardware

▶ area metrics: lookup tables,
flip flops, DSPs, block RAM

▶ speed metrics: latency,
throughput

ASIC

▶ “application-specific
integrated circuit”

▶ not reconfigurable

▶ area metrics: area in mm2

▶ speed metrics: latency,
throughput

SW / HW Codesign

▶ idea 1: new instructions for
CPUs that speed up PQC
schemes (instruction set
extension)

▶ idea 2: whole co-processors

▶ proof of concept usually in
FPGAs

▶ emerging: RISC-V is easily
exensible

Easy: Fast, but large area.

Easy: Small area, but slow.

The art: Low area-latency product.

Georg Land | PQC in the Embedded World | June 28, 2022 6



Hardware Implementations: Targets

FPGA

▶ “field-programmable gate
array”

▶ reconfigurable hardware

▶ area metrics: lookup tables,
flip flops, DSPs, block RAM

▶ speed metrics: latency,
throughput

ASIC

▶ “application-specific
integrated circuit”

▶ not reconfigurable

▶ area metrics: area in mm2

▶ speed metrics: latency,
throughput

SW / HW Codesign

▶ idea 1: new instructions for
CPUs that speed up PQC
schemes (instruction set
extension)

▶ idea 2: whole co-processors

▶ proof of concept usually in
FPGAs

▶ emerging: RISC-V is easily
exensible

Easy: Fast, but large area.

Easy: Small area, but slow.

The art: Low area-latency product.

Georg Land | PQC in the Embedded World | June 28, 2022 6



Hardware Implementations: Targets

FPGA

▶ “field-programmable gate
array”

▶ reconfigurable hardware

▶ area metrics: lookup tables,
flip flops, DSPs, block RAM

▶ speed metrics: latency,
throughput

ASIC

▶ “application-specific
integrated circuit”

▶ not reconfigurable

▶ area metrics: area in mm2

▶ speed metrics: latency,
throughput

SW / HW Codesign

▶ idea 1: new instructions for
CPUs that speed up PQC
schemes (instruction set
extension)

▶ idea 2: whole co-processors

▶ proof of concept usually in
FPGAs

▶ emerging: RISC-V is easily
exensible

Easy: Fast, but large area.

Easy: Small area, but slow.

The art: Low area-latency product.

Georg Land | PQC in the Embedded World | June 28, 2022 6



Hardware Implementations: Targets

FPGA

▶ “field-programmable gate
array”

▶ reconfigurable hardware

▶ area metrics: lookup tables,
flip flops, DSPs, block RAM

▶ speed metrics: latency,
throughput

ASIC

▶ “application-specific
integrated circuit”

▶ not reconfigurable

▶ area metrics: area in mm2

▶ speed metrics: latency,
throughput

SW / HW Codesign

▶ idea 1: new instructions for
CPUs that speed up PQC
schemes (instruction set
extension)

▶ idea 2: whole co-processors

▶ proof of concept usually in
FPGAs

▶ emerging: RISC-V is easily
exensible

Easy: Fast, but large area.

Easy: Small area, but slow.

The art: Low area-latency product.

Georg Land | PQC in the Embedded World | June 28, 2022 6



Hardware Implementations: FPGA Implementations

▶ Kyber [7]

▶ Saber [8]

▶ McEliece [9]

▶ Dilithium [10–14]

▶ Falcon [13]

▶ Rainbow [15]

▶ BIKE [16, 17]

▶ sNTRU Prime [18, 19]

▶ . . .
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FPGA Implementations: BIKE

▶ first set of implementations:
feasibility shown, already high
speed and low area variant

▶ second set: vast improvements
in both dimensions, additional
mid-range core

LUTs FFs
KeyGen Encaps Decaps

Ref.
µs µs µs

13k 5354 21903 1252 13349 [16]
53k 7035 2691 127 1972 [16]

12k 3896 3797 443 6896 [17]
20k 5008 1870 280 4210 [17]
26k 5426 1672 132 1892 [17]

2 4 6

·104
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2

3

·104

LUTs + FFs
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n
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FPGA Implementations: Dilithium

▶ initial implementation [10]
shows feasibility

▶ follow-up [11]: faster, supports
all security levels

▶ novel idea [14]: run Saber and
Dilithium with the same
polynomial multiplier

LUTs FFs
KeyGen Sign Verify

Ref.
µs µs µs

27k 11k 134 470 121 [10]
30k 10k 43 290 46 [11]
18k 9k 71 494 75 [14]
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Hardware Implementations: ASICs and SW/HW Codesigns

ASICs

▶ only few implementations published: Kyber [20], Saber [21]

▶ FPGA implementations already good indicator of hardware cost

HW / SW Codesign

▶ RISC-V instruction set extensions for finite field arithmetic:
low-level acceleration applicable to many schemes

▶ multiple works on this [22–24]

▶ biggest improvement would be: SHA-3 accelerator (some
lattice-based schemes have up to 86% hashing, hash-based up to
95% [2])
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Implementations

Don’t sleep on these numbers, there is progress.
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PQC and Side-Channel Attacks

devices everywhere

, attackers everywhere

security?
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PQC and Side-Channel Attacks: Attacker Models

secure scheme (under certain assumptions)
̸=

secure implementation!

Kyber is mathematically secure under certain assumptions, but there are side-channel attacks
that find the secret key.
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PQC and Side-Channel Attacks: Attacker Models

Has an attacker pyhsical access to the device?

No? Then we still need execution time independent from secret data.
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Side-Channel Attacks

no physical access

timing depends on secrets ⇒ measure execution time

physical access, passive
processing a 1 drains more power / emanates

more electromagnetic radiation than a 0
⇒ measure power / EM

physical access, active

induce a fault, learn information about the secret key from the output
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Side-Channel Attacks: Countermeasures

▶ CPU / hardware processes secrets

▶ attacker measures side-channel, finds out secrets

▶ hide secrets from CPU / hardware

▶ split secret into uniform random shares, perform computation on shares

▶ highly algorithm-specific!

Georg Land | PQC in the Embedded World | June 28, 2022 16



Side-Channel Resistant Implementations

good: many schemes have masked SW implementations

Kyber [25, 26], Saber [27, 28], . . .

bad: some of them are already broken again

Kyber [29], Saber [30]
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Side-Channel Resistant Implementations

good: we already know some fault attacks

Kyber [31–33], Survey for lattice-based schemes [34]

bad: for some, it is unclear how to prevent them efficiently
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Side-Channel Resistant Implementations

bad: for some components, we do not yet know how to mask
them

Gaussian sampling? fixed-weigth sampling?

good: there is progress

masking polynomial inversion [35]
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Side-Channel Resistant Implementations

bad: micro-architectural leakage often kills secure-proven
gadgets

bad: there are only few HW masked implementations

more research necessary
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Conclusion

Use cases must be planned carefully.

Memory – Bandwidth – Latency – Throughput – Attack Scenarios

Research just started in many fields.

It will narrow and intensify once there are standards.

Questions? Ideas? Suggestions?

Ask me, contact me: georg.land@rub.de
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