
This project has received funding from the European 
Union's Horizon 2020 research and innovation programme 
under grant agreement No 780701.

PRivacy preserving pOst-quantuM systEms from
advanced crypTograpHic mEchanisms Using latticeS

E-Voting Use Case
- PROMETHEUS Industrial Workshop -

Presenter: Aleix Amill
Scytl Election Technologies S.L.U.



Table of contents

• Introduction
– Online voting system
– Why PQ for online voting system?

• E-voting system demonstrator design
– PQ modules
– System components & libraries

• E-voting system demonstrator implementation
– Implementation story
– Limitations in the implementation

• Demo
• System validation & benchmarking
• Conclusions

2



Table of contents

• Introduction
– Online voting system
– Why PQ for online voting system?

• E-voting system demonstrator design
– PQ modules
– System components & libraries

• E-voting system demonstrator implementation
– Implementation story
– Limitations in the implementation

• Demo
• System validation & benchmarking
• Conclusions

3



Online voting system

• I-voting advantages
– Accurate and fast vote counts
– Reduction of logistic cost of an election organization
– Voters with disabilities can cast their votes independently
– Abroad voting improvements

• Privacy is one of the main requirements
– Encryption ensures votes confidentiality to the voters
– Mixing (random permutation + re-encryption) ensures anonymity
– Currently, the security of those processes relies on mathematical problems

4



Configure election

5

1 Create and configure election

2 Create and assign voters

3

Publish and Close election4

Monitor election5

Generate key pair

6 Tally election (sub-processes)

Backoffice portal



Cast a vote

6

2
3

5

4
1

1 Select voting options

2 Prepare a ballot and a QR code
for the cast-as-intended verification

3 Send vote

4 Validate vote, store it and generate receipt 

5 Send receipt 

6

6 Validate receipt signature. Show receipt 
and QR code

Voting portal



Verify a vote
Cast-as-Intended verification

7

3
4

2

5

1 Read QR code using a second device 

2 Ask for the encrypted vote to the 
voting server

3 Retrieve the encrypted vote 
corresponding to the voter 

4 Send the encrypted vote

5 Decrypt the vote using the information 
stored in the QR. Show the voting options 
to the voter

1

Voting portal



Tally process

8

1
2

3

Cleanse ballot box: remove all voter-related information, keep only ciphertexts.

2 Mix ballot box and generate proof of a correct shuffle.

3 Decrypt votes and generate proof of correct decryption.

1



Why PQ for online voting systems?

• Factorization and discrete logarithm will be easily solved by quantum computers
– Encryption and mixing are not secure in the long term
– Thus, the current state-of-the-art e-voting systems do not guarantee long-term privacy

9

Post-Quantum e-voting systems guarantee the long term privacy of the voters



Table of contents

• Introduction
– Online voting system
– Why PQ for online voting system?

• E-voting system demonstrator design
– PQ modules
– System components & libraries

• E-voting system demonstrator implementation
– Implementation story
– Limitations in the implementation

• Demo
• System validation & benchmarking
• Conclusions

10



E-voting system components

11

Crypto 
JS
library

Crypto 
Java
library

BackOffice 
FrontEnd

(JavaScript)
BackOffice 
BackEnd

(Java WAR)

Voting-Portal 
FrontEnd

(JavaScript)
Voting-Portal 

BackEnd
(Java WAR)

DataBase
(PerconaDB)

Filesystem

API

API



PQ primitives

12

Cryptographic lattice-based primitives:
• RLWE encryption scheme
• FALCON Signature scheme
• Decryption proof
• Shuffle proof

• Commitment scheme
• ZKPs for proving polynomial relation between committed messages
• Amortized proof of knowledge for secret small elements

• Preimages perfect Proofs
• Preimages imperfect Proofs

https://eprint.iacr.org/2012/230.pdf
https://falcon-sign.info/
https://eprint.iacr.org/2020/115
https://eprint.iacr.org/2019/357
https://eprint.iacr.org/2014/889.pdf
https://eprint.iacr.org/2014/889.pdf
https://eprint.iacr.org/2017/280.pdf


• APIs an interfaces for the user interaction

System libraries

13

• High level services to setup the election, 
vote, mix and count.Voting library

• Cryptographic post-quantum operations 
required by the services of the above layerCrypto library

• Mathematical operations required by the 
cryptographic layerMath library

Application layer



Table of contents

• Introduction
– Online voting system
– Why PQ for online voting system?

• E-voting system demonstrator design
– PQ modules
– System components & libraries

• E-voting system demonstrator implementation
– Implementation story
– Limitations in the implementation

• Demo
• System validation & benchmarking
• Conclusions

14



Implementation story

1. US + Demonstrator implementation without crypto (not secure)
2. Cryptographic libraries implementation (with WP5)
3. Demonstrator crypto integration (add PQ security)

15

Crypto
library

Crypto
library

BackOffice 
FrontEnd

BackOffice 
BackEnd

Voting Portal 
FrontEnd

Voting-Portal 
BackEnd

API

API

Prioritization in the implementation:
• Vote encryption
• Mixnet and shuffle proofs requirements:

• commitments, zkps, preimages
• no signatures
• no decryption proofs

Validation



E-voting system libraries

16

(JNI)

Crypto 
Java

library

Crypto 
JavaScript

library

Voting-Api

Crypto-Api

Math-Api

FE-Voting-Api

FE-Crypto-Api

NTL (c++) BKLP-RUB (c++)

Polynomial lib (JS)

BackEnd
Application

FrontEnd
ApplicationeDemonstrator

Backend

eDemonstrator
Frontend

PQ Primitives PQ Primitives

(JNI)

BKLP-Api



Shuffle proof primitive implementation

17

Shuffle proof sub-processes:

• Commit to encryptions of zeros
• Compute Encryptions of zeros Preimage Proof
• Commit to permutation
• Use Fiat-Shamir to get the first challenge
• Commit to the first challenge raised to permutation
• Use Fiat-Shamir to get the second and the third challenges
• Compute Product Proof
• Compute Multi-exponentiation Proofs (x2)

https://eprint.iacr.org/2019/357


Limitations in the implementation

• Lack of lattice-based libraries implemented on client-side browser-oriented language (JavaScript)
• Challenging task to estimate secure parameters

– all primitives schemas parameters must comply with some relations constraints

• Parameters size constraints in third-party libraries
– Polynomial JS library 53-bits modulus constraint

• High processes memory resources requirements
– heap and stack memory minimum size

• Coexisting native code executions in the JVM with parallelization
– segmentation faults errors

18



Table of contents

• Introduction
– Online voting system
– Why PQ for online voting system?

• E-voting system demonstrator design
– PQ modules
– System components & libraries

• E-voting system demonstrator implementation
– Implementation story
– Limitations in the implementation

• Demo
• System validation & benchmarking
• Conclusions

19



PQ E-voting system DEMO

20



Table of contents

• Introduction
– Online voting system
– Why PQ for online voting system?

• E-voting system demonstrator design
– PQ modules
– System components & libraries

• E-voting system demonstrator implementation
– Implementation story
– Limitations in the implementation

• Demo
• System validation & benchmarking
• Conclusions

21



PQ System performance validation
• Environment:

– x86-64 server
– 16 vCPUs
– 16gb RAM

• Parameters:

22

Context Parameter Description Value

Polynomial ring params
n degree 512
q modulus (=3 mod 8, >=n^gamma) 4294967291

LPR params
sigma gaussian standard deviation 1.22
eta binomial 3

BKLP params

kappa bounds the knowledge error 21
gamma controls size of the modulus 3
k multiplicative overhead 9
cbd eta err cbd eta of error 1
cbd eta rand cbd eta of randomness 1

dPL params
r integer r 128
alpha integer alpha 64

CDXY params
gss-k good set system k param 23
gss-m good set system M’ size (number of baskets) 2209
beta upper bound on the witnesses 8

Shuffle params N’ shuffle batch size 2209



System benchmarking

• Compare PQ e-voting demonstrator performance vs. current Scytl’s e-voting system product:
• Use similar environments and amount of inputs

23



PQ system Client-side performance

PQ Client-side performance times
• Average voting time: 662 milliseconds
• Minimum voting time: 510 milliseconds
• Maximum voting time: 2581 milliseconds

24

0

500

1000

1500

2000

2500

3000

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

51
1

54
5

57
9

61
3

64
7

68
1

71
5

74
9

78
3

81
7

85
1

88
5

91
9

95
3

98
7

10
21

10
55

10
89

11
23

11
57

11
91

12
25

12
59

12
93

13
27

13
61

13
95

14
29

14
63

14
97

15
31

15
65

15
99

16
33

16
67

17
01

17
35

17
69

18
03

18
37

18
71

19
05

19
39

19
73

20
07

20
41

20
75

21
09

21
43

21
77

Vote time (ms)

performance
• Average voting time: 2559 milliseconds
• Minimum voting time: 1914 milliseconds
• Maximum voting time: 4328 milliseconds



PQ system Server-side performance

PQ Server-side performance times

• Ballot box cleansing: 8,3 seconds
• Ballot box verifiable mixing: 10938 seconds
• Mixing proofs validation: 10618 seconds
• Ballot box decryption: 3,1 seconds
• Ballot box tally: 1,5 seconds

25

~3 hours (~2k votes)

performance
• Ballot box cleansing: 55 seconds
• Ballot box verifiable mixing: 43 seconds
• Mixing proofs validation: 271 seconds
• Ballot box decryption & tally: 20 seconds



Mixnet in-deep performance analyses

• Ballot box sizes: 16, 32, 64, 128, 256, 512, 1024, 2209

26

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000

m
in
ut
es

votes

Mixnet proof generation time



Mixnet in-deep performance analyses

27

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000

M
B

votes

Proofs file size

0

2000

4000

6000

8000

10000

12000

14000

0 500 1000 1500 2000

M
B

votes

Mixnet proof generation memory use

• Up to 12GB memory use for 2k votes • Up to 3.6GB Proofs file size for 2k votes



Shuffle proof inner timing analysis

Sub-processes:
• Commit to encryptions of zeros
• Compute Encryptions of Zeros Preimage proof
• Commit to permutation
• Use Fiat-Shamir to get the first challenge
• Commit to the first challenge raised to permutation
• Use Fiat-Shamir to get the second and the third challenges
• Compute Product proof
• Compute Multi-exponentiation proofs (x2)

28

0%

4%

13%

4%

25%

28%

26%

N=2209

Write proof file time (s) Zero-encryptions commit time (s)

Zero-encryptions proof generation time (s) Permutation-related commits time (s)

Product proof generation time (s) Mult iexp-U proof generation time (s)

Mult iexp-V proof generation time (s)



Table of contents

• Introduction
– Online voting system
– Why PQ for online voting system?

• E-voting system demonstrator design
– PQ modules
– System components & libraries

• E-voting system demonstrator implementation
– Implementation story
– Limitations in the implementation

• Demo
• System validation & benchmarking
• Conclusions

29



Conclusions
• Real post-quantum e-voting system demonstrator implemented
• But still not ready for production

– Several implementation limitations exist (reduced security)
– Mixnet too slow (hours to complete)

Voter perspective:
lattice-based cryptography does not significantly impact individual voter experience

Administration board perspective:
lattice-based cryptography significantly impact tally performance

30

• mixnet cannot yet reach the product performance requirements
• more work and optimizations are needed to achieve reasonable numbers
• refinement of mixnet protocol should take priority over parameters optimization



Thanks!

31


