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Online voting system

• I-voting advantages
– Accurate and fast vote counts
– Reduction of logistic cost of an election organization
– Voters with disabilities can cast their votes independently
– Abroad voting improvements

• Privacy is one of the main requirements
– Encryption ensures votes confidentiality to the voters
– Mixing (random permutation + re-encryption) ensures anonymity
– Currently, the security of those processes relies on mathematical problems
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Configure election
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1 Create and configure election

2 Create and assign voters

3

Publish and Close election4

Monitor election5

Generate key pair

6 Tally election (sub-processes)

Backoffice portal



Cast a vote
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2
3

5

4
1

1 Select voting options

2 Prepare a ballot and a QR code
for the cast-as-intended verification

3 Send vote

4 Validate vote, store it and generate receipt 

5 Send receipt 

6

6 Validate receipt signature. Show receipt 
and QR code

Voting portal



Verify a vote
Cast-as-Intended verification
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3
4

2

5

1 Read QR code using a second device 

2 Ask for the encrypted vote to the 
voting server

3 Retrieve the encrypted vote 
corresponding to the voter 

4 Send the encrypted vote

5 Decrypt the vote using the information 
stored in the QR. Show the voting options 
to the voter

1

Voting portal



Tally process
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1
2

3

Cleanse ballot box: remove all voter-related information, keep only ciphertexts.

2 Mix ballot box and generate proof of a correct shuffle.

3 Decrypt votes and generate proof of correct decryption.
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Why PQ for online voting systems?

• Factorization and discrete logarithm will be easily solved by quantum computers
– Encryption and mixing are not secure in the long term
– Thus, the current state-of-the-art e-voting systems do not guarantee long-term privacy
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Post-Quantum e-voting systems guarantee the long term privacy of the voters
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E-voting system components
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Crypto 
JS
library

Crypto 
Java
library

BackOffice 
FrontEnd

(JavaScript)
BackOffice 
BackEnd

(Java WAR)

Voting-Portal 
FrontEnd

(JavaScript)
Voting-Portal 

BackEnd
(Java WAR)

DataBase
(PerconaDB)

Filesystem

API

API



PQ primitives
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Cryptographic lattice-based primitives:
• RLWE encryption scheme
• FALCON Signature scheme
• Decryption proof
• Shuffle proof

• Commitment scheme
• ZKPs for proving polynomial relation between committed messages
• Amortized proof of knowledge for secret small elements

• Preimages perfect Proofs
• Preimages imperfect Proofs

https://eprint.iacr.org/2012/230.pdf
https://falcon-sign.info/
https://eprint.iacr.org/2020/115
https://eprint.iacr.org/2019/357
https://eprint.iacr.org/2014/889.pdf
https://eprint.iacr.org/2014/889.pdf
https://eprint.iacr.org/2017/280.pdf


• APIs an interfaces for the user interaction

System libraries
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• High level services to setup the election, 
vote, mix and count.Voting library

• Cryptographic post-quantum operations 
required by the services of the above layerCrypto library

• Mathematical operations required by the 
cryptographic layerMath library

Application layer
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Implementation story

1. US + Demonstrator implementation without crypto (not secure)
2. Cryptographic libraries implementation (with WP5)
3. Demonstrator crypto integration (add PQ security)
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Crypto
library

Crypto
library

BackOffice 
FrontEnd

BackOffice 
BackEnd

Voting Portal 
FrontEnd

Voting-Portal 
BackEnd

API

API

Prioritization in the implementation:
• Vote encryption
• Mixnet and shuffle proofs requirements:

• commitments, zkps, preimages
• no signatures
• no decryption proofs

Validation



E-voting system libraries
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(JNI)

Crypto 
Java

library

Crypto 
JavaScript

library

Voting-Api

Crypto-Api

Math-Api

FE-Voting-Api

FE-Crypto-Api

NTL (c++) BKLP-RUB (c++)

Polynomial lib (JS)

BackEnd
Application

FrontEnd
ApplicationeDemonstrator

Backend

eDemonstrator
Frontend

PQ Primitives PQ Primitives

(JNI)

BKLP-Api



Shuffle proof primitive implementation
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Shuffle proof sub-processes:

• Commit to encryptions of zeros
• Compute Encryptions of zeros Preimage Proof
• Commit to permutation
• Use Fiat-Shamir to get the first challenge
• Commit to the first challenge raised to permutation
• Use Fiat-Shamir to get the second and the third challenges
• Compute Product Proof
• Compute Multi-exponentiation Proofs (x2)

https://eprint.iacr.org/2019/357


Limitations in the implementation

• Lack of lattice-based libraries implemented on client-side browser-oriented language (JavaScript)
• Challenging task to estimate secure parameters

– all primitives schemas parameters must comply with some relations constraints

• Parameters size constraints in third-party libraries
– Polynomial JS library 53-bits modulus constraint

• High processes memory resources requirements
– heap and stack memory minimum size

• Coexisting native code executions in the JVM with parallelization
– segmentation faults errors
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PQ E-voting system DEMO
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PQ System performance validation
• Environment:

– x86-64 server
– 16 vCPUs
– 16gb RAM

• Parameters:
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Context Parameter Description Value

Polynomial ring params
n degree 512
q modulus (=3 mod 8, >=n^gamma) 4294967291

LPR params
sigma gaussian standard deviation 1.22
eta binomial 3

BKLP params

kappa bounds the knowledge error 21
gamma controls size of the modulus 3
k multiplicative overhead 9
cbd eta err cbd eta of error 1
cbd eta rand cbd eta of randomness 1

dPL params
r integer r 128
alpha integer alpha 64

CDXY params
gss-k good set system k param 23
gss-m good set system M’ size (number of baskets) 2209
beta upper bound on the witnesses 8

Shuffle params N’ shuffle batch size 2209



System benchmarking

• Compare PQ e-voting demonstrator performance vs. current Scytl’s e-voting system product:
• Use similar environments and amount of inputs
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PQ system Client-side performance

PQ Client-side performance times
• Average voting time: 662 milliseconds
• Minimum voting time: 510 milliseconds
• Maximum voting time: 2581 milliseconds
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performance
• Average voting time: 2559 milliseconds
• Minimum voting time: 1914 milliseconds
• Maximum voting time: 4328 milliseconds



PQ system Server-side performance

PQ Server-side performance times

• Ballot box cleansing: 8,3 seconds
• Ballot box verifiable mixing: 10938 seconds
• Mixing proofs validation: 10618 seconds
• Ballot box decryption: 3,1 seconds
• Ballot box tally: 1,5 seconds
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~3 hours (~2k votes)

performance
• Ballot box cleansing: 55 seconds
• Ballot box verifiable mixing: 43 seconds
• Mixing proofs validation: 271 seconds
• Ballot box decryption & tally: 20 seconds



Mixnet in-deep performance analyses

• Ballot box sizes: 16, 32, 64, 128, 256, 512, 1024, 2209
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Mixnet in-deep performance analyses
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Shuffle proof inner timing analysis

Sub-processes:
• Commit to encryptions of zeros
• Compute Encryptions of Zeros Preimage proof
• Commit to permutation
• Use Fiat-Shamir to get the first challenge
• Commit to the first challenge raised to permutation
• Use Fiat-Shamir to get the second and the third challenges
• Compute Product proof
• Compute Multi-exponentiation proofs (x2)
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Conclusions
• Real post-quantum e-voting system demonstrator implemented
• But still not ready for production

– Several implementation limitations exist (reduced security)
– Mixnet too slow (hours to complete)

Voter perspective:
lattice-based cryptography does not significantly impact individual voter experience

Administration board perspective:
lattice-based cryptography significantly impact tally performance
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• mixnet cannot yet reach the product performance requirements
• more work and optimizations are needed to achieve reasonable numbers
• refinement of mixnet protocol should take priority over parameters optimization



Thanks!
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