

PRivacy preserving pOst-quantuM systEms from advanced crypTograpHic mEchanisms Using latticeS

NIST PQC Project – Current Status

Damien Stehlé, ENS Lyon Prometheus Industrial Workshop – 28/06/2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 780701.

April 2015: NIST announces future standardization

Nov 2017: Submission ddl, 82 submissions

Dec 2017: Round 1 starts,	69 complete and proper submissions	49 PKE/KEM	20 SIG
	(Jan 2018: start of PROMETHEUS)		
Jan 2019: Round 2 starts,	26 submissions left	17 PKE/KEM	9 SIG
July 2020: Round 3 starts,	7 finalists, 8 alternates	4(+5) PKE/KEM	3(+3) SIG

Imminent... since the end of 2021: (part of the) selection of future standards

7 finalists

PKE/KEM		SIG
Kyber	- lattices	Dilithium - lattices
McEliece	- codes	Falcon - lattices
NTRU	- lattices	Rainbow* - alg eqs
Saber	- lattices	

8 alternates

PKE/KEM		SIG	
BIKE	- codes	GeMSS - alg eqs	
FRODO	- lattices	Picnic - hash functions	
HQC	- codes	SPHINCS+ - hash functions	
NTRUPrime - lattices			
SIKE	- isogenies		

In bold: candidates coauthored by a Prometheus member *Rainbow underwent a severe cryptanalysis [Beullens'22]

Purporse of alternates: standardize later, fallback solutions, diversity of assumptions

Among all types of assumptions, lattices are the most successful:

- ✤ 5 finalists out of 7 (3/4 PKE/KEM and 2/3 SIG)
- The 3rd SIG finalist and a SIG alternate have suffered significant security losses [Beullens'22]
- The remaining PKE/KEM finalist has public keys orders of magnitude larger

NIST has stated its intention to standardize at most one lattice PKE/KEM, and at most one lattice SIG:

It is likely that one lattice PKE/KEM will be standardized (1/3 chance for PROMETHEUS)
It is very likely that one lattice SIG will be standardized (2/2 chances for PROMETHEUS)

Algebraic lattices are a subclass of lattices coming from algebraic number theory

- More structure
- Faster and more compact cryptographic constructions
- Possibility of dedicated attacks (yet to be found)

What to use?

- ✤ All 5 lattice NIST finalists rely on algebraic lattices
- BSI recommends the non-algebraic alternate FrodoKEM (and Classic McEliece)
- Personal view: the BSI position is hard to justify
 - 10x larger ciphertexts to prevent against non-existing attacks
 - ✤ algebraic lattices have been around for 25 years without attacks
 - to get higher security, better increase the parameters of the algebraic finalists

5

"Imminent": NIST will probably announce one or two standards for each category

On-ramp for SIG: re-opening of the SIG competition, with new candidates

- ✤ NIST wants signatures based on well-established designs/assumptions
- It wants alternative hardness assumptions
- Unclear whether non-algebraic lattices will be allowed or not

Draft standards released in 2023 (?)

In the meantime, for critical applications: hybrid implementations classical + post-quantum

QUESTIONS?

6

