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Lattice Attacks on NTRU and LWE:
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2.1 Introduction

Since its invention in 1982, the Lenstra–Lenstra–Lovász (LLL) lattice re-
duction algorithm [380] has found countless applications. In cryptanaly-
sis, the two most prominent applications of LLL and its generalisations,
e.g., Slide [205], Block-Korkine–Zolotarev (BKZ) [512, 520] and Self-Dual
BKZ (SD-BKZ) [425], are factoring RSA keys with extra information on the
secret key via Coppersmith’s method [136, 451] (see the chapter by Alexander
May) and the cryptanalysis of lattice-based schemes.

After almost 40 years of cryptanalytic applications, predicting and optimis-
ing lattice reduction algorithms remains an active area of research. While we
do have theorems bounding the worst-case performance of these algorithms,
those bounds are asymptotic and not necessarily tight when applied to practi-
cal or even cryptographic instances. Reasoning about the behaviour of those
algorithms relies on heuristics and approximations, some of which are known
to fail for relevant corner cases.

Recently, decades after Arjen Lenstra and his co-authors gave birth to this
fascinating and lively research area, this state of affairs became a more press-
ing issue. Motivated by post-quantum security, standardisation bodies, govern-
ments and industries started to move towards deploying lattice-based crypto-
graphic algorithms. This spurred the refinement of those heuristics and approx-
imations, leading to a better understanding of the behaviour of these algorithms
over the past few years.

Lattice reduction algorithms, such as LLL and BKZ, proceed with re-
peated local improvements to the lattice basis, and each such local improve-
ment means solving the short(est) vector problem in a lattice of a smaller di-
mension. Therefore, two questions arise: how costly is it to find those local
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improvements and what is the global behaviour when those improvements are
applied.

While these two questions may not be perfectly independent, we will, in
this chapter, survey the second one, namely, the global behaviour of such algo-
rithms, given oracle access for finding local improvements. Our focus on the
global behaviour is motivated by our intent to draw more of the community’s
attention to this aspect. We will take a particular interest in the behaviour of
such algorithms on a specific class of lattices, underlying the most popular
lattice problems to build cryptographic primitives, namely the Learning with
Errors (LWE) problem and the NTRU problem. We will emphasise the approx-
imations that have been made, their progressive refinements and highlight open
problems to be addressed.

2.1.1 LWE and NTRU

The LWE problem and the NTRU problem have proven to be versatile build-
ing blocks for cryptographic applications [104, 218, 274, 493]. For both of
these problems, there exist ring and matrix variants. More precisely, the origi-
nal definition of NTRU is the ring variant [274] and the matrix variant is rarely
considered whereas for LWE the original definition is the matrix variant [494]
with a ring variant being defined later [401, 561]. In this chapter, we gener-
ally treat the matrix variants since our focus is on lattice reduction for general
lattices.

Definition 2.1 (LWE [494]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a uniformly random vector in Zn

q. We denote by Ls,χ

the probability distribution on Zn
q×Zq obtained by choosing a ∈ Zn

q uniformly at
random, choosing e ∈ Z according to χ and considering it in Zq, and returning
(a, c) = (a, 〈a, s〉 + e) ∈ Zn

q × Zq.
Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Zn

q × Zq are
sampled according to Ls,χ or the uniform distribution on Zn

q × Zq.
Search-LWE is the problem of recovering s from pairs (a, c) = (a, 〈a, s〉 + e) ∈
Zn

q × Zq sampled according to Ls,χ.

We note that the above definition puts no restriction on the number of sam-
ples, i.e., LWE is assumed to be secure for any polynomial number of samples.
Further, since for many choices of n, q, χ solving Decision-LWE allows solv-
ing Search-LWE [105, 494] and vice versa, it is meaningful just to speak of
the LWE problem (for those choices of parameters). By rewriting the system
in systematic form [23], it can be shown that the LWE problem, where each
component of the secret s is sampled from the error distribution χ, is as secure
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as the problem for uniformly random secrets. LWE with such a secret, follow-
ing the error distribution, is known as normal form LWE. We will consider
normal form LWE in this chapter. Furthermore, in this note, the exact spec-
ification of the distribution χ will not matter, and we may simply specify an
LWE instance by giving the standard deviation σ of χ. We will, furthermore,
implicitly assume that χ is centred, i.e., has expectation 0. We may also write
LWE in matrix form as A · s + e ≡ c mod q. The NTRU problem [274] is
defined as follows.

Definition 2.2 (NTRU [274]). Let n, q be positive integers, f , g ∈ Zq[x] be
polynomials of degree n sampled from some distribution χ, subject to f being
invertible modulo a polynomial φ of degree n, and let h = g/ f mod (φ, q).
The NTRU problem is the problem of finding f , g given h (or any equivalent
solution (xi · f , xi · g) for some i ∈ Z).

Concretely, the reader may think of φ = xn +1 when n is a power of two and
χ to be some distribution producing polynomials with small coefficients. The
matrix variant considers F,G ∈ Zn×n

q such that H = G · F−1 mod q.

2.2 Notation and Preliminaries

All vectors are denoted by bold lower case letters and are to be read as column
vectors. Matrices are denoted by bold capital letters. We write a matrix B as
B = (b0, . . . ,bd−1) where bi is the ith column vector of B. If B ∈ Rm×d has full-
column rank d, the lattice Λ generated by the basis B is denoted by Λ(B) =
{B ·x | x ∈ Zd}. A lattice is q-ary if it contains qZd as a sublattice, e.g., {x ∈ Zd

q |
x ·A ≡ 0} for some A ∈ Zd×d′ . We denote by (b�0 , . . . ,b

�
d−1) the Gram–Schmidt

(GS) orthogonalisation of the matrix (b0, . . . ,bd−1). For i ∈ {0, . . . , d − 1}, we
denote the orthogonal projection to the span of (b0, . . . ,bi−1) by πi; π0 denotes
‘no projection’, i.e., the identity. We write πv for the projection orthogonal
to the space spanned by v. For 0 ≤ i < j ≤ d, we denote by B[i: j] the local
projected block (πi(bi), . . . , πi(b j−1)), and when the basis is clear from context,
by Λ[i: j] the lattice generated by B[i: j]. We write lg(·) for the logarithm to base
two.

The Euclidean norm of a vector v is denoted by ‖v‖. The volume (or de-
terminant) of a lattice Λ(B) is vol(Λ(B)) =

∏
i ‖b�i ‖. It is an invariant of the

lattice. The first minimum of a lattice Λ is the norm of a shortest non-zero
vector, denoted by λ1(Λ). We use the abbreviations vol(B) = vol(Λ(B)) and
λ1(B) = λ1(Λ(B)).

The Hermite constant γβ is the square of the maximum norm of any shortest
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vector in all lattices of unit volume in dimension β:

γβ = sup
{
λ2

1 (Λ) | Λ ∈ Rβ, vol(Λ) = 1
}
.

Minkowski’s theorem allows us to derive an upper bound γβ = O(β), and
this bound is reached up to a constant factor: γβ = Θ(β).

2.3 Lattice Reduction: Theory

All lattices of dimension d ≥ 2 admit infinitely many bases, and two bases
B,B′ generate (or represent) the same lattice if and only if B = B′ ·U for some
unimodular matrix U ∈ GLd(Z). In other words, the set of (full-rank) lattices
can be viewed as the quotient GLd(R)/GLd(Z). Lattice reduction is the task of
finding a good representative of a lattice, i.e., a basis B ∈ GLd(R) representing
Λ ∈ GLd(R)/GLd(Z).

While there exists a variety of formal definitions for what is a good repre-
sentative, the general goal is to make the Gram–Schmidt basis B� as small as
possible. Using the simple size-reduction algorithm (see [454, Algorithm 3]),
it is possible to also enforce the shortness of the basis B itself.

It should be noted that because we have an invariant
∏

i ‖b�i ‖ = vol(Λ), we
cannot make all GS vectors small at the same time, but the goal becomes to
balance their lengths. More pictorially, we consider the log profile of a basis as
the graph of (
i = lg ‖b�i ‖)i=0...d−1 as a function of i. By the volume invariant,
the area under this graph is fixed, and the goal of reduction is to make this
graph flatter.

A very strong1 notion of reduction is the Hermite–Korkine–Zolotarev
(HKZ) reduction, which requires each basis vector bi to be a shortest non-zero
vector of the remaining projected lattice Λ[i:d]. The Block-Korkine–Zolotarev
(BKZ) reduction relaxes HKZ, only requiring bi to be close-to-shortest in a
local ‘block’. More formally, we have the following.

Definition 2.3 (HKZ and BKZ [454]). The basis B = (b0, . . . ,bd−1) of a lattice
Λ is said to be HKZ reduced if ‖b�i ‖ = λ1(Λ(B[i:d])) for all i < d. It is said BKZ
reduced with block size β and ε ≥ 0 if ‖b�i ‖ ≤ (1 + ε) · λ1(Λ(B[i:min(i+β,d)])) for
all i < d.

In practice, the BKZ algorithm [512, 520] and its terminated variant [257]

1 HKZ should nevertheless not be considered to be the strongest notion of reduction. Indeed
HKZ is a greedy definition, speaking of the shortness of each vector individually. One could
go further and require, for example, Λ[0:d/2] to be a densest sublattice of Λ [491].

https://doi.org/10.1017/9781108854207.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108854207.004


2 Lattice Attacks on NTRU and LWE: A History of Refinements 19

Algorithm 2.1 High-level description of the BKZ algorithm.
Input: LLL-reduced lattice basis B and block size β

1: repeat

2: for i ← 0 to d − 2 do

3: LLL on B[i:min(i+β,d)]

4: v ← find a short vector in Λ
(
B[i:min(i+β,d)]

)
5: insert v into B at index i and handle linear dependencies with LLL

6: until until no more change

are commonly employed to perform lattice reduction. BKZ is also the algo-
rithm we will focus on in this chapter.

The BKZ algorithm will proceed by enforcing the condition ‖b�i ‖ ≤ (1+ ε) ·
λ1(Λ(B[i:min(i+β,d)])) cyclically for i = 0, . . . , d − 2, 0, . . . , d − 2, 0 . . . , see Algo-
rithm 2.1. However, each modification of b�i may invalidate the same condition
for j � i. The value of ε, which allows to account for numerical instability, is
typically chosen very close to 0 (say 0.01); we may sometimes omit it and just
speak of a BKZ-β reduced basis. Overall, we obtain the following guarantees
for the BKZ algorithm.

Theorem 2.4 (BKZ). If a basis B is BKZ-β reduced with parameter ε > 0 it
satisfies

• ‖b0‖ ≤
√

(1 + ε) · γβ d−1
β−1+1 · vol(Λ(B))1/d (Hermite factor) and

• ‖b0‖ ≤
(
(1 + ε) · γβ

) d−1
β−1 · λ1(Λ(B)) (approximation factor).

Remark. The approximation factor is established in [517], the Hermite factor
bound is claimed in [206]. In [257] a bound of 2 · √γβ d−1

β−1+3 is established for

the terminating variant. In [258] this bound is improved to K · √β d−1
β−1+0.307 for

some universal constant K.

Asymptotically, the lattice reduction algorithm with best, known worst-case
guarantees is Slide reduction [205]. We refer to its introduction by Gama and
Nguyen [205] for a formal definition, which requires the notion of duality, and
only state some of its guarantees concerning Gram–Schmidt length here.

Theorem 2.5 (Slide reduction [205]). If a basis B is Slide reduced for param-
eters β | d and ε > 0 it satisfies

• ‖b0‖ ≤
√

(1 + ε) · γβ d−1
β−1 · vol(Λ(B))1/d (Hermite factor) and

• ‖b0‖ ≤
(
(1 + ε) · γβ

) d−β
β−1 · λ1(Λ(B)) (approximation factor).
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In practice, BKZ is not implemented as in Algorithm 2.1. Most notably,
stronger preprocessing than LLL is applied. A collection of improvements to
the algorithm (when enumeration is used to instantiate the SVP oracle) are
collectively known as BKZ 2.0 [122] and implemented, e.g., in FPLLL [587]
and thus Sage [562]. Slide reduction is also implemented in FPLLL.

2.4 Practical Behaviour on Random Lattices

2.4.1 Shape Approximation

The Gaussian heuristic predicts that the number |Λ∩B| of lattice points inside a
measurable body B ⊂ Rn is approximately equal to vol(B)/ vol(Λ). Applied to
Euclidean d-balls, it leads to the following prediction of the length of a shortest
non-zero vector in a lattice.

Definition 2.6 (Gaussian heuristic). We denote by gh(Λ) the expected first
minimum of a lattice Λ according to the Gaussian heuristic. For a full-rank
lattice Λ ⊂ Rd, it is given by

gh(Λ) =
(

vol(Λ)
vol(B)

)1/d

=
Γ
(
1 + d

2

)1/d

√
π

· vol(Λ)1/d ≈
√

d
2πe

· vol(Λ)1/d ,

where B denotes the d-dimensional Euclidean ball. We also denote by gh(d)
the quantity gh(Λ) of any d-dimensional lattice Λ of volume 1: gh(d) ≈√

d/2πe. For convenience we also denote lgh(x) for lg(gh(x)).

Combining the Gaussian heuristic with the definition of a BKZ reduced ba-
sis, after BKZ-β reduction we expect


i = lg
(
λ1(Λ(B[i:min(i+β,d)]))

)
≈ lgh(min(β, d − i)) +

lg
(
vol(Λ(B[i:min(i+β,d)]))

)
min(β, d − i)

= lgh(min(β, d − i)) +

∑min(i+β,d)−1
j=i 
 j

min(β, d − i)
.

If d � β this linear recurrence implies a geometric series for the ‖b�i ‖.
Considering one block of dimension β and unit volume, we expect 
i = (β −
i − 1) · lg(αβ) for i = 0, . . . , β − 1 and some αβ. We obtain


0 = (β − 1) · lg(αβ) ≈ lgh(β) +
1
β

β−1∑
j=0

j · lg(αβ)

= lgh(β) + (β − 1)/2 · lg(αβ).
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Solving for αβ assuming equality we obtain αβ = gh(β)2/(β−1).
Applying the same argument to a basis in dimension d � β with 
i = (d −

i − 1) · lg(αβ) for i = 0, . . . , d − 1, we get ‖b0‖/vol(Λ)1/d = αd−1
β /α

(d−1)/2
β =

α(d−1)/2
β = gh(β)(d−1)/(β−1). This is known as the geometric series assumption

(GSA).

Definition 2.7 (GSA [518]). Let B be a BKZ-β reduced basis of a lattice of
volume V . The geometric series assumption states that

lg ‖b�i ‖ = 
i =
d − 1 − 2i

2
· lg(αβ) +

1
d

lg V,

where αβ = gh(β)2/(β−1).

The above assumption is reasonably accurate in the case β � d (and β �
50), but it ignores what happens in the last d − β coordinates. Indeed, the last
block is HKZ reduced, and should therefore follow the typical profile of an
HKZ reduced basis.

Under the Gaussian heuristic, we can predict the shape 
0 . . . 
d−1 of an HKZ
reduced basis, i.e., the sequence of expected norms for the vectors b�i . This,
as before, implicitly assumes that all the projected lattices Λi also behave as
random lattices. The sequence is inductively defined as follows.

Definition 2.8. The (unscaled) HKZ shape of dimension d is defined by the
following sequence for i = 0, . . . , d − 1:

hi = lgh(d − i) − 1
d − i

∑
j<i

h j .

This leads to the following refinement of the GSA.

Definition 2.9 (Tail-adapted geometric series assumption (TGSA)). Let B be
a BKZ-β reduced basis of a lattice of volume V . The TGSA states that


i =
d − 1 − 2i

2
· lgαβ + s if 0 ≤ i ≤ d − β ,


i = hi−(d−β) + 
d−β − h0 if d − β ≤ i < d ,

where s ∈ R is the scaling term such that
∑

i = lg V .

We plot an example for a basis after BKZ reduction under the GSA and
the TGSA in Figure 2.1 to illustrate their respective shapes. In Figure 2.1 we
chose d = 2 β to highlight the difference between the two models. As can be
seen from that figure, the first few indices of the HKZ shape drop slower than
predicted by the GSA and the last indices drop faster.
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Figure 2.1 GSA and TGSA for d = 1000 and β = 500.

Appealing to the Gaussian heuristic, we may also replace√γβ, i.e., worst-
case bounds, with gh(β), i.e., average-case expectations, in Theorems 2.4
and 2.5. This suggests the following heuristics.

Definition 2.10 (Estimates for block reductions). If a basis B is BKZ-β re-
duced for 50 � β � d we expect

‖b0‖ �min
{ √
αβ

d−1 · vol(Λ(B))1/d (Hermite factor)
αd−1
β · λ1(Λ(B)) (approximation factor).

If a basis B is Slide reduced with parameter β we expect

‖b0‖ �min

⎧⎪⎪⎨⎪⎪⎩
√
αβ

d−1 · vol(Λ(B))1/d (Hermite factor)
α

d−β
β · λ1(Λ(B)) (approximation factor).

The cases over which the minimum is taken define two regimes: the ‘Hermite
regime’ and the ‘approximation regime’.

If the lattice is random, then λ1 ≈ gh(Λ) and we expect to be in the Hermite
regime; the approximation regime is only triggered by the presence of an un-
usually short vector. In the Hermite regime, we can replace � by ≈ and we will
discuss what happens in the approximation regime further in Section 2.5.4.

We note that the literature usually writes the above approximate equations
in terms of the so-called root-Hermite factor δβ � (‖b0‖/vol(Λ)1/d)

1/d
. We can

therefore establish that δβ =
√
αβ

1−1/d ≈√αβ. We note that making this approx-
imation or not leads to the ‘−1 discrepancy’ blamed on [19] in a footnote
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2 lg(δβ) with δβ as in Eq. (2.1)
Average observed lg(αβ)

Figure 2.2 Experimentally observed slopes of 16 lattices compared with δβ
as predicted in Eq. (2.1). The input lattices are q-ary lattices in dimension
d = 170 with q = 220 − 3; the experimental lg(αβ) are established using a
least-square fit of the log Gram–Schmidt vectors.

of [15]: the analysis of [19] simply did not apply this approximation step.
In [121] an expression for δβ is given as

lim
β→∞ δβ =

(
β

2πe
· (π β) 1

β

) 1
2(β−1)

(2.1)

assuming d � β. Experimentally, Eq. (2.1) also holds with good accuracy for
β > 50 and typical d used in cryptography (say, d ≥ c · β for some c > 1). We
compare experimentally observed lg(αβ) with the right-hand side of Eq. (2.1)
in Figure 2.2.

2.4.2 Simulators

While the (T)GSA provides a first rough approximation of the shape of a basis,
it is known to be violated in small dimensions [122]. Indeed, it also does not
hold exactly for larger block sizes when d is a small multiple of β, the case
most relevant to cryptography. Furthermore, it only models the shape after the
algorithm has terminated, leaving open the question of how the quality of the
basis improves throughout the algorithm. To address these points, Chen and
Nguyen [122] introduced a simulator for the BKZ algorithm which is often re-
ferred to as the ‘CN11 simulator’. It takes as input a list of 
i representing the
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Figure 2.3 CN11 simulator output for β = 500 on random q-ary lattice in
dimension d = 1500.

shape of the input basis and a block size β. It then considers blocks 
i, . . . , 
i+β−1

of dimension β, establishes the expected norm of the shortest vector in this
block using the Gaussian heuristic and updates 
i. To address that the Gaussian
heuristic does not hold for β < 50, the simulator makes use of a precomputed
list of the average norms of a shortest vector of random lattices in small di-
mensions. The simulator keeps on going until no more changes are made or a
provided limit on the number of iterations or ‘tours’ is reached.

The simulator is implemented, for example, in FPyLLL [588] and thus in
Sage. In Figure 2.3 we plot the output of the simulator for a basis in dimension
1500 with block size 500 (solid line). We also plot the derivative (dotted line)
to illustrate that the GSA also does not hold for i < d − β. In fact, we observe
a ripple effect, with the tail shape exhibiting a damped echo towards the left of
the basis. The TGSA is in some sense only a first-order approximation, only
predicting the first ripple.

A further simulation refinement was proposed in [27]. Building upon [631],
the authors confirmed that the CN11 simulator can be pessimistic about the
norm of the first vector output by BKZ. This is because it assumes that the
shortest vector in a lattice always has the norm that is predicted by the Gaus-
sian heuristic. By, instead, modelling the norm of the shortest vector as a ran-
dom variable, the authors were able to model the ‘head concavity’ behaviour
of BKZ as illustrated in Figure 2.4 after many tours and in small block sizes.
They also proposed a variant of the BKZ algorithm (pressed-BKZ) that is tai-
lored to exploit this phenomenon. For example, they manage to reach a basis
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Figure 2.4 Head concavity: dimension d = 2000 and block size β = 45 after
2000 tours, reproduced from [27].

reduction equivalent to BKZ-90 while only using block size 60. The authors
note, though, that the head concavity phenomenon does not significantly af-
fect cryptographic block sizes. Indeed, exploiting luck on this random variable
seems to be interesting for small block sizes only.

2.4.3 q-ary Lattices and the Z-Shape

Recall that both NTRU and LWE give rise to q-ary lattices. These lattices al-
ways contain the vector (q, 0, . . . , 0) and all its permutations. These so-called
‘q-vectors’ can be considered short, depending on the parameters of the in-
stance being considered, and might be shorter than what we would expect to
obtain following predictions such as the GSA or the TGSA. Furthermore, some
of those q-vectors naturally appear in the typical basis construction of q-ary lat-
tices. Even when this is not the case, they can be made explicit by computing
the Hermite Normal Form.

To predict lattice reduction on such bases, we may observe that one of the
guarantees of the LLL algorithm is that the first vector b0 never gets longer. For
certain parameters this can contradict the GSA. In fact, if b∗i does not change
for all i < j, then b∗j cannot become longer either, which means that after the
reduction algorithm has completed we may still have many such q-vectors at
the beginning of our basis, unaffected by the reduction. It is therefore tempting
to predict a piecewise linear profile, with two pieces. It should start with a flat
line at lg q, followed by a sloped portion following the predicted GSA slope.
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Figure 2.5 GSA and q-ary lattice contradiction. Norms of Gram–Schmidt
vectors of 180-dimensional random q-ary lattices with q = 17 and volume
q80. The grey, blurry lines plot 
i for LLL reduced bases of 16 independent
lattices.

In fact, the shape has three pieces, and this is easy to argue for LLL, since
LLL is a self-dual algorithm.2 This means in particular that the last Gram–
Schmidt vector cannot get shorter, and following the same argument, we can
conclude that the basis must end with a flat piece of 1-vectors. All in all, the
basis should follow a Z-shape, and this is indeed experimentally the case [280,
625], as depicted in Figure 2.5, where we picked a small q to highlight the
effect. We shall call such a prediction [169, 625] the ZGSA.

It is tempting to extend such a ZGSA model to other algorithms beyond LLL
and this has been used for example in [169]. We might also attempt to refine
it to a ZTGSA model, where we put an HKZ tail just before the flat section
of Gram–Schmidt vectors of norm 1. However, this is a questionable way of
reasoning, because BKZ, unlike LLL, is not self-dual. However, it is worth
noting that it seems possible to force BKZ to behave in such a way, simply by
restricting BKZ to work on the indices up i < j, where j is carefully calibrated
so that ‖b�j ‖ ≈ 1. This is not self-dual, but up to the tail of BKZ, it would
produce a Z-shape as well.

Yet, we could also let BKZ work freely on the whole basis, and wonder
what would happen. In other words, we may ask whether it is preferable to
apply such a restriction to BKZ or not. A natural approach to answering this

2 This is not entirely true, as the size-reduction condition is not self-dual, but the constraints on
the Gram–Schmidt vectors themselves are, which is enough for our purpose.
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Figure 2.6 BKZ behaviour on q-ary lattice bases with small q. Norms of
Gram–Schmidt vectors (grey, blurry lines) after BKZ-65 reduction of 16 180-
dimensional q-ary lattices with q = 17 and volume q80 compared with models
from the literature.

question would be to simply use the CN11 simulator, however, it appears that
the Z-shape is very poorly simulated. Indeed, while the simulator can easily
maintain q-vectors when they are shorter than the one locally predicted by
the Gaussian heuristic, the phenomenon on the right end of the Z seems more
complicated: some 1-vectors are replaced by Gram–Schmidt vectors of norm
strictly less than 1, but not all, see Figure 2.6. Thus, we see the Z-shape known
from the literature but with the addition of a kink in the tail block.

Simulating or predicting the behaviour of BKZ on q-ary lattices is still open,
but it would allow addressing the question if it can be exploited. A partial an-
swer seems obtainable by defining a specialised variant of the Gaussian heuris-
tic that takes orthogonal sublattices into account. Although we are not certain
that a deeper study of this phenomenon would lead to cryptanalytic advances, it
is nevertheless quite frustrating to have to resort to Z(T)GSA without a perfect
understanding of the behaviour of lattice reduction on this class of lattices.

2.4.4 Random Blocks?

The heuristic analysis of BKZ is based on the assumption that each sublattice
considered by the algorithm ‘behaves like a random lattice’ (strong version),
or at least that the expectation or distribution of its shortest vector is the same
as for a random lattice (weak version).

More formally, we would have to define the notion of a random lattice,
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invoking the Haar measure. However, we can nevertheless interrogate this
heuristic without going into those details here. Indeed, as we can see in Fig-
ure 2.2, the predicted slopes below dimension 30 are far from the actual be-
haviour. In fact, the predictions for small block sizes are nonsensical as they
predict a flatter slope as β decreases below 30 and even an inversion of the
slope below block size ≈ 10.

Although we can observe the prediction and the observation converging for
block sizes above 50, what level of precision do we attribute to those pre-
dictions? Given the phenomena perturbing the GSA surveyed in this chapter
(heads, tails, ripples), how pertinent are the data from Figure 2.2? Pushing ex-
perimental evidence a bit further would be reassuring here: although we do not
expect surprises, it would be good to replace this expectation with experimen-
tal evidence.

But, more conceptually, we note that making the strong version of the heuris-
tic assumption (each block behaves like a random lattice) is self-contradictory.
Indeed, the model leads us to conclude that the shape is essentially a line, at
least when β � d and the considered block B[κ:κ+β] is far from the head and
the tail, i.e., κ � β, d − κ � β. But this block, like all other blocks, is fully
HKZ-reduced: since b�κ+i is a shortest vector of Λ(B[κ+i:κ+i+β]), it is also a short-
est vector of Λ(B[κ+i:κ+β]). Yet, HKZ-reduced bases of random lattices have a
concave shape not a straight slope.

We do not mean to discredit the current methodology to predict attacks
on lattice-based schemes; current evidence does suggest predictions such as
Eq. (2.5) in Section 2.5.4 are reasonably precise. In particular, the above argu-
ment does not rule out the weak version of the hypothesis: the shortest vector
of those non-random blocks may still have an expected length following the
Gaussian heuristic. In fact, for random lattices, it is known that the length of
the shortest vector is increasingly concentrated around the Gaussian heuristic;
there may be increasingly fewer lattices that fall far from it, which may explain
why a bias in the distribution of the lattices themselves does not translate to a
bias on the length of its shortest vector.

However, we wish to emphasise that the question of the distribution of those
local blocks is at the centre of our understanding of lattice reduction algo-
rithms but remains open. While even formulating specific yet relevant ques-
tions seems hard, this phenomenon suggests itself as a challenging but pressing
area to study.
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2.5 Behaviour on LWE Instances

We can reformulate the matrix form of the LWE equation c − A · s ≡ e mod q
as a linear system over the integers as(

qI −A

0 I

)
·
(∗
s

)
+

(
c

0

)
=

(
e

s

)
or homogeneously as

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
qI −A c

0 I 0
0 0 t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∗
s

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
e

s

t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2.2)

where t is some chosen constant and ∗ stands in for an arbitrary vector. In
other words, there exists an element in the lattice spanned by B with expected
norm

√
(n + m) · σ2 + t2. Let d = n + m + 1. If we have

√
(n + m) · σ2 + t2 <

gh(Λ(B)) ≈
√

d
2π·e · qn/d then B admits an unusually short vector. With a slight

abuse of notation, we will refer to the (column) vector (eT , sT , t)T simply as
(e, s, t).

Remark. We note that when t � q then Λ (B) is not a q-ary lattice as, in this
case, (0, . . . , 0, q)T � Λ. The reader may think t = 1, which is commonly used
in practice albeit being slightly worse compared to t = σ, which maximises
λ2(Λ)/λ1(Λ) and which makes the problem easier.

2.5.1 Kannan Embedding

More generally, we can consider this approach to solving LWE as solving an
instance of the bounded distance decoding problem (BDD) using a solver for
the unique shortest vector problem.

Definition 2.11 (α-Bounded Distance Decoding (BDDα)). Given a lattice ba-
sis B, a vector t, and a parameter 0 < α < 1/2 such that the Euclidean distance
dist(t,B) < α · λ1(B), find the lattice vector v ∈ Λ(B) that is closest to t.

Remark. In our definition above we picked α < 1/2, which guarantees a
unique solution. The problem can be generalised to 1/2 < α ≤ 1 where we
expect a unique solution with high probability.

We can view LWE with a fixed number of samples as an instance of BDD
(with overwhelming probability over the choice of the samples). Asymptoti-
cally, for any polynomially bounded γ ≥ 1 there is a reduction from BDD1/(

√
2 γ)

to uSVPγ [26]. The unique shortest vector problem (uSVP) is defined as fol-
lows.
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Definition 2.12 (γ-unique Shortest Vector Problem (uSVPγ)). Given a lattice
Λ such that λ2(Λ) > γ · λ1(Λ) find a non-zero vector v ∈ Λ of length λ1(Λ).

This reduction is essentially the embedding technique, due to Kannan [311],
presented at the beginning of this section, combined with some tricks to im-
prove the parameters of the reduction. For the remaining of this section, we will
discuss how strong we require lattice reduction to be to find a unique shortest
vector which can then be used to recover the secret values of an LWE instance.

2.5.2 Asymptotic Handwaving

Recall that in Definition 2.10 two regimes are defined, the Hermite regime
and the approximation regime. Now, consider decision LWE. On the one hand,
when c is just a random vector then the lattice spanned by B is a random q-ary
lattice and we are in the Hermite regime, i.e., λ1(Λ(B)) ≈ gh(Λ(B)). On the
other hand, when c is formed as in LWE then Λ(B) contains (e, s, t) and we
expect λ1(Λ(B)) = ‖(e, s, t)‖. Now, if this is sufficiently smaller than gh(Λ(B))
then we are in the approximation regime. Thus, one way to distinguish LWE
from uniform is to detect the ‘phase transition’ between the two regimes, the
point when the approximation regime ‘kicks in’, i.e., when

√
αβ

2d−2 · λ1(Λ(B)) <
√
αβ

d−1 · vol(Λ(B))1/d for BKZ and
√
αβ

2d−2β · λ1(Λ(B)) <
√
αβ

d−1 · vol(Λ(B))1/d for Slide reduction.

Rearranging we obtain the following success conditions

λ1(Λ(B)) <
√
αβ

1−d · vol(Λ(B))1/d with BKZ and (2.3)

λ1(Λ(B)) <
√
αβ

2β−d−1 · vol(Λ(B))1/d with Slide reduction (2.4)

for solving decision LWE in block size β.

2.5.3 The 2008 Estimates

Gama and Nguyen [206] performed experiments in small block sizes to estab-
lish when lattice reduction finds a unique shortest vector. They considered two
classes of semi-orthogonal lattices and Lagarias–Odlyzko lattices [350] which
permit to estimate the gap λ2(Λ)/λ1(Λ) between the first and second minimum
of the lattice. For all three families, it was observed in [206] that LLL and
BKZ seem to recover a unique shortest vector with high probability whenever
λ2(Λ)/λ1(Λ) ≥ τβ · √αβd, where τβ < 1 is an empirically determined constant
that depends on the lattice family, algorithm and block size used.
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In [11] an experimental analysis of solving LWE based on the same estimate
was carried out for lattices of the form of Eq. (2.2). This lattice contains an
unusually short vector v = (e, s, t) of squared norm ‖v‖2 = ‖s‖2 + ‖e‖2 + t2 and
we expect λ1(Λ)2 = ‖v‖2. Thus, when t2 ≈ ‖e‖2 + ‖s‖2 respectively t = 1 this
implies λ1(Λ) ≈ √2 (n + m) · σ respectively λ1(Λ) ≈ √n + m · σ. The second
minimum λ2(Λ) is assumed to correspond to the Gaussian heuristic for the
lattice (a more refined argument would consider the Gaussian heuristic of Λ′ =
πv(Λ), but these quantity are very close for relevant parameters). Experiments
in [11] using LLL and BKZ with small block sizes (5 and 10) were interpreted
to matched the 2008 estimate, providing constant values for τβ for lattices of
the form of Eq. (2.2), depending on the chosen algorithm, for a 10 per cent
success rate. Overall, τβ was found to lie between 0.3 and 0.4 when using
BKZ.

We note that we may interpret this observation as being consistent with In-
equality (2.3).

2.5.4 The 2016 Estimate

The 2008 estimates offer no insight into why the algorithm behaves the way it
does but only provide numerically established constants that seem to somewhat
vary with the algorithm or the block size. In [19] an alternative estimate was
outlined. The estimate predicts that (e, s, t) can be found if

√
β/d · ‖(e, s, t)‖ ≈

√
β · σ2 <

√
αβ

2β−d−1 · Vol(Λ(B))1/d , (2.5)

under the geometric series assumption (until a projection of the unusually short
vector is found). The right-hand side of the inequality is the expected norm of
the Gram–Schmidt vector at index d−β (see Definition 2.7). The left-hand side
is an estimate for ‖πd−β ((e, s, t)) ‖. If the inequality holds then πd−β ((e, s, t)) is a
shortest vector in B[d−β:d] and will thus be found by BKZ and inserted at index
d − β. This is visualised in the top part of Figure 2.7. Subsequent calls to an
SVP oracle on B[d−2β+1:d−β+1] would insert πd−2β+1 ((e, s, t)) at index d − 2β + 1
etc.

The 2016 estimate was empirically investigated and confirmed in [15]. The
authors ran experiments in block sizes up to 78 and observed that a BKZ man-
aged to recover the target vector with good probability as predicted in [19]. An
example is given in the bottom part of Figure 2.7. Furthermore, they showed
(under the assumption that vectors are randomly distributed in space) that once
BKZ has set b�i = πd−β ((e, s, t)), calls to LLL are expected to suffice to recover
(e, s, t) itself.
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Figure 2.7 (The 2016 estimate.) Expected and observed norms for lattices of
dimension d = 183 and volume qm−n after BKZ-β reduction for LWE param-
eters n = 65,m = 182, q = 521, standard deviation σ = 8/

√
2π and β = 56

(minimal (β,m) such that Inequality (2.5) holds). Average of Gram–Schmidt
lengths is taken over 16 BKZ-β reduced bases of random q-ary lattices, i.e.,
without an unusually short vector. Reproduced from [15].

Comparing Inequality (2.5) with Inequalities (2.3) and (2.4) we note that it
more closely resembles the prediction for Slide reduction rather than for BKZ,
despite the rationale and experimental evidence being obtained for BKZ. This
suggests that the average behaviour of BKZ and Slide reductions in the approx-
imation factor regime is roughly the same, despite different worst-case bounds
being proven. Furthermore, we note that Inequality (2.5) gains an additional
factor of

√
β/d compared with Inequality (2.4).
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2.5.5 Further Refinements

On the other hand, the authors of [15] also observed that the algorithm behaves
somewhat better than predicted. That is, they managed to solve the underlying
instances using block sizes somewhat smaller than required to make Inequal-
ity (2.5) hold.

This is attributed to a ‘double intersection’ in [15]. As illustrated in Fig-
ure 2.7, the projection of the target vector and the norms of the Gram–Schmidt
vectors may intersect twice: once at index d − β and once close to index d, say
at index d − o for some small o. Applying the same reasoning as above, we
expect πd−o ((e, s, t)) to be inserted as b�d−o. Thus, we expect a subsequent SVP
call at index d − β − o to recover and insert πd−β−o ((e, s, t)). Alternatively, an
SVP call in dimension β − o at index d − β could now recover πd−β ((e, s, t))
since this vector is ∈ Λ[d−β:d−o]. However, it is noted in [15] that this ‘double
intersection’ phenomenon does not occur for typical cryptographic parameters.

Another source of imprecision when applying Inequality (2.5) is that it as-
sumes the GSA (before an unusually short vector is found), replacing this as-
sumption with a BKZ simulator produces refined estimates.

But there seems to be another subtle phenomenon at play. In [148] it is noted
that, for very small block sizes β, the prediction of [15] is, on the contrary, too
optimistic. The reason is that, while the projected vector πd−β ((e, s, t)) may be
detected with good probability at position d − β, we require a bit more luck
to lift correctly, i.e., to recover the full vectors (e, s, t) from its projection.
Instead, a probabilistic model is proposed, to account for both initial detection
and lifting, and this prediction seems to fit very well with experiments; see
Figure 2.8.

Balancing Costs It should be mentioned that just running BKZ is not the op-
timal strategy to solve uSVP instances. Indeed, having spent O(d) many SVP-
β calls pre-processing the whole basis, this strategy hopes for the last such
SVP call to essentially produce the solution. An improved strategy instead bal-
ances the cost of the pre-processing step and the final search step. Therefore, it
could, for example, be natural to do a last call to SVP-β′ for β′ slightly larger
than β; this has for example been implemented with sieving in [17] to break
Darmstadt LWE challenges [230] and was already standard in the enumeration
literature [396].

The optimal strategy is, therefore, more difficult to predict, and hardness
estimates often rely on scripts that numerically optimise the various parame-
ters of the algorithm based on assumptions such as the relative costs of run-
ning SVP in slightly larger or smaller dimension, the number of calls to an
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Figure 2.8 The difference Δβ = real−predicted, as a function of the average
experimental β. The experiment consists in running a single tour of BKZ-β for
β = 2, 3, 4, . . . until the secret short vector is found. This was averaged over
256 many LWE instances per data point, for parameters q = 3301, σ = 20
and n = m ∈ {30, 32, 34, . . . , 88}. Reproduced from [148].

SVP oracle required to achieve a given root-Hermite factor, etc. To avoid this
complication, some designers instead opt for accounting only for the cost of a
single call to SVP-β when even considering several tours of BKZ-β (a simpli-
fication introduced as the ‘core SVP hardness’ in [19]). In this model, the issue
of balancing costs between β′ and β does not arise, i.e., β′ = β is optimal and
the attack cost is bounded from below by the cost of one call to SVP-β on a
BKZ-β reduced basis.

2.6 Behaviour on NTRU Instances

To solve NTRU (Definition 2.2) we may consider the lattice

Λ
q
H
=

{
(x, y) ∈ Z2n s.t. H · x − y = 0 mod q

}
, (2.6)

where H is the matrix associated with multiplication by h modulo φ, i.e.,
the columns of H are spanned by the coefficients of xi · h mod φ for
i = 0, . . . , n − 1. The lattice Λq

H
is spanned by

B =

(
qI H

0 I

)
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and contains a short vector (f, g). This can be observed by multiplying the
basis by (f, ∗) from the right, where ∗ represents the vector performing modular
reduction modulo q and where f respectively g is the coefficient vector of f
respectively g. If ‖(f, g)‖ is much smaller than gh(Λq

H
) ≈√n/(π e) ·√q then this

lattice contains an unusually short vector. Indeed, it also contains all vectors
corresponding to ‘rotations’ of ( f , g), i.e., (xi · f mod φ, xi · g mod φ) for i =
0, . . . , n − 1 and their integral linear combinations. In other words, the NTRU
lattice contains a dense sublattice.

2.6.1 NTRU as uSVP

Considering NTRU as the problem of recovering an unusually short vector in
the NTRU lattice was already done in the initial NTRU paper [275]. Also, the
original NTRU paper [275] discussed an observation from [139] (analysing
[274]) that an attacker does not need to recover f , g exactly, but that any suffi-
ciently small multiple of f suffices to break the scheme. For the uSVP case the
hardness of the problem was related to gh(Λ)/λ1(Λ) where λ1(Λ) = ‖(f, g)‖.
When considering message recovery instead of key recovery, a related quan-
tity is considered. We may a posteriori reinterpret this as framing attacks on
NTRU in the framework of the ‘2008 estimate’ (see Section 2.5.3) but replac-
ing λ2(Λ) by gh(Λ). This approach became a common way of reasoning about
NTRU lattices; see, e.g. [168]. Yet the validity of this approach is doubtful, as
in NTRU lattices we have λ2(Λ) = λ1(Λ) in contrast to the lattices arising for
LWE. In this context, we note that the early study of May and Silverman [410]
massaged the lattice to decrease the NTRU lattice dimension while also elimi-
nating all but one of the NTRU short vectors.

The 2016 estimate (see Section 2.5.4) sidesteps this discussion on whether
λ2(Λ) matters, as the heuristic reasoning here does not involve this quantity.
This estimate also ended up being used for estimating the hardness of breaking
NTRU [633, Section 6.4.2]. More recently the framework proposed in [148]
allowed us to revisit the tricks of May and Silverman [410], and it was con-
cluded that this trick was slightly counterproductive. Indeed, the probabilistic
model permits to account for the cumulated probabilities of detecting any of
those short vectors in the full lattice, and this is slightly easier than finding the
(up to signs) unique short vector of the massaged lattice.

Indeed, another line of works showed that the presence of many short vec-
tors can make the problem exponentially easier, at least in some ‘overstretched’
regimes. These works [14, 123, 217, 324] seem to suggest that simple encryp-
tion schemes should not be affected at all, but we will argue that the exact
crossover point remains to be determined.
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2.6.2 Attacks on Overstretched NTRU

In this last section, we cover an attack that exploits the fact that NTRU lattices
hide not one but many unexpectedly short vectors, yielding an unexpectedly
dense sublattice. If the right conditions are met then it turns out that this dense
sublattice is easier to uncover than the individual vectors spanning it.

This, however, is a fairly a-posteriori view of this discovery. At first, this
weakness was associated not primarily with a density property, but more with
an algebraic structure property: namely, the presence of subfields in NTRU.
The idea of exploiting this structure had been considered as soon as 2002, by
Gentry, Szydly, Jonsson, Nguyen and Stern [217, Section 6]; but it was quickly
abandoned: yes, NTRU keys can be normed down to a subfield and still yield
valid NTRU keys, but this trade-off of dimension versus approximation factor
did not seem advantageous for the actual NTRUEncrypt parameters.

When Bai and ourselves explored this idea again [14] (independently,
Cheon, Jeong and Lee [123] also explored a closely related idea), the situation
was rather different: NTRU was not just a single scheme with a few parameter
sets, it was a parameterised assumption with increasing popularity for build-
ing homomorphic encryption schemes. In these newly considered regimes the
trade-off mentioned above seemed on the contrary quite advantageous. We,
therefore, claimed asymptotic improvements over the natural lattice reduction
attack, which – depending on the parameters – could decrease the costs of the
attacks from exponential to sub-exponential or even polynomial.

This claimed improvement was soon challenged by Kirchner and Fouque
[324]. Our mistake was not the complexity of our new algorithm but rather
the fact that the complexity of straight-up lattice reduction attacks was much
better than expected on such overstretched NTRU instances. They claimed
that the old attack should behave as well as the new one, and – with minor
performance-enhancing tricks – were able to demonstrate this in practice. In
conclusion, the new algorithm we invented was completely useless, and old
algorithms performed just as well, if not better, and were more generally ap-
plicable. We found solace in the belief that the results of Kirchner and Fouque
may not have been discovered without our algebraic detour.

The Subfield Attack

The key idea of this attack is as follows: the relation h = f /g mod q between
the public key h and the private key ( f , g) can be normed down to a smaller
field; furthermore, if f and g are short enough, their norms in a smaller field
will also be somewhat short. Therefore, one may hope to attack the problem
in a subfield and lift back the solution. We note that in the case of cyclotomic
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number fields, there is always at least one non-trivial subfield, namely the max-
imal totally real subfield K+, of relative rank r = [K : K+] = 2. In the case
of power of two cyclotomic number fields (n = 2k), one chooses the subfield
to tune r to any power of 2 less than n. On the contrary, this approach is not
directly applicable to fields as chosen in [55].

In more detail, let K be a number field (K = Q(x)/(φ(x)), where φ comes
from Definition 2.2), and for simplicity let us assume that K is a cyclotomic
number field. Let L be a subfield with relative rank r = [K : L], and let N
denote the relative norm N : K → L, defined by N(x) =

∏
a a(x), where

a ranges over all the automorphisms of K that are identity over L. Defining
f ′ = N( f ), g′ = N(g) and h′ = N(h), we note that h′ = f ′/g′ mod q still holds
over L. Furthermore, if f , g have lengths roughly

√
n · σ, we expect f ′, g′ to

have lengths roughly (
√

n · σ)r.
On the other hand, the dimension of the normed-down NTRU lattice is 2n/r

and its volume is qn/r. The original article [14] reasons more formally, using
the approximate factor bound of lattice reduction; however, here we will give
a simplified and more heuristic exposition. Roughly, using either the 2008 es-
timate or the 2016 estimate, we expect to solve this instance using a block size
β such that

(
√

n · σ)
r · δ2n/r

β ≤√q.

For σ = poly(n), the subfield attack [14] obtains the asymptotic success con-
dition

β

lg β
= Θ

(
n

r lg q − r2 lg n

)
assuming r lg q − r2 lg n > 0.

Parameterising the attack to not use a subfield (r = 1) should therefore re-
quire β = Θ̃(n/ log q), while choosing a relative rank r = Θ(log q/ log n) leads
to β = Θ̃(n/ log2 q). For schemes that use large moduli such as fully homomor-
phic schemes [94, 399] or candidate cryptographic multi-linear maps [208],
this therefore makes a significant difference; both in practice and in theory.

Full Secret Reconstruction It should be noted that finding f ′, g′ does not lead
to a full recovery of the original secret. However, we can still reconstruct a
small multiple α( f , g) of the original secret key ( f , g), by constructing ( f ′, g′ ·
h/h′). This is typically enough to break encryption schemes. If we insist on
recovering the original key ( f , g), this intermediate information is still helpful.
For example, repeating the attack with a rerandomised initial basis, we may
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recover the exact lattice generated by the secret key ( f , g)T · OK. Recovering
( f , g) is now much easier; it can be done with an algorithm for the Principal
Ideal Problem, and this is classically sub-exponential time [60], and quantumly
polynomial time [59].

The Dense Sublattice Attack

We will now explain why the above subfield attack was a detour to the discov-
ery of a much more general result by Kirchner and Fouque [324]. In a sense,
LLL and BKZ are rather clever algorithms and what we can try to make more
visible to them via algebraic massaging of the lattice at hand was already geo-
metrically obvious to them: there is a particularly dense sublattice to be found
inside NTRU instances. This version of the attack is therefore not prevented
by choosing a number field as in [55], or even by going for a matrix version of
NTRU without any underlying number field.

To prove that LLL can indeed uncover this hidden dense sublattice, let us
first go back to the (worst-case) argument to prove that LLL can solve a unique-
SVP instance when λ2(Λ)/λ1(Λ) > (4/3 + ε)d/2.

It follows from the inequality λ1(Λ) ≥ mini ‖b�i ‖, which is obtained by writ-
ing a shortest vector v as v =

∑
vib
�
i and noting that v must be longer than b�j

where j is the largest index such that v j � 0. From there, we argue that

‖b1‖ ≤ (4/3 + ε)d/2 min
i
‖b�i ‖ ≤ (4/3 + ε)d/2λ1(Λ) < λ2(Λ) .

Recall that we can make an even simpler case that LLL or BKZ must distin-
guish this lattice from random without having to go through the full argument.
Indeed, let us simply note that, for a random lattice, we expect a particular
shape for the basis, say following ZGSA or ZTGSA. But for a large enough
β, the prediction for the shape becomes incompatible with the constraint that
λ1(Λ) ≥ mini ‖b�i ‖. In such cases, LLL and BKZ must, therefore, behave dif-
ferently, and this is easily seen by just looking at the shape: the NTRU lattice
has been distinguished from random.

The analysis of Kirchner and Fouque follows essentially from the same
kind of argument, generalising the invariant λ1(Λ) ≥ mini ‖b�i ‖. Here, we can
read ‘λ1(Λ)’ as the determinant of the densest one-dimensional sublattice; a
k-dimensional variant of the inequality was given by Pataki and Tural.

Lemma 2.13 ([469, Lemma 1]). Let Λ be a d-dimensional lattice, and b0, . . . ,

bd−1 be any basis of Λ, and let k ≤ d be a positive integer. Then, for any
k-dimensional sublattice Λ′ ⊂ Λ, it holds that

vol
(
Λ′

) ≥ min
J

∏
j∈J

‖b�j ‖,

https://doi.org/10.1017/9781108854207.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108854207.004


2 Lattice Attacks on NTRU and LWE: A History of Refinements 39

where J ranges over all subsets of {0, . . . , d − 1} of size k.

We will now apply this to the dense sublattice Λ′ generated by the n short
vectors out of the d = 2n dimensions of the NTRU lattice. This gives a (log)
left-hand side of log vol (Λ′) ≤ n log R, where R = ‖(f, g)‖ ≈ √

dσ (and in fact
we can argue that log vol (Λ′) ≈ n log R). For the right-hand side, the minimum
is reached by the n last indices J = {n, n + 1, . . . , 2n − 1}.

Pictorially, the usual one-dimensional argument forbids the last Gram–
Schmidt vector to go above R; if the heuristically predicted shape contradicts
this rule, then the shortest vector must have been detected somehow. The multi-
dimensional version of Pataki and Tural instead forbids the black-hashed re-
gion to have a surface larger than the grey-filled region in Figure 2.9.

We make our prediction under the Z-shape model, denoting s = lgαβ the
slope of the middle section, between indices n − z and n + z. The inaccuracies
of this model discussed in Section 2.4.3 should be asymptotically negligible, as
we will be interested in regimes for which β = o(z). The picture also makes it
easy to compute the right-hand side of the inequality. It is given by the surface
of a right-angled triangle of height h = 1

2 lg q. Its surface is given by S =
1
2 hz = 1

2 h2/s = (lg q)2/(8 lgαβ). We therefore predict that the Pataki-Tural
inequality would be violated when nR = S that is: lgαβ = lg2 q/(8nR). Noting
that lgαβ = Θ

(
lg β
β

)
, we conclude that the lattice reduction is going to detect

the dense sublattice when

β

lg β
= Θ

(
nR

lg2 q

)
.

The required block size is therefore β = Θ̃(n/ lg2 q) as it was for the subfield
attack, however a more careful analysis of the hidden constants [324] reveals
that going to the subfield is slightly unfavourable.

Concrete Behaviour

Although we kept the above development asymptotic for simplicity, it is not
hard to keep track of the hidden constants – or even to run simulations – and to
predict precisely when the Pataki–Tural lemma would be violated. However,
even such a methodology would only lead to an upper bound on the cost of
this attack and not an estimate. Indeed, this methodology would essentially
correspond to the one of Section 2.5.2 for LWE-uSVP; it is based on an im-
possibility argument, but it does not explain or predict the phenomenon, unlike
the 2016 estimate.

We therefore emphasise this gap as our last and foremost open problem:
give a more detailed explanation of how BKZ detects the hidden sublattice,
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Figure 2.9 The Pataki–Tural constraint on reduced NTRU bases.

leading to a heuristic estimate on when the phenomenon happens, confirmed
by extensive experiments. A possible answer may be found by extending the
probabilistic analysis of [148], this time accounting for more than the n shortest
vectors (xi · f , xi · g) for 0 ≤ i < n. Indeed, one could instead consider all the
vectors (p · f , p · g) for elements p up to a certain length. These vectors are
longer and therefore the probability of finding a given one of them is smaller.
Yet, it might be that, in some regimes of parameters, their number outgrows
this decrease in probability. When considering multiple vectors from the same
dense sublattice the events of finding each of them may not be independent,
which might require some care when modelling.
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