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Abstract. The Ring Learning With Errors problem (RLWE) comes in
various forms. Vanilla RLWE is the decision dual-RLWE variant, con-
sisting in distinguishing from uniform a distribution depending on a
secret belonging to the dual O∨

K of the ring of integers OK of a speci-
fied number field K. In primal-RLWE, the secret instead belongs to OK .
Both decision dual-RLWE and primal-RLWE enjoy search counterparts.
Also widely used is (search/decision) Polynomial Learning With Errors
(PLWE), which is not defined using a ring of integers OK of a number
field K but a polynomial ring Z[x]/f for a monic irreducible f ∈ Z[x]. We
show that there exist reductions between all of these six problems that
incur limited parameter losses. More precisely: we prove that the (deci-
sion/search) dual to primal reduction from Lyubashevsky et al. [EURO-
CRYPT 2010] and Peikert [SCN 2016] can be implemented with a small
error rate growth for all rings (the resulting reduction is non-uniform
polynomial time); we extend it to polynomial-time reductions between
(decision/search) primal RLWE and PLWE that work for a family of poly-
nomials f that is exponentially large as a function of deg f (the result-
ing reduction is also non-uniform polynomial time); and we exploit the
recent technique from Peikert et al. [STOC 2017] to obtain a search to
decision reduction for RLWE for arbitrary number fields. The reductions
incur error rate increases that depend on intrinsic quantities related to K
and f .

1 Introduction

Different shades of RLWE. Ring Learning With Errors (RLWE) was intro-
duced by Lyubashevsky et al. in [LPR10], as a means of speeding up cryptographic
constructions based on the Learning With Errors problem (LWE) [Reg05]. Let K
be a number field, OK its ring of integers and q ≥ 2 a rational integer. The
search variant of RLWE with parameters K and q consists in recovering a secret
s ∈ O∨

K/qO∨
K with O∨

K denoting the dual of OK , from arbitrarily many sam-
ples (ai, ai · s + ei). Here each ai is uniformly sampled in OK/qOK and each ei

is a small random element of KR := K ⊗Q R. The noise term ei is sampled such
that its Minkowski embedding vector follows a Gaussian distribution with a small
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covariance matrix (relative to qO∨
K). The decision variant consists in distinguish-

ing arbitrarily many such pairs for a common s chosen uniformly in O∨
K/qO∨

K ,
from uniform samples in OK/qOK × KR/qO∨

K . More formal definitions are pro-
vided in Sect. 2, but these suffice for describing our contributions.

Lyubashevsky et al. backed in [LPR10] the conjectured hardness of RLWE
with a quantum polynomial-time reduction from the (worst-case) Approximate
Shortest Vector Problem (ApproxSVP) restricted to the class of Euclidean lat-
tices corresponding to ideals of OK , with geometry inherited from the Minkowski
embeddings. They showed its usefulness by describing a public-key encryption
with quasi-optimal efficiency: the bit-sizes of the keys and the run-times of all
involved algorithms are quasi-linear in the security parameter. A central tech-
nical contribution was a reduction from search RLWE to decision RLWE, when
K is cyclotomic, and decision RLWE for cyclotomic fields is now pervasive in
lattice-based cryptography, including in practice [ADPS16,BDK+18,DLL+18].
The search-to-decision reduction from [LPR10] was later extended to the case
of general Galois rings in [EHL14,CLS17].

Prior to RLWE, Stehlé et al. [SSTX09] introduced what is now referred to as
Polynomial Ring Learning With Errors (PLWE), for cyclotomic polynomials of
degree a power of 2. PLWE is parametrized by a monic irreducible f ∈ Z[x] and
an integer q ≥ 2, and consists in recovering a secret s ∈ Zq[x]/f from arbitrarily
many samples (ai, ai · s + ei) where each ai is uniformly sampled in Zq[x]/f and
each ei is a small random element of R[x]/f . The decision variant consists in
distinguishing arbitrarily many such samples for a common s sampled uniformly
in Zq[x]/f , from uniform samples. Here the noise term ei is sampled such that its
coefficient vector follows a Gaussian distribution with a small covariance matrix.
Stehlé et al. gave a reduction from the restriction of ApproxSVP to the class of
lattices corresponding to ideals of Z[x]/f , to search PLWE, for f a power-of-2
cyclotomic polynomial.

Finally, a variant of RLWE with s ∈ OK/qOK rather than O∨
K/qO∨

K was also
considered (see, e.g., [DD12] among others), to avoid the complication of having
to deal with the dual O∨

K of OK . In the rest of this paper, we will refer to the
latter as primal-RLWE and to standard RLWE as dual-RLWE.
The case of cyclotomics. Even though [LPR10] defined RLWE for arbitrary
number fields, the problem was mostly studied in the literature for K cyclotomic.
This specialization had three justifications:

• it leads to very efficient cryptographic primitives, in particular if q totally
splits over K;

• the hardness result from [LPR10] holds for cyclotomics;
• no particular weakness was known for these fields.

Among cyclotomics, those of order a power of 2 are a popular choice. In the
case of a field K defined by the cyclotomic polynomial f , we have that OK =
Z[α] for α a root of f . Further, in the case of power-of-2 cyclotomics, mapping
the coefficient vector of a polynomial in Z[x]/f to its Minkowski embedding is
a scaled isometry. This makes primal-RLWE and PLWE collapse into a single
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problem. Still in the case of power-of-2 cyclotomics, the dual O∨
K is a scaling

of OK , implying that dual and primal-RLWE are equivalent. Apart from the
monogenicity property, these facts do not hold for all cyclotomics. Nevertheless,
Ducas and Durmus [DD12] showed it is still possible to reduce dual-RLWE to
primal-RLWE.
Looking at other fields. The RLWE hardness proof holds with respect to a
fixed field: the reduction in [LPR10] maps ApproxSVP for lattices corresponding
to OK-ideals with small approximation factors, to decision/search dual-RLWE
on K. Apart from the very specific case of field extensions [GHPS12], hardness
on K seems unrelated to hardness on another field K ′. One may then wonder
if RLWE is easier for some fields. The attacks presented in [EHL14,ELOS15,
CLS17,CLS16] were used to identify weak generating polynomials f of a num-
ber field K, but they only work for error distributions with small width relative
to the geometry of the corresponding ring [CIV16b,CIV16a,Pei16]. At this occa-
sion, the relationships between the RLWE and PLWE variants were more closely
investigated.

Building upon [CGS14,CDPR16], Cramer et al. [CDW17] gave a quantum
polynomial-time ApproxSVP algorithm for ideals of OK when K is a cyclo-
tomic field of prime-power conductor, when the ApproxSVP approximation fac-
tor is 2 ˜O(

√
deg K). For general lattices, the best known algorithm [SE94] runs in

time 2 ˜O(
√

n) for such an approximation factor, where n is the lattice dimension
(here n = deg K). We note that the result from [CGS14,CDPR16] was partly
extended in [BBdV+17] to principal ideals generated by a short element in a
completely different family of fields. These results show that all fields are not
equal in terms of ApproxSVP hardness (unless they turn out to be all weak!). So
far, there is no such result for RLWE.

On the constructive front, Bernstein et al. [BCLvV16] showed that some
non-cyclotomic polynomials f also enjoy practical arithmetic over Zq[x]/f and
lead to efficient cryptographic design (though the concrete scheme relies on the
presumed hardness of another problem than RLWE).
Hedging against the weak field risk. Two recent works propose comple-
mentary approaches to hedge against the risk of a weakness of RLWE for specific
fields. First, in [PRS17], Peikert et al. give a new (quantum) reduction from
ApproxSVP for OK-ideals to decision dual-RLWE for the corresponding field K.
All fields support a (quantum) reduction from ApproxSVP, and hence, from this
respect, one is not restricted to cyclotomics. Second, following an analogous
result by Lyubashevsky for the Small Integer Solution problem [Lyu16], Roşca
et al. [RSSS17] introduced the Middle-Product LWE problem and showed that
it is at least as hard as PLWE for any f in an exponentially large family of f ’s (as
a function of their degree). Neither result is fully satisfactory. In the first case,
it could be that ApproxSVP is easy for lattices corresponding to ideals of OK

for any K: this would make the result vacuous. In the second case, the result
of [RSSS17] focuses on PLWE rather than the more studied RLWE problem.
Our results. The focus on the RLWE hardness for non-cyclotomic fields makes
the discrepancies between the RLWE and PLWE variants more critical. In this
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article, we show that the six problems considered above — dual-RLWE, primal-
RLWE and PLWE, all in both decision and search forms — reduce to one another
in polynomial time with limited error rate increases, for huge classes of rings.
More precisely, these reductions are obtained with the following three results.

• We show that for every field K, it is possible to implement the reduction
from decision (resp. search) dual-RLWE to decision (resp. search) primal-
RLWE from [LPR10, Le. 2.15] and [Pei16, Se. 2.3.2], with a limited error
growth. Note that there exists a trivial converse reduction from primal-RLWE
to dual-RLWE.

• We show that the reduction mentioned above can be extended to a reduc-
tion from decision (resp. search) primal-RLWE in K to decision (resp. search)
PLWE for f , where K is the field generated by the polynomial f . The anal-
ysis is significantly more involved. It requires the introduction of the so-
called conductor ideal, to handle the transformation from the ideal OK to
the order Z[x]/f , and upper bounds on the condition number of the map
that sends the coefficient embeddings to the Minkowski embeddings, to show
that the noise increases are limited. Our conditioning upper bound is polyno-
mial in n only for limited (but still huge) classes of polynomials that include
those of the form xn + x · P (x) − a, with deg P < n/2 and a prime that
is ≥25 · ‖P‖21 and ≤poly(n). A trivial converse reduction goes through for the
same f ’s.

• We exploit the recent technique from [PRS17] to obtain a search to decision
reduction for dual-RLWE.

Concretely, the error rate increases are polynomial in n = deg K, the root
discriminant |ΔK |1/n and, for the reduction to PLWE, in the root algebraic
norm N (CZ[α])1/n of the conductor ideal CZ[α] of Z[α], where α is a root of f
defining K. We note that in many cases of interest, all these quantities are poly-
nomially bounded in n. To enjoy these limited error rate growths, the first two
reductions require knowledge of specific data related to K, namely, a short ele-
ment (with respect to the Minkowski embeddings) in the different ideal (O∨

K)−1

and a short element in CZ[α]. In general, these are hard to compute.
Techniques. The first reduction is derived from [LPR10, Le. 2.15] and [Pei16,
Se. 2.3.2]: if it satisfies some arithmetic properties, a multiplication by an ele-
ment t ∈ OK induces an OK-module isomorphism from O∨

K/qO∨
K to OK/qOK .

For the reduction to be meaningful, we need t to have small Minkowski embed-
dings. We prove the existence of such a small t satisfying the appropriate
arithmetic conditions, by generalizing the inclusion-exclusion technique devel-
oped in [SS13] to study the key generation algorithm of the NTRU signature
scheme [HHPW10].

The Lyubashevsky et al. bijection works with O∨
K and OK replaced by

arbitrary ideals of K, but this does not provide a bijection from OK/qOK to
Z[α]/qZ[α], as Z[α] may only be an order of OK (and not necessarily an ideal).
We circumvent this difficulty by using the conductor ideal of Z[α]. Intuitively,
the conductor ideal describes the relationship between OK and Z[α]. As far as we
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are aware, this is the first time the conductor ideal is used in the RLWE context.
This bijection and the existence of an appropriate multiplier t as above provide
a (non-uniform) reduction from primal-RLWE to a variant of PLWE for which
the noise terms have small Minkowski embeddings (instead of small polynomial
coefficients).

We show that for many number fields, the linear map between polynomial
coefficients and Minkowski embeddings has a condition number that is polyno-
mially bounded in n, i.e., the map has bounded distortion and behaves not too
noticeably differently from a scaling. This implies that the latter reduction is also
a reduction from primal-RLWE to standard PLWE for these rings. We were able
to show condition number bounds that are polynomial in n only for restricted
families of polynomials f , yet exponentially large as n increases. These include in
particular those of the form mentioned above. Note that the primality condition
on the constant coefficient is used only to ensure that f is irreducible and hence
defines a number field. For these f ’s, we use Rouché’s theorem to prove that the
roots are close to the scaled n-th roots of unity (a1/n · αk

n)0≤k<n, and then that
f “behaves” as xn − a in terms of geometric distortion.

Our search-to-decision reduction for dual-RLWE relies on techniques devel-
oped in [PRS17]. In that article, Peikert et al. consider the following ‘oracle hid-
den center’ problem (OHCP). In this problem, we are given access to an oracle O
taking as inputs a vector z ∈ R

k and a scalar t ∈ R
≥0, and outputting a bit. The

probability that the oracle outputs 1 (over its internal randomness) is assumed
to depend only on exp(t) · ‖z − x‖, for some vector x . The goal is to recover
O’s center x . On the one hand, Peikert et al. give a polynomial-time algorithm
for this problem, assuming the oracle is ‘well-behaved’ ([PRS17, Prop. 4.4]). On
the other hand, they show how to map a Bounded Distance Decoding (BDD)
instance to such an OHCP instance if they have access to Gaussian samples
in the dual of the BDD lattice, where the engine of the oracle is the decision
dual-RLWE oracle [PRS17, Se. 6.1]. We construct the OHCP instance from the
decision RLWE oracle in a different manner. We use our input search dual-RLWE
samples and take small Gaussian combinations of them. By re-randomizing the
secret and adding some noise, we can obtain arbitrarily many dual-RLWE sam-
ples. Subtracting from the input samples well-chosen zi’s in KR and setting the
standard deviation of the Gaussian combination appropriately leads to a valid
OHCP instance. The main technical hurdle is to show that a Gaussian combi-
nation of elements of O∨

K/qO∨
K is close to uniform. For this, we generalize a ring

Leftover Hash Lemma proved for specific pairs (OK , q) in [SS11].
Related works. The reductions studied in this work can be combined
with those from ApproxSVP for OK-ideals to dual-RLWE [LPR10,PRS17].
Recently, Albrecht and Deo [AD17] built upon [BLP+13] to obtain a reduction
from Module-LWE to RLWE. This can be both combined with our reductions
and the quantum reductions from ApproxSVP for OK-modules to Module-
LWE1 [LS15,PRS17]. Downstream, the reductions can be combined with the

1 The reduction from [LS15] is limited to cyclotomic fields, but [PRS17] readily extends
to module lattices.
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reduction from PLWE to Middle-Product LWE from [RSSS17]. The latter was
showed to involve an error rate growth that is linearly bounded by the so-called
the expansion factor of f : it turns out that those f ’s for which we could bound
the condition number of the Minkowski map by a polynomial function of deg f
also have polynomially bounded expansion factor. These reductions and those
considered in the present work are pictorially described in Fig. 1.

Fig. 1. Relationships between variants of RLWE and PLWE. The dotted box contains
the problems studied in this work. Each arrow may hide a noise rate degradation
(and module rank - modulus magnitude transfer in the case of [AD17]). The top to
bottom arrows in the dotted box correspond to non-uniform reductions. The reductions
involving PLWE are analyzed for limited family of defining polynomials. The arrows
without references correspond to trivial reductions.

The ideal-changing scaling element t and the distortion of the Minkowski map
were closely studied in [CIV16b,CIV16a,Pei16] for a few precise polynomials and
fields. We use the same objects, but provide bounds that work for all (or many)
fields.
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Impact. As it is standard for the hardness foundations of lattice-based cryptog-
raphy, our reductions should not be considered for setting practical parameters.
They should rather be viewed as a strong evidence that the six problems under
scope are essentially equivalent and do not suffer from a design flaw (unless they
all do). We hope they will prove useful towards understanding the plausibility
of weak fields for RLWE.

Our first result shows that there exists a way of reducing dual-RLWE to
primal-RLWE while controlling the noise growth. Even though the reduction is
non-uniform, it gives evidence that these problems are qualitatively equivalent.
Our second result shows that RLWE and PLWE are essentially equivalent for a
large class of polynomials/fields. In particular, the transformation map between
the Minkowski embeddings and the coefficient embeddings has a bounded distor-
tion. Finally, our search to decision fills an important gap. On the one hand, it
precludes the possibility that search RLWE could be harder than decision RLWE.
On the other hand, it gives further evidence of the decision RLWE hardness.
In [PRS17], the authors give a reduction from ApproxSVP for OK-ideals to deci-
sion RLWE. But in the current state of affairs, ApproxSVP for this special class of
lattices seems easier than RLWE, at least for some parameters. Indeed, Cramer
et al. [CDW17] gave quantum algorithms that outperform generic lattice algo-
rithms for some range of approximation factors in the context of ideal lattices.
On the opposite, RLWE is qualitatively equivalent to ApproxSVP for OK-modules
[LS15,AD17].

As the studied problems reduce to one another, one may then wonder which
one to use for cryptographic design. Using dual-RLWE requires knowledge of OK ,
which is notoriously hard to compute for an arbitrary field K. This may look
as an incentive to use the corresponding PLWE problem instead, as it does not
require the knowledge of OK . Yet, for it to be useful in cryptographic design, one
must be able to decode the noise from its representative modulo a scaled version
of the lattice corresponding to Z[α]. This seems to require the knowledge of a
good basis of that lattice, which may not be easy to obtain either, depending on
the considered polynomial f .
Notations. If D is a distribution, we write x ←↩ D to say that we sample x
from D. If D1,D2 are continuous distributions over the same measurable set Ω,
we let Δ(D1,D2) =

∫
Ω

|D1(x)−D2(x)|dx denote their statistical distance. Sim-
ilarly, we let R(D1‖D2) =

∫
Ω

D1(x)2/D2(x)dx denote their Rényi divergence. If
E is a set of finite measure, we let U(E) denote the uniform distribution over E.
For a matrix V = (vij), we let ‖V ‖ =

√∑
1≤i,j≤n |vij |2 denote its Frobenius

norm.
This is the proceedings’ version. The full version contains additional appen-

dices and it is available on the IACR eprint archive.

2 Preliminaries

In this section, we give some background on algebraic number theory used in
lattice-based cryptography, recall properties of Euclidean lattices, and state the
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precise definitions of the RLWE variants we will consider. More details on stan-
dard tools of algebraic number theory can be found in the full version. Useful
references include [Ste17,Cona].

2.1 Some Algebraic Number Theory

Rings and ideals in number fields. In this article, we call any subring of K a
number ring. For a number ring R, an (integral) R-ideal is an additive subgroup
I ⊆ R which is closed by multiplication in R, i.e., such that IR = I. A more
compact definition is to say that I is an R-module. If a1, . . . , ak are elements
in R, we let 〈a1, . . . , ak〉 = a1R + . . . + akR and call it the ideal generated by
the ai’s. The product of two ideals I, J is the ideal generated by all elements xy
with x ∈ I and y ∈ J . The sum, product and intersection of two R-ideals are
again R-ideals.

Two integral R-ideals I, J are said to be coprime if I + J = R, and, in this
case, we have I ∩ J = IJ . Any non-zero ideal in a number ring has finite index,
i.e., the quotient ring R/I is always finite when I is a non-zero R-ideal. An R-
ideal p is said to be prime if whenever p = IJ for some R-ideals I, J , then either
I = p or J = p. In a number ring, any prime ideal p is maximal [Ste17, p. 19],
i.e., R is the only R-ideal containing it. It also means that the quotient ring R/p
is a finite field. It is well-known that any OK-ideal admits a unique factorization
into prime OK-ideals, i.e., it can be written I = pe1

1 . . . pek

k with all pi’s distinct
prime ideals. It fails to hold in general number rings and orders, but we describe
later in Lemma 2.1 how the result can be extended in certain cases.

A fractional R-ideal I is an R-module such that xI ⊆ R for some x ∈ K×.
An integral ideal is a fractional ideal, and so are the sum, the product and the
intersection of two fractional ideals. A fractional R-ideal I is said to be invertible
if there exists a fractional R-ideal J such that IJ = R. In this case, the (unique)
inverse is the integral ideal I−1 = {x ∈ K : xI ⊆ R}. Any OK-ideal is invertible,
but it is again false for a general number ring.

The algebraic norm of a non-zero integral R-ideal I is defined as NR(I) =
|R/I|, and we will omit the subscript when R = OK . It satisfies NR(IJ) =
NR(I)NR(J) for every R-ideals I, J .

The dual of a fractional R-ideal I is I∨ = {α ∈ K : Tr(αI) ⊆ Z}, which is
also a fractional R-ideal. We always have II∨ = R∨, so that I∨ = I−1R∨ when
I is invertible. We also have I∨∨ = I for any R-ideal I.

A particularly interesting dual is O∨
K , whose inverse (O∨

K)−1 is called the
different ideal. The different ideal is an integral ideal, whose norm ΔK =
N ((O∨

K)−1) is called the discriminant of the number field. We note that, for
every f defining K, the field discriminant ΔK is a factor of the discriminant
of f . The latter is denoted Δf and is defined as Δf =

∏
i�=j(αi − αj), where

α1, . . . , αn are the roots of f . This provides an upper bound on ΔK in terms of
the defining polynomial f .
Orders in number fields. An order O in K is a number ring which is a finite
index subring of OK . In particular, the ring of integers OK is the maximal order
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in K. Number rings such as Z[α], with α a root of a defining polynomial f ,
are of particular interest. The conductor of an order O is defined as the set
CO = {x ∈ K : xOK ⊆ O}. It is contained in O, and it is both an O-ideal and
an OK-ideal: it is in fact the largest ideal with this property. It is never empty,
as it contains the index [OK : O].

If it is coprime with the conductor, an ideal in OK can be naturally considered
as an ideal in O, and reciprocally. This is made precise in the following lemma.

Lemma 2.1 ([Cona, Th. 3.8]). Let O be an order in K.

1. Let I be an OK-ideal coprime to CO. Then I ∩O is an O-ideal coprime to CO
and the natural map O/I ∩ O −→ OK/I is a ring isomorphism.

2. Let J be an O-ideal coprime to CO. Then JOK is an OK-ideal coprime to CO
and the natural map O/J −→ OK/JOK is a ring isomorphism.

3. The set of OK-ideals coprime to CO and the set of O-ideals coprime to CO
are in multiplicative bijection by I 
−→ I ∩ O and J 
−→ JOK .

The above description does not tell how to “invert” the isomorphisms. This
can be done by a combination of the following lemmas and passing through the
conductor, as we will show in the next section.

Lemma 2.2. Let O be an order in K and I an OK-ideal coprime to the con-
ductor CO. Then the inclusions CO ⊆ O and CO ⊆ OK induce isomorphisms
CO/I ∩ CO � O/I ∩ O and CO/I ∩ CO � OK/I.

Proof. By assumption we have CO + I = OK , so that the homomorphism CO →
OK/I is surjective. By Lemma 2.1, the set I ∩ O is an O-ideal coprime to CO so
that CO + I ∩ O = O. This implies that the homomorphism CO → O/I ∩ O is
surjective too. Both homomorphisms have kernel I ∩ CO. ��
Lemma 2.3 ([Cona, Cor. 3.10]). Let O be an order in K and β ∈ O such
that βOK is coprime to CO. Then βOK ∩ O = βO.

Quotients of ideals. We will use the following result.

Lemma 2.4 ([LPR10, Le. 2.14]). Let I and J two OK-ideals. Let t ∈ I such
that the ideals t · I−1 and J are coprime and let M be any fractional OK-ideal.
Then the function θt : M → M defined as θt(x) = t · x induces an OK-module
isomorphism from M/JM to IM/IJM.

The authors of [LPR10] also gave an explicit way to obtain a suitable t by
solving a set of conditions stemming from the Chinese Remainder Theorem.
However, this construction does not give good control on the magnitudes of the
Minkowski embeddings of t.
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2.2 Lattices

For the remainder of this article, a lattice is defined as a full-rank discrete addi-
tive subgroup of an R-vector space V which is a Cartesian power Hm (for m ≥ 1)
of H := {x ∈ R

s1 × C
2s2 : ∀i ≤ s2 : xs1+s2+i = xs1+i}. This space H is some-

times called the “canonical” space. A given lattice L can be thought as the set
of Z-linear combinations (bi)i of some linearly independent vectors of V . These
vectors are said to form a lattice basis, and we define the lattice determinant as
det L = (det(〈bi, bj〉)i,j)1/2 (it does not depend on the choice of the basis of L).
For v ∈ V , let ‖v‖ = (

∑
i≤dimV |vi|2)1/2 denote the standard Hermitian norm

on V and ‖v‖∞ = maxi≤dimV |vi| denote the infinity norm. The minimum λ1(L)
is the Hermitian norm of a shortest non-zero element in L. We define λ∞

1 (L) sim-
ilarly. If L is a lattice, then we define its dual as L∗ = {y ∈ V : yT L ⊆ Z}.
Ideal lattices. While it is possible to associate lattices with fractional ideals of
a number ring, we will not need it. Any fractional OK-ideal I is a free Z-module
of rank n = deg(K), i.e., it can be written as Zu1 + · · · + Zun for some ui’s
in K. Its canonical embedding σ(I) is a lattice of dimension n in the R-vector
space H ⊆ R

s1 ×C
2s2 . Such a lattice is called an ideal lattice (for OK). For the

sake of readability, we will abuse notations and often identify I and σ(I). It is
possible to look at the coefficient embedding of such lattices as well, but we will
not need it in this work. The lattice corresponding to I∨ is I∗. The discriminant
of K satisfies ΔK = (det OK)2. In the following lemma, the upper bounds follow
from Minkowski’s theorem whereas the lower bounds are a consequence of the
algebraic structure underlying ideal lattices.

Lemma 2.5 (Adapted from [PR07, Se. 6.1]). Let K be a number field of
degree n. For any fractional OK-ideal I, we have:

√
n · N (I)1/n ≤ λ1(I) ≤ √

n · (N (I)
√

ΔK)1/n,
N (I)1/n ≤ λ∞

1 (I) ≤ (N (I)
√

ΔK)1/n.

Gaussians. It is standard practice in the RLWE setting to consider Gaussian
distributions with diagonal covariance matrices. In this work, we will be inter-
ested in the behavior of samples after linear transformations that are not nec-
essarily diagonal. As the resulting covariance matrix may not be diagonal, we
adopt a more general framework. Let Σ � 0, i.e., a symmetric positive def-
inite matrix. We define the Gaussian function on R

n of covariance matrix Σ
as ρΣ(x) := exp(−π · xT Σ−1x) for every vector x ∈ R

n. The Gaussian distri-
bution DΣ is the probability distribution whose density is proportional to ρΣ.
When Σ = diag(r2i )i for some r ∈ R

n, we write ρr and Dr , respectively.
Let (e i)i≤n be the canonical basis of C

n. We define h i = e i for i ≤ s1,
and hs1+i = (es1+i + es1+s2+i)/

√
2 and hs1+s2+i = (es1+i − es1+s2+i)/

√−2
for i ≤ s2. The h i’s form an orthonormal R-basis of H. We define the Gaus-
sian distribution DH

Σ as the distribution obtained by sampling x ←↩ DΣ and
returning

∑
i xih i. We will repeatedly use the observation that if x is sampled

from DH
Σ and t belongs to KR, then t · x is distributed as DH

Σ′ with Σ′ =
diag(|σi(t)|) · Σ · diag(|σi(t)|).
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For a lattice L over V = Hm (for some m ≥ 1) and a coset c ∈ V/L, we
let DL+c,r denote the discretization of DH

rI over L + c (we omit the subscript
for DL+c,r as all our lattices are over Cartesian powers of H). For ε > 0, we define
the smoothing parameter ηε(L) as the smallest r > 0 such that ρ(1/r)I(L∗ \0 ) ≤
ε. We have the following upper bounds.

Lemma 2.6 ([MR04, Le. 3.3]). For any lattice L over Hm and ε ∈ (0, 1), we
have ηε(L) ≤ √

log(2mn(1 + 1/ε))/π/λ∞
1 (L∗).

Lemma 2.7 (Adapted from [PR07, Le. 6.5]). For any OK-ideal I and ε ∈
(0, 1), we have ηε(I) ≤ √

log(2n(1 + 1/ε))/(πn) · (N (I)ΔK)1/n.

The following are standard applications of the smoothing parameter.

Lemma 2.8 ([GPV08, Cor. 2.8]). Let L′ ⊆ L be full-rank lattices, ε ∈ (0, 1/2)
and r ≥ ηε(L′). Then Δ(DL,r mod L′, U(L/L′)) ≤ 2ε.

Lemma 2.9 ([PR06, Le. 2.11]). Let L be an n-dimensional lattice, ε ∈ (0, 1/3)
and r ≥ 4ηε(L). Then DL,r(0) ≤ 2−2n+1.

Lemma 2.10 (Adapted from [MR04, Le. 4.4]). Let L be an n-
dimensional lattice, ε ∈ (0, 1/3) and r ≥ ηε(L). Then Prx←↩DL,r

[‖x‖ ≥
2r

√
n] ≤ 2−2n.

2.3 Computational Problems

We now formally define the computational problems we will study.

Definition 2.11 (RLWE and PLWE distributions). Let K a degree n number
field defined by f , OK its ring of integers, Σ � 0 and q ≥ 2.

For s ∈ O∨
K/qO∨

K , we define the dual-RLWE distribution A∨
s,Σ as the dis-

tribution over OK/qOK × KR/qO∨
K obtained by sampling a ←↩ U(OK/qOK),

e ←↩ DH
Σ and returning the pair (a, a · s + e).

For s ∈ OK/qOK , we define the primal-RLWE distribution As,Σ as the dis-
tribution over OK/qOK × KR/qOK obtained by sampling a ←↩ U(OK/qOK),
e ←↩ DH

Σ and returning the pair (a, a · s + e).
For s ∈ Zq[x]/f , we define the PLWE distribution Bs,Σ as the distribution

over Zq[x]/f × Rq[x]/f obtained by sampling a ←↩ U(Zq[x]/f), e ←↩ DΣ and
returning the pair (a, a · s + e) (with Rq = R/qZ).

In the definition above, we identified the support H of DH
Σ with KR, and the

support R
n of DΣ with R[x]/f . Note that sampling from A∨

s,Σ and As,Σ seems
to require the knowledge of a basis of OK . It is not known to be computable in
polynomial-time from a defining polynomial f of an arbitrary K. In this article,
we assume that a basis of OK is known.
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Definition 2.12 (The RLWE and PLWE problems). We use the same nota-
tions as above. Further, we let E� be a subset of Σ � 0 and D� be a distribution
over Σ � 0.

Search dual-RLWEq,E� (resp. primal-RLWE and PLWE) consists in finding s
from a sampler from A∨

s,Σ (resp. As,Σ and Bs,Σ), where s ∈ O∨
K/qO∨

K (resp.
s ∈ OK/qOK and s ∈ Zq[x]/f) and Σ ∈ E� are arbitrary.

Decision dual-RLWEq,D� (resp. primal-RLWE and PLWE) consists in distin-
guishing between a sampler from A∨

s,Σ (resp. As,Σ and Bs,Σ) and a uniform
sampler over OK/qOK × KR/qO∨

K (resp. OK/qOK × KR/qOK and Zq[x]/f ×
Rq[x]/f), with non-negligible probability over s ←↩ O∨

K/qO∨
K (resp. s ∈ OK/qOK

and s ∈ Zq[x]/f) and Σ ←↩ D�.

The problems above are in fact defined for sequences of number fields of
growing degrees n such that the bit-size of the problem description grows at
most polynomially in n. The run-times, success probabilities and distinguishing
advantages of the algorithms solving the problems are considered asymptotically
as functions of n.

The following reduction from dual-RLWE to primal-RLWE is a consequence
of Lemma 2.4. A proof is given in the full version.

Theorem 2.13 (Adapted from [Pei16, Se. 2.3.2]). Let Σ � 0 and s ∈
O∨

K/qO∨
K . Let t ∈ (O∨

K)−1 such that t(O∨
K) + qOK = OK . Then the map

(a, b) 
→ (a, t · b) transforms A∨
s,Σ to At·s,Σ′ and U(OK/qOK × KR/qO∨

K) into
U(OK/qOK × KR/qOK), with Σ′ = diag(|σi(t)|) · Σ · diag(|σi(t)|). The natural
inclusion OK → O∨

K induces a map that transforms U(OK/qOK ×KR/qOK) to
U(OK/qOK × KR/qO∨

K), and As,Σ to A∨
s,Σ.

We will consider variants of the decision problems for which the distinguishing
must occur for all s ∈ O∨

K/qO∨
K (resp. s ∈ OK/qOK and s ∈ Zq[x]/f) and

all Σ � 0 rather than with non-negligible probability over s. We call this variant
worst-case decision dual-RLWE (resp. primal-RLWE and PLWE). Under some
conditions on D� and E�, these variants are computationally equivalent.

Lemma 2.14 (Adapted from [LPR10, Se. 5.2]). We use the same nota-
tions as above. If PrΣ←↩D� [Σ /∈ E�] ≤ 2−n, then decision dual-RLWEq,D� (resp.
primal-RLWE and PLWE) reduces to worst-case decision dual-RLWEq,E� (resp.
primal-RLWE and PLWE).

Assume further that D� can be sampled from in polynomial-time. If
maxΣ∈E� R(D�‖D� + Σ) ≤ poly(n), then worst-case decision dual-RLWEq,E�
(resp. primal-RLWE and PLWE) reduces to decision dual-RLWEq,D� (resp.
primal-RLWE and PLWE).

Note that it is permissible to use the Rényi divergence here even though we are
considering decision problems. Indeed, the argument is applied to the random
choice of the noise distribution and not to the distinguishing advantage. The
same argument has been previously used in [LPR10, Se. 5.2].
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Proof. The first statement is direct. We prove the second statement only for dual-
RLWE, as the proofs for primal-RLWE and PLWE are direct adaptations. Assume
we are given a sampler that outputs (ai, bi) with ai ←↩ U(OK/qOK) and bi either
uniform in KR/qO∨

K or of the form bi = ais+ei with s ∈ O∨
K/qO∨

K and ei ←↩ DH
Σ .

The reduction proceeds by sampling s′ ←↩ U(O∨
K/qO∨

K) and Σ′ ←↩ D�, and
mapping all input (ai, bi)’s to (a′

i, b
′
i) = (ai, bi + ais

′ + e′
i) with e′

i ←↩ DH
Σ′ . This

transformation maps the uniform distribution to itself, and A∨
s,Σ to A∨

s+s′,Σ′′

with Σ′′
ij = Σij +Σ′

ij for all i, j. If the success probability (success being enjoying
a non-negligible distinguishing advantage) over the error parameter sampled
from D� is non-negligible, then so is it for the error parameter sampled D� +
Σ, as, by assumption, the Rényi divergence R(D�‖D� + Σ) is polynomially
bounded. ��

Many choices of D� and E� satisfy the conditions of Lemma 2.14. The follow-
ing is inspired from [LPR10, Se. 5.2]. We define the distribution E� as follows,
for an arbitrary r: Let sij = r2(1 + nxij) for all i > j, sii = r2(1 + n3xii)
for all i and sij = sji for all i < j, where the xij ’s are independent samples
from the Γ (2, 1) distribution (of density function x 
→ x exp(−x)); the output
matrix is (sij)ij . Note that it is symmetric and strictly diagonally dominant
(and hence � 0) with probability 1 − 2−Ω(n). Then the set of all Σ � 0 with
coefficients of magnitudes ≤r2n4 satisfies the first condition of Lemma 2.14, and
the set of all Σ � 0 with coefficients of magnitudes ≤r2 satisfies the second
condition of Lemma 2.14. We can hence switch from one variant to the other
while incurring an error rate increase that is ≤poly(n).

3 Controlling Noise Growth in Dual to Primal Reduction

The reduction of Theorem 2.13 is built upon the existence of t as in Lemma 2.4.
While this existence is guaranteed constructively by [LPR10], the size is not
controlled by the construction. Another t that satisfies the conditions is t =
f ′(α), where f ′ is the derivative of f defining K = Q[α]. Indeed, from [Conb,
Rem. 4.5], we know that f ′(α) ∈ (O∨

K)−1. However, the noise growth incurred
by multiplication by f ′(α) may be rather large in general: we have N(f ′(α)) =
Δf = [OK : Z[α]]2 · N ((O∨

K)−1).
In this section, we give a probabilistic proof that adequate t’s with controlled

size can be found by Gaussian sampling.
Let I and J be integral ideals of OK . Theorem 3.1 below states that a Gaus-

sian sample t in I is such that t · I−1 + J = OK with non-negligible probability.
The main technical hurdle is to show that the sample is not trapped in IJ ′

with J ′ a non-trivial factor of J . We handle this probability in different ways
depending on the algebraic norm of J ′, extending an idea used in [SS13, Se. 4].

• For small-norm factors J ′ of J , the Gaussian folded modulo IJ ′ is essen-
tially uniform over I/IJ ′, by Lemma 2.8. This requires the standard devia-
tion parameter s to be above the smoothing parameter of IJ ′. We use the
smoothing parameter bound from Lemma 2.7.
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• For large-norm factors J ′, we argue that the non-zero points of IJ ′ are very
unlikely to be hit, thanks to the Gaussian tail bound given in Lemma 2.10
and the fact that the lattice minimum of IJ ′ is large, by Lemma 2.5.

• For middle-norm factors J ′, neither of the arguments above applies. Instead,
we bound the probability that t belongs to IJ ′ by the probability that t
belongs to IJ ′′, where J ′′ is a non-trivial factor of J ′, and use the first argu-
ment above. The factor J ′′ must be significantly denser than J ′ so that we
have smoothing. But it should also be significantly sparser than OK so that
the upper bound is not too large.

Setting the standard deviation parameter of the discrete Gaussian so that at
least one of the three arguments above applies is non-trivial. In particular, this
highly depends on how the ideal J factors into primes (whether the pieces are
numerous, balanced, unbalanced, etc.). The choice we make below works in all
cases while still providing a reasonably readable proof and still being sufficient
for our needs, from an asymptotic perspective. In many cases, better choices
can be made. If J is prime, we can take a very small s and use only the second
argument. If all factors of J are small, there is good enough ‘granularity’ in the
factorization to use the third argument, and again s can be chosen very small.

Theorem 3.1. Let I and J be integral OK-ideals, and write J = pe1
1 . . . pek

k

for some prime ideals pi. We sort the pi’s by non-decreasing algebraic norms.
Assume that we can take δ ∈ [4n+log2 ΔK

log2 N (J) , 1].2 We define:

s =

{(N (J)1/2N (I)ΔK

)1/n
if N (pk) ≥ N (J)1/2+δ,

(N (J)1/2+2δN (I)ΔK

)1/n
else.

Then we have

Pr
t←↩DI,s

[tI−1 + J = OK ] ≥ 1 − k

N (p1)
− 2−n+4.

Proof. We bound the probability P of the negation, from above. We have

P = Pr
t←↩DI,s

[t ∈
⋃

i∈[k]

Ipi] =
∑

S⊆[k],S �=∅
(−1)|S|+1 · Pr

t←↩DI,s

[t ∈ I ·
∏

i∈S

pi].

We rewrite it as P = P1 + P2 with

P1 =
∑

S⊆[k],S �=∅
(−1)|S|+1 1

∏
i∈S N (pi)

= 1 −
∏

i∈[k]

(

1 − 1
N (pi)

)

,

P2 =
∑

S⊆[k],S �=∅
(−1)|S|+1

(

Pr
t←↩DI,s

[t ∈ I ·
∏

i∈S

pi] −
∏

i∈S

1
N (pi)

)

.

2 The parameter δ should be thought as near 0. It can actually be chosen such if N (J)
is sufficiently large.
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We have P1 ≤ 1 − (1 − 1/N (p1))k ≤ k/N (p1). Our task is now to bound P2.
Assume first that N (pk) ≥ N (J)1/2+δ. This implies that

∏
i∈S N (pi) ≤

N (J)1/2−δ for all S ⊆ [k] not containing k. By Lemma 2.7, we have s ≥
ηε(I

∏
i∈S pi) for all such S’s, with ε = 2−2n. We “smooth” out those ideals,

i.e., we use Lemma 2.8 to obtain, for all S ⊆ [k] \ {k}:
∣
∣
∣
∣
∣

Pr
t←↩DI,s

[t ∈ I ·
∏

i∈S

pi] −
∏

i∈S

1
N (pi)

∣
∣
∣
∣
∣
≤ 2ε.

Now if S is a subset containing k, then we have N (
∏

i∈S pi) ≥ N (J)1/2+δ. By
Lemma 2.5, we have λ1(I

∏
i∈S pi) ≥ √

n · N (I)1/nN (J)(1/2+δ)/n. On the other
hand, by Lemma 2.10, we have Prt←↩DI,s

[‖t‖ ≥ 2s
√

n] ≤ 2−2n. Thanks to our
choice of s, the assumption on δ and Lemma 2.9, we obtain

Pr
t←↩DI,s

[t ∈ I
∏

i∈S

pi] ≤ Pr
t←↩DI,s

[t = 0] + 2−2n ≤ 2−2n+2.

This allows us to bound P2 as follows:

P2 ≤ 2k ·
(
ε + 2−2n+2 + N (J)−(1/2+δ)

)
.

By assumption on δ, we have N (J) ≥ 22n and P2 ≤ 2−n+3. This completes the
proof for the large N (pk) case.

Now, assume that N (pk) < N (J)1/2+2δ. Then, as above, the definition of s
implies that, for any S ⊆ [k] with N (

∏
i∈S pi) ≤ N (J)1/2+δ, we have |Pr[t ∈

I
∏

i∈S pi] − 1/
∏

i∈S N (pi)| ≤ 2−2n+1. Also as above, if we have N (
∏

i∈S pi) ≥
N (J)1/2+3δ, then λ1(I

∏
i∈S pi) is too large for a non-zero element of I

∏
i∈S pi

to be hit with significant probability. Assume finally that

N (J)1/2+2δ ≤ N (
∏

i∈S

pi) ≤ N (J)1/2+3δ.

As N (pk) < N (J)1/2+δ, there exists S′ ⊆ S such that

N (J)δ ≤ N (
∏

i∈S′
pi) ≤ N (J)1/2+2δ.

By inclusion, we have that Pr[t ∈ I
∏

i∈S pi] ≤ Pr[t ∈ I
∏

i∈S′ pi]. Now, as the
norm of

∏
i∈S′ pi is small enough, we can use the smoothing argument above to

claim that

Pr
t←↩DI,s

[t ∈ I
∏

i∈S′
pi] ≤ 2−2n+1 +

1
N (

∏
i∈S′ pi)

≤ 2−2n+1 +
1

N (J)δ
.

By assumption on δ, the latter is ≤2−n+2. Collecting terms allows to complete
the proof. ��
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The next corollary shows that the needed t can be found with non-negligible
probability.

Corollary 3.2. Let I be an integral OK-ideal. Let q ≥ max(2n, 216 · Δ
8/n
K ) be

a prime rational integer and pk a prime factor of qOK with largest norm. We
define:

s =

{
q1/2 · (N (I)ΔK)1/n if N (pk) ≥ q(5/8)·n,

q3/4 · (N (I)ΔK)1/n else.

Then, for sufficiently large n, we have

Pr
t←↩DI,s

[tI−1 + qOK = OK ] ≥ 1/2.

Proof. The result follows from applying Theorem 3.1 with J = qOK and δ = 1/8.
The first lower bound on q ensures that k/N (p1) ≤ 1/2, where k ≤ n denotes the
number of prime factors of qOK and p1 denotes a factor with smallest algebraic
norm. The second lower bound on q ensures that we can indeed set δ = 1/8. ��

We insist again on the fact that the required lower bounds on s can be much
improved under specific assumptions on the factorization of q. For example,
one could choose a q such that all the factors of qOK have large norms, by
sampling q randomly and checking its primality and the factorization of the
defining polynomial f modulo q. In that case, the factors q1/2 and q3/4 can be
decreased drastically.

We note that if the noise increase incurred by a reduction from an LWE-type
problem to another is bounded as nc

1 · qc
2 for some c1 < 1 and some c2 > 0,

then one may set the working modulus q so that the starting LWE problem
has a sufficient amount of noise to not be trivially easy to solve, and the ending
LWE problem has not enough noise to be information-theoretically impossible to
solve (else the reduction would be vacuous). Indeed, it suffices to set q sufficiently
larger than nc1/(1−c2).

4 From Primal-RLWE to PLWE

The goal of this section is to describe a reduction from primal-RLWE to PLWE. As
an intermediate step, we first consider a reduction from primal-RLWE to a variant
PLWEσ of PLWE where the noise is small with respect to the Minkowski embed-
ding rather than the coefficient embedding. Then, we assess the noise distortion
when looking at its Minkowski embedding versus its coefficient embedding.

If K = Q[x]/f for some f =
∏

j≤n(x − αj), the associated Vandermonde
matrix Vf has jth row (1, αj , . . . , α

n−1
j ) and corresponds to the linear map

between the coefficient and Minkowski embedding spaces. Thus a good approx-
imation of the distortion is given by the condition number Cond(Vf ) = sn/s1,
where the si’s refer to the largest/smallest singular values of Vf . As we also have
Cond(Vf ) = ‖Vf‖ · ‖V −1

f ‖, these matrix norms also quantify how much Vf dis-
torts the space. For a restricted, yet exponentially large, family of polynomials
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defining number fields, we show that both ‖Vf‖ and ‖V −1
f ‖ are polynomially

bounded.
To do this, we start from fn,a = xn −a whose distortion is easily computable.

Then we add a “small perturbation” to this polynomial. Intuitively, the roots
of the resulting polynomial should not move much, so that the norms of the
“perturbed” Vandermonde matrices should be essentially the same. We formalize
this intuition in Sect. 4.2 and locate the roots of the perturbed polynomial using
Rouché’s theorem.

Mapping a sample of PLWEσ to a sample of the corresponding PLWE simply
consists in changing the geometry of the noise distribution. A noise distribution
with covariance matrix Σ in the Minkowski embedding corresponds to a noise
distribution of covariance matrice (V −1

f )T ΣV −1
f in the coefficient space. The

converse is also true, replacing V −1
f by Vf . Moreover, the noise growths incurred

by the reductions remain limited whenever ‖Vf‖ and ‖V −1
f ‖ are small.

Overall, reductions between primal-RLWE to PLWE can be obtained by com-
bining Theorems 4.2 and 4.7 below (with Lemma 2.14 to randomize the noise
distributions).

4.1 Reducing Primal-RLWE to PLWEσ

We keep the notations of the previous section, and let Z[x]/(f) = O.

Definition 4.1 (The PLWEσ problem). Let also Σ be a positive definite
matrix, and q ≥ 2. For s ∈ O/qO, we define the PLWEσ distribution Bσ

s,Σ

as the distribution over O/qO × KR/qO obtained by sampling a ←↩ U(O/qO),
e ←↩ DH

Σ and returning the pair (a, a · s + e)
Let D� be a distribution over Σ � 0. Decision PLWEσ consists in distinguish-

ing between a sampler from Bσ
s,Σ and a uniform sampler over O/qO × KR/qO,

with non-negligible probability over s ←↩ O/qO and Σ ←↩ D�.

Theorem 4.2. Assume that qOK + CO = OK . Let Σ be a positive definite
matrix and s ∈ OK/qOK . Let t ∈ CO such that tC−1

O +qOK = OK . Then the map
(a, b) 
→ (t·a, t2·b) transforms U(OK/qOK×KR/qOK) to U(O/qO×KR/qO) and
As,Σ to Bσ

t·s,Σ′ , where the new covariance is Σ′ = diag(|σ(ti)|2)·Σ·diag(|σi(t)|2).
Let Bσ

s,Σ be a PLWEσ distribution. The natural inclusion O → OK induces a
map that transforms U(O/qO × KR/qO) to U(OK/qOK × KR/qOK) and Bσ

s,Σ

to As,Σ.

Proof. Let (a, b = a · s+ e) be distributed as As,Σ. Let a′ = t ·a and b′ = t2 · b =
a′ · (t · s) + e′, with e′ = t2 · e. Then a′ is uniformly distributed in CO/qCO by
applying Lemma 2.4 for I = CO, J = qOK and M = OK . It is also uniformly
distributed in O/qO by combining Lemmas 2.2 and 2.3. The noise follows the
claimed distribution, see the observation in Sect. 2.2. The fact that t · s ∈ O/qO
completes the proof that As,Σ is mapped to Bσ

t·s,Σ′ .
Now, let (a, b) be uniform in OK/qOK ×KR/qOK . We already know that a′ is

uniformly distributed in O/qO. Let us now consider the distribution of b′. Thanks
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to the assumption on qOK , we also have t2C−1
O + qOK = OK . Therefore, by

Lemma 2.4, multiplication by t2 induces an isomorphism OK/qOK � CO/qCO,
and hence, by Lemmas 2.2 and 2.3, an isomorphism OK/qOK � O/qO. This
gives the first reduction.

We now turn to the converse reduction. By coprimality and Lemmas 2.2
and 2.4, we have |O/qO| = |OK/qOK |. This implies that any (a, b) uniform in
O/qO ×KR/qO is also uniform in OK/qOK ×KR/qOK . The inclusion O ⊆ OK

allows to conclude. ��
As Theorem 2.13, Theorem 4.2 relies on a the existence of a good multiplier.

Writing K = Q[x]/(f) = Q[α] and O = Z[α], the element f ′(α) again satisfies
the constraints. Indeed, we know that O∨ = 1

f ′(α)O (see [Conb, Th. 3.7]), and
we have the inclusion OK ⊆ O∨. Multiplying by f ′(α), we obtain f ′(α)OK ⊆ O.
By definition, this means that f ′(α) ∈ CO, as claimed. While a large f ′(α) would
mean a large noise growth in the primal-RLWE to PLWEσ reduction, we described
in Sect. 3 how to find a smaller adequate multiplier if needed.

We have N (f ′(α)) = [OK : Z[α]]2 · ΔK , and, from [Ste17, p. 48], the prime
factors of [OK : Z[α]] are exactly those of N (CO). Provided the valuations are
not too high, there should be smaller elements in CO than f ′(α). We provide in
the full version concrete examples of number fields with defining polynomials f
such that the norm of f ′(α) is considerably larger than both the norms of CO
and (O∨

K)−1.

4.2 Distortion Between Embeddings

To bound the norms of a Vandermonde matrix associated to a polynomial and
its inverse, we study the magnitude of the roots and their pairwise distances.
It is known that ‖V ‖2 = Tr(V ∗V ), where ∗ denotes the transpose-conjugate
operator. For Vandermonde matrices, this gives

‖Vf‖2 =
∑

j∈[n]

∑

k∈[n]

|αj |2(k−1), (1)

which can be handled when the magnitudes of the αj ’s are known. The entries
of V −1

f = (wij) have well-known expressions as:

wij = (−1)n−i en−i(αj)
∏

k �=j

(αj − αk)
, (2)

where e0 = 1, ej for j > 0 stands for the elementary symmetric polynomial of
total degree j in n−1 variables, and αj = (α1, . . . , αj−1, αj+1, . . . , αn), the vector
of all roots but αj . We have the following useful relations with the symmetric
functions Ei of all the roots (for all j):

⎧
⎪⎨

⎪⎩

E1(α) = αj + e1(αj),
Ei(α) = αjei−1(αj) + ei(αj) for 2 ≤ i ≤ n − 1,

En(α) = αjen−1(αj).
(3)
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Combining (3) with Vieta’s formulas, bounds on the magnitudes of the roots
leads to bounds on the numerators of the wij ’s. The denominators encode the
separation of the roots, and deriving a precise lower bound turns out to be the
main difficulty. By differentiating f(x) =

∏
j∈[n](x−αj), we note that

∏
k �=j |αj−

αk| = |f ′(αj)|.
A family of polynomials with easily computable distortion. We first
introduce a family of polynomials for which ‖Vf‖ and ‖V −1

f ‖ are both simple
to estimate. For n ≥ 2 and a ≥ 1, we define fn,a = xn − a. The roots can be
written3 as αj = a1/ne2iπ

j
n , for 0 ≤ j < n. As these are scalings of the roots of

unity, both their magnitude and separation are well-understood. With (1), we
obtain ‖Vfn,a

‖ ≤ na
n−1

n ≤ na.
For any j, we readily compute |f ′

n,a(αj)| = na
n−1

n . Using (3), we observe that
|ei(αj)| = |αj |i for 1 ≤ i < n. We obtain that the row norm of V −1

fn,a
is given by

its first row as ∑

j∈[n]

|w1j | =
1

na
n−1

n

·
∑

j∈[n]

|αj |n−1 = 1,

from which it follows that ‖V −1
fn,a

‖ ≤ √
n.

Small perturbations of fn,a. Let P (x) =
∑

1≤j≤ρ·n pjx
j for some con-

stant ρ ∈ (0, 1), where the pj ’s are a priori complex numbers. Locating the
roots of gn,a = fn,a +P is our first step towards estimating ‖Vgn,a

‖ and ‖V −1
gn,a

‖.
We will use the following version of Rouché’s theorem.

Theorem 4.3 (Rouché, adapted from [Con95, pp. 125–126]). Let f, P be
complex polynomials, and let D be a disk in the complex plane. If for any z on the
boundary ∂D we have |P (z)| < |f(z)|, then f and f + P have the same number
of zeros inside D, where each zero is counted as many times as its multiplicity.

The lemma below allows to determine sufficient conditions on the parameters
such that the assumptions of Theorem 4.3 hold. We consider small disks Dk =
D(αk, 1/n) of radius 1/n around the roots α1, . . . , αn of fn,a, and we let ∂Dk

denote their respective boundaries. We let ‖P‖1 =
∑

j |pj | denote the 1-norm
of P .

Lemma 4.4. We have, for all k ≤ n and z ∈ ∂Dk:

|P (z)| ≤ (ae)ρ · ‖P‖1 and |fn,a(z)| ≥ a

(

1 − cos(a−1/n) − 2ea−1/n

na2/n

)

.

Proof. Write z = αk + eit

n for some t ∈ [0, 2π). We have |z| ≤ a1/n + 1/n,
and hence |z|ρn ≤ aρ

(
1 + 1

na1/n

)ρn. The first claim follows from the inequality
|P (z)| ≤ max(1, |z|ρn) · ‖P‖1.

3 For the rest of this section, ‘i’ will refer to the imaginary unit.
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Next, we have |fn,a(z)| = a|(1+ eit
′

na1/n )n − 1|, where t′ = t− 2kπ/n. W.l.o.g.,
we assume that k = 0. Let Log denote the complex logarithm, defined on C\R−.
Since the power series

∑
k≥1(−1)k−1uk/k converges to Log(1 + u) on the unit

disk, we have Log(1 + eit

na1/n ) = eit

na1/n + δ, for some δ satisfying |δ| ≤ |u| ·
∑

k≥1 |u|k/(k + 1) ≤ |u|2 for u = eit

na1/n (note that it has modulus ≤ 1/n ≤ 1/2).
Similarly, we can write exp(nδ) = 1 + ε for some ε satisfying |ε| ≤ 2n|δ| ≤
2/(na2/n). We hence have:

|fn,a(z)| = a · |A · (1 + ε) − 1| ≥ a · ||A − 1| − |ε · A|| ,
with A = exp(eita−1/n). Elementary calculus leads to the inequalities |A − 1| >

1 − cos(a−1/n) and |A| ≤ ea−1/n

for all t ∈ [0, 2π). Details can be found in the
full version. The second claim follows. ��

We note that when a = 2o(n) and n is sufficiently large, then the lower bound
on |fn,a(z)| may be replaced by |fn,a(z)| > a/3. To use Rouché’s theorem, it is
then enough that a, ρ and ‖P‖1 satisfy a > (3eρ‖P‖1) 1

1−ρ . We can now derive
upper bounds on the norms of Vgn,a

and its inverse.

Lemma 4.5. For any a > (‖P‖1 · C−1 · eρ)
1

1−ρ with C = |1 − cos(a−1/n) −
2ea−1/n

na2/n |, we have:

‖Vgn,a
‖ ≤ ane and ‖V −1

gn,a
‖ ≤ n5/2(‖P‖1 + 1)a1/ne2.

Proof. Let αj = a1/ne2iπj/n be the roots of fn,a (for 0 ≤ j < n). Thanks to
the assumptions and Lemma 4.4, Theorem 4.3 allows us to locate the roots
(βj)0≤j<n of gn,a within distance 1/n from the αj ’s. Up to renumbering, we
have |αj − βj | ≤ 1/n for all j. In particular, this implies that |βj | ≤ a1/n + 1/n
for all j. The first claim follows from (1).

Another consequence is that any power less than n of any |βj | is ≤ ae.
We start the estimation of ‖V −1

gn,a
‖ by considering the numerators in (2). Let

k0 = 1 + �n(1 − ρ)�. For any k < k0, we know that Ek(β) = 0. Using (3), we
obtain |ek(β

j
)| = |βj |k ≤ ae for k < k0 and that ek0−1(β

j
) = (−1)k0−1βk0−1

j .

Then (3) gives Ek0(β) = (−1)k0pn−k0 = (−1)k0−1βk0
j + ek0(β

j
), which implies

that |ek0(β
j
)| ≤ |βj |k0 + |pn−k0 |. By induction, we obtain, for all k < n − k0:

|ek0+k(β
j
)| ≤ |pn−k0−k| + |pn−k0−k+1βj | + · · · + |pn−k0β

k
j | + |βj |k0+k

≤ (‖P‖1 + 1)max(1, |βj |n),

so that |ek(β
j
)| ≤ (‖P‖1 + 1)ae for k ≥ 1.

We now derive a lower bound on the denominators in (2). The separation
of the βj ’s is close to that of the αj ’s. Concretely: |βj − βk| ≥ |αj − αk| −
2/n for all j, k. Therefore, we have

∏
k �=j |βj − βk| ≥ ∏

k �=j(|αj − αk| − 2/n).
Using the identity |αj − αk| = 2a1/n sin(|k − j|π/n) and elementary calculus,
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we obtain
∏

k �=j |βj − βk| ≥ a
n−1

n /(ne). Details can be found in the full version.
Thus any coefficient wij of V −1

gn,a
satisfies |wij | ≤ n(‖P‖1 + 1)a1/ne2. The claim

follows from equivalence between the row and Frobenius norms. ��
We now assume that the pj ’s and a are integers. The following lemma states

that, for a prime and sufficiently large, the polynomial gn,a is irreducible, and
thus defines a number field.

Lemma 4.6. Assume that P is an integer polynomial. For any prime a >
‖P‖1 + 1, the polynomial gn,a is irreducible over Q.

Proof. Let β be a root of gn,a. Then we have a = |βn + P (β)| ≤ |β|n +
‖P‖1 max(1, |β|n). The assumption on a implies that |β| > 1. In other words,
all the roots of gn,a have a magnitude >1. Now, assume by contradiction that
gn,a = h1h2 for some rational polynomials h1, h2. Since gn,a is monic, it is prim-
itive and we can choose h1, h2 as integer polynomials. The product of their con-
stant coefficients is then the prime a. Hence the constant coefficient of h1 or h2

is ±1, which contradicts the fact that the roots of gn,a have magnitude >1. ��
Overall, we have proved the following result.

Theorem 4.7. Let ρ ∈ (0, 1) and pj ∈ Z for 1 ≤ j ≤ ρ · n. Then for
a ≥ (3eρ‖P‖1)1/(1−ρ) smaller than 2o(n) and prime, and n sufficiently large,
the polynomial gn,a = xn +

∑
1≤j≤ρ·n pjx

j +a is irreducible over Q and satisfies:

‖Vgn,a
‖ ≤ ane and ‖V −1

gn,a
‖ ≤ n5/2(‖P‖1 + 1)a1/ne2.

In particular, if a and ‖P‖1 are polynomial in n, then both ‖Vgn,a
‖ and ‖V −1

gn,a
‖

are polynomial in n.

In the full version of this article, we give another family of well-behaved
polynomials.

5 Search to Decision Dual-RLWE

The reduction relies on the recent technique of [PRS17]. To leverage it, we use a
generalized Leftover Hash Lemma over rings. The proof generalizes a technique
used in [SS11] to the case where the irreducible factors of the defining polyno-
mial (of K) reduced modulo q do not share the same degree. Alternatively, a
generalization of the regularity lemma from [LPR13, Se. 7] to arbitrary number
fields could be used. Such a generalization may go through and improve our
results a little.
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5.1 A Ring-Based Leftover Hash Lemma

Let m ≥ 2. We identify any rank m OK-module M ⊆ Km with the lattice
σ(M) ⊆ Hm. For such modules, the dual may be defined as

M̂ = {t ∈ Km : ∀x ∈ M,Tr(〈t,x〉) ∈ Z}.

Here 〈·, ·〉 is the K-bilinear map defined by 〈x,y〉 =
∑m

i=1 xiyi. We have σ(M̂) =
σ(M)∗ in Hm. For some q ≥ 2 and a fixed a ∈ (OK/qOK)m, we focus on the
modules:

L(a) =
a
q
O∨

K + (O∨
K)m and a⊥ = {t ∈ Om

K : 〈t,a〉 = 0 mod qOK}.

To prove our Leftover Hash Lemma variant, the main argument relies on
an estimation of λ∞

1 (â⊥), which is obtained by combining the following two
lemmas. The first one was stated in [LS15, Se. 5] without a proof, for the case of
cyclotomic fields (this restriction is unnecessary). We give a proof of the general
case in the full version of this article.

Lemma 5.1. Let q ≥ 2 and a ∈ (OK/qOK)m. Then we have â⊥ = L(a).

We now obtain a probabilistic lower bound on λ∞
1 (â⊥) = λ∞

1 (L(a)). In full
generality, it should depend on the ramification of the selected prime integer q,
i.e., the exponents appearing in the factorization of qOK in prime ideals. It is a
classical fact that the ramified prime integers are exactly the primes dividing the
discriminant of the field, so that there are only finitely many such q’s. Moreover,
it is always possible to use modulus switching techniques [BLP+13,LS15] if q
ramifies. Therefore, we consider only the non-ramified case.

Lemma 5.2. Let q ≥ 2 a prime that does not divide ΔK . For any m ≥ 2 and
δ > 0, and except with a probability ≤ 23n(m+1)q−mnδ over the uniform choice
of a ∈ ((OK/qOK)×)m, we have:

λ∞
1 (L(a)) ≥ Δ

−1/n
K · q− 1

m −δ.

Proof. Thanks to the assumption on q, we can write qOK = p1 . . . pk for distinct
prime ideals pi. By Lemma 2.4 and the Chinese Remainder Theorem, we have
O∨

K/qO∨
K � OK/qOK � ⊕k

i=1 Fqdi , where qdi = N (pi).
Let a = (a1, . . . , am) sampled uniformly in ((OK/qOK)×)m. Fix some bound

B > 0 and let pB be the probability that qL(a) = aO∨
K + q(O∨

K)m contains a
t = (t1, . . . , tm) such that 0 < ‖t‖∞ < B. Our goal is to bound pB from above.
By the union bound, we have that

pB ≤
∑

s∈O∨
K/qO∨

K

∑

t∈(O∨
K/qO∨

K)m

0<‖t‖∞<B

p(t, s),
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with p(t, s) = Pra[∀ j, tj = ajs mod qO∨
K ] for any s and t over O∨

K/qO∨
K . By

independance of the aj ’s, we can write p(t, s) =
∏

j∈[m] p(tj , s) with p(tj , s) =
Praj

[tj = ajs mod qO∨
K ]. As O∨

K/qO∨
K and OK/qOK are isomorphic, estimat-

ing this probability amounts to studying the solutions in (OK/qOK)× of the
equation t = as mod qOK , for all t, s ∈ OK/qOK .

Note that if there is an i such that t = 0 mod pi and s �= 0 mod pi, or vice-
versa, then there is no solution, so that p(t, s) = 0. Now, assume that s and t are
0 modulo the same pi’s. Let S ⊆ [k] denote the set of their indices, and let dS

be such that qdS = N (
∏

i∈S pi). On the one hand, for all i ∈ [k] \ S, both t and
s are invertible modulo pi so there is exactly one solution modulo those i’s. On
the other hand, for all i ∈ S, all the elements of F×

qdi
are solutions. This gives

∏
i∈S(qdi −1) possibilities out of the

∏
i(q

di −1) elements of (OK/qOK)×. Over-
all, we obtain that p(t, s) =

∏
i∈[k]\S(qdi −1)−1. Hence, for t with coordinates tj

such that s and all tj ’s are 0 modulo the same pi’s, we have:

p(t, s) = q−m(n−dS)
∏

i∈[k]\S

(1 − 1
qdi

)−m ≤ q−m(n−dS) · 2mk,

the last inequality coming from the fact that 1 − 1/qdi ≥ 1/2 for all i.
Let τ denote the isomorphism mapping O∨

K/qO∨
K to OK/qOK . The proba-

bility to bound is now

pB ≤ 2mk ·
∑

S⊆[k]

∑

τ(s)∈OK/qOK

∀i∈S:pi | τ(s)

∑

τ(t)∈(OK/qOK)m

0<‖t‖∞<B
∀ j,∀i∈S:pi | τ(tj)

q−m(n−dS).

For any r > 0, we let B(r) denote the (open) ball in H of center 0 and radius r,
with respect to the infinity norm. Such a ball has a volume Vol(B(r)) = (2r)n.
For any S ⊆ [k], we define N(B,S) = |B(B) ∩ L(τ−1(

∏
i∈S pi))| − 1. Since there

are 2k subsets in [k] and qn−dS elements τ(s) ∈ OK/qOK such that pi|s for
all i ∈ S, we have

pB ≤ 2k(m+1) · max
S⊆[k]

N(B,S)m

q(n−dS)(m−1)
. (4)

We now give an upper bound for N(B,S), from which we will obtain the
result. Let IS =

∏
i∈S pi and λS = λ∞

1 (τ−1(IS)). Observe that any two distinct
balls of radius λS/2 and centered around elements of B(B) ∩ L(τ−1(IS)) do not
intersect. Moreover, all of them are contained in B(B +λS/2). This implies that

N(B,S) ≤ Vol(B(B + λS/2))
Vol(B(λS/2))

=
(

2B

λS
+ 1

)n

.

It remains to give a lower bound on λS . As τ−1(IS) = ISO∨
K , we have

N (τ−1(IS)) = qdS/ΔK . With Lemma 2.5, this gives Δ
−1/n
K qdS/n ≤ λS . If we set

B = Δ
−1/n
K qβ , then nβ < dS leads to N(B,S) = 0 and nβ ≥ dS implies the
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upper bound N(B,S) ≤ 22nqnβ−dS . With (4), this gives

pB ≤ 2(m+1)(k+2n) · max
S⊆[k]

dS≤nβ

qm(β−1)n+(n−dS).

The maximum is reached for dS = 0 (i.e., when S = ∅). In this case, the exponent
of q is −mnδ for β = 1 − 1

m − δ. We obtain that λ∞
1 (qL(a)) ≥ Δ

−1/n
K q1− 1

m −δ

except with probability ≤23n(m+1)q−mnδ. ��
We are now ready to state the variant of the Leftover Hash Lemma.

Theorem 5.3. Let q ≥ 2 prime that does not divide ΔK . Let δ > 0, ε ∈ (0, 1/2)
and m ≥ 2. For a given a in ((OK/qOK)×)m, let Ua be the distribution of∑

i≤m tiai where the vector t = (t1, . . . , tm) is sampled from DOK ,s with s ≥
√

log(2mn(1 + 1/ε))/π · Δ1/n
K q1/m+δ. Then, except for ≤ 23n(m+1)q−mnδ of a’s,

the distance to uniformity of Ua is ≤2ε.

Proof. First we note that the map t 
→ ∑
i≤m tiai is a well-defined surjective

OK-module homomorphism from Om
K to OK/qOK , with kernel a⊥. The distance

to uniformity of Ua is hence the same as the distance to uniformity of t mod a⊥.
By Lemma 2.8, the claim follows whenever s ≥ ηε(a⊥). By Lemma 2.6, t it
suffices to find an appropriate lower bound on λ∞

1 (L(a)). Lemma 5.2 allows to
complete the proof. ��
Corollary 5.4 (Leftover Hash lemma). If t is sampled from DOK ,s with
s ≥ √

log(2mn(1 + 1/ε))/π · Δ
1/n
K q1/m+δ, and the ai’s are sampled from

U((OK/qOK)×), then:

Δ

[(

a1, . . . , am,
∑

i≤m

tiai

)

, U

(

((OK/qOK)×)m × OK/qOK

)]

≤ 2ε + 23n(m+1) · q−mnδ.

5.2 Search RLWE to Decision RLWE

We now give the reduction from search to decision. As all proofs can be done
similarly, we focus on the dual-RLWE version of the problems. For the sake of
simplicity, we consider only the case of diagonal covariance matrices. The proof
readily extends to general covariance matrices. To obtain the reduction, we need
to generate suitable new samples from a starting set of samples from search
dual-RLWE.

The lemma below is adapted from [LS15, Le. 4.15]. We will use it to analyze
the error distribution we get when generating new samples.

Lemma 5.5. Let α > 0, L a rank-m OK-module, ε ∈ (0, 1/2), a vector t ∈
DL+c,r for some c ∈ Hm, and e′ ∈ KR chosen according to DH

α . If ri ≥ ηε(L)
and α

δi
≥ ηε(L) for all i, then Δ(〈t, e〉 + e′,DH

x ) ≤ 4ε with xi =
√

(riδi)2 + α2

and δi = (
∑

k∈[m] |σi(ek)|2)1/2 for all i.



170 M. Rosca et al.

We can now give a reduction from search dual-RLWE to worst-case decision
dual-RLWE. It may be combined with the worst-case decision dual-RLWE to
decision dual-RLWE from Lemma 2.14.

Theorem 5.6. Let r ∈ (R≥0)n be such that ri = ri+s2 for any i > s1
and ri ≤ r for some r > 0. Let d =

√
n · Δ

1/n
K q1/m+1/n, and consider

Σ = {r′ : r′
i ≤ √

d2 · r2 · m + d2}. Then there exists a probabilistic polynomial-
time reduction from search dual-RLWEq,Dr with m ≤ q/(2n) input samples to
worst-case decision dual-RLWEq,Σ.

Proof. We have m samples (ai, bi = ais + ei) ∈ OK/qOK × KR/qO∨
K from the

dual-RLWE distribution A∨
s,r, for a uniform s ∈ O∨

K/qO∨
K that we want to find.

This is equivalent to finding the error term e = (e1, . . . , em). By assumption
on m, the ai’s are all invertible with non-negligible probability. If it is not the
case, the reduction aborts. From now on, we hence assume that they are uni-
formly distributed in (OK/qOK)×.

We use the same technique as in [PRS17], in that we find the ith embeddings
σi(e1), . . . , σi(em) of the error terms by constructing an m-dimensional instance
of the Oracle Hidden Center Problem (OHCP). The only difference consists in
the way we create the samples that we give to the decision oracle. The reduction
uses the dual-RLWE decision oracle to build the oracles Oi : Rm ×R

≥0 → {0, 1}
for i ≤ s1 and Oi : Cm × R

≥0 → {0, 1} for s1 < i ≤ s1 + s2.
For i ≤ s1, we define ki : R → KR as ki(x) = σ−1(x · vi) and for s1 < i ≤

s1 + s2, we define ki : C → KR as ki(x) = σ−1(x · vi + x · vi+s2), where the vi’s
form the canonical basis of H.

On input (z1, . . . , zm, α), oracle Oi will output 1 with probability depend-
ing on exp(α)‖e − z‖, where z = (ki(z1), . . . , ki(zm)). It works as follows. It
first chooses a uniform s′ ∈ O∨

K/qO∨
K . On input (z1, . . . , zm, α), it samples

t = (t1, . . . , tm) ∈ Om
K Gaussian with parameter exp(α) ·√n ·Δ1/n

K q1/m+1/n and
some e′ from Dd. The oracle then creates (a′, b′) = (〈t,a〉, 〈t,b − z̄〉 + a′s′ + e′),
where b = (b1, . . . , bm).

By Corollary 5.4, the distribution of (a, 〈t,a〉) is exponentially close to
U(((OK/qOK)×)m × OK/qOK). Since bj = ajs + ej for all j, we get b′ =
a′(s + s′) + 〈t, e − z̄〉 + e′, so oracle Oi creates RLWE samples for a uni-
formly distributed s + s′, provided the error term follows a suitable distribu-
tion. We let δ� = (

∑
j∈[m] σ�(ej − ki(zj))|2)1/2 for � ≤ n. In particular, we have

δi = ‖σi(e1) − z1, . . . , σi(em) − zm‖. Let us now study the distribution of the
error term 〈t, e − z〉 + e′. We can see that once the value of 〈t,a〉 = c and the
ai’s are known, one can write t = (ca−1

1 , 0, . . . , 0)+ (−a−1
1

∑
i≥2 tiai, t2, . . . , tm),

where the second vector belongs to a⊥. This means that the actual support of
t is a shift of the a⊥ lattice by the vector (ca−1

1 , 0, . . . , 0). Using Lemma 5.5, we

get that the distribution of the error is DH
x where xj =

√
exp2(α) · d2 · δ2j + d2.

Let Si,(z1,...,zm,α) be the samples obtained by applying the procedure above
many times. Oracle Oi calls the dual-RLWE decision oracle with these and out-
puts 1 if and only if the latter accepts. With non-negligible probability over
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the choice of the initial errors, the distribution of the samples we get when we
call the oracle Oi on (0, 0) belongs to the set Σ. One can now show that using
the same technique as in [PRS17], it is possible to recover good approximations
of the vector (σi(e1), . . . , σi(em)). By substracting them from the initial search
samples, rounding and then taking the inverses of the ai’s, we obtain s. ��
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