
On the Hardness of the NTRU Problem

Alice Pellet-Mary1(B) and Damien Stehlé2,3(B)

1 CNRS, Inria and Université de Bordeaux, Bordeaux, France
alice.pellet-mary@math.u-bordeaux.fr

2 ENS de Lyon, Lyon, France
damien.stehle@ens-lyon.fr

3 Institut Universitaire de France, Paris, France

Abstract. The 25 year-old NTRU problem is an important computa-
tional assumption in public-key cryptography. However, from a reduc-
tion perspective, its relative hardness compared to other problems on
Euclidean lattices is not well-understood. Its decision version reduces to
the search Ring-LWE problem, but this only provides a hardness upper
bound.

We provide two answers to the long-standing open problem of pro-
viding reduction-based evidence of the hardness of the NTRU problem.
First, we reduce the worst-case approximate Shortest Vector Problem
over ideal lattices to an average-case search variant of the NTRU prob-
lem. Second, we reduce another average-case search variant of the NTRU
problem to the decision NTRU problem.

1 Introduction

In the NTRU encryption scheme [HPS98], the public key is an element h of
a polynomial ring Rq that can be chosen as Zq[x]/Φ for some degree d monic
irreducible polynomial Φ and some integer q ≥ 2. This public key h is far from
uniform in Rq, as it can be written as h = f/g mod q where the secret key poly-
nomials f, g ∈ R = Z[x]/Φ have coefficients with small magnitudes compared
to

√
q. In most concrete instantiations, such as the original scheme and the

NTRU and NTRU Prime Round-3 candidates to the NIST post-quantum cryp-
tography standardization project [CDH20,BBC20], the coefficients of f and g
even belong to {−1, 0, 1} and q grows as a small degree polynomial in d. As a
result, the set of such h’s is very sparse in Rq. The tasks of distinguishing h from
uniform and recovering a sufficiently short pair (f, g) from h are respectively
known as the decision and search variants of the NTRU problem.

The search NTRU problem can be solved with lattice reduction algorithms
(such as [Sch87]), but to succeed for the most usual setting of q ≤ poly(d),
they require a computational effort growing as exp(O(d)). In [KF15], Kirchner
and Fouque described a heuristic algorithm with slightly subexponential cost
exp(O(d/ log log d)) for the usual setting of q ≤ poly(d) and ‖f‖∞, ‖g‖∞ ≤ O(1).
If the magnitude bound grows as Ω(

√
d), then the cost of this algorithm

is exp(O(d)). In the completely different regime of very large q (but with ‖f‖
and ‖g‖ growing at a much smaller pace), recent works [ABD16,CJL16,KF17]

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13090, pp. 3–35, 2021.
https://doi.org/10.1007/978-3-030-92062-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92062-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-92062-3_1

4 A. Pellet-Mary and D. Stehlé

have shown that the NTRU problem is significantly easier than previously
thought. For example, one can recover appropriately distributed f, g with
‖f‖, ‖g‖ ≤ poly(d) from h in quantum polynomial time when q ≥ exp(˜Ω(

√
d)).

Prior to those works, it was believed that q ≥ exp(˜Ω(d)) was necessary for poly-
nomial cost. This range of modulus q is far from the one used for the NTRU
encryption scheme. However, NTRU instances with a large modulus q can occur
in more advanced cryptographic constructions such as [LTV12] and [GGH13].

On the lower-bound front, it was shown in [SS11] for Φ a power-of-2 cyclo-
tomic and extended in [WW18] to all cyclotomics that if f, g are Gaussian
over R (restricted to elements that are invertible modulo q) with standard devi-
ation that is a little larger than

√
q, then the distribution of h = f/g mod q is

within 2−Ω(d) statistical distance from the uniform distribution over invertible
elements of Rq. This variant of decision NTRU is therefore vacuously hard. This
parameter regime is relevant to the NTRU signature algorithm [HHP03,SS13].
It also allows to obtain an NTRU-like public-key encryption scheme, but less
efficient than with smaller secret key polynomials f, g.

Despite 25 years of study, little is known about the relationships between
the NTRU problem variants and between them and other well-studied problems
over Euclidean lattices. To our knowledge, the only exceptions are the direct
reduction from decision NTRU to search NTRU and a reduction from deci-
sion NTRU to the search version of the Ring-LWE problem [SSTX09,LPR10],
sketched in [Pei16, Se. 4.4.4]. Note that this only provides an upper bound to
the hardness of the NTRU problem. Given this state of affairs, Peikert asked the
following question in [Pei16, Se. 7.1]:

Is there a worst-case hardness reduction, or a search-to-decision reduction,
for an NTRU-like problem?

Contributions. We provide positive answers to both components of the above
question.

First, we give a reduction from the approximate Shortest Vector Problem
restricted to ideal lattices (ideal-SVP) to a worst-case variant of the search
NTRU problem. Combining the latter with the recent worst-case to average-
case reduction for ideal-SVP from [dBDPW20] leads to a reduction from worst-
case ideal-SVP to an average-case version of the search NTRU problem. The
instance distribution is inherited from the distribution over ideal lattices consid-
ered in [dBDPW20]. We also show that this distribution over NTRU instances h
can be efficiently sampled from, together with a corresponding trapdoor (f, g),
if one has access to a quantum computer or if the modulus q is sufficiently large:
this property allows to sample an NTRU encryption public key along with a
corresponding secret key.

Second, we exhibit a reduction from another (average-case) variant of the
search NTRU problem (see below) to the decision NTRU problem. The reduc-
tion works for a wide set of distributions for the search NTRU instances, and
the decision NTRU instance distribution is directly derived from the considered
search NTRU distribution. A sufficient condition on the search NTRU distribu-
tion is that it produces with overwhelming probability an h with trapdoor (f, g)
such that f and g have balanced coefficients (in canonical embedding) and f

On the Hardness of the NTRU Problem 5

or g is coprime to q. This covers in particular the standard ternary distribution
for f and g (i.e., f, g ← U({−1, 0, 1}d)) provided we reject (f, g) when they
are not balanced enough or not coprime to q (heuristically, this should happen
with probability ≤ 1/2). On the other hand, the choice of the decision NTRU
distribution is much less flexible: even if we start with a ternary distribution for
the search NTRU instances, it is very unlikely that the decision NTRU distri-
bution we obtain is ternary. Similarly to the first reduction, we show that if the
samples h from the search NTRU distribution can be efficiently sampled along
with a corresponding trapdoor (f, g), then so can the samples from the resulting
decision NTRU instance.
Technical overview. For the sake of simplicity, in the forthcoming discussion,
we restrict ourselves to power-of-2 cyclotomic defining polynomials, i.e., Φ =
xd + 1 for d a power of 2. In this case, the ring R = Z[x]/(xd + 1) matches the
ring of integers of the degree-d cyclotomic number field. Moreover, the coefficient
embedding (which is the one usually considered in the NTRU literature) and the
canonical embedding (used in this article) define the same geometry, up to scaling
and rotation. (In the core of the paper, the results are presented for arbitrary
number fields.)

To state the above contributions formally, we consider several variants of the
NTRU problem. We say that h ∈ Rq = Zq[x]/(xd + 1) is an NTRU instance
with gap γ if there exists (f, g) ∈ R2 \ {(0, 0)} such that g · h = f mod q
and ‖f‖, ‖g‖ ≤ √

q/γ. Note that writing g · h = f mod q rather than the more
standard h = f/g mod q allows one to consider g’s that are not invertible mod-
ulo q and suffices for cryptographic applications. The norm ‖f‖ is the Euclidean
norm of the vector made of the coefficients of f , and the comparison to

√
q

is justified by the fact that for a uniformly chosen h, one expects the smallest
such pair (f, g) to have Euclidean norm around

√
q, up to a small polynomial

in d (in the core of the paper, we consider the Euclidean norm induced by
the canonical embedding, which leads to a slightly different definition, differing
by another

√
d factor). In the literature, the bound on ‖f‖, ‖g‖ is often abso-

lute rather than relative to
√

q: our definition variant stresses the distance to
the uniform h regime. For a distribution D over NTRU instances with gap γ,
the decision problem (D, γ, q)-dNTRU consists in distinguishing between D and
the uniform distribution over Rq. On the search NTRU side, the situation is
more complex. We consider two variants of search NTRU, both of which with a
worst-case and an average-case version. For γ ≥ γ′, the worst-case vector NTRU
problem wcNTRUvec consists, given as input an NTRU instance h with gap γ,
in recovering (f, g) �= (0, 0) such that g · h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ′.
Note that if h ∈ Rq has a trapdoor (f, g), then (t · f, t · g) is another NTRU
trapdoor of a possibly larger Euclidean norm, for any non-zero t ∈ R. The
wcNTRUvec definition allows solutions whose norms are within an approxima-
tion factor γ/γ′ from the norms of the promise. Even though there may be plenty
of solutions of the form (t · f, t · g) for t ∈ R, the pair ratio hR = (tf)/(tg) = f/g
over K := Q[x]/(xd + 1) is an invariant. This motivates the definition of the
worst-case module NTRU problem wcNTRUmod, which consists in recovering hR

6 A. Pellet-Mary and D. Stehlé

from h. This is equivalent to recovering the rank-1 submodule (f, g)T ·K ∩Mh of
the rank-2 R-module Mh = {(f ′, g′)T ∈ R2 : g′ · h = f ′ mod q}, hence justifying
the name. The average-case counterparts to wcNTRUvec and wcNTRUmod are
defined analogously.

We now sketch the reduction from ideal-SVP to wcNTRUvec. Let us consider
the worst-case variants, and the restriction of ideal-SVP to principal ideals with a
known generator: we are given as input a generator z of a principal ideal I = 〈z〉
of R, and want to use a wcNTRUvec oracle to find a short non-zero vector in I.
Any element g ∈ I is of the form g = z · r for some r ∈ R. Consider a short
non-zero g ∈ I. Multiplying it by q/z, we obtain that g · (q/z) = 0 mod q.
This already looks like an NTRU equation with a candidate q/z for h. But
note that q/z is in K = Q[x]/(xd + 1) and has no a priori reason to belong
to R = Z[x]/(xd + 1), whereas the element h of an NTRU instance must belong
to R. To handle this difficulty, we can round q/z to R (coefficient-wise). This
leads to g · �q/z = −g · {q/z} mod q, where both g and f := −g · {q/z} are
small elements of R. We obtain the existence of a small pair (f, g) ∈ R2 \{(0, 0)}
such that g · �q/z = f mod q. We can then provide the element h := �q/z
to the wcNTRUvec oracle. The latter returns a pair (f ′, g′) ∈ R2 \ {(0, 0)} such
that g′ · �q/z = f ′ mod q, and it can be proved that for any such sufficiently
short pair, we have that g′ is a short non-zero element of I. To handle possibly
non-principal ideals (and also principal ideals with unknown generator), we rely
on the 2-element representation of ideals.

If we forget polynomial factors and rely on a wcNTRUvec oracle with
parameters q, γ and γ′, the above allows to find γsvp approximations to a
shortest non-zero vector of an arbitrary ideal of volume ≤ N for N1/d ≈√

q/γ and γsvp ≈ γ/γ′. Note that the reduction is worst-case to worst-case
and handles bounded-volume ideals. To handle both limitations, we rely on
the recent worst-case to average-case reduction for ideal-SVP from de Boer
et al. [dBDPW20]. By using the reduction with ideals from the average-case
distribution from [dBDPW20], we obtain a reduction from worst-case ideal-SVP
to average-case NTRUvec. Further, the ideals from the average-case distribution
from [dBDPW20] have volumes bounded as exp(O(d2)). This leads to q of the
order of exp(O(d)), which is significantly larger than in many applications. We
refine the analysis of [dBDPW20] to show that by allowing the worst-case to
average-case ideal-SVP reduction to run in time higher than polynomial in d,
the average-case ideals from [dBDPW20] can be chosen with smaller volumes.
The resulting NTRU modulus q is still slightly larger than polynomial, but it
can be chosen as small as dω(1) if one considers sub-exponential time reductions.

We now provide an overview of our second main result, which is a reduc-
tion from average-case NTRUmod to dNTRU. This one is applicable for q larger
than some moderate poly(d). At the core of the reduction is an NTRU reran-
domization process. Assume we are given some h ∈ Rq for which there exists
a short pair (f, g) �= (0, 0) with g · h = f mod q. Now, for any x1, x2 ∈ R, we
have g ·(x1h+x2) = x1f+x2g mod q, which may be rewritten as g ·h′ = f ′ mod q
with h′ = x1h + x2 and f ′ = x1f + x2g. Further, if x1 and x2 are short, then so

On the Hardness of the NTRU Problem 7

is f ′. This hence gives a way to produce arbitrarily many NTRU samples with a
common denominator g, from a single one. Our aim is to query the dNTRU ora-
cle on many such samples, and gather relevant information to solve NTRUmod.
Concretely, we define the dNTRU distribution and show how to tweak the reran-
domization process to be able to use the Oracle Hidden Center Problem (OHCP)
framework from [PRS17]. At a high level, in the OHCP framework, one is given
access to a decision oracle whose acceptance probabilities on a family of distribu-
tions (Dz)z∈C is a function of the distance |z−c| to a hidden center c ∈ C. Under
some conditions on the oracle behaviour, there exists an efficient algorithm that
recovers an arbitrarily accurate approximation c̃ to c, by querying the OHCP
oracle on samples from Dz for well-chosen values of z. Prior to this work, the
OHCP framework has been used to provide a reduction from ideal-SVP to the
decision version of Ring-LWE [PRS17], and a search to decision reduction for
Ring-LWE [RSW18].

Let us now look more closely at the rerandomization of f . It was shown
in [LSS14] that by sampling x1 and x2 from spherical Gaussians over R with
standard deviation sufficiently above max(‖f‖, ‖g‖), the distribution of x1f+x2g
is Gaussian over the ideal 〈f〉+〈g〉 with a covariance matrix that is a function of f
and g. This spherical Gaussian rerandomization defines our dNTRU distribution.
We extend the proof of [LSS14] to show that if instead we sample x1 and x2 from
correlated non-spherical Gaussians over R, then the distribution of x1f + x2g is
Gaussian over 〈f〉 + 〈g〉 with a covariance matrix that can be made to depend
solely on |f(ζ)−z ·g(ζ)| for ζ an arbitrary complex root of Φ = xd +1, and z ∈ C

arbitrary. The center of the OHCP instance is c = f(ζ)/g(ζ) = hR(ζ) (recall
that hR = f/g belongs to K = Q[x]/(xd + 1)). Using the dNTRU oracle within
the OHCP framework hence allows us to recover an approximation to hR(ζ). In
the applications from [PRS17,RSW18] of the OHCP framework, one recovers a
vector c of OHCP centers from an approximation c̃ by observing that c belongs
to a lattice: the exact center c can hence be obtained by simply rounding a
sufficiently precise approximation c̃. In our case, we cannot proceed similarly,
as hR has rational coordinates. We instead show that the LLL algorithm [LLL82]
can be used in a manner similar to [KLL84] to recover hR = f/g ∈ K from
a sufficiently precise approximation to hR(ζ), given an a priori upper bound
to max(‖f‖, ‖g‖).
Discussion. The two reductions put forward in this work provide some evidence
towards supporting the conjectured hardness of the search vectorial NTRU prob-
lem and the decision NTRU problem. They may give the impression that the
hardness of the NTRU problems lies somewhere between the hardness of the
ideal-SVP and that of Ring-LWE. This is however neglecting the fact that there
are several NTRU problem variants, and it is unclear whether they are compu-
tationally equivalent. In particular, the reductions are incompatible, in that the
first one reduces to NTRUvec and the second one from NTRUmod. NTRUmod

reduces to NTRUvec, but it is a reduction from NTRUvec to NTRUmod that we
would need to obtain a chain of reductions from ideal-SVP to Ring-LWE via
the computationally equivalent NTRU problems. Note that if we assume that

8 A. Pellet-Mary and D. Stehlé

ideal-SVP is easy, then these problems are computationally equivalent (see Sub-
sect. 3.4), but the reduction from ideal-SVP to NTRUvec becomes vacuous. In
fact, it seems that NTRUvec and NTRUmod could even be of different natures:
when attempting to solve NTRUvec using an NTRUmod oracle, it is unclear how
to make the approximation factor γ/γ′ appear, as NTRUmod is only parametrized
by the promise gap γ. Better understanding the differences between the NTRU
variants seems important to better capture the NTRU hardness. In this direc-
tion, note that the known attacks specific to NTRU [ABD16,CJL16,KF17] are
mostly relevant for NTRUmod: they can also be used to solve NTRUvec, but the
quality of the solution obtained for NTRUvec is the same as the one we would
obtain by running the attack to solve NTRUmod, and then running an ideal-SVP
solver on the dense rank-1 sub-module to obtain a somehow short vector.

Despite the apparent uncomposability of our two reductions, it would be
interesting to have NTRU instance distributions that are compatible with both
of them. The second reduction is very permissive with respect to the NTRUmod

instance distribution, but the latter still has to satisfy some properties (see Defi-
nition 5.1). In particular, the canonical embedding of f and g should be bounded
from below and above, and the ideal 〈f〉 + 〈g〉 should be coprime with 〈q〉. We
note that in the reduction from ideal-SVP to wcNTRUvec, the element g is an
element of the ideal-SVP instance ideal, which could be chosen Gaussian. Using
standard properties of lattice Gaussians, it is not unlikely that one can prove the
desired property on its canonical embedding. There seems to be less flexibility
in the choice of f = −g · {q/z}. However, one could replace the deterministic
rounding by a Gaussian rounding, to then use a similar approach as the one
for g. Concerning the co-primality with 〈g〉, one could hope to use an inclusion-
exclusion argument for Gaussian sums like the one in [SS11].

Concerning the hardness of the NTRU problems relatively to ideal-SVP
and Ring-LWE, note that the state of the art suggests that ideal-SVP might
be strictly easier than Ring-LWE, as ideal-SVP is known to reduce to Ring-
LWE [SSTX09,LPR10,PRS17] but no reduction from Ring-LWE to ideal-SVP
is known. In fact, Ring-LWE seems less related to ideal-SVP than to finding
two short linearly independent vectors in rank-2 modules over R (SIVP): for
an appropriate parametrisation, Ring-LWE reduces to the latter problem [LS15,
Se. 5] and, although for some other parametrisation, the latter problem reduces
to Ring-LWE (by combining [LS15, Se. 4] and [AD17]). From a lattice perspec-
tive, NTRU is a generalization of the unique Shortest Vector Problem to rank-2
modules. At this stage, it is unclear whether its complexity matches the one of
ideal-SVP (i.e., SVP for rank-1 modules) or the one of SIVP restricted to rank-2
modules. It could also be strictly in between.

2 Preliminaries

The notations log and ln respectively denote the logarithms in bases 2 and e.
For n an integer, we let [n] denote the set {1, 2, . . . , n}. Vectors and matrices are
denoted with bold lower-case and upper-case letters, respectively. The statistical

On the Hardness of the NTRU Problem 9

distance between two distributions D1 and D2 with compatible countable sup-
ports is defined as dist(D1,D2) = 1

2

∑

x |D1(x) − D2(x)|. We write D1 ≈ε D2 if
dist(D1,D2) ≤ ε for some ε > 0. If X is a finite set, then we let U(X) denote
the uniform distribution over X. If b1, . . . ,bn ∈ R

m are linearly independent
vectors, then the notation (˜b1, . . . , ˜bn) refers to their Gram-Schmidt orthogo-
nalization. The notation ~·~ refers to the matrix norm induced by the Euclidean
norm. Finally, we define ˜O(dt) as O(dtpoly(log d)) for any t ≥ 0 including t = 0.

2.1 Euclidean Lattices

A lattice L ⊂ R
m is a set of the form L = B · Z

m×n for some full column-
rank matrix B ∈ R

m×n (for some m ≥ n ≥ 1). The columns of B are
said to form a basis of L. For i ∈ [n], the ith lattice minimum is defined
as λi(L) = min(r : dim L ∩ B(r) ≥ i), where B(r) denotes the closed ball of R

m

of radius r. The determinant det(L) is defined as
√

det(BT B), which is inde-
pendent of the particular choice of basis B of L. Minkowski’s (second) theorem
states that

∏

i∈[n] λi(L) ≤ √
n

n · det(L).
In this article, we will be interested in the ideal Hermite Shortest vector

problem. We first recall below the definition of the Hermite Shortest Vector
Problem (HSVP) for arbitrary lattices, and we will instantiate it for ideal lattices
in Sect. 2.4.

Definition 2.1 (γ-HSVP). Let γ ≥ 1. Given as input a lattice L ⊂ Q
n (rep-

resented by an arbitrary Z-basis), the γ-HSVP problem asks to find a vector
w ∈ L \ {0} such that ‖w‖ ≤ γ · √

n · det(L)1/n.

By Minkowski’s theorem, this problem is well-defined for any γ ≥ 1.

2.2 Discrete Gaussian Distributions

Let S ∈ GLn(R) be an invertible matrix. The Gaussian density function with
parameter S is defined over R

n by

ρS(x) = e−π‖S−1x‖2
.

When the matrix S is diagonal with diagonal coefficients all equal to some σ > 0,
we also use the notation ρσ = ρS. Let L ⊂ R

n be a full rank lattice, and c ∈ R
n.

The discrete Gaussian distribution DL,S,c over L with center c and parameter S
is the distribution for which the probability of any v ∈ L is ρS(v−c)/ρS(L−c),
where ρS(T) =

∑

t∈T ρS(t) for any countable T ⊂ R
n. Again, we will use the

notation DL,σ,c when S = diag(σ) for some σ > 0. When c = 0, we omit the
subscript c.

If L ⊂ R
n is a lattice, its smoothing parameter ηε(L) is defined as the small-

est σ > 0 such that ρ1/σ(L� \ {0}) ≤ ε, where L� = {c ∈ span(L) : ∀b ∈ L :
〈b�,b〉 ∈ Z} is the dual of L. For any n-dimensional lattice L and ε > 0, we have
the following upper bound on the smoothing parameter (see [MR07, Le. 3.3]):

ηε(L) ≤
√

ln(2n(1 + 1/ε))
π

· λn(L). (2.1)

10 A. Pellet-Mary and D. Stehlé

The following Lemma (adapted from [GPV08, Th. 4.1]) shows that one can
efficiently sample (bounded) elements from a distribution that is statistically
close to a discrete Gaussian distribution. A proof can be found in the full version.

Lemma 2.2. There exists a ppt algorithm that takes as input a basis B =
(b1, . . . ,bn) of an n-dimensional lattice L, a parameter σ ≥ √

n · maxi ‖bi‖
and a center c ∈ Span(L) and outputs a sample from a distribution ˜DB,σ,c such
that

• DL,σ,c ≈2−Ω(n) ˜DB,σ,c;
• for all v ← ˜DB,σ,c, it holds that ‖v − c‖ ≤ √

n · σ and v �= 0.

The following lemma bounds the statistical distance between two discrete Gaus-
sian distributions over the same lattice L, depending on the distance between
their centers and their parameter matrices. Similar results were already present
in previous works, such as in [Reg09, Claim 2.2] for 1-dimensional continuous
Gaussian distributions, and in the proof of [dBDPW20, Th. 4.4] for the case
of ideal lattices with specific parameters and centers. Since the following pre-
cise statement seems new, we provide a proof in the full version for the sake of
completeness.

Lemma 2.3. Let L ⊂ R
n be a full rank lattice, S1,S2 ∈ GLn(R) be two invert-

ible matrices and c1, c2 ∈ R
n be two vectors. If η1/2(S−1

1 L), η1/2(S−1
2 L) ≤ 1/2,

then it holds that

dist
(

DL,S1,c1 ,DL,S2,c2

) ≤ 4
√

n ·
(
√

�
�S−1

2 S1 − In

�
� +

√

‖S−1
2 (c1 − c2)‖

)

.

The next lemma states that a lattice Gaussian distribution with sufficiently large
standard deviation is almost uniform when reduced modulo a sublattice.

Lemma 2.4 ([GPV08], Cor. 2.8). Let L1 ⊆ L2 be two lattices of rank n. If
1 ≥ ηε(L1) for some ε < 1/2, then (DL2,1 mod L1) ≈2ε U(L2 mod L1).

2.3 Number Fields

Let K be a number field of degree d ≥ 2 and KR = K ⊗Q R. We let R denote
its ring of integers. We identify any element of K with its canonical embedding
vector σ : x �→ (σ1(x), . . . , σd(x))T ∈ C

d. This leads to an identification of KR

with {y ∈ C
d : ∀i ∈ [rR], yi ∈ R and ∀i ∈ [rC], yrR+2(i+1) = yrR+2i+1}, where

rR and rC respectively denote the number of real and complex embeddings. Via
this identification, the set KR is a real vector subspace of dimension d embed-
ded in C

d. In the following, for any element x ∈ R,K or KR, we will let ‖x‖
(resp. ‖x‖∞) denote the Hermitian norm (resp. infinity norm) of the vector
σ(x) ∈ C

d. The set σ(R) is a lattice, and the absolute field discriminant ΔK is
defined as ΔK = |det(σ(R))2|.1 We have ΔK ≥ (π/4)d · (dd/d!)2, which implies
that we have d = O(log ΔK), for ΔK growing to infinity.
1 Note that in order to avoid having absolute values everywhere in the rest of the

article, we define ΔK as the absolute value of the discriminant of K.

On the Hardness of the NTRU Problem 11

The (absolute value of the) algebraic norm of x ∈ KR is defined as N (x) =
∏

i |σi(x)|. Any non-zero element r ∈ R has algebraic norm ≥ 1, which implies
in particular that ‖r‖∞ ≥ 1.

In this work, we assume that we know a monic polynomial Φ ∈ Z[X] defin-
ing K and a Z-basis (r1, . . . , rd) of R, where the ri’s are represented by poly-
nomials modulo Φ (of degree < d) with rational coefficients. Let DΦ > 0 be
the smallest integer such that DΦ · ri has integral coefficients for all i (i.e., DΦ

is the common denominator to all the ri polynomials), then the bit-size of DΦ

is polynomial in d and ‖Φ‖, where ‖Φ‖ is the Euclidean norm of the vector of
coefficients of Φ (see for instance [Sut16, Se. 12.4]).

We will assume that this basis has been LLL-reduced [LLL82]. We define
δK = maxi ‖ri‖∞. Since ‖r‖∞ ≥ 1 for all r ∈ R \ {0}, we know that δK ≥ 1.
Using Minkowski’s second theorem and the LLL-reducedness of (r1, . . . , rd), we
have that δK ≤ Δ

O(1)
K . In the case of cyclotomic number fields, taking the power

basis gives δK = 1. For an element x =
∑

i xiri ∈ KR, define �x =
∑

i�xiri.
We will also use the notation {x} = x − �x. It holds that ‖{x}‖∞ ≤ d/2 · δK ,
and hence that ‖{x}‖ ≤ d3/2 · δK .

For a rational x = x1/x2 with x1, x2 ∈ Z and gcd(x1, x2) = 1, we define
size(x) = 1 + log |x1| + log |x2|. For an element x =

∑

i xiri ∈ K, we define
size(x) =

∑

i size(xi). The following lemma shows that if we have a sufficiently
precise approximation to an embedding of x ∈ K, then one can recover x exactly.
This seems folklore, but as we were unable to find a proof, we provide one in the
full version. The result and the proof strategy are mentioned in [Coh00, Se. 6.2.4]
in the context of quadratic fields and in Roblot’s PhD thesis [Rob97] (just after
Lemma 2.14). But both references are very brief on the topic. We note that a
detailed study was done on a p-adic counterpart in [Bel04a].

Lemma 2.5. Let k ≤ d arbitrary. There exists an algorithm that, given ỹ such
that |ỹ − σk(x)| ≤ 2−p for some x ∈ K and some p ≥ poly(d, log δK , log ‖Φ‖,
size(x)), recovers x as a rational linear combination of the basis (r1, . . . , rd) of R
in ppt with respect to p.

2.4 Ideals and Modules

Ideals. An integral ideal I is a subset of R that is stable by addition and by
multiplication with any element of R. A fractional ideal is a subset of K of the
form x · I for some x ∈ K and some integral ideal I ⊆ R. We write 〈z〉 the
principal (fractional) ideal generated by z ∈ K. Using the canonical embedding,
any non-zero fractional ideal of K is identified to a d-dimensional lattice, called
ideal lattice. The algebraic norm of an integral ideal I ⊆ R is defined by N (I) =
|R/I|. We extend the notation to a fractional ideal xI with x ∈ K and I an
integral ideal, by setting N (xI) = N (x) · N (I). For a non-zero fractional ideal
I = I1/2 with I1, I2 ⊆ R and gcd(I1, I2) = R, we define the quantity size(I) :=
log(N (I1)) + log(N (I2)).

12 A. Pellet-Mary and D. Stehlé

Two-Element Representation of an Ideal. Any fractional ideal I can be generated
by only two elements, i.e., there exist x, y ∈ K such that I = 〈x〉+ 〈y〉 (see, e.g.,
[Coh95, Prop. 4.7.7]). In fact, for any x ∈ I \ {0}, there exists y ∈ I such that
I = 〈x〉 + 〈y〉. The lemma below states that computing such a y, given as input
(I, x), can be done in probabilistic polynomial time.

Lemma 2.6 (Adapted from [Bel04b], Alg. 6.15 and [FS10], Th. 3). There
exists a probabilistic algorithm taking a fractional ideal I ⊂ K and a non-zero
x ∈ I as inputs, computing y ∈ I such that I = 〈x〉 + 〈y〉, and whose run-time
is polynomial in size(x), size(I) and log(ΔK).

Proof. Wlog, we can restrict the study to non-zero integral ideals. The algorithm
is the same as the one given in [FS10, Fig. 1], except that in Step 1, the element x1

is chosen to be x, rather than the first vector of a reduced basis. The correctness
proof is unchanged. The upper bounds on the bit-sizes of the elements appearing
during the algorithm execution do change, but one can check that all these bit-
sizes stay polynomial in size(x), as well as the other quantities related to I
and K that were already present in [FS10] (which are all polynomial in size(I)
and log ΔK). So overall, the run-time remains polynomial in size(x), size(I)
and log ΔK . ��
Algorithmic Problems Over Ideal Lattices. The ideal-HSVP (or id-HSVP for
short) problem is the HSVP problem restricted to lattices that are (fractional)
ideal lattices. Using the fact that for an ideal lattice I ⊂ K we have det(I) =
√|ΔK | · N (I), the problem admits the following equivalent formulation.

Definition 2.7 (γ-id-HSVP). Let γ ≥ 1. Given as input a non-zero fractional
ideal I ⊂ K (represented by an arbitrary Z-basis), the γ-id-HSVP problem asks
to find an element w ∈ I \ {0} such that ‖w‖ ≤ γ · √d · Δ

1/(2d)
K · N (I)1/d.

Observe that γ-id-HSVP is equivalent to γ′-SVP in ideal lattices, up to poly-
nomial losses ≤ √

d · Δ
1/(2d)
K in the approximation factors γ and γ′, thanks to

the inequalities

N (I)1/d ≤ λ1(I) ≤
√

d · Δ
1/(2d)
K · N (I)1/d,

which hold for any non-zero fractional ideal I. The approximation factor loss is
polynomial when Δ

1/(2d)
K ≤ poly(d).

If γ = exp(˜O(dα)) for α ∈ [0, 1], then Id-HSVP can be solved using lattice
reduction algorithms [Sch87], in time exp(˜O(d1−α)). In [CDW21], Cramer, Ducas
and Wesolowski obtained a heuristic quantum polynomial-time algorithm for γ =
exp(˜O(d1/2)) for cyclotomic fields. In [PHS19], Pellet-Mary, Hanrot and Stehlé
gave a quantum heuristic algorithm for γ = exp(˜O((log ΔK)α+1)/d) running
in time exp(˜O((log ΔK)1−2α)) for any field K, where α ∈ [0, 1/2] is arbitrary.
They also propose a classical variant of their algorithm, achieving the same
approximation factor γ in time exp(˜O((log ΔK)max(2/3,1−2α))) for any field K;
and in time exp(˜O(dmax(1/2,1−2α))) for cyclotomic fields. Both the classical and
the quantum algorithms require an advice depending only on the field K, whose
bit-length is bounded as exp(˜O((log ΔK)1−2α)).

On the Hardness of the NTRU Problem 13

Smoothing Ideals. The following lemma from [PRS17] provides a sufficient con-
dition for a diagonal matrix S to be above the smoothing parameter of an ideal
lattice.

Lemma 2.8 ([PRS17], Le. 6.9). Let I ⊂ K be a fractional ideal and S ∈ R
d×d

be a diagonal matrix with positive diagonal coefficients. Assume that

c := (
∏

i

Sii)1/d · (N (I)ΔK)−1/d ≥ 1,

then 1 ≥ ηε(S−1I), where ε = exp(−c2d).

Modules. For � ≥ k ≥ 1, a rank-k module M ⊂ K

R

is a set of the form M =
b1I1+. . .+bkIk for some non-zero ideals (Ii)i and some KR-linearly independent
vectors (bi)i (i.e., if

∑

i yibi = 0, then all yi’s must be 0). The tuple ((Ii,bi))i is
called a pseudo-basis of M . If M admits a pseudo-basis for which all the Ii’s are
equal to R, then M is called free. We define det(M) as the determinant of M
when identified with a kd-dimensional lattice via the canonical embedding σ.
For any pseudo-basis ((Ii,bi))i of M , we have

det(M)2 = Δk
K · N

(

detKR
(B

T
B)

∏

i

I2i

)

, (2.2)

where detKR
is the determinant of a square matrix over KR.

2.5 Oracle Hidden Center Problem

In the search to decision reduction from Sect. 5, we will make use of the OHCP
technique from [PRS17]. The proof of Proposition 2.10 is provided in the full
version.

Definition 2.9 (Oracle Hidden Center Problem [PRS17], Def. 4.3). Let
ε, δ ∈ (0, 1) and β ≥ 1. An OHCP instance consists in a scale parameter D > 0
and a randomized oracle O : R

k × R≥0 → {0, 1} such that, for all z ∈ R
k with

‖z − z∗‖ ≤ βD and t ∈ R≥0, it holds that Pr(O(z, t) = 1) = p(t + log ‖z − z∗‖),
where z∗ ∈ R

k is an unknown center satisfying δD ≤ ‖z∗‖ ≤ D and p(·) is
an unknown function. The goal of the OHCP is to recover z̃ ∈ R

k such that
‖z̃ − z∗‖ ≤ εD.

Proposition 2.10 (Adapted from [PRS17], Prop. 4.4). There exists an
algorithm that takes as input a parameter κ ≥ 20 log(k + 1), the scaling param-
eter D and the oracle O of a (exp(−κ), exp(−κ), 1 + 1/κ)-OHCP instance in
dimension k, and solves it with probability ≥ 1−exp(−κ), in time poly(κ, k), pro-
vided the oracle O satisfies the extra following conditions. For some p∞ ∈ [0, 1]
and t∗ ≥ 0 we have

1. p(s∗) − p∞ ≥ 1/κ;
2. |p(t) − p∞| ≤ 2 exp(−t/κ) for any t ≥ 0;
3. for any t1, t2 ≥ 0, it holds that |p(t1) − p(t2)| ≤ κ

√|t1 − t2|;
where p(t) = Pr(O(0, t) = 1).

14 A. Pellet-Mary and D. Stehlé

3 Different Variants of the NTRU Problem

In this section, we define the three variants of the NTRU problem that we will
consider in this work.

3.1 NTRU Instances

We first define NTRU instances, which will be the inputs to the NTRU problem
variants. We also consider the less standard case of tuple NTRU instances, which
has also been considered in cryptographic constructions (see, e.g., the variant of
the candidate cryptographic multilinear map from [GGH13] proposed in [LSS14,
Se. 6]). All definitions of this section readily extend to the tuple setting, in a
manner that is consistent with the second part of Definition 3.1.

Definition 3.1 ((γ, q)-NTRU instance). Let q ≥ 2 an integer and γ > 0 a
real number. A (γ, q)-NTRU instance is an element h ∈ Rq such that there exists
(f, g) ∈ R2 \ {(0, 0)} with g · h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ. The pair (f, g)
is called a trapdoor of the NTRU instance h.

For t ≥ 1 and γ and q as above, a (γ, q, t)-tuple-NTRU instance is a tuple
(hi)i≤t ∈ Rq such that there exists ((fi)i≤t, g) ∈ Rt+1 \ {(0, . . . , 0)} with g · hi =
fi mod q and maxi ‖fi‖, ‖g‖ ≤ √

q/γ.

For a uniform h in Rq, we will see below that the expected norm of a smallest
trapdoor (f, g) is of the order of

√
q (up to factors depending on the field). Hence,

the quantity γ of an NTRU instance measures the gap between the size of a short
trapdoor of h and the size of a smallest trapdoor of h we would have expected
if h was uniform modulo q. Note also that any (γ, q)-NTRU instance is also a
(γ′, q)-NTRU instance for any γ′ ≤ γ (the quantity γ is only a lower bound on
the promised gap).

We now consider distributions over NTRU instances. To be useful for con-
structing cryptosystems, these distributions must be efficiently samplable and we
also need to be able to sample, together with the NTRU instance h, a trapdoor
(f, g) for h. This motivates the following definition.

Definition 3.2 ((D, γ, q)-NTRU setup). Let q ≥ 2, γ > 0 and D a distri-
bution over (γ, q)-NTRU instances. A (D, γ, q)-NTRU setup is a ppt algorithm
(with respect to log q and log ΔK) sampling triples (h, f, g) ∈ Rq × R2 such that

• the marginal distribution of h is D,
• (f, g) �= (0, 0) and ‖f‖, ‖g‖ ≤ √

q/γ,
• g · h = f mod q.

It was shown in [SS11] that for power-of-2 cyclotomic fields, there exists a
(D, γ, q)-NTRU setup with D ≈2−Ω(d) U(R×

q) for any prime q ≥ 5 and some γ =
1/poly(d). This was extended to any cyclotomic field in [WW18]. In such cases,
the decision NTRU problem introduced below is information-theoretically hard,
if we replace U(Rq) by U(R×

q). In this work, we rather focus on the case of γ ≥ 1.

On the Hardness of the NTRU Problem 15

3.2 Decision NTRU Problem

We can now define the decision variant of the NTRU problem.

Definition 3.3 ((D, γ, q)-dNTRU). Let q ≥ 2, γ ≥ 1 and D a distribution
over (γ, q)-NTRU instances. The (D, γ, q) decisional NTRU problem ((D, γ, q)-
dNTRU for short) asks to distinguish between samples from D and from U(Rq).
The advantage of an algorithm A against the (D, γ, q)-dNTRU problem is defined
as

Adv(A) :=
∣

∣

∣ Pr
h←D

(A(h) = 1
) − Pr

u←U(Rq)

(A(u) = 1
)

∣

∣

∣,

where the probabilities are also over the internal randomness of A.

A reduction from dNTRU to sRLWE is sketched in [Pei16, Se. 4.4.4].

3.3 Search NTRU Problems

We consider two different search variants for the NTRU problem. The first one
consists in finding a trapdoor (f, g) for an NTRU instance h such that ‖f‖
and ‖g‖ are as small as possible, whereas the second variant only asks to recover
any multiple (xf, xg) (with x ∈ K) of a small trapdoor (f, g). We explain below
why both variants may be of interest. Further, for both variants, the definition
comes with worst-case and average-case flavours.

Definition 3.4 ((D, γ, γ′, q)-NTRUvecand (γ, γ′, q)-wcNTRUvec). Let q ≥ 2,
γ ≥ γ′ > 0 and D a distribution over (γ, q)-NTRU instances. The (D, γ, γ′, q)
average-case search NTRU vector problem ((D, γ, γ′, q)-NTRUvec for short) asks,
given as input some h sampled from D, to compute a pair (f, g) ∈ R2 \ {(0, 0)}
such that g·h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ′. The advantage of an algorithm A
against the (D, γ, γ′, q)-NTRUvec problem is defined as

Adv(A) = Pr
h←D

⎛

⎝A(h) = (f, g) with

∣

∣

∣

∣

∣

∣

g · h = f mod q
(f, g) �= (0, 0)
‖f‖, ‖g‖ ≤ √

q/γ′

⎞

⎠ ,

where the probability is also over the internal randomness of A.
The (γ, γ′, q) worst-case search NTRU vector problem ((γ, γ′, q)-wcNTRUvec

for short) asks, given as input a (γ, q)-NTRU instance h, to compute a pair
(f, g) ∈ R2 \ {(0, 0)} such that g · h = f mod q and ‖f‖, ‖g‖ ≤ √

q/γ′.

Before describing the second search variant of the NTRU problem, we prove
the following lemma, which states that all short trapdoors (f, g) of an NTRU
instance h are K-multiples of one another.

Lemma 3.5. Let q ≥ 2, γ >
√

2 and h be a (γ, q)-NTRU instance. Then, for
all trapdoors (f, g), (f ′, g′) ∈ R2 \ {(0, 0)} with ‖f‖, ‖g‖, ‖f ′‖, ‖g′‖ ≤ √

q/γ and
g ·h = f mod q, g′ ·h = f ′ mod q, it holds that (f, g) = x·(f ′, g′) for some x ∈ K.

Equivalently, there exists a unique field element hK ∈ K such that, for all
trapdoors (f, g) ∈ R2 \ {(0, 0)} with ‖f‖, ‖g‖ ≤ √

q/γ and g · h = f mod q, it
holds that f/g = hK (where the division is performed in K and not modulo q).

16 A. Pellet-Mary and D. Stehlé

Proof. Let (f, g) and (f ′, g′) be as in the lemma statement. Then

g′ · f = g′ · (g · h) = g · (g′ · h) = g · f ′ mod q.

This implies that g′f − gf ′ ∈ qR. Moreover, we know that ‖g′f − gf ′‖ ≤ ‖g′‖ ·
‖f‖+‖g‖·‖f ′‖ ≤ 2q/γ2 < q by assumption on γ. Since any non-zero element of R
has euclidean norm at least 1, we conclude that all non-zero elements of qR have
norm at least q, and so g′f −gf ′ = 0 in K as desired. The equivalent formulation
follows immediately by taking hK = f/g for any short trapdoor (f, g). Note that
g must be invertible in K because otherwise g = 0, which implies that f ∈ qR
and so f cannot satisfy ‖f‖ ≤ √

q/γ. ��
We now describe our second search variant of the NTRU problem. Since

we have seen in Lemma 3.5 that recovering a K-multiple of a short trapdoor
is equivalent to recovering the (unique) element hK , we will use this second
approach in the description of the problem.

Definition 3.6 ((D, γ, q)-NTRUmodand (γ, q)-wcNTRUmod). Let q ≥ 2, γ >√
2 and D a distribution over (γ, q)-NTRU instances. The (D, γ, q) search NTRU

module problem ((D, γ, q)-NTRUmod for short) asks, given as input an NTRU
instance h sampled from D, to recover the unique field element hK ∈ K associ-
ated to h (as defined in Lemma 3.5). The advantage of an algorithm A against
the (D, γ, q)-NTRUmod problem is defined as

Adv(A) = Pr
h←D

(

A(h) = hK

)

,

where the probability is also over the internal randomness of A.
The (γ, q) worst-case search NTRU module problem ((γ, q)-wcNTRUmod for

short) asks, given as input a (γ, q)-NTRU instance h, to recover the unique field
element hK ∈ K associated to h.

We note that NTRUmod is definitionally convenient in that the quantity hK

that we are looking for is unique. In NTRUvec, on the contrary, the short trapdoor
(f, g) that we are looking for is far from being unique: it can always be multiplied
by small elements of R to obtain other trapdoors.

Given a (γ, q)-NTRU instance h, one can construct the following free rank-2
module Mh:

Mh :=
(

1 0
h q

)

· R2 =
{

(g, f)T ∈ R2 | g · h = f mod q
}

.

This module is called the NTRU-module associated to h. As a lattice, it has
determinant detMh = ΔK · qd and dimension 2d. If it were a generic lattice
with such determinant and dimension, we would heuristically expect that its
minimum is Θ(

√
d · Δ

1/(2d)
K · √

q). However, since h is a (γ, q)-NTRU instance
with γ >

√
2, we know that there exists an unexpectedly short vector (g, f)T

in the module Mh. This short vector is not unique, any small multiple (rg, rf)T

On the Hardness of the NTRU Problem 17

with r ∈ R small is also a short vector of Mh. However, Lemma 3.5 implies
that the module spanned by all these short vectors has rank 1 and is unique.
Moreover, since this module contains unexpectedly short vectors, it will have an
unexpectedly small volume. Summing up, the rank-2 module Mh has multiple
unexpectedly short vectors and a unique unexpectedly short rank-1 sub-module.
NTRUvec asks to find any of the unexpectedly short non-zero vectors of Mh,
whereas NTRUmod asks to recover the unique short rank-1 sub-module (hence
the names “NTRU vector” and “NTRU module”).

3.4 Elementary Relations Between the Different NTRU Problems

NTRUmod and NTRUvec respectively reduce to their worst-case counterparts.
The proof of the following lemma is similarly direct.

Lemma 3.7. Let q ≥ 2, γ ≥ γ′ >
√

2. Then there exists a ppt reduction from
(γ, q)-wcNTRUmod to (γ, γ′, q)-wcNTRUvec. In the average-case setup, the reduc-
tion preserves the distribution of instances.

If one assumes that ideal-HSVP is easy, then the latter admits a converse
result. The proof of the following lemma is available in the full version.

Lemma 3.8. Let q ≥ 2, γ ≥ γ′ >
√

2 and ε > 0. Then there exists a
ppt reduction from (γ, γvec, q)-wcNTRUvec to (γ, q)-wcNTRUmod and γhsvp-id-
HSVP, where

γvec =
1

(1 + ε)
√

2Δ
1/(2d)
K

· γ

γhsvp
.

In the average-case setup, the NTRUmod and NTRUvec instance distributions are
identical.

To reduce dNTRU to NTRUmod, it suffices to show that for a uniform h, we
do not expect an unexpectedly short non-zero vector (or short rank-1 submodule)
in Mh. The proof of the following lemma is available in the full version.

Lemma 3.9. Let q ≥ 2 be a prime that does not divide ΔK , γ > 16 · √
d ·

Δ
1/(2d)
K and D a distribution over (γ, q)-NTRU instances. Then there exists a ppt

reduction from (D, γ, q)-dNTRU to (D, γ, q)-NTRUmod. Further, the reduction
makes a single call to the NTRUmod oracle, and if the advantage of the NTRUmod

solver is ε, then the advantage of the resulting dNTRU solver is ≥ ε − 2−d.

The objective of the next two sections is to (partly) complete the picture by
giving two more sophisticated reductions: a reduction from id-HSVP to NTRUvec

and a reduction from NTRUmod to dNTRU.

18 A. Pellet-Mary and D. Stehlé

4 Reduction from Ideal-HSVP to NTRUvec

This section is devoted to reducing worst-case id-HSVP to average-case
NTRUvec. For this purpose, we first exhibit a Karp reduction from worst-case id-
HSVP to wcNTRUvec. This reduction is then enhanced by using the worst-case
to average-case reduction for id-HSVP from [dBDPW20], resulting in a reduc-
tion from worst-case id-HSVP to average-case NTRUvec, where the NTRUvec

average-case distribution is defined as the distribution obtained by applying the
worst-case to worst-case reduction to the distribution on ideals from [dBDPW20].
In the process, we improve the reduction of [dBDPW20] to better suit our needs.
We extend it to regimes in which it is not polynomial-time anymore, but allows
to reach smaller values for the NTRU modulus q, and we show that it allows to
sample from the average-case id-HSVP distribution along with a short non-zero
element of the ideal (provided q is sufficiently large, or we have access to a quan-
tum computer). The latter is important to allow to sample from the average-case
distribution over NTRU instances, along with a trapdoor.

4.1 Transforming an Ideal Lattice into an NTRU Module

In this section, we show how to efficiently ‘embed’ an ideal lattice into an NTRU
module such that any sufficiently short vector of the NTRU module provides a
short vector of the embedded ideal lattice. We first give an efficient reduction
from ideal-HSVP to worst-case vectorial NTRU.

Theorem 4.1. Let q ≥ 2 and γ ≥ γ′ > 0 with γ · γ′ · √
d > 1. Let γhsvp =

4dδK · γ/γ′. There is a ppt (Karp) reduction from γhsvp-id-HSVP to (γ, γ′, q)-
wcNTRUvec for ideals I ⊆ R satisfying N (I) ∈ [N/2d, N], with

N =

⎢

⎢

⎢

⎣

(√
q

γ · d1.5 · δK · Δ
1
2d

K

)d
⎥

⎥

⎥

⎦ .

Note that the reduction is restricted to integral ideals of bounded norms.
The lower bound is not restrictive: given a non-zero integral ideal I such that
N (I) ≤ N , we can scale it to the non-zero integral ideal I ′ = �(N/N (I))1/d� ·
I, which satisfies N (I ′) ∈ [N/2d, N] and for which a γhsvp-id-HSVP solution
directly leads to a γhsvp-id-HSVP solution for I. Concerning the upper bound
restriction, the id-HSVP worst-case to average-case reduction from [dBDPW20]
(as refined in Subsect. 4.2) shows that we can wlog focus on integral ideals I of
norms N ≈ 2d1+α

for some α ∈ (0, 1]. This impacts the choice of the NTRU
modulus q.

Let us now focus on the problem parameters. If we put aside factors that
depend only on the number field, we can set N1/d ≈ √

q/γ, and we then obtain
that γhsvp ≈ γ/γ′. This means that the approximation factor (which is γ/γ′ in
the NTRU case) stays roughly the same, and that the root determinant of the
NTRU module is γ times larger than the one of the ideal lattice.

On the Hardness of the NTRU Problem 19

Algorithm 4.1. Transforming an ideal lattice into an NTRU instance
Input: A Z-basis of a non-zero ideal I ⊆ R and a modulus q.
Output: An NTRU instance h.
1: Compute z ∈ K such that I = R ∩ 〈z〉 (see Lemma 4.2).
2: Let h = �q/z� mod q ∈ Rq.
3: return h

The transformation that embeds an ideal lattice into an NTRU module is
described in Algorithm 4.1. In Lemma 4.3, we show some properties of Algo-
rithm 4.1, which will be used to prove Theorem 4.1.

Lemma 4.2. There exists a ppt algorithm (in size(I) and log ΔK) which, given
a non-zero integral ideal I as input, computes z ∈ K such that I = R ∩ 〈z〉.
Proof. If I = 0, then the algorithm returns z = 0. If I = R, it returns z = 1. We
now assume that I is neither 0 nor R. Since I ⊆ R, it holds that 1 ∈ I−1. Let
y ∈ I−1 be the output of the algorithm of Lemma 2.6, given (I−1, 1) as input:
we have I−1 = 〈1〉 + 〈y〉. Note that I �= R implies that y �= 0. We then define
z = 1/y, which fulfills our needs as J1 ∩ J2 = (J−1

1 + J−1
2)−1 for any non-zero

fractional ideals J1 and J2. ��
When using Lemma 4.2 in Algorithm 4.1, the element z is necessarily non-

zero, as I is non-zero. The analysis of Algorithm 4.1 follows the intuition pro-
vided by the case of principal ideals (with a known generator) described in the
introduction.

Lemma 4.3. Let q ≥ 2 and I ⊆ R a non-zero integral ideal. On input (I, q),
Algorithm 4.1 outputs h ∈ Rq such that

• there exists a pair (f, g) ∈ R2 \ {(0, 0)} with g · h = f mod q and ‖f‖, ‖g‖ ≤
d1.5 · δK · Δ

1/(2d)
K · N (I)1/d;

• for any pair (f ′, g′) ∈ R2 \{(0, 0)} with g′ ·h = f ′ mod q and ‖f ′‖∞, ‖g′‖∞ <

q/(d · δK · Δ
1/(2d)
K · N (I)1/d), we have g′ ∈ I \ {0}.

Moreover, Algorithm 4.1 runs in time polynomial in size(I), log q and log ΔK .

Proof. The run-time of the algorithm follows from Lemma 4.2. For the proofs of
the two main statements, we consider g ∈ I \ {0} with minimal infinity norm.
By Minkowski’s bound, we have that ‖g‖∞ ≤ Δ

1/(2d)
K · N (I)1/d.

We now prove the existence of f such that (f, g) is a short trapdoor for h.
By multiplying g with h, we obtain

g · h = g · �q/z = g · q/z + f,

with f := −g · {q/z}. Since g ∈ I and z−1 ∈ I−1 (because I ⊆ 〈z〉), we have
that g · q/z ∈ qR. This implies that f ∈ R and gh = f mod q, as desired. Let us
now compute an upper bound on the norm of f (we already know that ‖g‖ ≤

20 A. Pellet-Mary and D. Stehlé

√
d·Δ1/(2d)

K ·N (I)1/d). We know from the preliminaries that ‖{q/z}‖∞ ≤ d/2·δK ,
from which we obtain:

‖f‖ ≤ ‖g‖ · (d · δK) ≤ d3/2 · δK · Δ
1
2d

K · N (I)
1
d .

Let us now prove the second property of the lemma. Let (g′, f ′) ∈ R2\{(0, 0)}
be such that g′ · h = f ′ mod q and

‖f ′‖∞, ‖g′‖∞ <
q

d · δK · Δ
1
2d

K · N (I)
1
d

.

We first show that g′ �= 0. Assume by contradiction that g′ = 0. Then
f ′ = 0 mod q, i.e., f ′ ∈ qR. But any non-zero element of qR has infinity norm ≥ q
(using the fact that any non-zero element of R has infinity norm ≥ 1). Since we
know that ‖f ′‖∞ < q, we conclude that f ′ = 0, which contradicts the assumption
that (f ′, g′) �= (0, 0).

We now show that g′ ∈ I. Recall that z is such that I = R ∩ 〈z〉. Since we
already know that g′ ∈ R, it suffices to prove that g′ ∈ 〈z〉, i.e., that g′/z ∈ R.
By definition of h, we have:

g′ · q/z = g′ · h + g′ · {q/z} = f ′ + g′ · {q/z} + q · r,

for some r ∈ R. Multiplying this equation by g/q (recall that g is a shortest
non-zero vector of I for the infinity norm), we obtain

g′ · g/z = (f ′ + g′ · {q/z}) · g/q + g · r.

We have seen that g/z ∈ R, so that both terms g′ · g/z and g · r are in R. We
hence have that the term (f ′ + g′ · {q/z}) · g/q must also belong to R. Further,
we know that

‖(f ′ + g′ · {q/z}) · g/q‖∞ ≤ (‖f ′‖∞ + ‖g′‖∞ · ‖{q/z}‖∞) · ‖g‖∞/q

≤ max(‖f ′‖∞, ‖g′‖∞) · (1 + d/2 · δK) · Δ
1
2d

K · N (I)
1
d /q.

By assumption, the above is < 1. Since no non-zero element of R has infinity
norm < 1, we conclude that f ′ + g′ · {q/z} = 0. This implies that g′ · q/z = q · r.
Dividing this equality by q, we obtain that g′/z ∈ R, as desired. ��

We are now ready to prove Theorem 4.1.

Proof (Theorem 4.1). The reduction consists in calling Algorithm 4.1 on I and q
to obtain some h ∈ Rq, then calling the wcNTRUvec oracle on h and returning
the oracle output.

Let I ⊆ R be a γhsvp-id-HSVP instance satisfying N (I) ∈ [N/2d, N], with
N as in the theorem statement. The first statement of Lemma 4.3 ensures
that the element h computed by the reduction is a valid (γ, γ′, q)-wcNTRUvec

instance. The wcNTRUvec oracle hence outputs a pair (f ′, g′) ∈ R2 \ {(0, 0)}

On the Hardness of the NTRU Problem 21

such that g′ · h = f ′ mod q and ‖f ′‖, ‖g′‖ ≤ √
q/γ′. By the parameter condi-

tions, the assumption of the second statement of Lemma 4.3 holds. We hence
have that g′ ∈ I \{0}. Further, by definition of N , the lower bound on N (I) and
definition of γhsvp, we have

‖g′‖ ≤
√

q

γ′ ≤ 21/d · N
1
d · γ · d1.5 · δK · Δ

1
2d

K

γ′ ≤ γhsvp ·
√

d · Δ
1
2d

K · N (I)
1
d .

Note that we used the inequality �x� ≥ x/2, which holds for any x ≥ 1. ��

4.2 From Worst-Case id-HSVP to Average-Case id-HSVP

In [dBDPW20], the authors gave a worst-case to average-case reduction for id-
HSVP, for a certain average-case distribution of ideals. We adapt [dBDPW20,
Th. 4.5] to Theorem 4.4 below, so that it better fits with our application. We
explain in the full version how to adapt the proof.

Theorem 4.4 (Adapted from [dBDPW20], Th. 4.5, ERH). Let K a num-
ber field of degree d and N ≥ (12d1.5 log d · δK · Δ

1/(2d)
K)d an integer. Let γ > 0.

There exist γ′ = γ · O(d1.5Δ
1/d
K), a distribution Did-HSVP

N over non-zero integral
ideals of K of norm ≤ N and a reduction:

• from worst-case γ′-id-HSVP for all fractional ideals of K,
• to average-case γ-id-HSVP for integral ideals distributed from Did-HSVP

N .

The reduction decreases the success probability by at most 2−Ω(d), makes a sin-
gle call to the average-case γ-id-HSVP oracle, and runs in time T id-HSVP

β +
poly(log N, size(I), log ΔK) where

• I is the input (worst-case) ideal;
• T id-HSVP

β is the time needed to solve id-HSVP with approximation factor 2d/β

and

β =

⌈

d

log
(

N1/d/(6d1.5 log d · δK · Δ
1/(2d)
K)

)

⌉

.

Moreover, there exist N0 = poly(Δ1/d
K , δK , d)d and a ppt algorithm A (with

respect to log N and log ΔK) such that, for all N ≥ N0, algorithm A samples
pairs (J,w) such that:

• the ideal J is a non-zero integral ideal of norm ≤ N ;
• the distribution ˜Did-HSVP

N of J satisfies ˜Did-HSVP
N ≈2−Ω(d) Did-HSVP

N ;
• the element w ∈ J \ {0} satisfies ‖w‖ ≤ poly(d, δK ,Δ

1/d
K , 2

√
log ΔK+d log d) ·

N (J)1/d.

If we have access to a factoring oracle or if N ≥ N ′
0 = N0 · 2O(d

√
log ΔK+d log d),

then we can reduce the size of w down to ‖w‖ ≤ poly(d, δK ,Δ
1/d
K) · N (J)1/d.

22 A. Pellet-Mary and D. Stehlé

Note that even though the reduction relies on a worst-case id-HSVP solver,
the latter is with an approximation factor 2d/β which is typically much larger
than γ′. This implies that T id-HSVP

β is expected to be much smaller than the

time needed to solve γ′-id-HSVP. Assume that Δ
1/(2d)
K and δK are both poly(d)

and that we use the lattice reduction algorithm from [Sch87] with block size β to
solve 2d/β-id-HSVP. It runs in time T id-HSVP

β = 2O(β) (up to a poly(log N, log ΔK)
factor). Then, it can be seen that the reduction is polynomial-time when N =
2Ω(d2); it becomes more expensive when N is below this bound; and it ends up
being 2O(d) when N ≈ poly(d)d. The run-time of the reduction can be improved
using id-HSVP algorithms such as those mentioned in Subsect. 2.3. In all cases,
we note that one can sample ideals J from Did-HSVP

N , together with a short vector
of J in quantum polynomial time even for small N , and in classical polynomial
time for larger N ’s (of the order of 2O(d1.5√

log d) if Δ
1/(2d)
K and δK are both

poly(d)).
All the ingredients for the proof of Theorem 4.4 are present in [dBDPW20],

however the latter only considered the case of N ≥ (2d ·6d1.5 log d ·Δ1/(2d)
K ·δK)d,

since this is the range of parameters for which the reduction runs in polynomial
time. The generalization to smaller N and larger run-time is relatively immediate
and is provided in the full version. A further difference with [dBDPW20] is
that the distribution Did-HSVP

N in [dBDPW20] is over the inverses of integral
ideals (see [dBDPW20, Le. 4.1]) whereas here it is more convenient to have a
distribution over integral ideals. Finally, we also explain in the full version how
to sample ideals from Did-HSVP

N with a somehow short vector.

4.3 An Average-Case Distribution of NTRU Instances

In this subsection, we define a distribution DNTRU
q,γ over (γ, q)-NTRU instances.

This distribution is defined as the one being produced by Algorithm 4.2. In fact,
Algorithm 4.2 actually provides a (γ̃, q)-NTRU setup for some γ̃ ≥ γ, i.e., the
instance h can be sampled along with a trapdoor (f, g) that may be a little larger
than a shortest one.

Algorithm 4.2. Sampling h from DNTRU
q,γ together with a trapdoor

Input: An integer q ≥ 2 and a real γ ≥ 1
Output: A triple (h, f, g) ∈ Rq × R2.

1: Let N =

⌊(√
q

γ·d1.5·δK ·Δ1/(2d)
K

)d
⌋
.

2: Sample I from D̃id-HSVP
N with v ∈ I\{0} such that ‖v‖ ≤ poly(d, δK , Δ

1/d
K)·N (I)1/d

(see Theorem 4.4).
3: Let I ′ = �(N/N (I))1/d� · I and v′ = �(N/N (I))1/d� · v.
4: Run Algorithm 4.1 on I ′; let h ∈ Rq be the output and z as in Algorithm 4.1.
5: Compute g = v′ and f = −g · {q/z}.
6: return (h, f, g).

On the Hardness of the NTRU Problem 23

Lemma 4.5. There exist Γ = poly(d, δK ,Δ
1/d
K) and Γ ′ = Γ · 2O(

√
log ΔK+d log d)

such that if
√

q/γ ≥ Γ (resp.
√

q/γ ≥ Γ ′), then Algorithm 4.2 runs in quantum
(resp. classical) polynomial time (with respect to log q and log ΔK).

Proof. Let Γ = 2d1.5 · δK ·Δ1/(2d)
K ·N1/d

0 (resp. Γ ′ = 2d1.5 · δK ·Δ1/(2d)
K · (N ′

0)
1/d),

where N0 (resp. N ′
0) is as in the second part of Theorem 4.4. Note that we have

Γ = poly(d, δK ,Δ
1/d
K) (resp. Γ ′ = Γ · 2O(

√
log ΔK+d log d)) as desired. Moreover,

by definition of N and using the fact that
√

q/γ ≥ Γ (resp.
√

q/γ ≥ Γ ′), we have
N ≥ N0 (resp. N ≥ N ′

0). Hence, by Theorem 4.4, one can sample (I, v) in Step 2
in quantum (resp. classical) time poly(log N, log ΔK) = poly(log ΔK , log q).

By Theorem 4.4, we also know that the ideal I is non-zero and satisfies
N (I) ≤ N , hence �(N/N (I))1/d� �= 0. Therefore, the ideal I ′ computed at Step 3
is also non-zero, and v′ is a non-zero element of I ′. Thanks to Lemma 4.3, we
know that Algorithm 4.1 can be run on I ′ in time poly(size(I ′), log q, log ΔK).
Since I ′ is integral and N (I ′) ≤ N ≤ qd, we conclude that size(I ′) ≤ poly(log q,
log ΔK). Finally, computing f using the formula −g · {q/z} can also be done in
time poly(log q, log ΔK), since the rounding operation in R is efficient. ��

Now that it is established that Algorithm 4.2 terminates, we can formally
define DNTRU

γ,q as the distribution produced by the algorithm.

Definition 4.6 (Distribution DNTRU
q,γ). Let q, γ as in Algorithm 4.2. The dis-

tribution DNTRU
γ,q over Rq is defined as the distribution of the element h produced

by Algorithm 4.2 on input (q, γ).

Lemma 4.7. The support of the distribution DNTRU
q,γ is contained in the set of

(γ, q)-NTRU instances.

Proof. Let h be computed by Algorithm 4.2 on input (q, γ). By the first property
of Lemma 4.3, there exists a trapdoor (f�, g�) �= (0, 0) for h, with ‖f�‖, ‖g�‖ ≤
d1.5 ·δK ·Δ1/(2d)

K ·N (I ′)1/d. We have N (I ′) = �(N/N (I))1/d�d ·N (I) ≤ N . Using
the definition of N , we conclude that ‖f�‖, ‖g�‖ ≤ √

q/γ. ��
Algorithm 4.2 gives a way to sample from DNTRU

q,γ together with a trapdoor.

Lemma 4.8. Let q, γ as in Algorithm 4.2 and Γ (resp. Γ ′) as in Lemma 4.5.
If

√
q/γ ≥ Γ (resp.

√
q/γ ≥ Γ ′), then there exist γ̃ = γ/poly(d, δK ,Δ

1/d
K) such

that Algorithm 4.2 is a (DNTRU
q,γ , γ̃, q)-NTRU quantum (resp. classical) setup.

Proof. We have already seen in Lemma 4.5 that Algorithm 4.2 is quantum (resp.
classical) ppt. We have seen in Lemma 4.7 that D is a distribution over (γ, q)-
NTRU instances. It is hence a distribution over (γ̃, q)-NTRU instances, as γ̃ ≤ γ.
We now show that the sampled pair (f, g) �= (0, 0) satisfies g · h = f mod q and
‖f‖, ‖g‖ ≤ √

q/γ · poly(d, δK ,Δ
1/d
K).

We have already seen that g = v′ is non-zero. Moreover, by definitions of
f = −g · {q/z} and h = �q/z, is holds that f = g · h mod q (see the proof of

24 A. Pellet-Mary and D. Stehlé

Lemma 4.3). Further, we have (successively using Theorem 4.4, the definition
of I ′ and the definition of N):

‖g‖ = ‖v′‖ ≤ poly(d, δK ,Δ
1/d
K) · N (I ′)1/d ≤ poly(d, δK ,Δ

1/d
K) · N1/d

≤ poly(d, δK ,Δ
1/d
K) ·

√
q

γ
.

Moreover, by definition of f , we know that ‖f‖ ≤ ‖g‖ · (d · δK). Hence, there
exists some γ̃ = γ/poly(d, δK ,Δ

1/d
K) such that ‖f‖, ‖g‖ ≤ √

q/γ̃, as desired. ��

4.4 From Average-Case id-HSVP to Average-Case NTRU

By combining the results from Subsects. 4.1 and 4.3, we obtain that, for well-
chosen parameters, average-case id-HSVP for distribution Did-HSVP

N reduces to
average-case NTRUvec for distribution DNTRU

q,γ . The proof of Theorem 4.9 is avail-
able in the full version. This theorem can in turn be combined with Theorem 4.4
to obtain a reduction from worst-case id-HSVP to average-case NTRUvec.

Theorem 4.9. Let q ≥ 2, γ ≥ 1 and γ′ > 0 such that γ · γ′ · √
d > 1 and√

q/γ ≥ 13 · d3 log d · δ2K · Δ
1/d
K . Define:

N =

⎢

⎢

⎢

⎣

(√
q

γ · d1.5 · δK · Δ
1/(2d)
K

)d
⎥

⎥

⎥

⎦ and γhsvp =
γ

γ′ · 4dδK .

There is a ppt reduction (with respect to log ΔK and log q) from average-case
γhsvp-id-HSVP for ideals sampled from ˜Did-HSVP

N to (DNTRU
q,γ , γ, γ′, q)-NTRUvec.

The reduction makes a single call to the NTRUvec oracle and preserves the suc-
cess probability.

5 A Search to Decision Reduction for NTRU

In this section, we provide a reduction from average-case search-NTRUmod with
distribution Ds to average-case dec-NTRU with distribution Dd. The distribu-
tion Ds can be chosen from a large class of distributions (it only has to be
bounded and to have an invertible denominator, as per Definition 5.1 below)
and the distribution Dd is a function of Ds. Moreover, we show that if the dis-
tribution Ds enjoys an NTRU setup, then so does Dd.

5.1 Choice of the Distributions

We start by describing a property of distributions that we will need for our search
to decision reduction. We also describe the distribution Dd as a function of Ds,
and explain how one can sample h with a trapdoor (f, g) from Dd, provided
there is an efficient algorithm doing it for Ds.

On the Hardness of the NTRU Problem 25

Definition 5.1 (Well-behaved elements and distributions). Let q ≥ 2 be
an integer and B > 1 be a real number. An element h ∈ Rq is said to be B-well-
behaved if there exists f, g ∈ R such that gh = f mod q; 〈f〉+ 〈g〉+ 〈q〉 = R; and
for all 1 ≤ i ≤ d we have 1/B ≤ |σi(f)|, |σi(g)| ≤ B.

A distribution D over Rq is said to be (B, ε)-well-behaved for some ε ≥ 0 if
the probability that h ← D is B-well-behaved is ≥ 1 − ε.

Observe that any (B, 0)-well-behaved distribution over Rq is a distribution
over (γ, q)-NTRU instances, where γ =

√
q/(B

√
d). Observe also that the con-

dition 〈f〉 + 〈g〉 + 〈q〉 = R is equivalent to asking that g is invertible modulo q.
Indeed, since gh = f mod q, then any prime factor dividing both 〈g〉 and 〈q〉
would also be a prime factor of 〈f〉, contradicting the coprimality condition. Let
us now define a randomized mapping φB over Rq.

Definition 5.2 (Function φB). Let q ≥ 2 and B > 1. We define the random-
ized mapping φB over Rq as follows

φB : Rq → Rq

h �→ xh + y mod q where x, y ← DR,2BdδK
.

We extend φB to distributions over Rq: for a distribution D, we let φB(D) be the
distribution over Rq obtained by sampling h ← D and then outputting φB(h).

Finally, we show that if D enjoys an NTRU setup, then so does φB(D).

Lemma 5.3. Let B ≥ 1, q ≥ 2, γ > 0 and D a distribution over (γ, q)-NTRU
instances. If there exists a (D, γ, q)-NTRU setup, then there exists a (D′, γ′, q)-
NTRU setup where D′ is a distribution over Rq such that D′ ≈2−Ω(d) φB(D)
and γ′ = γ/(4Bd1.5δK).

Proof. Let A be a ppt algorithm (with respect to log q and log ΔK) sampling
triples (h, f, g) ∈ Rq × R2 such that the marginal distribution of h is D, (f, g) �=
(0, 0), ‖f‖, ‖g‖ ≤ √

q/γ and g · h = f mod q.
We consider the following algorithm B:

• run A; let (h, f, g) be the output;
• use the algorithm from Lemma 2.2 with parameters σ = 2BdδK and c = 0

to sample x and y (using the basis (r1, . . . , rd) of R);
• return (h′, f ′, g′) = (xh + y, xf + yg, g).

Note that B is ppt and that (f ′, g′) is non-zero and satisfies g′ ·h′ = f ′ mod q.
By Lemma 2.2, we also have

‖f ′‖ ≤ 2Bd1.5δK · (‖f‖ + ‖g‖) ≤ 4Bd1.5δK ·
√

q

γ
.

Finally, as the residual distribution of h is D, Lemma 2.2 also implies that
the residual distribution of h′ is within statistical distance 2−Ω(d) from φB(D).

��

26 A. Pellet-Mary and D. Stehlé

We can now state the main result of this section: a reduction from NTRUmod

to dNTRU, for well-chosen distributions. This theorem follows from Lemmas 2.5,
5.6 and 5.7, which are stated and proved in the following subsections. The proof
of Theorem 5.4 is provided in the full version.

Theorem 5.4. Let q ≥ 2, B ∈ (1, q], ε ≥ 0 and Ds be a (B, ε)-well-behaved
distribution over Rq. Assume that log q, log ΔK , log ‖Φ‖ ≤ 2o(d) (recall that Φ

is a defining polynomial of K). Define γ′ :=
√

q

4B2d2δK
and assume that γ ≥ 1.

Let A be an algorithm solving (φB(Ds), γ′, q)-dNTRU with advantage Adv(A) ≥
2−o(d). Then, there exists an algorithm B solving (Ds, γ, q)-NTRUmod with γ =√

q/(B
√

d) and advantage Adv(B) ≥ (Adv(A)−2ε)/4. Algorithm B is ppt (with
respect to log q, log ΔK , log ‖Φ‖ and Adv(A)−1) and makes (possibly that many)
oracle queries to A.

Observe that up to polynomial factors depending on the number field K, we
have γ ≈ √

q/B and γ′ ≈ √
q/B2. Said differently, the Euclidean norm of the

short trapdoor is squared when we go from Ds (which has short trapdoors of size
roughly B) to φB(Ds) (which has short trapdoors of size roughly B2). Hence,
one should consider B ≤ q1/4 for the dNTRU instances to have short trapdoors
of norm ≥ √

q.

5.2 Creating New NTRU Instances

In this section, we give a lemma which will allow us to rerandomize an NTRU
instance h so that the distribution of the new NTRU instance depends on
c1σ1(f) + c2σ1(g) for some parameters c1 and c2 that we can customize. This
lemma will be used to prove Lemma 5.7, in the next subsection.

Lemma 5.5. Let (f, g) ∈ R2 \ {(0, 0)} and I = 〈f〉 + 〈g〉. Let c1, c2 ∈ σ1(KR)
(which is either R or C), s0 > 0 and s ≥ √

dδK · (‖f‖ + ‖g‖).
Given t ∈ σ1(KR), we define ψ(t) ∈ KR as (t, 0, . . . , 0)T ∈ KR if σ1 is a real

embedding and as (t/
√

2, t/
√

2, 0, . . . , 0)T ∈ KR if σ1 is a complex embedding
with σ2 = σ1.2

Let D be the output distribution of the following algorithm:

• sample c0 ← Dσ1(KR),s0,0;
• sample x ← DR,s,ψ(c0·c1) and y ← DR,s,ψ(c0·c2);
• return x · f + y · g ∈ I.

Then it holds that D ≈2−Ω(d) DI,S,0, where S is a diagonal matrix with

S11 =
√

s20 · |c1σ1(f) + c2σ1(g)|2 + s2 · (|σ1(f)|2 + |σ1(g)|2)

S22 =
{

S11 if σ1 is a complex embedding
s · √|σ2(f)|2 + |σ2(g)|2 if σ1 is a real embedding

Sii = s ·
√

|σi(f)|2 + |σi(g)|2 for i ≥ 3.

2 The scaling by a factor 1/
√

2 in the complex case ensures that the norm of ψ(t) is
still equal to |t|, which allows simpler expressions.

On the Hardness of the NTRU Problem 27

The above can be obtained by combining the convolution result of [Pei10,
Th. 3.1] and the discrete Gaussian leftover hash lemma from [LSS14, Th. 5.1].
Unfortunately, the statements of [Pei10, Th. 3.1] and [LSS14, Th. 5.1] do not
exactly match what we need (in particular, non-zero centers are not considered
in [LSS14, Th. 5.1] and the convolution result of [Pei10, Th. 3.1] does not con-
sider c0 being sampled from a smaller space and extended with zeros). In the
full version, we prove some slight variants of these results, in order to prove
Lemma 5.5.

Observe that by taking s = 2BdδK and c1 = c2 = 0, then the distribution
of x · f + y · g is exactly the distribution of the numerator of φB(h), over the
randomness of φB (i.e., when h, f and g are fixed). Note that for Lemma 5.5
to be applicable, we need s = 2BdδK ≥ √

dδK · (‖f‖ + ‖g‖), which holds true
if ‖f‖∞, ‖g‖∞ ≤ B. This is the source of the ‘standard deviation squaring’
in Theorem 5.4. Finally, note that by using the lemma multiple times with
the same h, we obtain tuple NTRU instances (as defined in Definition 3.1),
implying that the dNTRU and NTRUvec problem variants reduce to their tuple
counterparts (under proper parametrization).

5.3 Using the OHCP Framework

We now prove two lemmas for the core of the proof of Theorem 5.4. Lemma 5.6
essentially states that when sampling h from Ds, then one should get a “good” h
with non-negligible probability. Lemma 5.7 then shows that when h is “good”, it
is possible to recover a very accurate approximation of σ1(hK) using the dNTRU
oracle. Combining these two lemmas with Lemma 2.5 (which states that one
can recover an element x ∈ K exactly from a sufficiently good approximation
of σ1(x)) then yields Theorem 5.4 (whose proof is provided in the full version).

Lemma 5.6. Let q ≥ 2, B ∈ (1, q], ε ≥ 0 and Ds be a (B, ε)-well-behaved
distribution over Rq. Let A be an algorithm solving (φB(Ds), γ, q)-dNTRU for
some γ ≥ 1. Then, there exists a set H ⊂ Rq such that every h in H is B-well-
behaved; Prh←Ds(h ∈ H) ≥ Adv(A)/2 − ε; and for all h ∈ H

∣

∣

∣ Pr
(A(φB(h)) = 1

) − Pr
(A(u) = 1

)

∣

∣

∣ ≥ Adv(A)/2,

where the probabilities are taken over the internal randomness of A, the ran-
domness of φB and the random choice of u ← U(Rq) (but not over the choice
of h).

Proof. There exists H0 ⊂ Rq of weight ≥ Adv(A)/2 under Ds such that for
all h ∈ H0, the advantage of A on φB(h) is at least Adv(A)/2. We define H as
the subset of the h’s in H0 that are B-well-behaved. The result follows from the
definition of (B, ε)-well-behavedness and the union bound. ��
Lemma 5.7. Let q ≥ 2, B ∈ (1, q], ε ≥ 0 and Ds be a (B, ε)-well-behaved dis-
tribution over Rq. Let Dd = φB(Ds). Let A and H as in Lemma 5.6. Assume

28 A. Pellet-Mary and D. Stehlé

that Adv(A)−1, log q, log ΔK ≤ 2o(d). Then, there exists a probabilistic algo-
rithm B that, given an integer � ≤ 2o(d) and any h ∈ H, recovers σ1(hK)
with � bits of absolute precision3 with probability ≥ 1 − 2−Ω(d) (where hK

is defined as in Lemma 3.5). Moreover, algorithm B runs in time polynomial
in �,Adv(A)−1, log q and log ΔK and makes (possibly that many) oracle queries
to A.

Proof. In order to prove the lemma, we will express our problem as an instance
of the Oracle Hidden Center Problem (see Definition 2.9) and then use Propo-
sition 2.10 to conclude.

Let h ∈ H be fixed once and for all, and given to B. Let us also fix some
(unknown) (f, g) ∈ R2 such that g · h = f mod q; g is invertible modulo q; and
|σi(f)|, |σi(g)| ∈ [1/B,B] for all embeddings σi (we know that such f and g exist
since h is B-well-behaved by definition of H). We write I = 〈f〉 + 〈g〉, which is
also fixed once and for all (and is coprime to 〈q〉).

Let k = 1 if σ1 is a real embedding and k = 2 if σ1 is a complex embedding.
In the following, we will identify R

k with σ1(KR). Note that in both cases, the
Euclidean norm of a vector in R

k corresponds to the absolute value of the element
seen in R or C.

In order to fit the OHCP framework, we need to describe a randomized
oracle O that takes as input a pair (z, t) ∈ R

k × R
≥0 and outputs 0 or 1 such

that PrO(O(z, t) = 1) = P (t + ln |z − σ1(hK)|), for some (unknown) function P
(that may depend on h). In other words, we want that the acceptance probability
of the oracle O only depends on t + ln |z − σ1(hK)| (when t and z vary).

We start by considering an oracle Oideal that we do not know how to imple-
ment efficiently, but which is more convenient for the analysis. We will later
replace it by an oracle Oapprox that can be implemented efficiently and whose
behavior is very close to the one of Oideal. Oracle Oideal is as follows. On input
(z, t) ∈ R

k ×R
≥0, it first samples f ′ ← DI,S, where S is a diagonal matrix with

S11 =
√

exp(t − d)2|σ1(f) − zσ1(g)|2 + 4B2d2δ2K(|σ1(f)|2 + |σ1(g)|2)

S22 =
{

S11 if σ1 is a complex embedding
2BdδK

√

(|σ2(f)|2 + |σ2(g)|2) if σ1 is a real embedding

Sii = 2BdδK

√

(|σi(f)|2 + |σi(g)|2) if i ≥ 3.

The astute reader will observe that sampling such an f ′ may be difficult: this is
why we will later introduce Oapprox. Oracle Oideal then defines h′ = f ′/g mod q
(recall that g is invertible modulo q) and returns A(h′).

Note that z and t only appear in S11 (and S22 = S11 if σ1 is a complex
embedding). Since |σ1(f) − zσ1(g)|/|σ1(g)| = |σ1(hK) − z|, we obtain that the
success probability of the oracle depends only on t+ln |z−σ1(hK)| when t and z
vary, as required (recall that h, f and g are fixed once and for all).

3 The term “absolute precision” refers here to |x̃−x| ≤ 2−�, as opposed to the “relative

precision” which would be |x̃−x|
|x| ≤ 2−�.

On the Hardness of the NTRU Problem 29

In Claim 5.8 below, we show that the oracle Oideal satisfies all the desired
conditions to be an OHCP oracle and the conditions of Proposition 2.10. This
will imply that one can efficiently recover an approximation of σ1(hK) by using
the oracle Oideal as a black box.

Claim 5.8. There exist a parameter κ0 = poly(Adv(A)−1, log q, log ΔK) and an

algorithm B′ that takes as input any parameter κ ≥ κ0 and outputs σ̃1(hK) ∈
σ1(KR) such that |σ̃1(hK) − σ1(hK)| ≤ B2 · exp(−κ) with probability ≥ 1 −
exp(−κ). Algorithm B′ runs in time poly(κ) and makes (possibly that many)
oracle queries to the OHCP oracle Oideal described above.

The difficulty with algorithm B′ from Claim 5.8 is that it makes oracle calls
to Oideal, which we do not know how to run in polynomial time given only access
to h and A (in order to run Oideal efficiently, we would probably need to know
f and g). To handle this difficulty, we describe another oracle Oapprox, whose
behavior is very close to the one of Oideal, but which can be run efficiently.

On input (z, t) ∈ R
k×R

≥0, the randomized oracle Oapprox proceeds as follows.
It first samples c0 in R

k from the continuous Gaussian distribution DRk,exp(t−d),0;
it then defines c1 = ψ(c0) ∈ KR and c2 = ψ(−c0 ·z) ∈ KR (where ψ is as defined
in Lemma 5.5); the oracle then samples x ← ˜DR,2Bd·δK ,c1 and y ← ˜DR,2Bd·δK ,c2

(see Lemma 2.2); finally, the oracle runs A on input ĥ = x · h + y mod q, and
outputs A(ĥ).

Oracle Oapprox can indeed be run in polynomial time from h. Let us now write
f̂ = x · f + y · g, so that ĥ = f̂/g mod q. Observe that Pr(Oapprox(z, t) = 1) =
Pr(A(ĥ) = 1), and Pr(Oideal(z, t) = 1) = Pr(A(h′) = 1), where ĥ and h′ are two
random variables. So |Pr(Oapprox(z, t) = 1) − Pr(Oideal(z, t) = 1)| ≤ dist(ĥ, h′).
Since g is fixed, we have dist(ĥ, h′) = dist(f̂ , f ′), and we obtain that

|Pr(Oapprox(z, t) = 1) − Pr(Oideal(z, t) = 1)| ≤ dist(f̂ , f ′) ≤ 2−Ω(d).

The last inequality comes from Lemma 5.5 and Lemma 2.2.
To conclude, algorithm B is obtained by taking algorithm B′ of Claim 5.8,

but replacing its oracle calls to Oideal by oracle calls to Oapprox, and taking κ =
max(κ0, d, � + 2 ln(B)). By assumption on log q, Adv(A), � and log ΔK , we know
that κ ≤ 2o(d) (recall that B ≤ q), so that algorithm B makes at most 2o(d)

oracle calls to Oapprox. Hence, we obtain that

|Pr(B succeeds) − Pr(B′ succeeds)| ≤ 2o(d) · 2−Ω(d) = 2−Ω(d).

This completes the proof of Lemma 5.7. ��
Proof (Claim 5.8). First, we need to check that the oracle Oideal is a valid OHCP
oracle. Let us write z∗ = σ1(hK). Since σ1(hK) = σ1(f)/σ1(g), we know by
choice of f and g that ‖z∗‖ ∈ [1/B2, B2]. Hence, the oracle Oideal and scale

30 A. Pellet-Mary and D. Stehlé

parameter D = B2 form a valid instance of the (ε, δ, β)-OHCP problem (cf
Definition 2.9), for any ε ∈ (0, 1), any δ ∈ (0, 1/B4] and any β ≥ 1.

We will show below that for all κ ≥ κ0 with

κ0 := max
(

4Adv(A)−1, 8d(1 + ln(qΔ1/d
K)), 4 ln(B)

)

,

the OHCP oracle satisfies the conditions of Proposition 2.10, with

p∞ = Pr
u←U(Rq)

(A(u) = 1) and s∗ = 0.

More formally, letting p(t) denote Pr(Oideal(0, t) = 1) as in Proposition 2.10, we
prove that

1. p(s∗) − p∞ ≥ 1/κ;
2. |p(t) − p∞| ≤ 2 exp(−t/κ) for any t ≥ 0;
3. for any t1, t2 ≥ 0, it holds that |p(t1) − p(t2)| ≤ κ

√|t1 − t2|.
Using Proposition 2.10, we the conclude that there exists an algorithm B′

solving the (exp(−κ), exp(−κ), 1+1/κ)-OHCP problem in time poly(κ) by mak-
ing oracle calls to Oideal. Thanks to the condition κ ≥ 4 ln(B), it holds that
exp(−κ) ≤ 1/B4 is a valid choice of δ. Moreover, using the fact that B ≤ q, we
see that κ0 = poly(Adv(A)−1, log q, log ΔK), which proves Claim 5.8. We now
proceed to prove the three properties above.

Property 1. We want to show that p(s∗) is very close to Pr(A(φB(h)) = 1),
which will allow us to conclude with Lemma 5.6. Observe that by definition
of the OHCP oracle Oideal, we know that p(s∗) = Pr(A(h′) = 1), where h′ =
f ′/g mod q. So in order to bound the difference between Pr

(A(φB(h) = 1
)

and p(s∗), it suffices to bound the statistical distance between the two random
variables φB(h) and h′, which is equivalent to bounding dist(g · φB(h), f ′) (i.e.,
it suffices to consider the numerator since the denominator is g in both cases).

Using Lemma 5.5 with c1 = c2 = 0 and s = 2BdδK , we know that the distri-
bution of g ·φB(h) is within 2−Ω(d) statistical distance from DI,S2,0, where S2 is
a diagonal matrix with i-th diagonal entry equal to 2BdδK ·√|σi(f)|2 + |σi(g)|2.
Moreover, by definition of Oideal, the distribution of f ′ is DI,S1,0, where S1 is
identical to S2, except for first diagonal coefficient (or first two diagonal coeffi-
cients if σ1 is complex), which is equal to

√

(2BdδK)2(|σ1(f)|2 + |σ1(g)|2) + exp(−2d) · |σ1(f)|2.
We now apply Lemma 2.3 to show that these two Gaussian distributions are

statistically close. We first check that η1/2(S−1
i I) ≤ 1/2, for i ∈ {1, 2}. We know

from Eq. (2.1) that

η1/2(S−1
i I) ≤

√

ln(2d(1 + 2))
π

· λd(S−1
i I)

≤
√

d · λd(S−1
i I)

On the Hardness of the NTRU Problem 31

Recall that I = 〈f〉+〈g〉, so that f ∈ I. Hence, we know that the S−1
i ·f ·rj ’s are

linearly independent vectors of S−1
i · I (recall that the rj ’s form a basis of R).

For every j, it holds that ‖S−1
i ·f ·rj‖ ≤ δK · ‖S−1

i ·f‖ ≤ δK ·√d/(2BdδK) (since
every diagonal coefficient of Si is no smaller than the corresponding coefficient
of f multiplied by 2BdδK). Hence, we conclude that λd(S−1

i I) ≤ 1/(2
√

d) and
that η1/2(S−1

i I) ≤ 1/2, as desired. We can apply Lemma 2.3 and we obtain that

dist(DI,S1,0,DI,S2,0) ≤ 4
√

d ·
√

�
�S−1

2 S1 − Id

�
�.

The matrix S−1
2 S1 − Id is zero, except for the top-left coefficient (or for the first

two top-left coefficients if σ1 is a complex embedding), which is equal to
√

1 + η−
1 where η = exp(−2d) · |σ1(f)|2/((2BdδK)2 · (|σ1(f)|2 + |σ1(g)|2)). Since η ≤
exp(−2d), we conclude that |√1 + η − 1| ≤ exp(−2d), and so

�
�S−1

2 S1 − Id

�
� ≤

exp(−2d) (or ≤ 2 exp(−2d) in case we had two non-zero coefficients). We finally
obtain that DI,S1,0 ≈2−Ω(d) DI,S2,0, which in turn shows that

|p(s∗) − Pr
(A(φB(h) = 1

)| ≤ 2−Ω(d).

Finally, since h ∈ H, we know from Lemma 5.6 that |Pr(A(φB(h) = 1) − p∞| ≥
Adv(A)/2. Wlog, we can assume that Pr(A(φB(h) = 1)− p∞ ≥ 0 (otherwise we
can simply consider A′ = 1 − A), from which we obtain that

p(s∗) − p∞ ≥ Adv(A)/2 − 2−Ω(d) ≥ Adv(A)/4,

where the last inequality holds asymptotically when d tends to infinity, since we
assumed that 1/Adv(A) ≤ 2o(d). By choice of κ, this implies that p(s∗) − p∞ ≥
1/κ.

Property 2. To prove this second property, we want to show that when t is
sufficiently large, then the distribution of f ′ mod q (where f ′ is implicitly com-
puted by the oracle Oideal as defined above) is statistically close to uniform
in R mod qR. Recall that the support of f ′ is I, which may be a strict subset
of R. However, we know that I = 〈f〉 + 〈g〉 is coprime to 〈q〉. So if ˜f ∈ I is
uniform in I/(qI), then ˜f + qR is a uniform class of R/(qR). Hence, it suffices
to show that f ′ is statistically close to uniform in I/(qI).

Recall that f ′ is sampled from the distribution DI,S, where S is a diago-
nal matrix with positive diagonal coefficients, with S11 ≥ exp(t − d) · |σ1(f)|
(we consider z = 0 here) and Sii ≥ |σi(f)| for i ≥ 2. Taking the prod-
uct, we conclude that

∏

i Sii ≥ exp(t − d) · N (f). Let us call c the quantity
c = (exp(t − d)N (f)/(N (qI) · ΔK))1/d. Using Lemma 2.8, we know that when
t is sufficiently large so that c ≥ 1, then it holds that 1 ≥ ηε(S−1 · (qI))
for ε = exp(−c2d). Moreover, applying Lemma 2.4 to L1 = S−1 · (qI) and
L2 = S−1 · I, we see that

dist
(

DS−1·I,1 mod S−1 · (qI), U(S−1 · I mod S−1 · (qI))
)

≤ 2 exp(−c2d).

32 A. Pellet-Mary and D. Stehlé

Multiplying the outputs of these two distributions by S, we finally obtain

dist
(

DI,S mod qI, U(I mod qI)
)

≤ 2 exp(−c2d).

Using the fact that c2 ≥ c (as c ≥ 1), that exp(x) ≥ x for all x ∈ R, and that
N (I) ≤ N (f), we obtain the upper bound

2 exp(−c2d) ≤ 2 exp(−cd) ≤ 2 exp
(− e(t−d−ln(qdΔK))/d · d

)

≤ 2 exp
(− (t − d(1 + ln(qΔ1/d

K))
)

.

If t ≥ 2d(1 + ln(qΔ1/d
K)), then (t − d(1 + ln(qΔ1/d

K)) ≥ t/2 and c ≥ 1, which
implies that

|p(t) − p∞| ≤ 2 exp(−t/2) ≤ 2 exp(−t/κ).

For smaller t, note that t ≤ κ/2. In this case, the upper bound 2 exp(−t/κ) is
at least 1, and so the property is also satisfied.

Property 3. Let us fix some t1 ≥ t2 ≥ 0. We want to show that |p(t1) − p(t2)| ≤
κ ·√|t1 − t2|. Observe first that since p takes values in [0, 1] and κ ≥ 1, then the
condition is always satisfied when |t1 − t2| ≥ 1. We will hence assume wlog that
0 ≤ t1 − t2 ≤ 1.

We know from the definition of Oideal that |p(t1)−p(t2)| ≤ dist(DI,S1 ,DI,S2),
where S1 and S2 are diagonal and equal, except for their for top-left coefficient
(or two top-left coefficients if σ1 is a complex embedding):

(S1)11 =
√

c + (exp(t1 − d)|σ1(f)|)2 and (S2)11 =
√

c + (exp(t2 − d)|σ1(f)|)2,

for some c ≥ 0. As when proving Property 1, one can check that η1/2(S−1
1 I),

η1/2(S−1
2 I) ≤ 1/2. Therefore, we can apply Lemma 2.3 to obtain that

dist
(

DI,S1 ,DI,S2

) ≤ 4
√

d ·
√

�
�S−1

2 S1 − Id

�
�.

Once again, the matrix S−1
2 S1 − Id is zero, except for its top-left coefficient

(or two top-left coefficients) which is equal to
√

c + (exp(t1 − d)|σ1(f)|)2
c + (exp(t2 − d)|σ1(f)|)2 −1 ≤

√

(exp(t1 − d)|σ1(f)|)2
(exp(t2 − d)|σ1(f)|)2 −1 = exp(t1 − t2)−1.

The first inequality comes from the fact that t1 ≥ t2 (and c and (exp(t2 −
d)|σ1(f)|)2 are non-negative). Finally, since 0 ≤ t1 − t2 ≤ 1, we conclude
that exp(t1 − t2) − 1 ≤ 2|t1 − t2|. This in turns implies that |p(t1) − p(t2)| ≤
8
√

d
√|t1 − t2| ≤ κ

√|t1 − t2|, as desired. ��

On the Hardness of the NTRU Problem 33

Acknowledgment. The authors thank Koen de Boer, Léo Ducas, Guillaume Hanrot,
Miruna Rosca aux Adeline Roux-Langlois for insightful discussions. The first author
was supported in part by CyberSecurity Research Flanders with reference number
VR20- 192203 and by the Research Council KU Leuven grant C14/18/067 on Crypt-
analysis of Post-quantum Cryptography. The second author was supported in part by
European Union Horizon 2020 Research and Innovation Program Grant 780701 and
BPI-France in the context of the national project RISQ (P141580).

References

[ABD16] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 6

[AD17] Albrecht, M.R., Deo, A.: Large modulus ring-LWE ≥ module-LWE. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624,
pp. 267–296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70694-8 10

[BBC20] Bernstein, D.J., et al.: NTRU Prime round-3 candidate to the NIST
post-quantum cryptography standardisation project (2020). https://
ntruprime.cr.yp.to/

[Bel04a] Belabas, K.: A relative van Hoeij algorithm over number fields. J. Symb.
Comput. 37(5), 641–668 (2004)

[Bel04b] Belabas, K.: Topics in computational algebraic number theory. J. théorie
des nombres de Bordeaux 16, 19–63 (2004)

[CDH20] Chen, C., et al.: NTRU round-3 candidate to the NIST post-quantum
cryptography standardisation project (2020). https://ntru.org/

[CDW21] Cramer, R., Ducas, L., Wesolowski, B.: Mildly short vectors in cyclotomic
ideal lattices in quantum polynomial time. J. ACM 68(2), 1–26 (2021)

[CJL16] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and
cryptanalysis of the GGH multilinear map without an encoding of zero.
LMS J. Comput. Math. 19(A), 255–266 (2016)

[Coh95] Cohen, H.: A Course in Computational Algebraic Number Theory.
Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-662-02945-9

[Coh00] Cohen, H.: Advanced Topics in Computational Number Theory. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-1-4419-8489-0

[dBDPW20] de Boer, K., Ducas, L., Pellet-Mary, A., Wesolowski, B.: Random self-
reducibility of ideal-SVP via arakelov random walks. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 243–273.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 9

[FS10] Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Han-
rot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197,
pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14518-6 15

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 1

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC (2008)

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-70694-8_10
https://ntruprime.cr.yp.to/
https://ntruprime.cr.yp.to/
https://ntru.org/
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-1-4419-8489-0
https://doi.org/10.1007/978-3-030-56880-1_9
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1

34 A. Pellet-Mary and D. Stehlé

[HHP03] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte,
W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36563-X 9

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based pub-
lic key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol.
1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054868

[KF15] Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 3

[KF17] Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched
NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 1

[KLL84] Kannan, R., Lenstra, A.K., Lovász, L.: Polynomial factorization and non-
randomness of bits of algebraic and some transcendental numbers. In:
STOC (1984)

[LLL82] Lenstra, A.K., Lenstra, H.W., Jr., Lovász, L.: Factoring polynomials with
rational coefficients. Math Ann 261, 515–534 (1982)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LS15] Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des Codes Cryptogr. 75, 565–599 (2015)

[LSS14] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilin-
ear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 14

[LTV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption.
In: STOC (2012)

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[Pei10] Peikert, C.: An efficient and parallel gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 5

[Pei16] Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Com-
put. Sci. 10(4) 2016

[PHS19] Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices
with pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11477, pp. 685–716. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17656-3 24

[PRS17] Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of
ring-LWE for any ring and modulus. In: STOC (2017)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56, 1–40 (2009)

https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-030-17656-3_24

On the Hardness of the NTRU Problem 35

[Rob97] Roblot, F.-X.: Algorithmes de factorisation dans les extensions relatives
et applications de la conjecture de Stark à la construction des corps de
classes de rayon. PhD thesis, Université Bordeaux 1 (1997). http://math.
univ-lyon1.fr/∼roblot/resources/these.pdf

[RSW18] Rosca, M., Stehlé, D., Wallet, A.: On the ring-LWE and polynomial-LWE
problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 146–173. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 6

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53, 201–224 (1987)

[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 4

[SS13] Stehlé, D., Steinfeld, R.: Making NTRUEncrypt and NTRUSign as secure
as standard worst-case problems over ideal lattices. IACR ePrint 2013/004
(2013)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10366-7 36

[Sut16] Sutherland, A.: Lecture notes of Number Theory I, taught at MIT (2016).
https://math.mit.edu/classes/18.785/2016fa/LectureNotes12.pdf

[WW18] Wang, Y., Wang, M.: Provably secure NTRUEncrypt over any cyclotomic
field. In: SAC (2018)

http://math.univ-lyon1.fr/~roblot/resources/these.pdf
http://math.univ-lyon1.fr/~roblot/resources/these.pdf
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://math.mit.edu/classes/18.785/2016fa/LectureNotes12.pdf

	On the Hardness of the NTRU Problem
	1 Introduction
	2 Preliminaries
	2.1 Euclidean Lattices
	2.2 Discrete Gaussian Distributions
	2.3 Number Fields
	2.4 Ideals and Modules
	2.5 Oracle Hidden Center Problem

	3 Different Variants of the NTRU Problem
	3.1 NTRU Instances
	3.2 Decision NTRU Problem
	3.3 Search NTRU Problems
	3.4 Elementary Relations Between the Different NTRU Problems

	4 Reduction from Ideal-HSVP to NTRU vector
	4.1 Transforming an Ideal Lattice into an NTRU Module
	4.2 From Worst-Case id-HSVP to Average-Case id-HSVP
	4.3 An Average-Case Distribution of NTRU Instances
	4.4 From Average-Case id-HSVP to Average-Case NTRU

	5 A Search to Decision Reduction for NTRU
	5.1 Choice of the Distributions
	5.2 Creating New NTRU Instances
	5.3 Using the OHCP Framework

	References

