®

Check for
updates

An LLL Algorithm for Module Lattices

Changmin Lee®, Alice Pellet-Mary', Damien Stehlé’ ™) and Alexandre Wallet?

1 Univ. Lyon, EnsL, UCBL, CNRS, Inria, LIP, 69342 Lyon Cedex 07, France
changmin.lee@ens-lyon.fr
2 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. The LLL algorithm takes as input a basis of a Euclidean lat-
tice, and, within a polynomial number of operations, it outputs another
basis of the same lattice but consisting of rather short vectors. We pro-
vide a generalization to R-modules contained in K™ for arbitrary number
fields K and dimension n, with R denoting the ring of integers of K. Con-
cretely, we introduce an algorithm that efficiently finds short vectors in
rank-n modules when given access to an oracle that finds short vectors
in rank-2 modules, and an algorithm that efficiently finds short vectors
in rank-2 modules given access to a Closest Vector Problem oracle for a
lattice that depends only on K. The second algorithm relies on quantum
computations and its analysis is heuristic.

1 Introduction

The NTRU [HPS98], RingSIS [LMO06, PR06], RingLWE [SSTX09, LPR10], Mod-
uleSIS and ModuleLWE [BGV14,LS15] problems and their variants serve as
security foundations of numerous cryptographic protocols. Their main advan-
tages are their presumed quantum hardness, their flexibility for realizing
advanced cryptographic functionalities, and their efficiency compared to their
SIS and LWE counterparts [Ajt96,Reg09]. As an illustration of their popularity
for cryptographic design, we note that 11 out of the 26 candidates at Round 2 of
the NIST standardization process for post-quantum cryptography rely on these
problems or variants thereof.! From a hardness perspective, these problems are
best viewed as standard problems on Euclidean lattices, restricted to random
lattices corresponding to modules over the rings of integers of number fields.
Further, for some parametrizations, there exist reductions from and to standard
worst-case problems for such module lattices [LS15,AD17, RSW18].

Let K be a number field and R its ring of integers. In this introduction, we
will use the power-of-2 cyclotomic fields K = Q[z]/(z? + 1) and their rings of
integers R = Z[z]/(z? + 1) as a running example (with d a power of 2). An
R-module M C K" is a finitely generated subset of vectors in K™ that is sta-
ble under addition and multiplication by elements of R. As an example, if we
consider h € R/qR for some integer ¢, the set {(f,9)T € R*: fh = g mod ¢} is
a module. If & is an NTRU public key, the corresponding secret key is a vector

! See https://csrc.nist.gov/projects/post-quantum-cryptography.

© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASTACRYPT 2019, LNCS 11922, pp. 59-90, 2019.
https://doi.org/10.1007/978-3-030-34621-8_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34621-8_3&domain=pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-030-34621-8_3

60 C. Lee et al.

in that module, and its coefficients are small. Note that for K = Q and R = Z,
we recover Euclidean lattices in Q™. A first difficulty for handling modules com-
pared to lattices is that R may not be a Euclidean domain, and, as a result, a
module M may not be of the form M =), Rb; for some linearly independent
b;’s in M. However, as R is a Dedekind domain, for every module M, there exist
K-linearly independent b;’s and fractional ideals I; such that M = > I;b; (see,
e.g., [O'M63, Th. 81:3]). The set ((I;,b;)); is called a pseudo-basis of M. A mod-
ule in K™ can always be viewed as a lattice in C"? by mapping elements of K
to C? via the canonical embedding map (for our running example, it is equivalent
to mapping a polynomial of degree <d to the vector of its coefficients).

Standard lattice problems, such as finding a full-rank set of linearly indepen-
dent short vectors in a given lattice, are presumed difficult, even in the context of
quantum computations. In order to assess the security of cryptographic schemes
based on NTRU/RingSIS/etc, an essential question is whether the restriction to
module lattices brings vulnerabilities. Putting aside small polynomial speed-ups
relying on the field automorphisms (multiplication by 2 in our running example),
the cryptanalytic state of the art is to view the modules as arbitrary lattices,
i.e., forgetting the module structure.

LLL [LLL82] is the central algorithm to manipulate lattice bases. It takes as
input a basis of a given lattice, progressively updates it, and eventually outputs
another basis of the same lattice that is made of relatively short vectors. Its
run-time is polynomial in the input bit-length. For cryptanalysis, one typically
relies on BKZ [SE94] which extends this principle to find shorter vectors at a
higher cost. Finding an analogue of LLL for module lattices has been an elusive
goal for at least two decades, a difficulty being to even define what that would
be. Informally, it should:

e work at the field level (in particular, it should not forget the module structure
and view the module just as a lattice);

e it should find relatively short module pseudo-bases by progressively updating
the input pseudo-basis;

e it should run in polynomial-time with respect to the module rank n and the
bit-lengths of the norms of the input vectors and ideals.

The state of the art is far from these goals. Napias [Nap96] proposed such an
algorithm for fields whose rings of integers are norm-Euclidean, i.e., Euclidean
for the algebraic norm. In our running example, this restricts the applicability
to d < 4 (see [Cer05,Lez14] for other families of fields). Fieker and Pohst [FP96]
proposed a general-purpose algorithm. However, it was not proved to provide
pseudo-bases consisting of short module vectors, and a cost analysis was pro-
vided only for free modules over totally real fields. Fieker [Fie97, p. 47] sug-
gested to use rank-2 module reduction to achieve rank-n module reduction, but
there was no follow-up on this approach. Gan, Ling and Mow [GLMO09] described
and analyzed an LLL algorithm for Gauss integers (i.e., our running example
instantiated to d = 2). Fieker and Stehlé [FS10] proposed to apply the LLL
algorithm on the lattice corresponding to the module to find short vectors in
polynomial time and reconstruct a short pseudo-basis afterwards. More recently,



An LLL Algorithm for Module Lattices 61

Kim and Lee [KL17] described such an LLL algorithm for biquadratic fields
whose rings of integers are norm-Euclidean, and provided analyses for the short-
ness of the output and the run-time. They also proposed an extension to arbitrary
norm-Euclidean rings, still with a run-time analysis but only conjecturing and
experimentally supporting the output quality.

The rank-2 restriction already captures a fundamental obstacle. The LLL
algorithm for 2-dimensional lattices (which is essentially Gauss’ algorithm) is a
succession of divide-and-swap steps. Given two vectors by, by € Q2?, the ‘divi-
sion’ consists in shortening bs by an integer multiple of by. This integer k is
the quotient of the Euclidean division of (b1, bs) by |[b1||?. This leads to a vec-
tor bh. If the latter is shorter than by, then by and bs are swapped and a new
iteration starts. Crucial to this procedure is the fact that if the projection of by
orthogonally to by is very small compared to ||by ||, then the division will provide
a vector b), that is shorter than b;. When a swap cannot be made, it means that
the projection of by orthogonally to by is not too small, and hence the basis is
of good quality, i.e., somewhat orthogonal and hence made of somewhat short
vectors. What provides the convergence to a short basis is the Euclideanity of Z.
This is why prior works focused on this setup. Put differently, the crucial prop-
erty is the fact that the covering radius of the Z lattice is smaller than 1: this
makes it possible to shorten a vector by whose projection is sufficiently small by
an appropriate integer multiple such that b} becomes smaller than b;. When we
extend to modules, the corresponding lattice becomes R, and its covering radius
has no a priori reason to be smaller than 1 (for our running example, it is v/d/2).
Even if we allow an infinite amount of time to find an optimal k € R, the result-
ing by — kb may still be longer than by, even if by is in the K-span of b;.
This leads us to the following question: does there exist a lattice L depending
only on K such that being able to solve the Closest Vector Problem (CVP) with
respect to L allows to find short bases of modules in K?2?

CONTRIBUTIONS. The LLL algorithm for Euclidean lattices can be viewed as a
way to leverage the ability of Gauss’ algorithm to reduce 2-dimensional lattice
bases, to reduce n-dimensional lattice bases for any n > 2. We propose extensions
to modules of both Gauss’ algorithm and of its LLL leveraging from 2 to n
dimensions, hence providing a full-fledged framework for LLL-like reduction of
module pseudo-bases.

Our first contribution is an oracle-based algorithm which takes as input a
pseudo-basis of a module M C K™ over the ring of integers R of an arbitrary
number field K, updates it progressively in a fashion similar to the LLL algo-
rithm, and outputs a pseudo-basis of M. The first output vector is short, and
the algorithm runs in time polynomial in n and the bit-lengths of the norms of
the input vectors and ideals. It makes a polynomial number of calls to an oracle
that finds short vectors in rank-2 modules. This oracle-based LLL-like algorithm
for modules allows us to obtain the following result for our running example (see
Theorem 3.9 for a general statement).

Theorem 1.1. Let K = Q[z]/(z%+1) and R = Z[x]/(x%+1), for d a power of 2.
There is a polynomial-time reduction from finding a (2vv/d)?" ' -approzimation



62 C. Lee et al.

to a shortest non-zero vector in modules in K™ (with respect to the Euclidean
norm inherited from mapping an element of K™ to the concatenation of its n
coefficient vectors) to finding a y-approzimation to a shortest non-zero vector in
modules in K?.

For example, if n is constant, then the reduction allows to obtain polynomial
approximation factors in modules in K™ from polynomial approximation factors
in modules in K?2.

Our second contribution is a heuristic algorithm to find a very short non-zero
vector in an arbitrary module in K2, given access to a CVP oracle with respect
to a lattice depending only on K. We obtain the following result for our running
example (combine Corollary 4.10 with Lemma 2.3 for a general statement).

Theorem 1.2 (Heuristic). There exists a sequence of lattices Lg and an algo-
rithm A such that the following holds. Algorithm A takes as input a pseudo-basis

of a rank-2 module M C (Q/(x% + 1))2, and outputs a vector v.€ M \ {0} that

is no more than 2008 )7 longer than a shortest non-zero vector of M. If given

access to an oracle solving CVP in Lg in polynomial time, then it runs in quan-
tum polynomial time. Finally, for any n > 0, the lattice Ly can be chosen of
dimension O(d?*").

The quantum component of the algorithm is the decomposition of an ideal
as the product of a subset of fixed ideals and a principal ideal with a gener-
ator [BS16]. By relying on [BEF+17] instead, one can obtain a dequantized
variant of Theorem 1.2 relying on more heuristics and in which the algorithm
runs in 200V classical time.

We insist that the result relies on heuristics. Some are inherited from prior
works (such as [PHS19]) and one is new (Heuristic 1 in Sect. 4). The new heuristic
quantifies the distance to Ly of vectors in the real span of L, that satisfy some
properties. This heuristic is difficult to prove as the lattice Ly involves other
lattices that are not very well understood (the log-unit lattice and the lattice
of class group relations between ideals of small algebraic norms). We justify
this heuristic by informal counting arguments and by some experiments in small
dimensions.

Finally, we note that the dimension of Ly is near-quadratic in the degree d
of the field. This is much more than the lattice dimension d of R, but we do not
know how to use a CVP oracle for R to obtain such an algorithm to find short
vectors in rank-2 modules. An alternative approach to obtain a similar reduction
from finding short non-zero vectors in rank-2 modules to CVP with preprocessing
would be as follows: to reach the goal, it suffices to find a short non-zero vector
in a (2d)-dimensional lattice; by using the LLL algorithm and numerical approx-
imations (see, e.g., [SMSV14]), it is possible to further assume that the bit-size
of the inputs is polynomial in d; by Kannan’s search-to-decision reduction for the
shortest vector problem [Kan87], it suffices to obtain an algorithm that decides
whether or not a lattice contains a non-zero vector of norm below 1; the latter
task can be expressed as an instance of 3SAT, as the corresponding language



An LLL Algorithm for Module Lattices 63

belongs to NP; finally, 3SAT reduces to CVP with preprocessing [Mic01]. Over-
all, this gives an alternative to Theorem 1.2 without heuristics, but lattices Ly
of much higher dimensions (which still grow polynomially in d).

TECHNICAL OVERVIEW. One of the technical difficulties of extending LLL to
modules is the fact that the absolute value | - | over Q has two canonical gen-
eralizations over K: the trace norm and the algebraic norm. Let (0;);<q denote
the embedding of K into C. The trace norm and algebraic norm of x € K are
respectively defined as (3, |o(x)|?)*/? and []; 04(x). When K = Q, the only
embedding is the identity map, and both the trace norm and the absolute value
of the algebraic norm collapse to the absolute value. When the field degree is
greater than 1, they do not collapse, and are convenient for diverse properties.
For instance, the trace norm is convenient to measure smallness of a vector
over K™. A nice property is that the bit-size of an element of R is polynomially
bounded in the bit-size of the trace norm (for a fixed field K). Oppositely, an
element in R may have algebraic norm 1 (in this case, it is called a unit), but can
have arbitrarily large bit-size. On the other hand, the algebraic norm is multi-
plicative, which interacts well with determinants. For example, the determinant
of the lattice corresponding to a diagonal matrix over K is simply the product
of the algebraic norms of the diagonal entries (up to a scalar depending only on
the field K). LLL relies on all these properties, that are conveniently satisfied
by the absolute value.

In our first contribution, i.e., the LLL-like algorithm to reduce module
pseudo-bases, we crucially rely on the algebraic norm. Indeed, the progress made
by the LLL algorithm is measured by the so-called potential function, which is
a product of determinants. As observed in prior works [FP96,KL17], using the
algebraic norm allows for a direct generalization of this potential function to
module lattices. What allowed us to go beyond norm-Euclidean number fields
is the black-box handling of rank-2 modules. By not considering this difficult
component, we can make do with the algebraic norm for the most important
parts of the algorithm. The trace norm is still used to control the bit-sizes of
the module pseudo-bases occurring during the algorithm, allowing to extend the
so-called size-reduction process within LLL, but is not used to “make progress”.
The black-boxing of the rank-2 modules requires the introduction of a modified
condition for deciding which 2-dimensional pseudo-basis to consider to “make
progress” on the n-dimensional pseudo-basis being reduced. This condition is
expressed as the ratio between 2-determinants, which is compatible with the
exclusive use of the algebraic norm to measure progress. It involves the coef-
ficient ideals, which was unnecessary in prior works handling norm-Euclidean
fields, as for such fields, all modules can be generated by a basis instead of a
pseudo-basis.

Our algorithm for finding short non-zero vectors in rank-2 modules iterates
divide-and-swap steps like 2-dimensional LLL (or Gauss’ algorithm). The crucial
component is the generalization of the Euclidean division, from Z to R. We are
given a € K \ {0} and b € K, and we would like to shorten b using R-multiples
of a. In the context of a € Q\{0} and b € Q, a Euclidean division provides us with



64 C. Lee et al.

u € Z such that |b4ua| < |a|/2. We would like to have an analogous division in R.
However, the ring R may not be Euclidean. Moreover, the covering radius of the
ring R (viewed as a lattice) can be larger than 1, and hence, in most cases, there
will not even exist an element u € R such that ||b+au| < |la|| (here ||-|| refers to
the trace norm). In order to shorten b using a, we also allow b to be multiplied
by some element v € R. For this extension to be non-trivial (and useful), we
require that v is not too large (otherwise, one can always take u = b and v = —a
for instance, if a,b € R, and extend this approach for general a,b € K). Hence,
we are interested in finding u,v such that |jua + vb|| < ¢|la|| and |jv|| < C for
some ¢ < 1 and C to be determined later. Intuitively, if we allow for a large
number of such multiples v (proportional to 1/e and to the determinant of the
lattice corresponding to R, i.e., the square root of the field discriminant), there
should be one such v such that there exists u € R with ||vb + au|| < €||al|. We
do not know how to achieve the result with this heuristically optimal number
of v’s and use potentially larger v’s. The astute reader will note that if we use
such a v inside a divide-and-swap algorithm, we may end up computing short
vectors in sub-modules of the input modules. We prevent this from happening
by using the module Hermite Normal Form [BP91,Coh96, BFH17].

To find u, v such that ||vb+aul| is small, we use the logarithm map Log over K.
For this discussion, we do not need to explain how it is defined, but only that it
“works” like the logarithm map log over R~ (. In particular if z =~ y, then Log = =~
Log y. We would actually prefer to have the converse property, but it does not
hold for the standard Log over K. In Subsect. 4.1, we propose an extension Log
such that Logz ~ Logy implies that = ~ y. In our context, this means that we
want to find u,v such that Logv — Logu =~ Log(b) — Log(a). To achieve this,
we will essentially look for such v and v that are product combinations of fixed
small elements in R. When applying the Log function, the product combinations
become integer combinations of the Log’s of the fixed elements. This gives us
our CVP instance: the lattice is defined using the Log’s of the fixed elements and
the target is defined using Log(b) — Log(a). This description is only to provide
intuition, as reality is more technical: we use the log-unit lattice and small-norm
ideals rather than small-norm elements.

One advantage of using the Log map is that the multiplicative structure of K
is mapped to an additive structure, hence leading to a CVP instance. On the
downside, one needs extreme closeness in the Log space to obtain useful closeness
in K (in this direction, we apply an exponential function). Put differently, we
need the lattice to be very dense so that there is a lattice vector that is very
close to the target vector. This is the fundamental reason why we end up with a
large lattice dimension: we add a large number of Log’s of small-norm ideals to
densify the lattice. This makes the analysis of the distance to the lattice quite
cumbersome, as the Gaussian heuristic gives too crude estimates. For our running
example, we have a lattice of dimension ~ d? and determinant =~ 1, hence we
would expect a ‘random’ target vector to be at distance =~ d from the lattice.
We argue for a distance of at most ~ v/d for ‘specific’ target vectors. Finally,
we note that the lattice and its analysis share similarities with the Schnorr-
Adleman lattice that Ajtai used to prove NP-hardness of SVP under randomized
reductions [Ajt98,MGO02] (but we do not know if there is a connection).



An LLL Algorithm for Module Lattices 65

ImpPACT. Recent works have showed that lattice problems restricted to ideals of
some cyclotomic number fields can be quantumly solved faster than for arbitrary
lattices, for some ranges of parameters [CDW17], and for all number fields with
not too large discriminant, if allowing preprocessing that depends only on the
field [PHS19]. Recall that ideal lattices are rank-1 module lattices. Our work
can be viewed as a step towards assessing the existence of such weaknesses for
modules of larger rank, which are those that appear when trying to cryptan-
alyze cryptosystems based on the NTRU, RingSIS, RingLWE, ModuleSIS and
ModuleLWE problems and their variants.

Similarly to [CDW17,PHS19], our results use CVP oracles for lattices defined
in terms of the number field only (i.e., defined independently of the input mod-
ule). In [CDW17,PHS19], the weaknesses of rank-1 modules stemmed from two
properties of these CVP instances: the lattices had dimension quasi-linear in the
log-discriminant (quasi-linear in the field degree, for our running example), and
either the CVP instances were easy to solve [CDW17], or approximate solutions
sufficed [PHS19] and one could rely on Laarhoven’s CVP with preprocessing algo-
rithm [Laal6]. In our case, we need (almost) exact solutions to CVP instances
for which we could not find any efficient algorithm, and the invariant lattice has
a dimension that is more than quadratic in the log-discriminant (in the field
degree, for our running example). It is not ruled out that there could be efficient
CVP algorithms for such lattices, maybe for some fields, but we do not have any
lead to obtain them.

As explained earlier, CVP with preprocessing is known to be NP-complete,
so there always exists a fixed lattice allowing to solve the shortest vector problem
in lattices of a target dimension. However, the dimension of that fixed lattice
grows as a high degree polynomial in the target dimension. The fact that we
only need near-quadratic dimensions (when the log-discriminant is quasi-linear
in the field degree) may be viewed as a hint that finding short non-zero vectors in
rank-2 modules might be easier than finding short non-zero vectors in arbitrary
lattices of the same dimension.

Finally, our first result shows the generality of rank-2 modules towards finding
short vectors in rank-n modules for any n > 2. The reduction allows to stay in the
realm of polynomial approximation factors (with respect to the field degree) for
any constant n. This tends to back the conjecture that there might be a hardness
gap between rank-1 and rank-2 modules, and then a smoother transition for
higher rank modules.

NOTATIONS. For two real valued functions f and g, we write f(z) = O(g(x)) if
and only if there exists some constant ¢ > 0 such that f(z) = O(g(x)-| log g(z)[°).
By abuse of notations, we write O(z“poly(log z)) as O(z®) even if v = 0. We let
Z,Q,R, and C denote the sets of integers, rational, real, and complex numbers,
respectively. For z € C, we let  denote its complex conjugate. We use lower-case
(resp. upper-case) bold letters for vectors (resp. matrices). For vectors x; = (x;);
for i <k, we write (x1]| ... ||xx) to denote the vector obtained by concatenation.
By default, the matrices are written with column vectors.



66 C. Lee et al.

For a vector x = (x;); € C", we write ||x||; for i € {1,2,00} to denote
£;-norm, and we typically omit the subscript when ¢ = 2. For a lattice A C R",
we let p(A) denote the covering radius with respect to Euclidean norm.

SUPPLEMENTARY MATERIAL. Due to lack of space, some material is provided
only in the full version [LPSW19]. This includes: background on computational
aspects on number fields, several proofs, and reports on experiments backing the
heuristic claims.

2 Preliminaries

In this section, we first recall some necessary algebraic number theory back-
ground and discuss some computational aspects. We then extend Gram-Schmidt
orthogonalization to matrices over number fields. In this section, we assume that
the reader is somehow familiar with the algebraic notions used in this article and
in previous works. For more details on these mathematical objects, we refer the
reader to [Neu99, Chapter 1] for algebraic number theory questions, to [Hop98|
for anything related to modules and to [PHS19] where the same techniques were
used in a simpler setting.

2.1 Algebraic Background

NUMBER FIELDS. We let K be a number field of degree d and Kr = K ®q R.
A number field comes with r; real embeddings and 2rs complex embeddings
0i’s, where ry + 2ry = d. The field norm is defined as N'(z) = [[,.,0i(x) and
the field trace is Tr(z) = > ,.,0:(x). The canonical embedding of K is then

defined as o(x) € R™ x C?2, where 0., () = 0 4rpi(x) for 1 < i < 1.
The field trace then induces a Hermitian inner product over Kr whose associ-
ated Euclidean norm is [|z]| = (32, ;<4 |0i(2)[?)1/? for z € Kg. We also define
oo = maxieq los()]:

In this work, elements of K are identified to their canonical embeddings.
From this perspective, the set Kp is also identified to {y € R™ x C?"2
Vi <72, Urtrati = Yr+i} (the embedding map o provides a ring isomorphism
between Kg and the latter subspace of R™ x C2"2). We write K}y for the subset
of vectors in K with non-zero entries (it forms a group, for component-wise mul-
tiplication). We also write KH{ for the subset of vectors in K with non-negative
(real) coefficients. For © € Kg, we let T refer to the element of Kg obtained
by complex conjugation of every coordinate.? We can also define a square-root
Vo Kﬂ'{ — KE by taking coordinate-wise square roots.

We let R be the ring of integers of K. It is a free Z-module of rank d, and
can be seen as a lattice via the canonical embedding. The discriminant Ag of K

2 Observe that even if complex conjugation might not be well defined over K (i.e., the
element  might not be in K even if z is), it is however always defined over Kg. In
this article, complex conjugation will only be used on elements of K, and we make
no assumption that K should be stable by conjugation.



An LLL Algorithm for Module Lattices 67

is then the squared volume of R, i.e., Ax = det((oi(x;))i;)? for any Z-basis
(x;)i<a of R. We will often use the inequality log Ax > 2(d) to simplify cost
estimates.

We let R* = {u € R|3v € R : wv = 1} denote the group of units
of R. Dirichlet’s unit theorem states that R* is isomorphic to the Cartesian
product of a finite cyclic group (formed by the roots of unity contained in K)
with the additive group Z™*"2~1. We define Log : Ky — R by Log(z) =
(1og(lor1 (&)} ., log(|ora(@)))T- Let B = {o € RY | Yry < i <73 : 2 = 214, ).
We have Log(Ky ) C E. We also define H = {z € R? : Yiclg¥i =0t and 1 =
(1,...,1)T, which is orthogonal to H in R%. The set A = {Log(u) : u € R*}isa
lattice, called “log-unit” lattice. It has rank r; +r5 — 1, by Dirichlet’s units theo-
rem and is full rank in ENH. Further, its minimum satisfies A1 (A) > (Ind)/(6d?)
(see [FP06, Cor. 2]).

IDEALS. A fractional ideal I of K is an additive subgroup of K which is also stable
by multiplication by any element of R, and such that 21 C R for some z € Z\{0}.
Any non-zero fractional ideal is also a free Z-module of rank d, and can therefore
be seen as a lattice in K using the canonical embedding: such lattices are called
ideal lattices. The product I.J of two fractional ideals I and J is the fractional
ideal generated by all elements xy with € I and y € J. Any non-zero fractional
ideal I is invertible, i.e., there exists a unique ideal I~ = {z € K : 2l C R}
such that 77=! = R. When I C R, it is said to be an integral ideal. An integral
ideal p is said to be prime if whenever p = I.J with I and J integral, then either
I=porJ=p. Forany g € K, we write (g) = gR the smallest fractional ideal
containing g, and we say that it is a principal ideal. The quotient of the group of
non-zero fractional ideals (for ideal multiplication) by the subgroup consisting
in principal ideals is the class group Clx. Its cardinality hx is called the class
number. Under the GRH, there is a set of cardinality < loghg = O(log Ak)
of prime ideals of norms <12log® Ax that generates Clx (see, e.g., [PHS19,
Se. 2.3]). We also will use the bound h - (det A) < 20008 Ax) (see, e.g., [PHS19,
Se. 2.4]).

The algebraic norm N (I) of an integral ideal I is its index as a subgroup of R,

and is equal to det(a([))/A}(m. The algebraic norm of a prime ideal is a power of
a prime number. For a principal ideal, we also have N'({g)) = |N(g)|. The norm
extends to fractional ideals using N'(I) = N (zI)/|N(z)|, for any x € R\ {0}
such that I C R. We have N'(I1.J) = N(I)N(J) for all fractional ideals I, J.

Lemma 2.1 ([BS96, Th. 8.7.4]). Assume the GRH. Let ni () be the number
of prime integral ideals of K of norm <x. Then there exists an absolute con-
stant C' (independent of K and x) such that |7k (x) —li(z)| < C - /z(dlogx +
log Ak), where li(x) v de =

“J2 It Y Tz

MODULE LATTICES AND THEIR GEOMETRY. In this work, we call (R-)module any
set of the form M = I;bi+...+1,b,, where the I;’s are non-zero fractional ideals
of R and the b;’s are Kg-linearly independent? vectors in K%', for some m > 0.

3 The vectors b;’s are said to be Kg-linearly independent if and only if there is no
non-trivial ways to write the zero vector as a Kg-linear combination of the b;’s.



68 C. Lee et al.

The tuple of pairs ((I1,b1),..., (I, by)) is called a pseudo-basis of M, and n
is its rank. Note that the notion of rank of a module is usually only defined
when the module has a basis (i.e., is of the form M = Rby +...+ Rb,,, with all
the ideals equal to R). In this article, we consider an extension of the definition
of rank, defined even if the module does not have a basis, as long as it has a
pseudo-basis. In particular, fractional ideals are rank-1 modules contained in K,
and sets of the form a-I for & € Ky and a non-zero fractional ideal I are rank-1
modules in Kg. We refer to [Hop98] for a thorough study of R-modules, and
concentrate here on the background necessary to the present work.

Two pseudo-bases ((I1,b1),...,(I,,by)) and ((Ji,c1),...,(Jn,cy)) repre-
sent the same module if and only if there exists U = (u;5);; € K™*"
invertible such that C = B - U; we have u;; € IZ-Jj_1 and uj; € Jilj_l for
all i,j and for U = (uj;);; := U~'. Here, the matrix B is the concate-
nation of the column vectors b; (and similarly for C). If n > 0, we define
detg, M = det(ETB)l/2 -1I; Ii- It is an R-module in Kg. Note that it is a
module invariant, i.e., it is identical for all pseudo-bases of M.

We extend the canonical embedding to vectors v = (vy,... ,vm)T € Ky
by defining o(v) as the vector of R¥™ obtained by concatenating the canonical
embeddings of the v;’s. This extension of the canonical embedding maps any
module M of rank n to a (dn)-dimensional lattice in R%™. We abuse notation
and use M to refer to both the module and the lattice obtained by applying the
canonical embedding.

The determinant of a module M seen as a lattice is det M = A}?Q .
N (detg, M). This matches with the module determinant definition from [FS10,
Se. 2.3]. Since det(M) # 0, this shows in particular that the diagonal coefficients
ry; of the R-factor are invertible in Kg (otherwise, one of their embedding would
be 0 and so would be their norm).

We consider the following inner products for a,b € Kg":

(a, b>KR = Z aigi € Kg and (a, b> = Tr( Z aigi) e C.

i€[m] i€[m]

Note that we have (v,v)x, € Ki, as all 0;((v,v)g,)’s are non-negative. For
v € K, we define ||v||x, = v/(v,V)k, and [|[v]| = /Tr((v,v)k,) = / (v, V).
Observe that ||v]|| correspond to the Euclidean norm of v when seen as a vector
of dimension dm via the canonical embedding. We extend the infinity norm to
vectors v € Kg' by [|[V|leo = max;epm] [|viloo, Where v = (v1,...,v,,). We also
extend the algebraic norm to vectors v € Kg* by setting N (v) := N(||v] k;)-
For m = 1, we see that A (v) = |N(v)|. By the arithmetic-geometric inequal-
ity, we have v/d - N'(a)'/? < ||al| for a € KF'. Observe also that for any vector
v = (v1,...,0m)" € Kg, we have N'(v) > max; (N (v;)), because for any embed-
ding o;, it holds that |oj(v107 + -+ + Vi Um)| = |oj(v1)|> + - + |oj(vm)]* >
max; | (v;)|%

Because K is a ring and not a field, this definition is stronger than requiring that
none of the b;’s is in the span of the others.



An LLL Algorithm for Module Lattices 69

We define the module minimum A1 (M) as the norm of a shortest non-zero
element of M with respect to || - ||. Our module-LLL algorithm will rely on the
algebraic norm rather than the Euclidean norm. For this reason, we will also be
interested to the minimum A (M) = inf(N(v) : v € M \ {0}). We do not know
if this minimum is always reached for some vector v € M, but we can find an
element of M whose algebraic norm is arbitrarily close to A} (M). The following
lemma provides relationships between A (M) and AV (M).

Lemma 2.2. For any rank-n module M, we have:

A= 0 (M)A < MY (M) < d= 20 (M) < n2 AN (detge, M)Y™.

2.2 Computing over Rings

Background on field and ideal arithmetic is provided in the full ver-
sion [LPSW19].

COMPUTATIONS WITH AN ORACLE. In Sect.4, we will assume that we have
access to an oracle for the Closest Vector Problem, for lattices related to K. For
example, we will assume that we can solve CVP for the lattice corresponding
to R, with respect to || - ||. This lattice has dimension d.

In a similar vein, we will use the following adaptation from [PHS19, Th. 3.4],
to find short elements in rank-1 modules.

Lemma 2.3 (Heuristic). There exists a lattice Lk (that only depends on K
and has dimension 5(10g Ak)) such that, given an oracle access to an algorithm
that solves CVP for Ly, the following holds. There exists a heuristic quantum
polynomial-time algorithm that takes as input an ideal I of K and any o € K,
and outputs © € ol \ {0} such that

2o < - N ()] V/4- N (D)1,
where ¢ = 2000e1AN/d_ Iy particular, we have 2] oo < - |N(x)|M4.

The result assumes GRH and Heuristic 4 from [PHS19]. The quantum com-
putation performed by the algorithm derives from [BS16] and consists in com-
puting the log-unit lattice, finding a small generating set ([p;]); of the class
group Clg of K, and decomposing the class [I] of I in Clk in terms of that gen-
erating set. These quantum computations can be replaced by classical ones (e.g.,
[BF14,BEF+17]), at the expense of increased run-times and additional heuristic
assumptions.

The lemma can be derived from [PHS19, Th. 3.4] by replacing Laarhoven’s
CVPP algorithm [Laal6] by an exact CVPP oracle. In [PHS19], the CVPP
algorithm is used with a target vector t derived from the decomposition of [I]
on the [p;]’s and the logarithm Log(g) of an element g € K. To obtain the
statement above, we replace Log(g) by Log(g - o) = Log(g) + Log(a). The last
lemma statement ||z < c|NV(x)|'/¢ comes from the observation that [N (z)| >
N(a) - N(I) (which holds because x belongs to oI \ {0}).



70 C. Lee et al.

2.3 Gram-Schmidt Orthogonalization

We extend Gram-Schmidt Orthogonalization from matrices over the real num-

bers to matrices over Kj'. For (by,...,b,) € Kp"*" such that by,...,b, are
Kg-linearly independent, we define b} = b; and, for 1 <i < n:

b,, b*
by =b, — > bl with Vj <i: m]—:m.
Jr gl R

i<i

It may be checked that (b}, b}) = 0 for i # j, and that b} = argmin(|[b; —
> i<iUibill Vit y; € Kg).

We also extend the QR-factorization to matrices over Kg. We define r; =
b¥ ||k, for i <m, ryj = pjiry; when i < j, and r;; = 0 when i > j. We then have
B = Q- R, where Q € Kg'*" is the matrix whose columns are the b} /||bf||x,’s
and R = (7;;);;. Note that QTQ = Id and that R is upper-triangular with
diagonal coefficients in K.

The following lemma provides relationships between some module invariants
and the QR-factorization.

Lemma 2.4. Let M C Kg' be a module with pseudo-basis ((I;,bi))i<n. Let R
be the R-factor of B. Then, we have detgx, M = [[,7iul; and detM =

ATIL{/Q [L, N(riiL;). Further, for any vector v € Kg' and fractional ideal I C K
such that 0 € vI C M, it holds that N'(v) - N (I) > min; N'(r;;I;). This implies
in particular that XY (M) = infge a0y N (8) > ming N (r41;).

In this work, we will mostly rely on QR-factorization. It carries the same
information as Gram-Schmidt orthogonalization, but allows for simpler explana-
tions. However, from a computational perspective, the R-factor may be difficult
to represent exactly even for modules contained in K™, because of the square
roots appearing in its definition. This difficulty is circumvented by computing
the Gram-Schmidt orthogonalization instead, and using it as a means to rep-
resent the R-factor. In the full version, we explain how to efficiently compute
Gram-Schmidt orthogonalizations.

For lattices, if we have a basis and a full-rank family of short vectors, then we
can efficiently obtain a basis of the lattice whose Gram-Schmidt vectors are no
longer than those of the full-rank family of short vectors. This was generalized to
modules in [FS10], relying on the extension to modules of the Hermite Normal
Form [BP91,Coh96, BFH17].

Lemma 2.5 ([FS10, Th. 4]). There exists an algorithm that takes as inputs
a pseudo-basis ((I;,b;))i<n of a module M C Kg' and o full-rank set of vec-
tors (s;)i<n of M and outputs a pseudo-basis ((J;,¢;))i<n such that ¢; € M
and ¢ =s; for alli. If M C K™, then it terminates in polynomial-time.

Note that the condition that c; € M implies that R C J;, for all 4.



An LLL Algorithm for Module Lattices 71

3 LLL-Reduction of Module Pseudo-bases

LLL-reduction of lattice bases is defined in terms of Gram-Schmidt orthogonal-
ization (or, equivalently, QR~factorization). A basis is said LLL-reduced if two
conditions are satisfied. The first one, often referred to as size-reduction condi-
tion, states that any off-diagonal coefficients r;; of the R-factor should have a
small magnitude compared to the diagonal coefficient r;; on the same row. The
second one, often referred to as Lovasz’ condition, states that the 2-dimensional
vector (r;,;,0)7 is no more than 1/4 times longer than (r; ;4+1,7i11.i+1)" , for some
parameter § < 1. The size-reduction condition allows to ensure that the norms
of the vectors during the LLL execution and at its completion stay bounded.
More importantly, in combination with Lovasz’ condition, it makes it impossible
for r;41441/r:i s to be arbitrarily small (for an LLL-reduced basis). The latter is
the crux of both the LLL output quality and its fast termination.

3.1 An LLL Algorithm for Module Lattices

When extending to rings, the purpose of the size-reduction condition is better
expressed in terms of the Euclidean norm || - ||, whereas the bounded decrease of
the r;;’s is better quantified in terms of the algebraic norm N (-). This discrep-
ancy makes the definition of a LLL-reduction algorithm for modules difficult. In
this section, we circumvent this difficulty by directly focusing on the decrease
of the r;;’s, deferring to later sections the handling of the rank-2 modules of
pseudo-bases ((I;, (7:.4,0)T), (Iix1, (riit1,Tit1,i+1)7)). We also defer to later the
bounding of bit-sizes.

Definition 3.1 (LLL-reducedness of a pseudo-basis). A module pseudo-
basis ((1;,b;))i<n s called LLL-reduced with respect to a parameter ax > 1 if,
for all i < n, we have:

1

N(rivrivaliv) =
aK

'N(’I‘i,ili), (31)

where R = (r; j):,; refers to the R-factor of the matric basis B.

We first explain that LLL-reduced pseudo-bases are of interest, and we will
later discuss their computation (for some value of o).

Lemma 3.2. Assume that ((1;,0;))i<n is an LLL-reduced pseudo-basis of a
module M. Then:

N(I)N(by) < a2 (N (det e, M))Y/™,
NN (by) < ot XY ().

Our LLL algorithm for modules is very similar to the one over the integers.

The algorithm proceeds by finding an approximation to a shortest non-
zero element in a rank-2 module, with respect to the algebraic norm. Using



72 C. Lee et al.

Algorithm 3.1. LLL-reduction over K
Input: A pseudo-basis ((I;, bs))i<n of a module M C K™.
Output: An LLL-reduced pseudo-basis of M.
1: while there exists i < n such that ax - N (rit1,i+1Liv1) < N(ri;1;) do
2: Define M; as the rank-2 module spanned by ((I;,a:), (li+1,a:41)), with a; =
(ris,0)T and a;11 = (Fai1, Tit1ic1)
3:  Find's; € M; \ {0} such that N'(s;) <~ A (M;);
4: Set s;+1 = a; if it is linearly independent with s;, and s;y1 = a;4+1 otherwise;
5. Call the algorithm of Lemma 2.5 with ((I;,a;), (lit1,2i+1)) and (s;,Siy1) as
inputs, and let ((I7,a;), (I{41,aj,1)) denote the output;
6:  Update I; := I}, ;41 := I|{; and [b;|bst1] := [bi|bip1] - A1 - A’
(where A = [a;|a;+1] and A’ = [aj|aj ]).
7: end while
8: return ((I;,b;))i<n.

Lemma 2.2, we obtain a sufficient condition on «aj such that Algorithm 3.1
terminates. In particular, if ak is sufficiently large, then N (rit1,41141) <
ﬁ/\/ (r;;1;) implies that there is a vector s in the local projected rank-2 module
of norm significantly less than N(r;;I;).

Lemma 3.3. Take the notations of Algorithm 3.1, and consider an index i < n
such that aK'N(ri+1,i+1]'L+1) < N(Tz,zjv) We have N(Sz) S "Yd %N(Ti,ili)-

We are now ready to prove the main result of this section.

Theorem 3.4. Assume that Step 3 of Algorithm 3.1 is implemented with
some algorithm O for some parameter ~. Assume that arx > V42 Ay, Then
Algorithm 3.1 terminates and outputs an LLL-reduced pseudo-basis of M. Fur-
ther, the number of loop iterations is bounded by

n(n +1) 1 maxN (ry;1;)

log(ak /(72424 Ak )) 8 minAN (ry;1;)’

where the I;’s and ri; ’s are those of the input pseudo-basis.

Proof. We first show that at every stage of the algorithm, the current pseudo-
basis ((I;,b;))i<n is a pseudo-basis of M. For this, it suffices to show that
the operations performed on it at Step 6 preserve this property. This is pro-
vided by the fact that A~! . A’ maps the pseudo-basis ((I;,a;), (Ii11,ai+1))
into the pseudo-basis ((I},a}),(Ij,,,a;,;)) of the same rank-2 module (by
Lemma 2.5). Applying the same transformation to ((;,b;), (Zi+1,bi11)) pre-
serves the spanned rank-2 module. The correctness of Algorithm 3.1 is implied
by termination and the above.

We now prove a bound on the number of loop iterations, which will in par-

ticular imply termination. Consider the quantity

I = HN(TiiIi)n7i+l.

i<n



An LLL Algorithm for Module Lattices 73

This quantity if bounded from above by maxN\ (r;1;)™"+1/2 and from below
by minA (74 1;)""+t1/2, Below, we show that IT never increases during the
execution of the algorithm, and that at every iteration of the while loop,
it decreases by a factor > y/ax/(7?*2¢?Ak). We also show that the quan-
tity minA (riili)"(”“)/ 2 can only increase during the execution of the algorithm,
hence the lower bound above holds with respect to the input r;; and I; at every
step of the algorithm. Combining the decrease rate with the above upper and
lower bounds, this implies that the number of loop iterations is bounded by

n(n+1) 1 maxN (ry;1;)
log(ak /(7242¢ Ak)) 8 minAN (ry;1;)’

where the I;’s and r;;’s are those of the input pseudo-basis.
Consider an iteration of the while loop, working at index i. We have ay -
N (rig1,it1Liv1) < N(ri;1;). Step 6 is the only one that may change II. Observe

that we have
11 = ]V (detie, (((Ii,b2))i<y)) -

Jj<n
During the loop iteration, none of the n modules in the expression above changes,
except possibly the i-th one. Now, note that

N(detKIR (((Ik7bk) k<2 H./\/ Tkk[k

k<t

During the loop iteration under scope, only the i-th term in this product may
change. At Step 6, it is updated from N (r;;I;) to N(I])N(a}). By Lemma 2.5,
we have N(I]) < 1 and a} = s;. Now, by Lemma 3.3, we have that N (s;) <

¢ 2 AKN(?"“ I;). Overall, this gives that N (ry;1;) and hence IT decrease by a

factor > /ax /(72924 Ak ).

To show that minN (r4;I;) can only increase during the execution of the algo-
rithm, observe that, during a loop iteration, only N(ri1;) and N(Ti+1,z‘+11i+1)
may be modified. Let us call N'(r,I}) and N(ri,,,;,,I;,,) the corresponding

[ )

values at the end of the iteration. We have seen above that NI < N(ruly),

(A3t

which implies that N (r,I)) < max(N (ry1;), N (rig1,i+11i+1)). We also know

11

from Lemma 2.4 that N (r};I}) > min(N (ry;), N (rit1,i411i41)). As the deter-

1171
minant of M; is constant, we have

NG - N (i i1 li) = N(rili) - N(rigaivLiva)-
This implies that N(7/ Tit1, ivdlip1) = mln(J\/(r“ 1)7J\/'(7“Z+1}i+1li+1)). Overall, we

have that N(TMIZI) N( Tit1, z+1Iz+1) 2 mln( T“ )7 (Ti+1,i+11i+1))' o

3.2 Handling Bit-Sizes

In terms of bit-sizes of the diverse quantities manipulated during the execu-
tion of the algorithm, there can be several sources of bit-size growth. Like in



74 C. Lee et al.

the classical LLL-algorithm, the Euclidean norms of off-diagonal coefficients r;;
for i« < j could grow during the execution. We handle this using a general-
ized size-reduction algorithm. Other annoyances are specific to the number field
setup. There is too much freedom in representing a rank-1 module Iv: scaling
the ideal I by some z € K and dividing v by the same = preserves the module.
In the extreme case, it could cost an arbitrarily large amount of space, even to
store a trivial rank-1 module such as R - (1,0,...,0)7, if such a bad scaling is
used (e.g., using such an z with large algebraic norm). Finally, even if the ideal T
is “scaled”, we can still multiply v by a unit: this preserves the rank-1 module,
but makes its representation longer.*

Definition 3.5. A pseudo-basis ((I;,b;))i<n, with I; C K and b, € K for
all i <n, is said scaled if, for alli <mn,

RCI, NI)>2“AM and |ri| < 202 CON (ryi1,)1 4,
It is said size-reduced if ||7i; /7] < (4d)dA%2 foralli < j <n.

Note that if ((1;, b;))i<y, is scaled, then N (Z;) < 1 for all ¢ < n. Further, if the
spanned module is contained in R™, then b; € R™ for all i < n. Algorithm 3.2
transforms any pseudo-basis into a scaled pseudo-basis of the same module.

Algorithm 3.2. Scaling the ideals.

Input: A pseudo-basis ((I;,b;))i<» of a module M.

Output: A scaled pseudo-basis ((I}, b}))i<n of M.

1: for i=1ton do

Use LLL to find Si €ETii - ]i \ {O} such that HSZH S QdA}(/(Qd)N(TMI,')I/d;
Write s; = 144 - i, with x; € I;;
Define I = I; - {(z;) ' and b} = ;b;.

end for

return ((I},b}))i<n-

Lemma 3.6. Algorithm 3.2 outputs a scaled pseudo-basis of the module M gen-
erated by the input pseudo-basis and preserves the N (ri;1;)’s. If M C R™, then
it runs in time polynomial in the input bit-length and in log Ak .

Algorithm 3.3 aims at size-reducing a scaled pseudo-basis. It relies on a |-|r
operator which takes as input a y € Kgr and rounds it to some k € R by
writing y = > y;r; for some y;’s in R, and rounding each y; to the nearest
integer: k = > k;r; = >_|yi|r: (remember that the r;’s form an LLL-reduced
basis of R). For computations, we will apply this operator numerically, so that
we may not have max; |k; —y;| < 1/2 but, with a bounded precision computation,
we can ensure that max; [k; — y;| < 1.

4 Note that ideal scaling and size-reduction have been suggested in [FS10, Se. 4.1], but
without a complexity analysis (polynomial complexity was claimed but not proved).



An LLL Algorithm for Module Lattices 75

Algorithm 3.3. Size-reduction.

Input: A scaled pseudo-basis ((I;, b;))i<n of a module M.
Output: A size-reduced pseudo-basis of M.
1: for j=1tondo

2 for i=j—1to1do

3 Compute x; = 14 /Tii | R;
4: bj = bj — .%'Zbl

5.  end for

6: end for

7: return ((I;,bs))i<n.

Lemma 3.7. Algorithm 3.3 oulputs a scaled size-reduced pseudo-basis of the
module M generated by the input pseudo-basis and preserves the N (ryI;)’s.
If M C R™, then it runs in time polynomial in the input bit-length and in log Ak .

We now consider Algorithm 3.4, which is a variant of Algorithm 3.1 that
allows us to prove a bound on the bit cost. The only difference (Step 7) is
that we call Algorithms 3.2 and 3.3 at every loop iteration of Algorithm 3.1, so
that we are able to master the bit-lengths during the execution. Without loss
of generality, we can assume that the pseudo-basis given as input is scaled and
size-reduced: if it is not the case, we can call Algorithms 3.2 and 3.3, which will
produce a pseudo-basis of the same module, whose bit-length is polynomial in
the input bit-length and in log Ak

Algorithm 3.4. LLL-reduction over K with controlled bit-lengths

Input: A scaled size-reduced pseudo-basis ((I;, b;))i<n of a module M C R™.
Output: An LLL-reduced pseudo-basis of M.
1: while there exists 7 < n such that ax -N(Ti+1,i+1fi+1) < N(ri,ili) do
2: Let M; be the rank-2 module spanned by the pseudo-basis ((1;, a;), (li+1, ai+1)),
with a; = (Tii,O)T and a;+1 = (T¢,i+1, ’f‘i+1,i+1)T;
3:  Finds; € M; \ {0} such that N'(s;) <~ XY (M;);
4: Set siy1 = a; if it is linearly independent with s;, and s;41 = a;4+1 otherwise;
5: Call the algorithm of Lemma 2.5 with ((I;,a:), (lix1,a:+1)) and (si,Si+1) as
inputs, and let ((I],a}), (Ii;1,aj,1)) denote the output;
6: Update L, = Iz/a [7;+1 = Iz{+1 and [b1|b1+1} = [bz‘bl_‘_ﬂ . A71 . A/
(where A = [a;|a;4+1] and A’ = [aj|aj ]);
7:  Update the current pseudo-basis by applying Algorithm 3.2 and then Algo-
rithm 3.3 to it.
8: end while
9: return ((;,b;))i<n.

Theorem 3.8. Assume that Step 3 of Algorithm 3.4 is implemented with some
algorithm O for some parameter . Assume that ag > v242¢ Ak . Given as input
a scaled and size-reduced pseudo-basis of a module M C R™, Algorithm 3.4



76 C. Lee et al.

outputs an LLL-reduced pseudo-basis of M in time polynomial in the bit-length
of the input pseudo-basis, log A and 1/log(ax /(7?1291 Ak)).

3.3 Finding Short Vectors for the Euclidean Norm

By Lemma 3.2 and Theorem 3.8 with oy, = (1 + ¢/n) - 7?92?7Ag for a well-
chosen constant ¢, Algorithm 3.4 may be interpreted as a reduction from finding
a2- (12929 Ax)™ approximation to a vector reaching /\Jl\f in rank-n modules, to
finding a ¢ approximation to a vector reaching )\/1\/ in rank-2 modules.

By using Lemma 2.2, we can extend the above to the Euclidean norm instead
of the algebraic norm.

Theorem 3.9. Let v > 1, assume that log Ay is polynomially bounded, and
assume that a Z-basis of R is known. Then there exists a polynomial-time reduc-
tion from solving SVP,, in rank-n modules (with respect to ||-||) to solving SVP,

in rank-2 modules, where 7' = (27A}(/d)2”*1.

Proof. The reduction consists in first using Algorithm 3.4 with Step 3 imple-
mented using the oracle solving SVP, in rank-2 modules. Using the arithmetic-
geometric inequality and Lemma 2.2, one can see that a vector s satisfying
Is|| < v - A (M) also satisfies N'(s) < 7% - A}(m - XV (M). Hence, we have an
oracle computing a v = 7 - A}(/(Qd) approximation of A (M). We then run
Algorithm 3.4 with this oracle by setting the parameter a to (1+c/n)-y292¢A2%
where c is a constant such that (14 ¢/n)"~! < 2.

By Theorem 3.8, the reduction runs in in polynomial time. Further, by
Lemma 3.2, the output pseudo-basis satisfies N(I;)N(by) < ol - MY (M).
By Lemma 2.2 and by definition of ak, this gives:

NN (by) < 2(52927A2)=1 . q=4/2 ) (M4,

Now, an SVP, solver for rank-2 modules directly provides an SVP,, solver
for rank-1 module. We hence use our oracle again, on I;b;. This provides a
non-zero vector s € I1b; C M such that ||s|| < fy\/aA%(zd) S(N(I)N (by))Y4,
by Minkowski’s theorem. Combining the latter with the above upper bound on
N (I1)N (by) provides the result. 0

4 The Divide-and-Swap Algorithm

We now focus on how to implement Step 3 of Algorithm 3.1, using a CVP oracle
for a lattice depending on K only. To handle projected 2-dimensional lattices, the
LLL algorithm for integer lattices proceeds like the Gauss/Lagrange reduction
algorithm for 2-dimensional lattices. It relies on a divide-and-swap elementary
procedure: first shorten the second vector using a Z-multiple of the first one
(using a Euclidean division, or, more pedantically, a CVP solver for the trivial
lattice Z); then swap these two vectors if the second has become (significantly)



An LLL Algorithm for Module Lattices 7

shorter than the first one. It has the effect that if this 2-dimensional basis is
not reduced, then a swap occurs, and some progress is made towards reduced-
ness of the 2-dimensional basis. This elementary step is repeated as many times
as needed to achieve reduction of the lattice under scope. In this section, we
generalize this process to rank-2 modules.

We first describe a lattice L that depends only on K and for which we
will assume that we possess a CVP oracle. Then, we give an algorithm whose
objective is to act as a Euclidean algorithm, i.e., enabling us to shorten an
element of Kg using R-multiples of another. Once we have this generalization
of the Euclidean algorithm, we finally describe a divide-and-swap algorithm for
rank-2 modules.

4.1 Extending the Logarithm

The lattice L is defined using (among others) the log-unit lattice A. However,
the Log function does not suffice for our needs. In particular, for a,b € Ky, the
closeness between a and b is not necessarily implied by the closeness of Log a
and Log b, because Log does not take into account the complex arguments
of the entries of the canonical embeddings of a and b. However, we will need
such a property to hold. For this purpose, we hence extend the Log function.
For x € Ky, we define Log @ := (01,...,0p, 1, l0g|0o1(2)],...,log|oa(x)])T,
where o;(x) = |o;(x)| - e'% for all i <7y +ry and I is a complex root of z2 + 1.
The Log function takes values in (7Z/277Z)™ x (R/(277Z))" x R

Lemma 4.1. For xz,y € Ky, we have:
2~ ylloe < (V2108 T8> 1) - min(Jz|oc, 9] ).

Observe that for ¢ < (In 2)/\/5, we have eV2t — 1 < 2¢/2t.

4.2 The Lattice L

Let r = poly(d) and 8 > 0 be some parameter to be chosen later. Let
A denote the log-unit lattice. Let By = {p1,...,pr} be a set of cardinal-
ity 7o < loghg of prime ideals generating Clg, with algebraic norms < 2%,
with 69 = O(loglog|A|). We will also consider another set B = {q1,...,0q,}
of cardinality r, containing prime ideals (not in By) of norms < 2°, for some
parameters r and & < Jp to be chosen later. We also ask that among these ideals
q;, at least half of them have an algebraic norm > V/29. Because we want r such
ideals, we should make sure that the number of prime ideals of norm bounded
by 2% in R is larger than r. This will asymptotically be satisfied if » < O(27/6)
(by Lemma 2.1). The constraint that at least r/2 ideals should have norm larger
than v/29 is not very limiting, as we expect that roughly 20 — /20 > r— /1 ideals
should have algebraic norm between v/29 and 29 (forgetting about the poly(d)
terms).

We now define L as the lattice of dimension v = 2(r; +79) +r9g +7 — 1
(included in R¥*1) spanned by the columns of the following basis matrix:



78 C. Lee et al.

2(T1+7”2)—1 T‘0+7"
0 ‘5'a92<,-1+7~2)“' B-ag, |11
827
ﬁ'09r1+7‘2+1 ﬂ'OQV 7‘1+T’2
08 - 27

0 ﬁ~BA /B-hg2<7_1+r2)... ﬁ.hgy ri4+ro—1

BAO Wy _ri1 Wy, To

where

e B, is a basis of A, and we let (h;),, 47, <i<2(r,+r,) denote its columns;

e B, is a basis of the lattice Ay := {(x;); € Z"™ : [], p;* is principal}, and we
let (W;)a(r,4rp)<i<v—r denote its columns;

e for any g € K, we have a, = (log|N(g)|)/Vd ;

e for any g € K, the vector 6, consists of the first 1 4 ro entries of Log(g);

e for any g € K, we have hy = igng(IIg(Log(g))), where ITy is the orthogonal
projection on H and igng is an isometry mapping H N E to R™+r2—1;

e for any i > r; + 7o, if we parse the bottom r¢ 4+ r coordinates of the i-th
column vector as (wj 1, ..., Wiy, Wy y,.--,W; ), then we have that (g;) =
ij;U 'quj %

e the g;’s for i > ry + ro are in K and, among them, gr, 1ry 11, G2(r; 4rs)—1
are the units of R corresponding to the columns of B,.

We now list a few properties satisfied by vectors in this lattice.

Lemma 4.2. For every vector (fal|30|6h||w|w’) € L\ {0} (with blocks of
dimensions 1,11 + ro,71 + 12 — 1,79 and r), there exists g € K \ {0} with
o a = (log|N(9)])/Vd

e Log(g) = (0'||Log(g)) with 8’ = 6 mod 27.
e h= iHmE(HH(LOg(g)))

/

o (9) =TI} I, 0, where w = (wi,--- ,wy,) and W' = (wf,--- ,w}).

Further, we have that ||Log(g)|l2 = ||(a, h)]2.



An LLL Algorithm for Module Lattices 79

4.3 On the Distance of Relevant Vectors to the Lattice

In this section, we make a heuristic assumption on the distance between target
vectors of a specific form and the lattice L defined in the previous section. This
heuristic is backed with a counting argument and numerical experiments (see the
full version). As L is not full rank, we only consider target vectors t lying in the
span of L. Also, as By, contains the identity matrix in its bottom right corner,
we cannot hope to have a covering radius that is much smaller than /r. In our
case, the lattice dimension v will be of the order of r, but in our application we
will need a vector of L much closer to t than /1 ~ /v. In order to go below this
value, we only consider target vectors t whose last r coordinates are almost 0.

Heuristic 1. Assume that there exist some integer B < r such that B > 100 -
(loghk) - 60/6 and that

2B

Y
ao = V2 ((o555)" - 0Bet i) <

12d25°

Assume that the scaling parameter 3 in By, is set to O%O,/ 8-0LE "Then for any

t € Span(L) whose last r coordinates wj satisfy ||[wille < 0.01 - B/\/r, we
have dist(t, L) < v/1.05 - B.

Discussion about Heuristic 1. We provide below a counting argument to justify
Heuristic 1. We consider the following set of vectors of L, parametrized by B < r,
which we view as candidates for very close vectors to such target vectors:

Sp = {s = (Bas]|B0:[|Shs [ wsllwi) € L wi € {=1,0,1}" A [wi]L = B}.

We argue that there is a vector in Sp that is very close to t. Our analysis is
heuristic, but we justify it with both mathematical arguments and experiments.
We are going to examine the vectors s € Sp such that s —t is reduced modulo L.
Let us write t = (Ba||30; ]| Shs||w:||w})T. We define:

(1) = {(Bas]| B0, B[ w|| W) € w, € {-1,0,1}" A|lw] = B
— [wi] € V(Ay),
h, — h, € V(A),

0, — 05 € (—m,m|"* 172},

where the notation V refers to the Voronoi cell (i.e., the set of points which
are closer to 0 than to any other point of the lattice). The choice of w/ fully

determines s € SB t» Which gives the bound |Sg)t| =28.(3) > (2r/B)?
We consider the following subset of Sg}t

S, = S9N {(Bas|80,)5hy|lw,|[w)) € Lz w, = [wi]}.

We heuristically assume that when we sample a uniform vector in st B t, the

components w, of the vectors s € su B7t are uniformly distributed modulo Ay.



80 C. Lee et al.

Then the proportion of those for which w, = |w;] mod Ag is 1/ det(Ag) = 1/h.
Hence, we expect that |S](E;2)t R~ |S(1)t\/hK.
We consider the following subset of 5’1(32’),;7 parametrized by a < (Ind)/(12d%?):

S o =55, N {(Bas]|88, 18w, |[wh) € L : ||(8s]hs) — (6]|he) oo < ).

We heuristically assume that when we sample a uniform vector in 5532,)“ the com-
ponents (6,, hy) are uniformly distributed modulo 27Z™ "2 x A. Observe that
the first r; coordinates of 85 (corresponding to real embeddings) are either 0 or .
Hence, the probability that 8; = 6; on these coordinates is 27"1. Once these first
r1 coordinates are fixed, the remaining coordinates of (6, h,) have no a priori
reason to be bound to a sublattice of 27Z"™ x A and we heuristically assume them
to be uniformly distributed in R™+27271 /(277" x A). Overall, the probability
that a vector s € Sg’)t satisfies ||(0s,hs) — (0, hy)]co < ais = %
Here, we used the fact that /r; + 2rs — 1 - « is smaller than A\, (272" x A)/2
(recall from preliminaries that /\goo)(/l) > (Ind)/(6d?)). We conclude that

2 1 d—1
r1+2r2— | (2) o

1 (2m)d/2 - det(A)

53) ~ 5(2 o
| B,a,t| | Bt|2r1.(277)r2 det(A) —

Finally, we consider the following subset of s B at:

3
SY =59 1 {(8a,]|80,]|8h, || w,|[w.) € L : as — af] < a}.
We will assume that

(4) >0344 a\[
§B - r0.04B | Bat

This assumption is backed with mathematical arguments as well as numerical
experiments in the full version. Overall, we obtain that

0.3448 - aVd ! ERVEAY
6B 10048 (27)4/2 . det(A) hgx \ B

S (L@ ! 1 0.344 - 2r\ ?
~\V2r/) 6B-det(A) -hg \ B-r004

a \* 1 r0:96\ &
> .
- (\/271') 6B - det(A) - hy ( 2B )

When the above is >1, we expect that there exists s € Sg’)a .- 1f that is the
case, then we have

Is = t]* < (8- V2d - )? + 70 + [lw; — wi|”.

4
1S5 el >

By condition on B, we know that ro < 0.01- B. Also, by choice of w} (and using
the fact that ~ > B), we have that ||w} — w’||?> < (VB +0.01-v/B)? < 1.03- B.
Finally, choosing « minimal provides the result.



An LLL Algorithm for Module Lattices 81

Numerical Experiments. Heuristic 1 is also backed with numerical experiments.
We performed the experiments with r of the order of d? (looking forward, this is
the value of r that will be used by our algorithm). This means that our lattice L
has dimension roughly d?, and so solving CVP in it quickly becomes impractical.
We were still able to check that our heuristic seems correct in cyclotomic num-
ber fields of very small degree (up to d = 8). More details on these numerical
experiments can be found in the full version.

4.4 A “Euclidean Division” over R

We will need the following technical observation that, given a,b € Kp, it is
possible to add a small multiple ka of a to b to ensure that N'(b+ ka) > N (a).

Lemma 4.3. For any a € K and b € Kg, there exists k € [—d,d] N Z such
that IN'(b+ ka)| > |N(a)].

Note that an integer k such as in Lemma 4.3 can be found efficiently by
exhaustive search.

We can now describe our “Euclidean division” algorithm over R. Our algo-
rithm takes as input a fractional ideal a and two elements a,b € Kg, and outputs
a pair (u,v) € R x a. The first five steps of this algorithm aim at obtaining, for
any input (a,b), a replacement (aq,b;) that satisfies some conditions. Namely,
we would like a1 to be balanced, i.e., ||a1|| should not be significantly more than
N (ay)'/4. We also would like b; to be not much larger that a; and N(a;/b1) to
be close to 1. These conditions are obtained by multiplying the element a by an
appropriate element of R, and removing a multiple of a from b. Note that we
require that the output element v should not be too large. As b is not multiplied
by anything, these normalization steps will not impact this output property.
After these first five steps, the core of the algorithm begins. It mainly consists in
the creation of a good target vector t in R¥*!, followed by a CVP computation
in the lattice L.

Theorem 4.4 (Heuristic). Assume that a satisfies c=¢ < N(a) < c¢, with c
as in Lemma 2.3. Assume also that B and r are chosen so that

B > max (100 -d -log[(p(R) + d)c*],log hy - (103 - ‘?)2> ,

1/d c

< )
T 43 -Vd- (p(R) + d)ct - 20:55-6-B/d

ap = v2r (( 25 1B 5B (det M)

y0.96

for some ¢ > 0. Assume also that ag < (Ind)/(12d*%), and set the scaling

parameter B of By, as in Heuristic 1. Then, under Heuristic 1 and the heuristics
of Lemma 2.3, Algorithm 4.1 outputs a pair (u,v) € R X a with

Jua + vbllos < & - lalloc,

”UHoo <c- 2055.5.3/(1.



82 C. Lee et al.

Algorithm 4.1. A Euclidean division over R

Input: A fractional ideal a, and two elements a € K and b € K.
Output: A pair (u,v) € R X a.

Computing a better pair (ai,b1)
1: Find s € a=!\ {0} such that ||s]jec < c-N(a™)'/? as in Lemma 2.3.
2: Find y € R\ {0} such that ||ya||ec < c-|N(a)|*/? as in Lemma 2.3 (with ideal (a)).
Define a1 = ya.
3: Solve CVP in R to find « € R such that ||b/(s - a1) — z|| < p(R).
4: Find k € Z N [—d,d] such that [N (b — zsa1 + ksa1)| > |N(sa1)| (see Lemma 4.3).
5: Define by = b+ (k — z)s - a1.

Defining the target vector and solving CVP

6: Compute (w; ;)j<r, and g: such that a™! = I p;ut’j (g¢). Let wy = (wej)j<rg-

7: Let a; = (log N'|b1/(a1g:)|)/V/d, 6; be the first 71 +72 coordinates of Log(b1/(a1g:))
and hy = igng (g (Log(b1/(a1gt)))-

8: Define t = (Ba¢|| 86| fh¢||w:]|0).

9: Solve CVP in L with target vector t, to obtain a vector s.

Using s to create a good ring element
10: Write s = (Bas]|80s||8hs||ws||w?) and let gs € K* be the associated element as in
Lemma 4.2. ,
. w —Wg 4 7“’5, ;
11: Define the ideal I = a]];., j_wu<0pj” d H].:wéyj<0qj 7.

12: Find v € I\ 0 such that ||v]|ee < ¢- N(I)Y? as in Lemma 2.3.
13: Define v’ = g5 - g1 - v.
14: return (u'y + (k — z)sy - v,v).

Apart from the CVP calls in R,Lx and L, Algorithm 4.1 runs in quantum
polynomial time.

Proof. Throughout the proof, we keep the notations of Algorithm 4.1.
We first prove that (u,v) € R x a. As s € a~! and x,k,y € R, it suffices to
prove that (v/,v) € R X a. By definition of g; and g,, we have

gsgt — Iprsj ’wt]Hq 1’

with J = [T, w50 Py T ! >0 q] . As the p;’s and q;’s are inte-
gral ideals, we see that J C R and I C o As v € I, we obtain that v € a. Since
gs - gt € JI7' and v € I, we also have ' = g,g;v € JI~'I = J C R. This gives
our first claim.

As a preliminary step towards bounding ||ua + bv||ee = ||t'a1 + vb1 |00, We
study the sizes of a; and by. Using the equality by = b — xzsa; + ksa;, we have

1B1lloc < (116/(s01) = @[loo + [E]) - [[sa1]lec < (p(R) + d) - [[s]loo - [[a1]|oo-



An LLL Algorithm for Module Lattices 83

By definition of a1, we have ||a1]/co < ¢|/a]|oo- By assumption on a, we also have
15]|oe < ¢+ N(a=1)1/4 < c2. Hence, we obtain

b1llo < (p(R) + d)c?|lallo.

Now, by definition of a;, we know that |la;||e < c-|N(a1)|'/¢. Hence, we obtain

¢! < |N(b1/a1)|1/d <c- Hbllloo < (p(R) +d) ey

laalloe —

The left inequality is provided by the choice of k at Step 4 (and the fact that
N(s) > N(a™1)).

To bound ||w'a; + vb1]|eo, We estimate the closeness of t and s. If t was in
Span(L), then we could apply Heuristic 1. As this is not necessarily the case, we
first need to compute the distance between t and Span(L). This is done in the
proof of the following lemma, which is provided in the full version.

Lemma 4.5 (Heuristic). Under the assumptions of Theorem 4.4, we have

Is — t[]2 < V1.06 - B.
This lemma implies that
(@165 1) — (ar||0lhe) |2 < V1.06- B/B < 15-Vd- aq.
By definition of t and construction of L, this means that
ITog(gegs - a1/b1)llz = [1(as )6 |hs) = (acll6e] )2 < 15 - Vd - aq.

Recall that u' /v = g;g,. Hence we have ||Log(u’a;) — Log(vhy)|lee < 15-Vd - ap.
Using Lemma 4.1, we deduce that
lw/ar = by [loo < (12790 — 1) - by [l - 0]
<43-Vd - ag - [[bi]l s - V]l
where we used the fact that ag < (Ind)/(12d*®) and so the exponent should be

smaller than (In2)//2 for d large enough. We have already bounded ||b ||oo. We
now bound ||v]|e. By definition of v, we have ||v||oo < ¢ N(I)Y/%. The task is

then to provide an upper bound on N(I). As IJ = a-[]; pljws'j_w”’j‘ 11, quws,j\7
we have:

logN (I1.7) = logN (a) + > ws ; — wy ;[logN (p;) + Y _ |w ;| - logN(a;)
J J
<logN(a)+ ||[ws — w1 - 0o + ||[Wh|l1 - &

Recall from Lemma 4.5 that we have ||s — t||2 < +/1.06 - B. This implies that
|lws — w2, [Wh]l2 < v1.06 - B. Note that

0
lws — well1 < /1o - [|[ws — Wi|l2 <1.03- /B -1y <0.01- 5 B,
0



84 C. Lee et al.

by assumption on B and the fact that 1o < loghg. For w’, we use the fact that
it has integer coordinates, to obtain ||[w’|; < ||[w’||3 < 1.06 - B. We thus obtain

logN (1J) <logN(a)+1.07-6 - B.

As J is integral, this gives an upper bound on N'(I). However this upper bound
is not sufficient for our purposes. We improve it by giving an upper bound on
log N'(IJ~1), using the fact that the ideal I.J~! is designed to have an algebraic
norm close to the one of a;/b;. Recall that a; and b are constructed so that
N(ay/by) is close to 1, which means that I and J should have roughly the
same norm. More precisely, it is worth recalling that I=1J = (gsg;), and that
|Log(g:gs-a1/b1) |2 < 15-v/d-ap. Looking at the first coordinate of the Log vector
and multiplying it by v/d shows that | log |N (gsg:)| +1og [N (a1 /b1)| | < 15-d- ap.
This gives us

logN (IJ~Y) < log|N (a1 /b1)| | + 15 - d - ag
Combining the bounds on logN (IJ) and logN (IJ~!), we finally obtain that

1
logN'(I) < = - [logN (a)| +0.535 -6 - B + 5 |log |N (a1 /b1)|| + 7.5 d - ap.

N |

We have seen that ¢c= < |N(by/a1)|Y/? < (p(R) + d) - ¢3. Finally, recall that
c™? < N(a) < c Hence, we conclude that |log|N (a1 /b1)|| + [logN(a)|] < d -
log((p(R) + d) - ¢*) < 0.01 - B by assumption on B. Recall that we assumed
that g < (Ind)/(12d*®) < 1/d. Hence, we have d - ap < 1. Using the fact

that B > 750 (which is implied by the second term in the max), we obtain
7.5-d-ag <0.01-B. We conclude that

logN(I) <0.55-6 - B.
Collecting terms and using the assumptions, this allows us to write

[0/ ay — vbi]los < 43 Vd - g [|billoc - [|V]]sc

< ap-43-Vd- 20558/ (p(R) + d)ct|al oo
<e: ”aHoo'

Finally, the run-time bound follows by inspection. a

We observe that the parameters r and B of Theorem 4.4 can be instantiated
as B = O(log|A| + dlogp(R)) and r%% = O((1/e)¥B . B - 29-559). Thanks
to the 0.55 in the exponent, this choice of r is compatible with the condition
r < O(2°/6) which was required for the construction of the lattice L (recall
that we want r prime ideals of norm smaller than 2%). We note also that the
constants 0.96 and 0.55 appearing in the exponent can be chosen as close as we
want to 1 and 0.5 respectively, by adapting the argument above. Hence, assuming
(1/e)¥B = O(1), we expect to be able to choose 20 as small as B>*" for any
7 > 0. Overall, the following corollary gives an instantiation of Theorem 4.4 with
parameters that are relevant to our upcoming divide-and-swap algorithm.



An LLL Algorithm for Module Lattices 85

Corollary 4.6 (Heuristic). Let ¢ = 1/200084x)/4  For any n > 0, there
exists a lattice L' of dimension O((log|Ax| + dlog p(R))2t"), an upper bound
C = 20Uog|Ax|+dlog p(R)/d g an algorithm A that achieve the following. Under
Heuristic 1 and the heuristics of Lemma 2.3, algorithm A takes as inputs a €
K, b€ Kg and an ideal a satisfying c=¢ < N'(a) < ¢, and outputs u,v € Rxa
such that

[ua +bvfloe <€ - laflo

vl < C.

If given access to an oracle solving the closest vector problem in L' in polynomial
time, and when restricted to inputs a,b belonging to K, Algorithm 4.1 runs in
quantum polynomial time.

4.5 The Divide-and-Swap Algorithm

In this subsection, we describe a divide-and-swap algorithm, which takes as input
a pseudo-basis of a rank-2 module and outputs a short non-zero vector of this
module (for the algebraic norm). In order to do so, we will need to link the
Euclidean and algebraic norms of vectors appearing during the execution, and
limit the degree of freedom of the ideal coefficients. For this purpose we use a
strengthening of the notion of scaled pseudo-bases from Sect. 3.2.

Definition 4.7. A pseudo-basis ((I;,b;))i<n, with I; C K and b, € K for
all i < n, is said strongly scaled if, for all i < n,

RC I, N(I)>c™ and ||riilloe < ¢ N(rali)'?,
where ¢ is as in Lemma 2.3.

Algorithm 4.2 below strongly scales a given module pseudo-basis. It is a
direct adaptation of Algorithm 3.2 in which the LLL algorithm is replaced by
the algorithm from Lemma 2.3 (relying on a CVP oracle for Lg).

Algorithm 4.2. Strongly scaling the ideals.

Input: A pseudo-basis ((I;, bi))i<n of a module M.

Output: A strongly scaled pseudo-basis ((I;, bj))i<n of M.

1: for i=1ton do

Use Lemma 2.3 to find s; € 735 - I; \ {0} such that ||s;||ec < c- N(r“']i)l/d;
Write s; = 145 - i, with z; € I;;
Define I} = I; - {x;) "' and b} = z;b;.

end for

return (([{,b;))lgn




86 C. Lee et al.

Lemma 4.8. Algorithm 4.2 outputs a strongly scaled pseudo-basis of the mod-
ule M generated by the input pseudo-basis and preserves the N (ry;1;)’s. If given
access to an oracle that solves CVP in the lattice Lx of Lemma 2.3, and
if M C R™, then it runs quantumly in time polynomial in the input bit-length
and in log Ak .

We can now describe Algorithm 4.3, our divide-and-swap algorithm. During
the execution of the algorithm, the R-factor of the current matrix (by|bs) is
always computed. The algorithm is very similar to the LLL algorithm in dimen-
sion 2, except for Step 4, which is specific to this algorithm. This step ensures that
when we swap the vectors, we still obtain a pseudo-basis of the input module.
This seems necessary, as our Euclidean division over R involves a multiplication
of the second vector by a ring element, and hence the new vector and the sec-
ond pseudo-basis vector may not span the whole module anymore. At Step 4,
note that the ged is well-defined, as (u) and (v)a~! are integral ideals. As an
alternative to Step 4, we could use Lemma 2.5 as in Algorithm 3.1.

Algorithm 4.3. Divide-and-swap.

Input: A pseudo-basis ((a1, b1), (a2, bz2)) of a module M C KZ.

Output: A vector v € M.

: while (v/c)?N (r22a2) < N(r1101) do

2:  Strongly scale the pseudo-basis ((a1,b1), (a2, b2)) using Algorithm 4.2.

3:  Apply Algorithm 4.1 to (a,b,a) = (r11,712,0, - a7 ") and € = 1/(4c). Let (u,v)
be the output.

4:  Let b=ged({u), (v)a™'), find z € a='b™" and y € b~ ! such that uy — vz = 1.

5. Update (b1,b2) < (ubi + vba,zb1 4+ yb2) and (a1, a2) — (albfl, azh).

6: end while

7: Strongly scale the pseudo-basis ((a1, b1), (a2, b2)) using Algorithm 4.2.

8: return b;

—_

Lemma 4.9. Let v > 4 - C - c2, where C is as in Corollary 4.6. Then, given
as input a pseudo-basis of a rank-2 module M C K&, Algorithm 4.5 outputs a
vector v.€ M \ {0} such that N(v) < XY (M). Further, if M C R™ and
Algorithms 4.1 and 4.2 run in polynomial time, then Algorithm 4.3 runs in time
polynomial in the input bit-length and in log Ak .

Proof. We only prove here that at each loop iteration, the value N(rija;)
decreases by a factor at least 2¢. As in the LLL algorithm, this is the main
technical part of the proof. The rest of the proof can be found in the full version.

Recall that at the end of Step 2, we have ||7i;]|o < ¢- N (rya;)"/¢ fori = 1,2.
Recall also that Algorithm 4.1 outputs u, v such that ||ur11 + vr12]leo < €]|711 0o
and ||v||ec < C. The new vector b; at the end of the loop iteration is ub; + vba.



An LLL Algorithm for Module Lattices 87

‘ d

We compute an upper bound on its algebraic norm:

N (uby + vby) < (Vd)~|uby + vby||? = (Vd) ¢

uryy + vrie
VTro2

(V)= (Juryy + vriz]| + [Jorae]])”

< (Jluris + vrialloo + [lorazflco)?

IN

d
< (ellrullo + l[olloo - lIr22llo0)” -

Using the facts that the basis is c-strongly scaled and that the condition of Step 1
is satisfied, we have:

d
N(ub1 + ”Ubg) § Cd . (€N(T11a1)1/d +C ~N(r22a2)1/d>
<l (e+C(e/y)" N(rum).
Now, by choice of € and ~:

1 1

d

N (ub; 4 vby) < c?- (

Recall that a; is also updated as a;b~!. Hence, to conclude, we argue that
N(a;b™1) < 1. Note that M(a;) < 1 holds due to scaling, and that A'(b) > 1
holds because b is integral. Overall, we obtain that N(rjja;) decreases by a
factor > 2¢ during a loop iteration. O

Instantiating this lemma with the value of C obtained in Corollary 4.6, we
obtain the following corollary.

Corollary 4.10 (Heuristic). For any number field K and any n > 0, there
exists a lattice L' of dimension O((log|Ak| + dlog p(R))2t"), a choice of the
approzimation factor v = 200eglAx|+dlogp(R)/d onq an algorithm A such that
the following holds. Under Heuristic 1 and the heuristics of Lemma 2.3, algo-
rithm A takes as input a pseudo-basis of a rank-2 module M C K32, and outputs
a vector v € M such that N'(v) < yI\Y(M). If given access to an oracle solv-
ing the closest vector problem in L' in polynomial time, and when restricted to
modules contained in K2, Algorithm A runs in quantum polynomial time.

Acknowledgments. We thank Léo Ducas for helpful discussions. This work was sup-
ported in part by BPI-France in the context of the national project RISQ (P141580), by
the European Union PROMETHEUS project (Horizon 2020 Research and Innovation
Program, grant 780701) and by the LABEX MILYON (ANR-10-LABX-0070) of Uni-
versité de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).



88 C. Lee et al.

References

[AD17]

[Ajt96]
[Ajt98]

[BEF+17]

[BF14]

[BFH17]

[BGV14]
[BPY1]
[BS96]

[BS16]

[CDW17]

[Cer05)

[Coh96]

[Fie97]

[FP96)

[FP06)

[FS10]

[GLMO9]

Albrecht, M.R., Deo, A.: Large modulus Ring-LWE > Module-LWE. In:
Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017. LNCS, vol. 10624, pp. 267—
296. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_10
Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)
Ajtai, M.: The shortest vector problem in Iy is NP-hard for randomized
reductions. In: STOC (1998)

Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing
generator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10210, pp. 60-88. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7_3

Biasse, J.-F., Fieker, C.: Subexponential class group and unit group com-
putation in large degree number fields. LMS J. Comput. Math. 17, 385-403
(2014)

Biasse, J.-F., Fieker, C., Hofmann, T.: On the computation of the HNF of
a module over the ring of integers of a number field. J. Symb. Comput. 80,
581-615 (2017)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ToCT 6, 13 (2014)

Bosma, W., Pohst, M.: Computations with finitely generated modules over
Dedekind domains. In: ISSAC (1991)

Bach, E., Shallit, J.O.: Algorithmic Number Theory: Efficient Algorithms.
MIT Press, Cambridge (1996)

Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number
fields. In: SODA (2016)

Cramer, R., Ducas, L., Wesolowski, B.: Short stickelberger class relations
and application to ideal-SVP. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 324-348. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7-12

Cerri, J.-P.: Spectres euclidiens et inhomogenes des corps de nombres. Ph.D.
thesis, Université Henri Poincaré, Nancy (2005)

Cohen, H.: Hermite and Smith normal form algorithms over Dedekind
domains. Math. Comput. 65, 1681-1699 (1996)

Fieker, C.: Uber relative Normgleichungen in &lgebraischen Zahlkorpern.
Ph.D. thesis, TU Berlin (1997)

Fieker, C., Pohst, M.E.: On lattices over number fields. In: Cohen, H. (ed.)
ANTS 1996. LNCS, vol. 1122, pp. 133-139. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61581-4_48

Fieker, C., Pohst, M.E.: Dependency of units in number fields. Math. Com-
put. 75, 1507-1518 (2006)

Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In:
Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197,
pp. 157-173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14518-6_15

Gan, Y.H., Ling, C., Mow, W.H.: Complex lattice reduction algorithm for
low-complexity full-diversity MIMO detection. IEEE Trans. Signal Process.
57, 2701-2710 (2009)


https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-319-56620-7_12
https://doi.org/10.1007/3-540-61581-4_48
https://doi.org/10.1007/978-3-642-14518-6_15
https://doi.org/10.1007/978-3-642-14518-6_15

[Hop98|

[HPS98]

[Kan87]

[KL17]

[Laal6]

[Lez14]
[LLLS2]

[LMOG6]

[LPR10]

[LPSW19]
[LS15]
MG02]
[MicO1]
[Nap96]

[Neu99]

[O'M63]

[PHS19)

[PROG6]

[Reg09]

An LLL Algorithm for Module Lattices 89

Hoppe, A.: Normal forms over Dedekind domains, efficient implementation
in the computer algebra system KANT. Ph.D. thesis, TU Berlin (1998)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267—
288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Kannan, R.: Minkowski’s convex body theorem and integer programming.
Math. Oper. Res. 12, 415-440 (1987)

Kim, Taechan, Lee, Changmin: Lattice reductions over Euclidean rings with
applications to cryptanalysis. In: O’Neill, Mdire (ed.) IMACC 2017. LNCS,
vol. 10655, pp. 371-391. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71045-7_19

Laarhoven, T.: Sieving for closest lattice vectors (with preprocessing). In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 523-542.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_28
Lezowski, P.: Computation of the euclidean minimum of algebraic number
fields. Math. Comput. 83(287), 13971426 (2014)

Lenstra, A.K., Lenstra Jr., H-W., Lovész, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261, 515-534 (1982)

Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, 1. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144-155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006-13

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1-23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5_1

Lee, C., Pellet-Mary, A., Stehlé, D., Wallet, A.: An LLL algorithm for mod-
ule lattices (full version). Cryptology ePrint Archive (2019)

Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr. 75, 565-599 (2015)

Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryp-
tographic Perspective. Kluwer Academic Press, Dordrecht (2002)
Micciancio, D.: The hardness of the closest vector problem with preprocess-
ing. Trans. Inf. Theory 47, 1212-1215 (2001)

Napias, H.: A generalization of the LLL-algorithm over Euclidean rings or
orders. J. théorie des nombres de Bordeaux 8, 387-396 (1996)

Neukirch, J.: Algebraic number theory. In: Grundlehren der Mathematis-
chen Wissenschaften, vol. 322. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-662-03983-0

O’Meara, O.T.: Introduction to Quadratic Forms. Springer, Heidelberg
(1963). https://doi.org/10.1007/978-3-642-62031-7

Pellet-Mary, A., Hanrot, G., Stehlé, D.: Approx-SVP in ideal lattices with
pre-processing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 685-716. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3_24

Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145-166. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878_8

Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56, 34 (2009)


https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-71045-7_19
https://doi.org/10.1007/978-3-319-71045-7_19
https://doi.org/10.1007/978-3-319-69453-5_28
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-662-03983-0
https://doi.org/10.1007/978-3-642-62031-7
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/978-3-030-17656-3_24
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8

90 C. Lee et al.

[RSW18]

[SE94]

[SMSV14]

[SSTX09]

Rosca, M., Stehlé, D., Wallet, A.: On the Ring-LWE and Polynomial-LWE
problems. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 146-173. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_6

Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Program. 66, 181-199
(1994)

Morel, 1., Stehlé, D., Villard, G.: LLL Reducing with the most significant
bits. In: ISSAC (2014)

Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASTACRYPT 2009.
LNCS, vol. 5912, pp. 617-635. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7_36


https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-319-78381-9_6
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

	An LLL Algorithm for Module Lattices
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Background
	2.2 Computing over Rings
	2.3 Gram-Schmidt Orthogonalization

	3 LLL-Reduction of Module Pseudo-bases
	3.1 An LLL Algorithm for Module Lattices
	3.2 Handling Bit-Sizes
	3.3 Finding Short Vectors for the Euclidean Norm

	4 The Divide-and-Swap Algorithm
	4.1 Extending the Logarithm
	4.2 The Lattice L
	4.3 On the Distance of Relevant Vectors to the Lattice
	4.4 A ``Euclidean Division'' over R
	4.5 The Divide-and-Swap Algorithm

	References




