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Abstract. We introduce a new technique called ‘Measure-Rewind-
Measure’ (MRM) to achieve tighter security proofs in the quantum ran-
dom oracle model (QROM). We first apply our MRM technique to derive
a new security proof for a variant of the ‘double-sided’ quantum One-
Way to Hiding Lemma (O2H) of Bindel et al. [TCC 2019] which, for the
first time, avoids the square-root advantage loss in the security proof. In
particular, it bypasses a previous ‘impossibility result’ of Jiang, Zhang
and Ma [IACR eprint 2019]. We then apply our new O2H Lemma to
give a new tighter security proof for the Fujisaki-Okamoto transform for
constructing a strong (IND-CCA) Key Encapsulation Mechanism (KEM)
from a weak (IND-CPA) public-key encryption scheme satisfying a mild
injectivity assumption.

Keywords: QROM · Security proof · Public-key encryption

1 Introduction

Background. Correctly selecting secure parameters for quantum-resistant cryp-
tosystems requires understanding both the concrete quantum cost of attacks
against the underlying intractability assumption (e.g., LWE [20]), as well as the
concrete quantum cost of attacks against the cryptosystem itself. Ideally, one
would like a cryptosystem whose security is tightly related via a security proof
(or security reduction) to the intractability of a well-studied problem, so that
attacks against the cryptosystem of lower cost than those against the problem are
ruled out. Such tight proofs give confidence in the concrete security of practical
parameter choices based on the best known attacks against the underlying prob-
lem. Unfortunately, due to existing gaps in the understanding of security proofs
in the context of quantum adversaries, there are many practical post-quantum
cryptosystem candidates that lack such tight security proofs.
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A case in point is the Fujisaki-Okamoto (FO) CCA transform [9], which
is commonly applied in the design of practical public-key cryptosystems to
strengthen their security from chosen-plaintext security (IND-CPA) to chosen-
ciphertext security (IND-CCA), assuming the random oracle model (ROM)
for the underlying cryptographic hash functions. This transform and its vari-
ants [8,10,21,22] are used in all public-key encryption schemes and key-
establishment algorithms of the second round of the NIST PQC standardisa-
tion process [19]. Tight security proofs are known for FO variants against clas-
sical adversaries (in the classical ROM), meaning that an adversary breaking
the FO-transformed scheme in time T and advantage ε can be used to break
the underlying scheme in time ≈ T and advantage ≈ ε. Oppositely, no such
tight security proof for an all-purpose FO transform is known against quantum
attacks in the quantum random oracle model [6]. In the QROM, the adversary is
given quantum access to those hash functions modeled by random oracles. Note
that [21,26] described a transform from a deterministic encryption scheme that
enjoys a so-called disjoint simulatability property, to an IND-CCA public-key
encryption scheme, which is tight in the QROM. The assumptions for this tight
QROM transform are more stringent than those of the all-purpose FO trans-
form: only 2.5 out of 17 second round NIST proposals for public-key encryption
schemes claim that it is applicable to them [3,4,7],1 and at the cost of additional
assumptions.

Although a series of works [5,10–13,15,22] have provided improved analyses
of the FO transform, the existing QROM reductions are still not tight. The state-
of-the-art reductions essentially preserve the runtime, but the advantage degra-
dation only satisfies Adv(ACCA) ≤ O(qc·(Adv(BCPA))δ), where (c, δ) = (1/2, 1/2)
(versus the ideal tight result (c, δ) = (0, 1) that one could hope for), where
Adv(ACCA) and Adv(BCPA) respectively denote the distinguishing advantages of
the IND-CCA attack against the FO-transformed scheme and IND-CPA attack
against the original scheme, and q denotes the number of QROM queries made
by the attacker A. We note that previous techniques have mainly improved the
value of c, reducing it gradually from c = 3/2 down to c = 1/2. Regarding δ,
while it has been improved from 1/4 to 1/2, going further towards δ = 1 has
seemed challenging. Recently, it has even been conjectured infeasible, based on
an ‘impossibility result’ [14].

At the heart of these prior results has been the use of the ‘One-way to
Hiding’ (O2H) lemma, first given in [24]. All its versions so far inherently lead
to a ‘square-root advantage’ loss in the proofs of the FO transforms. The O2H
lemma can be formulated informally as follows. A quantum distinguisher AO2H

is given quantum access to an oracle O that implements either a random oracle
H : X → Y or a modified random oracle G : X → Y , where H and G are
identical on all except a single secret point x ∈ X: we have H(x′) = G(x′)
for all x′ �= x and H(x) = yH and G(x) = yG where yH , yG are independent
uniformly chosen random strings. The distinguisher is also given z = (zx =

1 In the case of [4], this holds for Streamlined NTRU Prime, but not for NTRU
LPRime.
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enc(x), zH = yH , zG = yG), where enc is a one-way function (a deterministic
encryption scheme in the FO scenario).2 The goal of AO2H is to distinguish
whether the oracle O implements G or H, while making up to q queries to O
with depth at most d (where a depth of d means that AO2H splits its queries into
d bunches and all queries within each bunch are queried in parallel, so queries
in each bunch may depend on the answer to d − 1 previous query bunches, and
the total number of queries over all d bunches is at most q). An algorithm that
computes x from zx (by breaking the one-wayness of enc), queries O(x) and
compares the result to zH achieves an advantage Adv(AO

O2H) negligibly close
to 1. In the case of a classical access to O, no algorithm can do better. In the
quantum access case, all variants of the O2H lemma known so far suffer from
a square-root advantage loss. For example, the recent [5, Lemma 5] states that

Adv(AO
O2H) ≤ 2 ·

√
Adv(BG,H

OW ). Here BG,H
OW (z) is a quantum attacker against

the one-wayness of enc, which is given oracle access for both G and H (these
oracles can be simulated given zx, and thus such an attacker implies an attacker
against the one-wayness of enc). The one-wayness attacker BG,H

OW constructed
in the proof of this O2H lemma (and all prior variants thereof) ‘only’ runs
AO2H and measures its queries. In particular, it does not ‘rewind’ AO2H to an
earlier state. Rewinding the state of an attacker to an earlier state is often
considered tricky in the quantum setting, due to the fact that measurement
operations are not reversible. The ‘impossibility result’ of [14] states that any
O2H lemma based on a one-wayness attacker that runs the distinguisher only
once and involves no rewinding, must incur a square-root advantage loss. Thus,
it has been suggested in [5,14] that the square-root advantage loss in the O2H
lemma may be unavoidable in the quantum setting.

Contributions. We present a novel quantum O2H lemma that, for the first time,
does not suffer from the square-root advantage loss in the reduction. Concretely,
we obtain a security bound of the form Adv(A) ≤ 4 · d · Adv(BG,H), where B is
the one-wayness attacker against the underlying one-way function enc.

To circumvent the ‘impossibility result’ of [14], we introduce a Measure-
Rewind-Measure (MRM) proof technique, which provides a new way to extract
the one-wayness secret x from the distinguisher. Rather than extracting x
directly by measuring the oracle queries of the distinguisher (as in prior works),
the MRM technique may also extract x from the distinguishing measurement of
the distinguisher. The latter distinguishing measurement knowledge extraction
is achieved by letting the distinguisher perform its distinguishing measurement,
and then rewinding the collapsed measured state back to the state of the oracle
query stage, to perform a second measurement and extract x. A comparison of
our O2H lemma security bounds and features with earlier O2H lemma variants
is provided in Table 1.

2 We use this definition of z for simplicity in this introduction. The actual formulation
of most prior O2H lemmas, as well as our new one, is more general and allows z to
have an arbitrary joint distribution with G, H, x, as well as allowing a set S of any
number of x’s on which G and H may differ, rather than just one.
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Table 1. Comparison of security bounds and features of our new O2H lemma with
earlier variants of the O2H lemma. The ‘Bound’ column shows the dependence of the
upper bound on the distinguisher advantage Adv(A) in terms of the One-Wayness
attacker advantage ε and A’s oracle query depth d ≤ q (where q is the total number of
queries). The ‘|S|’ column indicates the number of points on which G and H may differ,
the ‘BOW must know’ column shows the oracles available to the one-wayness attacker,
and the ‘Event’ column indicates the type of event used to define A’s advantage. Here
H \ S (resp. G \ S) refers to the restriction of H (resp. G) to the complementary set
of S, and 1S refers to the indicator function of S.

O2H variant Bound |S| BOW must know Event

Original [1,24] 2dε1/2 Arbitrary H or G Arbitrary

Semi-classical [1] 2d1/2ε1/2 Arbitrary (H \ S or G \ S) Arbitrary
and 1S

Double-sided [5] 2ε1/2 One H and G Arbitrary

This work 4dε Arbitrary H and G Efficiently checkable

Compared to prior O2H lemmas, our variant is the first to avoid the square-
root advantage loss. On the other hand, it constructs a one-wayness attacker
which in general requires oracle accesses to both G and H. Therefore, our lemma
is in the same setting as the ‘double-sided’ O2H lemma of [5], which makes it
less general than the semi-classical or original O2H lemmas. Nevertheless, it
still suffices for important applications (see below). Compared to the ‘double-
sided’ O2H lemma in [5], our variant is slightly less general in one respect and
more general in another. On the one hand, the classical event distinguished by
the O2H attacker A in [5] can be arbitrary, while we assume this event to be
efficiently checkable by A. ‘Efficiently checkable’ means that the distinguishing
advantage in the definition of the O2H Lemma is defined as the advantage of
A in the usual way, i.e., Adv(A) = |Pr[1 ← AG(z)] − Pr[1 ← AH(z)]|. This is
in contrast to the more general definition used in [5], which uses the advantage
|Pr[Ev : AG(z)] − Pr[Ev : AH(z)]| for any classical event Ev over the view of
A. There may not exist a computationally efficient algorithm to check whether
Ev has occurred. On the other hand, our O2H variant allows |S| (the number of
points on which G and H may differ) to be arbitrary, while in [5] it must contain
a single point.

As an important application of our O2H lemma, we present the first secu-
rity proof for the FO transform in the QROM which does not suffer from a
‘square-root’ advantage loss for non-deterministic schemes, i.e., it has the form
Adv(ACCA) ≤ O(qc · Adv(BCPA)δ), where δ = 1 rather than δ = 1/2 as in pre-
vious results (on the other hand, our proof currently gives a larger value of c
compared to earlier works, see below). A comparison of our FO security proof
bounds with earlier ones starting from IND-CPA non-deterministic weak schemes
is provided in Table 2. The ‘Security loss’ column of that table shows the num-
ber of extra bits of security required for the ‘weak scheme’ in order to guarantee
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(via the security proof bound) a desired bit security of λ for the FO-transformed
scheme. To obtain the ‘security loss’ L, we define the indistinguishability bit
security of a scheme (against distinguishers that never output ⊥, which is the
class of attacks considered here) [17] as λ if the time to squared (conditional)
advantage ratio T/ε2 of any attack with time T ≤ 2λ is ≥ 2λ.3 We then choose
the smallest bit security Sweak of the ‘weak scheme’ so that the CCA security
bound for the CCA scheme implies a CCA bit security of the FO scheme to
be ≥ λ, and define the ‘security loss’ as L := Sweak − λ. We remark that our
bit security loss estimates in Table 2 assume that the classical bit security def-
initions in [17] are appropriate in the quantum setting, as we are not aware of
any research on bit security notions in the quantum setting. Note also that this
latter assumption does not impact the security bounds we prove in this paper
(which do not depend on this assumption); it only affects their interpretation in
Table 2 in terms of bit security.

We make the following remarks about Table 2. Whereas all previous proofs
for FO applied to non-deterministic IND-CPA weak schemes incurred at least a λ
bit security loss (due to the square-root advantage loss in the CCA bound), our
proof removes this λ bit overhead, and instead incurs a loss 4 log d that depends
only on the query depth d of the CCA distinguisher. In particular, this means
that our security proof is nearly tight for low query depth attacks (i.e., when
log d is much smaller than λ), its loss is less than λ bits for log d < λ/4. The
case of (relatively) low query depth attacks ruled out by our proof tends to be of
high practical interest, since it corresponds, for instance, to massively parallelized
attacks, which are the standard approach to deal with high computation costs in
practical cryptanalyses. An additional requirement of our scheme is injectivity,
but it turns out that it is commonly satisfied by many practical weak schemes,
as argued in [5]. We leave a detailed investigation of injectivity of the second
round PQC NIST KEM candidates [19] to future work (see [5, Appendix D] for a
short discussion). We also remark that although our work and [5] need the extra
injectiveness assumption, it gives a better bound than prior works for modular
FO proofs (those that decompose into a composition of two proofs: one for the T
transform and one for the U transform). The prior works in Table 2 can get the
same bound overall for FO but only via a direct proof for whole FO transform
(combining the T and U transforms). The reason we do not adapt prior FO
proofs that do not rely on the injectiveness property is that those proofs also
seem to require an O2H Lemma where the extractor works with single-sided
oracles for either G or H, rather than the G and H requirement we (and [5])
have in our ‘double-sided’ O2H Lemma.

Techniques. To explain our MRM security proof technique, we consider the
following example and explain the difficulty encountered by previous O2H proofs,
and then our observations leading to our MRM technique for resolving this
difficulty.

3 We note that [17] calls ε the ‘conditional advantage’ while ε2 is referred to as the
‘advantage’; we always refer to ‘conditional advantage’ ε as ‘advantage’.
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Table 2. Comparison of security bounds for FO-type non-deterministic IND-CPA to
IND-CCA transforms in the QROM. The ‘CCA bound’ column shows the dependence
of the upper bound on CCA attacker advantage Adv(A) against the FO-transformed
scheme in terms of the attacker advantage ε against the weak scheme transformed by
FO, and A’s oracle query depth d ≤ q (where q is the total number of random oracle
queries). For simplicity, in this table, we only take into account the dependence in ε,
and neglect other additive terms and (small) multiplicative constants. In all cases listed,
the run-time of the weak scheme attacker is within a constant factor of the run-time of
the CCA scheme. The required weak scheme security notion is shown in column ‘Weak
scheme’. The ‘Security loss’ column indicates the bit security loss of the CCA bound
(see text). Note that all the weak schemes are not required to enjoy perfect correctness
of decryption.

CCA bound Security loss Weak scheme

[10] q3/2 · ε1/4 3λ + 9 log q IND-CPA

[11,13,15] d1/2 · ε1/2 λ + log d IND-CPA

[5] d1/2 · ε1/2 λ + log d IND-CPA injective

This work d2 · ε 4 log d IND-CPA injective

Consider the following O2H distinguisher AO that makes 1 query (with depth
1) to its quantum oracle and makes a measurement on the resulting state to
distinguish whether O = H or O = G. The oracle input (first) and output
(second) registers are denoted by in and out. Given z = (enc(x),H(x)), the
distinguisher AO prepares in the input register in a superposition of the form∑

x′∈X

√
px′ |x′〉 and queries O to get the state

|ψO〉 =
∑

x′∈X

√
px′ |x′, O(x′)〉 =

√
px|x,O(x)〉 +

∑
x′ �=x

√
px′ |x′, O(x′)〉,

where
∑

x′∈X px′ = 1. Let |ψ �=x〉 :=
∑

x′ �=x

√
px′

1−px
|x′,H(x′)〉. Recalling that G

and H differ only on x, we are in one of the following two cases:

|ψH〉 =
√

px|ψH
x 〉 +

√
1 − px|ψ �=x〉 and |ψG〉 =

√
px|ψG

x 〉 +
√

1 − px|ψ �=x〉,
with |ψH

x 〉 := |x,H(x)〉 and |ψG
x 〉 := |x,G(x)〉.

Since the amplitude of in = |x〉 in |ψH〉 is
√

px, measuring the input
register in for A’s query would give the secret x with probability Adv(B) =
Pr[Min=|x〉|ψO〉] = px. This is in fact the strategy of the one-wayness adversary
B constructed from A in prior O2H security proofs.

On the other hand, as observed in [14], the trace distance between |ψG〉
and |ψH〉 is

√
1 − (|ψG〉, |ψH〉)2 =

√
px and therefore there exists a projective

measurement MV = (MV , I −MV ) (where MV is a projector on a subspace V of
the state space)4 that A can perform on |ψO〉 to distinguish the case O = H from
4 Here, we assume that A outputs 1 when the result of measurement space is a state

in subspace V .
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O = G with distinguishing advantage Adv(A) = ‖MV |ψH〉‖2 − ‖MV |ψG〉‖2 =√
px (see [18, Chapter 9]). The existence of such a distinguisher with a square

root advantage
√

px led the authors of [5,14] to the suggestion that removing
the square-root loss from the O2H security reduction may be impossible in the
quantum setting.

Let us exhibit such the worst-case MV that A could use. Consider MV =
|v〉〈v| that projects the state on a single unit vector |v〉, with |v〉 defined as lying
on the plane spanned by |ψG〉 and |ψH〉, and at angle π/4+θ/2 from |ψG〉 if |ψH〉
is at angle θ from |ψG〉. Then Adv(A) = cos2(π/4 + θ/2) − cos2(π/4 − θ/2) =
sin θ =

√
px.

Our MRM technique for resolving the above conundrum stems from the
observation that to achieve its high

√
px advantage, the above example dis-

tinguisher A uses a measurement MV that itself encodes the secret x. Indeed, in
the measurement vector |v〉 the state in = |x〉 has amplitude ≈ 1/

√
2 when px

is small. Hence, as A can measure along |v〉, it must somehow store it and we
should be able to extract x from A with high probability by simply measuring
in of |v〉 in the computational basis.

The above idea raises the question of how to set up the system state to
be |v〉. The answer is simply to let A perform its distinguishing measurement
MV on |ψH〉.5 If the measurement is MV , the state collapses to the state
MV |ψH〉/‖MV |ψH〉‖. In the above example, this is |v〉 with probability ≈ 1/2
when px is small. In the standard quantum computational model, since A’s mea-
surement MV is not performed with respect to the computational basis (note that
|v〉 is a superposition of computational basis vectors), applying MV to the oracle
output state is implemented by A as a composition of a unitary UV followed by
a computational basis measurement Mβ of a qubit register β corresponding to
A’s output bit (where UV is designed so that it maps the state |v〉 to a state
with β = 1). Then, setting up the system state to be |v〉 actually consists in
running A with oracle H to obtain the state |ψH〉, applying UV followed by
A’s output qubit measurement Mβ , and if the result of the latter measurement
is β = 1, then rewinding the collapsed output state of A to the step before
the measurement by applying the inverse unitary U−1

V (so that effectively the
measurement projector MV = U−1

V Mβ=|1〉UV is applied on the state |ψH〉).
Overall, we obtain an efficient MRM-based quantum algorithm C to extract

x from A that works as follows for q = d = 1: run AH and query the H oracle
to set up the state |ψH〉, continue running A until it performs its measurement
MβUV and, if the result is β = |1〉, rewind A back to just after the query
by running U−1

V and apply measurement Min on the in register to extract x,
achieving overall success probability ≈ 1/4 for the above example distinguisher
A when px is small.

In our new O2H security proof, we show that (a slight variant of) the above
MRM extraction technique works for q = d = 1 in the case where MV is a general
measurement. More precisely, we show that the advantage of any distinguisher A

5 Our actual general reduction applies it to a uniform superposition 1
2
(|ψH〉 + |ψG〉);

see below.
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cannot exceed 4 · max(Adv(B),Adv(C)), where Adv(C) is the probability that
our MRM-based extractor recovers x, and Adv(B) = px is the probability that
the direct query measurement algorithm B recovers x. Our actual extraction
algorithm D therefore runs A twice: in the first run of A, algorithm D runs the
direct query measurement algorithm B to attempt to compute x, and in the
second run of A, algorithm D runs our MRM-based algorithm C to attempt to
compute x. By the above bound, the advantage of A is at most 4 times the
success probability of D.

The proof of our new O2H bound is based on re-writing Adv(A) :=
|‖MV |ψG〉‖2 − ‖MV |ψH〉‖2| as an inner product of the form

Adv(A) ≤
∣∣(|ψG〉 − |ψH〉,MV (|ψG〉 + |ψH〉)

)∣∣ .

At this point, we use the crucial fact that since G and H differ only on x,
|ψG〉 − |ψH〉 = |ψG

x 〉+ |ψH
x 〉 is a vector in the subspace E|x〉 of vectors with in =

|x〉, so it is unchanged by applying a projection Min=|x〉 onto E|x〉. Consequently,
the inner-product above can be rewritten as

Adv(A) ≤
∣∣(Min=|x〉(|ψG〉 − |ψH〉),Min=|x〉MV (|ψG〉 + |ψH〉)

)∣∣ .

Now, we observe that the norm ‖Min=|x〉(|ψG〉− |ψH〉)‖ of the vector on the left
of the inner-product is (up to a factor of 2) the square-root of the advantage px

of the direct measurement extraction algorithm B, whereas the norm

‖Min=|x〉MV (|ψG〉 + |ψH〉)‖ = ‖Min=|x〉U
−1
V Mβ=|1〉UV (|ψG〉 + |ψH〉)‖

of the vector on the right of the inner-product is (up to a factor of 2) the square-
root of the advantage of a variant of the MRM-based extraction algorithm C.
Applying the Cauchy-Schwarz inequality gives our bound

Adv(A) ≤ 4 ·
√
Adv(B) ·

√
Adv(C) ≤ 4 · max(Adv(B),Adv(C)),

for q = d = 1. We extend our O2H security proof to the case of any depth d ≥ 1
by applying a standard hybrid argument over d hybrid distributions in which the
oracle O is used only to answer the i-th depth of A, which leads to an additional
loss of a factor d in our bound on Adv(A).

We apply the new O2H lemma to the FO transform, by showing that a slight
variant of the proof of security for the FO �⊥ (‘implicit rejection’) variant based on
the ‘double-sided’ O2H lemma from [5] suffices for use with our new O2H lemma,
without any significant reduction cost. The reason we cannot directly plug in our
new ‘double-sided’ O2H lemma in the FO security proof of [5] is the limitation
of our new O2H lemma to ‘efficiently checkable’ events for the definition of
distinguisher A. Our modified proof applies the lemma with the event ‘A outputs
1’ instead. By the general tight equivalence results of [5, Theorem 5], we also
obtain an improved security proof for other variants FO⊥ (‘explicit rejection’)
and FO �⊥

m (key derived from message only).

Open problems. Our new O2H security proof for q = d = 1 oracle queries
crucially makes use of the fact that |ψG〉 − |ψH〉 is in the subspace of vectors
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with in = |x〉. This property may no longer be satisfied after q > 1 queries, and
currently, we handle this difficulty via a hybrid argument that loses a factor q
in the advantage (in the presentation of our reduction we actually only lose a
factor d ≤ q that is the query depth, but in the worst-case we have d = q).
The security proofs of [1,5] make use of semi-classical oracles or a variant of
Zhandry’s quantum query recording technique [27] to reduce (or even eliminate)
the loss factor q in the advantage, but they do not seem to be easily compat-
ible with our MRM technique. An interesting open problem is to find an even
tighter security proof that combines our MRM technique with those techniques
to give a fully tight reduction for O2H in the quantum setting. Relaxing the
‘double-sided’ aspect of our O2H Lemma to a ‘single-sided’ variant (like the
original O2H Lemma [24]) is also left as an interesting question. Removing the
injectivity assumption and finding other applications for our O2H Lemma and
the underlying MRM technique are further questions left open by our work.

Additional related work. To the best of our knowledge, the use of quantum
circuit rewinding is novel in the context of the O2H Lemma, but there is a body
of work using different forms of quantum circuit rewinding in other applica-
tions, notably in the analysis of quantum security of zero-knowledge protocols.
Watrous [25] presented a quantum rewinding lemma, which is a procedure involv-
ing multiple ‘measure-rewind’ iterations with interleaved unitary gates, in order
to approximate a desired collapsed measured state with any desired fidelity. The
procedure assumes a near independence of the measurement probabilities on the
input state, which suffices to prove the zero-knowledge property of certain pro-
tocols. Our MRM technique does not make such near independence assumptions
(indeed the measurement distribution of the distinguisher may strongly depend
on the input state), but only applies one ‘measure-rewind-measure’ iteration.
Unruh [23] presented a form of rewinding extraction technique for proving sound-
ness of zero-knowledge proof of knowledge protocols against quantum attacks.
However, the purpose of rewinding there is to approximate the previous state
of the attacker while minimising the disturbance of the measurement, whereas
in our MRM technique, we actually want the measurement to disturb the state
in order to extract knowledge from the measurement vector. Later work by
Ambianis et al. [2] showed the necessity of restrictions of Unruh’s rewinding in
the context of quantum-secure proofs of knowledge.

2 Preliminaries

For a finite set H, we denote by H
$← H the sampling of a uniformly random

element H from H. If A is an algorithm, we denote by b ← A(z) the assignment
to b of the output of A run on input z.

Let C denote the set of complex numbers. For z ∈ C, we denote the absolute
value of z by |z| and the complex conjugate of z by z̄. The (complex) inner prod-
uct between two vectors |u〉 = (u0, . . . , un−1) and |v〉 = (v0, . . . , vn−1) in C

n is
denoted by (|u〉, |v〉) :=

∑
i ūi · vi. Let |v〉 ∈ C

n, then ‖|v〉‖ =
√

(|v〉, |v〉) denotes
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its Euclidean norm. For a linear transformation M , the Hermitian (adjoint)
operation on M is denoted by M†.

2.1 Quantum Computations

A qubit is a quantum system defined over {0, 1}. Given two orthonormal vectors
|0〉, |1〉, let S be the state space of a single qubit, namely

S =
{
α0|0〉 + α1|1〉 : |α0|2 + |α1|2 = 1, α0, α1 ∈ C

}
.

For an integer N ≥ 1, the state space of a quantum system (register) of N qubits
is the N -fold tensor product of S and is denoted by

S
⊗N =

⎧
⎨
⎩

∑
in∈{0,1}N

αin|in1〉 · · · |inN 〉 :
∑

in∈{0,1}N

|αin|2 = 1, αin ∈ C

⎫
⎬
⎭ .

For x = (x1, . . . , xN ) ∈ {0, 1}N , the associated computational basis vec-
tor of S

⊗N is x = |x1〉|x2〉 · · · |xN 〉, and is denoted by |x〉. The set of all 2N

computational basis states {|x〉} forms an orthonormal basis for S
⊗N . A linear

combination |φ〉 =
∑

x∈{0,1}N αx|x〉 of computational basis states |x〉 is referred
to as a superposition of computational basis states. We refer to the weight αx

as the amplitude of |x〉 in state |φ〉.
Given the state |φin〉 ∈ S

⊗N of an N -qubit register in and a value y ∈ {0, 1}N ,
we denote by Min=|y〉 : S⊗N → S

⊗N the operator that applies the projection
|y〉〈y| map to the state |φin〉 of register in to get the new state |y〉〈y||φin〉.
This projector can be generalized to a projector MEV

onto a subspace EV =
{
∑

in∈V αin|in〉 : αin ∈ C} defined by a subset V ⊆ {0, 1}N , which applies the
projection map

∑
y∈V |y〉〈y| to a state |φin〉 ∈ S

⊗N . For example, for a subset
S ⊆ {0, 1}N , we define S⊕n := {in ∈ ({0, 1}N )n : ∃ i with ini ∈ S}, and then
MES⊕n is the projector onto subspace ES⊕n := {

∑
in∈S⊕n αin|in〉 : αin ∈ C}.

We use the same notation for operators and projectors even if they are applied
to non-normalized vectors in C

N . It can be checked that any projector operator
MEV

is Hermitian (i.e., we have M† = M) and idempotent (i.e., we have M2 =
M).

A measurement in the computational basis on a register in that is in state
|φin〉 ∈ S

⊗N returns the measurement result y ∈ {0, 1}N with probability P =
‖Min=|y〉|φin〉‖2 and changes (‘collapses’) the state of in to |φ′

in〉 = Min=|y〉|φin〉
‖Min=|y〉|φin〉‖ .

Such a measurement of register in is denoted by Min. A general projective
measurement is defined by a set of projection operators {M1, . . . , Mn} where
Mi’s project onto subspaces Vi that are mutually orthogonal and whose sum is
the whole state space. For example, for any subspace V of S⊗N , we can define the
projective measurement MV = (MV , I −MV ) where MV is the projector onto V
and I − MV is the projector onto the orthogonal complement of V . Any general
projective measurement can be implemented by composing a unitary operation
followed by a measurement in computational basis. Each measurement costs one
time unit.
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A quantum algorithm executes a sequence of unitary gate operations for a
fixed set F containing Hadamard, phase, CNOT and π/8 gates. Each gate is also
counted as one unit of time. The overall time taken to perform a quantum algo-
rithm A is denoted by TA. An efficient quantum algorithm runs a polynomial-
time (in N) sequence of gate operations or measurements.

Given a function H : X → Y = {0, 1}N , a quantum-accessible oracle O of H
is modeled by a unitary transformation UH operating on two registers in, out
with state spaces S⊗N , in which |x, y〉 is mapped to |x, y⊕H(x)〉, where ⊕ denotes
XOR group operation on Y . A quantum algorithm with quantum random oracle
O performs a mix of classical and quantum unitary algorithms. This can be
efficiently converted, up to a constant factor overhead and same number of oracle
queries [18], to a purely unitary algorithm that applies a unitary followed by a
final set of measurements. A purely unitary algorithm making q oracle queries
to O is denoted by (OUi)

q
i=1, where Ui is a unitary operation applied before the

i-th call to oracle O. Following [5], we model a quantum algorithm A making
parallel queries to a quantum oracle O as a quantum algorithm making d ≤ q
queries to an oracle O⊗n consisting of n = q/d parallel copies of oracle O. Given
an input state of n pairs of in/out registers |x1〉|y1〉 · · · |xn〉|yn〉, the oracle of
O⊗n maps it to the state |x1〉|y1 ⊕ O(x1)〉 · · · |xn〉|yn ⊕ O(xn)〉. We call d the
algorithm’s query depth, n the parallelization factor, and q = n · d the total
number of oracle queries.

2.2 Original One-Way to Hiding (O2H) Lemma

We now recall the One-Way to Hiding (O2H) Lemma, as stated in [1] (this
formulation generalizes Unruh’s original O2H Lemma [24]).

Lemma 2.1. ([1, Theorem 3]). Let G,H : X → Y be random functions, z
be a random value, and S ⊆ X be a random set such that G(x) = H(x) for
every x /∈ S. The tuple (G,H, S, z) may have an arbitrary joint distribution.
Furthermore, let AH be a quantum oracle algorithm which queries H with depth
at most d. Let Event be an arbitrary classical event. Define the oracle algorithm
BH(z) as follows: sample i

$← {0, . . . , d − 1}; run AH(z) until just before its i-th
round of queries to H; measure all query input registers in the computational
basis, and output the set T of measurement outcomes. Then

Adv(A) ≤ 2d
√

Adv(B) and |
√

Pleft −
√

Pright| ≤ 2d
√

Adv(B),

where Adv(A) := |Pleft − Pright| with

Pleft := Pr[Event : AH(z)], Pright := Pr[Event : AG(z)],

and
Adv(B) := Pr[S ∩ T �= ∅ : T ← BH(z)].
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3 Main Results

The following result will prove useful later on in the proof of Lemma3.2.

Lemma 3.1. For any vectors |φ1〉 and |φ2〉, we have

|‖|φ1〉‖2 − ‖|φ2〉‖2| ≤ |(|φ1〉 − |φ2〉, |φ1〉 + |φ2〉)|.

Proof. Let x1 = |φ1〉 − |φ2〉 and x2 = |φ1〉 + |φ2〉. Then, we have:
∣∣∣∣
‖x1 + x2‖2

4
− ‖x1 − x2‖2

4

∣∣∣∣ =
|(x1 + x2, x1 + x2) − (x1 − x2, x1 − x2)|

4
= |Real((x1, x2))| ≤ |(x1, x2)|,

where Real(z) denotes the real part of a complex number z. ��

3.1 O2H with Measure-Rewind-Measure (MRM)

We first describe the fixed input version of our result, where G,H, S, z are all
fixed, and then we extend it to case of random G,H, S, z. Note that below, the
value z can depend on G,H, S, so can serve to provide the adversary with a ‘hint’
about G,H, S (for instance, in our application later on, the value z contains an
encryption of S).

Lemma 3.2 (Fixed O2H with MRM). Let G,H : X → Y be fixed functions,
z be a fixed value, and S ⊆ X be a fixed set such that G(x) = H(x) for every
x /∈ S. Furthermore, let AO be a quantum oracle algorithm which queries an
oracle O with depth d. Then we can construct unitary algorithms {AO

i (z)}0≤i<d,
{BG,H

i (z)}0≤i<d, and {CG,H
i (z)}0≤i<d with TAO

i
≈ TAO , TBG,H

i
� TAO

i
and

TCG,H
i

≈ 2 · TAO
i
(for all i) and such that

Adv(AO) ≤
d−1∑
i=0

Adv(AO
i ), (1)

and (for all i):

Adv(AO
i ) ≤ 4

√
Adv(BG,H

i ) · Adv(CG,H
i )

≤ 4max{Adv(BG,H
i ),Adv(CG,H

i )}. (2)

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr[1 ← AH(z)], Pright := Pr[1 ← AG(z)],
Adv(AO

i ) := |Pr[1 ← AH
i (z)] − Pr[1 ← AG

i (z)]|,
Adv(BG,H

i ) := Pr[S ∩ TBi
�= ∅ : TBi

← BG,H
i (z)],

and
Adv(CG,H

i ) := Pr[S ∩ TCi
�= ∅ : TCi

← CG,H
i (z)].
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Proof. Let O⊗n
G and O⊗n

H be the n-wise parallel quantum oracles for G and H,
respectively. As in [5, Lemma 5], we define another quantum oracle O⊗n

G,H , which
is used to put the sum and difference of O⊗n

G and O⊗n
H in superposition, entangled

with another bit b. This can be configured so that the additional bit register b
decides which oracle is in use. Concretely, we define

O⊗n
G,H := (O⊗n

H ⊗ |+〉〈+|) + (O⊗n
G ⊗ |−〉〈−|),

where |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉−|1〉√
2

. Therefore, the oracle O⊗n
G,H maps the state

|ψ〉|+〉 to the state O⊗n
H (|ψ〉)|+〉 and the state |ψ〉|−〉 to the state O⊗n

G (|ψ〉)|−〉.
As observed in [5], it can be efficiently implemented by applying a Hadamard
gate before and after a conditional evaluation map that applies OH if b = 0
and OG if b = 1. By setting the b bit register to start in the superposition state
|+〉+|−〉√

2
= |0〉, and applying O⊗n

G,H we get a state with the sum and differences
of the oracle output states entangled with the bit b:

O⊗n
G,H(|ψ〉|0〉) =

1√
2

·
(
O⊗n

H (|ψ〉)|+〉 + O⊗n
G (|ψ〉)|−〉

)

=
1
2

·
(
O⊗n

H |ψ〉 + O⊗n
G |ψ〉

)
⊗ |0〉

+
1
2

·
(
O⊗n

H |ψ〉 − O⊗n
G |ψ〉

)
⊗ |1〉. (3)

Looking ahead, we will use the above bit b in algorithms Bi and Ci and aim to
measure b = 1 in the former and b = 0 in the latter, so that we get the difference
and sum states, respectively, in the remaining registers.

We now present our hybrid algorithms for i ∈ {0, . . . , d− 1}. The i-th hybrid
pair of algorithms for A corresponds to running A with its first i oracle calls
answered with O⊗n

H , A’s (i + 1)-th call answered by O⊗n
O where O ∈ {G,H} is

A’s oracle, and A’s final d − (i + 1) calls answered using O⊗n
G . The extraction

algorithms Bi and Ci detailed below will run A similarly except with the (i+1)-th
query answered with the superposition oracle O⊗n

G,H . We define the four hybrid
algorithms below. Recall that the total number of quantum oracle queries of
A equals q = n · d, where n is the parallelization factor, and that A applies a
unitary Uj in between its (j − 1)-th and j-th oracle call.

– Algorithm AO
i for O ∈ {O⊗n

H , O⊗n
G }. This algorithm starts with 0’s in regis-

ters |aux〉
⊗n

i=1(|ini〉|outi〉)|β〉, where aux is A’s auxiliary working register,
and β ∈ {0, 1} is A’s output bit. Algorithm AO

i first runs (O⊗n
H Uj)i

j=1 to
get to state |st2i,i〉, then runs OUi+1 to get to state |st2i+2,i〉, and finally
performs (O⊗n

G Uj)d
j=i+2, which takes us to state |st2d,i〉. This is finalized by a

unitary operation Ud+1, which gives state |st2d+1,i〉, to which the output bit
measurement Mβ is applied. The algorithm outputs the measurement result
bit β.

– Algorithm BG,H
i . This algorithm starts with one extra bit register as input

compared to previous algorithm. The first 2n + 2 registers are exactly the
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same as those in AO
i and the last register is devoted to bit b to implement

O⊗n
G,H . All registers are initialized to 0. Then, this algorithm runs (O⊗n

H Uj)i
j=1

(giving a state |st′2i,i〉), then applies O⊗n
G,HUi+1 (giving a state |st′2i+2,i〉), and

then performs a measurement Mb of the b register (i.e., just after the (i+1)-th
oracle call). If the result of this measurement is 1, then a measurement Min

of the oracle’s input register in = (in1, . . . , inn) is conducted. This can also
be seen as n parallel measurements Min1 . . .Minn

. The algorithm terminates
by outputting the results of the measurements.

– Algorithm CG,H
i . This algorithm has the same registers as the previous

one. All registers are initialized to 0. This algorithm applies (O⊗n
H Uj)i

j=1,
O⊗n

G,HUi+1, (O⊗n
G Uj)d

j=i+2 and Ud+1. The states after applying those opera-
tions are called |st′′2i,i〉, |st′′2i+2,i〉, |st′′2d,i〉 and |st′′2d+1,i〉, respectively. Then
the measurements Mb, and Mβ are applied. If the result of Mb equals 0
and the result of Mβ equals 1, then the following (rewinding) transforma-
tions are applied back to the point just after the (i + 1)-th oracle call: U†

d+1,
((O⊗n

G Uj)†)d
j=i+2, resulting in states called |st′′′2d,i〉, and |st′′′2i+2,i〉, respectively.

Finally, a measurement with respect to in is performed, and the algorithm
outputs the result of the measurement.

One can check that TAO
i

≈ TAO , TBG,H
i

� TAO
i

and that TCG,H
i

≈ TBG,H
i

+2(TAO
i

−
TBG,H

i
) ≤ 2 · TAO

i
.

We have AO=G
0 = AG, AO=H

d−1 = AH and AO=H
i = AO=G

i+1 for 0 ≤ i ≤ d − 2
(here and in the following, we use the shorthand O = G and O = H for O = O⊗n

G

and O = O⊗n
H respectively). This implies that:

Adv(A) = |Pr[1 ← AG] − Pr[1 ← AH ]|
= |Pr[1 ← AO=G

0 ] − Pr[1 ← AO=H
d−1 ]|

=

∣∣∣∣∣
d−1∑
i=0

(
Pr[1 ← AO=G

i ] − Pr[1 ← AO=H
i ]

)∣∣∣∣∣

≤
d−1∑
i=0

∣∣Pr[1 ← AO=G
i ] − Pr[1 ← AO=H

i ]
∣∣

=
d−1∑
i=0

Adv(AO
i ),

where the first and the last equalities are obtained based on the definitions,
the second equality is the result of a simple telescopic argument, and the only
inequality follows from the triangle inequality. This proves (1).

We now proceed to prove (2). Fix 0 ≤ i ≤ d − 1. Let

Wi := Ud+1(O⊗n
G Uj)d

j=i+2,

|ψi,F 〉 := |stO=H
2i+2,i〉 − |stO=G

2i+2,i〉,
|ψi,B〉 := W †

i Mβ=|1〉Wi(|stO=H
2i+2,i〉 + |stO=G

2i+2,i〉).



Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 717

We first study Adv(AO
i ). We have:

|Pr[1 ← AO=H
i ] − Pr[1 ← AO=G

i ]|
=

∣∣‖Mβ=|1〉|stO=H
2d+1,i〉‖2 − ‖Mβ=|1〉|stO=G

2d+1,i〉‖2
∣∣

≤
∣∣(Mβ=|1〉(|stO=H

2d+1,i〉 − |stO=G
2d+1,i〉),Mβ=|1〉(|stO=H

2d+1,i〉 + |stO=G
2d+1,i〉)

)∣∣ (4)

=
∣∣(Mβ=|1〉Wi|ψi,F 〉,Mβ=|1〉Wi(|stO=H

2i+2,i〉 + |stO=G
2i+2,i〉)

)∣∣ (5)

=
∣∣∣
(
|ψi,F 〉,W †

i M†
β=|1〉Mβ=|1〉Wi(|stO=H

2i+2,i〉 + |stO=G
2i+2,i〉)

)∣∣∣
= |(|ψi,F 〉, |ψi,B〉)| (6)
= |(Min∈S⊕n |ψi,F 〉, |ψi,B〉)| (7)

=
∣∣∣
(
Min∈S⊕n |ψi,F 〉,M†

in∈S⊕n |ψi,B〉
)∣∣∣ (8)

≤ ‖Min∈S⊕n |ψi,F 〉‖ · ‖M†
in∈S⊕n |ψi,B〉‖, (9)

where (4) follows from Lemma 3.1, (5) is obtained based on the definitions of
AO

i and |ψi,F 〉, (6) employs the fact that Mβ=|1〉 is a Hermitian and idempotent
transformation and the definition of |ψi,B〉, (8) uses the fact that Min∈S⊕n is
idempotent, and (9) follows from the Cauchy-Schwarz inequality. Finally, the
equality in (7) exploits the fact that |ψi,F 〉 may have non-zero amplitudes only
for computational basis vectors in ∈ S⊕n (we recall that S⊕n is the set of n-
dimensional vectors in having at least one component in the set S on which H
and G differ). To see the latter fact, one can write

|stO2i+2,i〉 =
∑

in∈S⊕n,out

αin,out|in1〉|out1 ⊕ O(in1)〉 · · · |inn〉|outn ⊕ O(inn)〉

+
∑

in∈S⊕n,out

αin,out|in1〉|out1 ⊕ O(in1)〉 · · · |inn〉|outn ⊕ O(inn),

with S⊕n = {0, 1}N ·n \ S⊕n. From this, we deduce that difference vector |ψi,F 〉
only has a component along S⊕n, as the sum over S⊕n (and out) is identical
for both |stG2i+2,i〉 and |stH2i+2,i〉.

Based on the definitions of O⊗n
G,H , BG,H

i and CG,H
i , and the superposition

property (3), the following holds:

|st′2i+2,i〉 = |st′′2i+2,i〉 =
1
2

(
|ψi,F 〉|1〉 + (|stO=H

2i+2,i〉 + |stO=G
2i+2,i〉)|0〉

)
. (10)

On the one hand, we have

Adv(BG,H
i ) = Pr[S ∩ TBi

�= ∅, TBi
← BG,H

i (z)]

=

∥∥∥∥∥Min∈S⊕n

Mb=|1〉|st′2i+2,i〉
‖Mb=|1〉|st′2i+2,i〉‖

∥∥∥∥∥
2

· ‖Mb=|1〉|st′2i+2,i〉‖2

=
∥∥∥∥Min∈S⊕n

|ψi,F 〉|1〉
‖|ψi,F 〉|1〉‖

∥∥∥∥
2

·
∥∥∥∥

1
2
|ψi,F 〉|1〉

∥∥∥∥
2

(11)

=
1
4
‖Min∈S⊕n |ψi,F 〉‖2, (12)
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where (11) follows from (10). On the other hand, by definition of CG,H
i , we have

that:

|st′′′2i+2,i〉 =
W †

i Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉
‖Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉‖

=
W †

i Mβ=|1〉WiMb=|0〉|st′′2i+2,i〉
‖Mβ=|1〉WiMb=|0〉|st′′2i+2,i〉‖

, (13)

=
|ψi,B〉|0〉

‖|ψi,B〉|0〉‖ , (14)

where (13) holds since Mb=|0〉 does not have any effect on Ud+1 nor on
(UjO

⊗n
G )d

j=i+2 and hence it commutes with Wi, and (14) is obtained using (10)
and the definition of |ψi,R〉. Finally, one can write:

Adv(CG,H
i ) = Pr[S ∩ TCi

�= ∅, TCi
← CG,H

i (z)]

= ‖M†
in∈S⊕n |st′′′2i+2,i〉‖2 · ‖Mβ=|1〉Mb=|0〉Wi|st′′2i+2,i〉‖2

= ‖M†
in∈S⊕n |st′′′2i+2,i〉‖2 · ‖W †

i Mβ=|1〉WiMb=|0〉|st′′2i+2,i〉‖2 (15)

=
∥∥∥∥M†

in∈S⊕n

|ψi,B〉|0〉
‖|ψi,B〉|0〉‖

∥∥∥∥
2

·
∥∥∥∥

1
2
|ψi,B〉|0〉

∥∥∥∥
2

(16)

=
1
4
‖M†

in∈S⊕n |ψi,B〉‖2, (17)

where (15) holds true as W †
i is a unitary operation and Mb=|0〉 commutes

with Wi, and (16) follows from (14). Substituting (12) and (17) into (9)
proves (2). ��

We now extend our O2H Lemma to the random case.

Lemma 3.3 (Random O2H with MRM). Let G,H : X → Y be ran-
dom functions, z be a random value, and S ⊆ X be a random set such that
G(x) = H(x) for every x /∈ S. The tuple (G,H, S, z) may have arbitrary joint
distribution. Furthermore, let AO be a quantum oracle algorithm which queries
oracle O with query depth d. Then we can construct an algorithm DG,H(z) such
that TDG,H � 3 · TAO and

Adv(AO) ≤ 4d · Adv(DG,H).

Here Adv(AO) := |Pleft − Pright| with

Pleft := Pr
H,z

[1 ← AH(z)], Pright := Pr
G,z

[1 ← AG(z)],

and
Adv(DG,H) := Pr

G,H,S,z
[T ∩ S �= ∅ : T ← DG,H(z)].

Proof. We first construct DG,H on input z as follows:
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– Sample i
$← {0, . . . , d − 1},

– Run BG,H
i (z) and CG,H

i (z) to obtain TBi
and TCi

, respectively, and
– Return T := TBi

∪ TCi
.

The run-time bound follows from Lemma3.2, which states that TBG,H
i

� TAO and
TCG,H ≈ 2·TAO . In the following, when we do not explicitly state the subscripts of
probabilities or expectations, it means that they are over the internal randomness
of the quantum algorithms only. Now, for fixed G,H, S, z, let

PBi∨Ci
i (G,H, S, z) := Pr[(TBi

∩ S �= ∅) ∨ (TCi
∩ S �= ∅) :

TBi
← BG,H

i (z), TCi
← CG,H

i (z)].

With the above definition, we can write:

E
G,H,S,z

[
PBi∨Ci

i (G,H, S, z)
]

≥ E
G,H,S,z

[
max

{
Adv(BG,H

i ),Adv(CG,H
i )

}]

≥ 1
4

E
G,H,S,z

[Adv(AO
j )], (18)

where the first inequality uses the fact that, for any two events E1 and E2,
we have Pr[E1 ∨ E2] ≥ max{Pr[E1],Pr[E2]}, and the second one follows from
Lemma 3.2. We now investigate the advantage of algorithm D:

Adv(DG,H) =
∑

j

Pr[i = j] · E
G,H,S,z

[
P

Bj∨Cj

j (G,H, S, z)
]

≥ 1
4d

∑
j

E
G,H,S,z

[Adv(AO
j )]

≥ 1
4d

· Adv(AO),

where the first and second inequalities follow from (18) and Lemma 3.2, respec-
tively. ��

4 Tighter IND-CCA Proofs for Fujisaki-Okamoto KEMs

Here, we apply our results from Sect. 3 to prove IND-CCA security of the Fujisaki-
Okamoto FO �⊥ transform, which takes an IND-CPA secure public-key encryption
scheme (PKE) and applies a composition of the T transform [10] and the U �⊥

transform [10,13] to produce an IND-CCA secure Key Encapsulation Mechanism
(KEM). Our QROM security proof for FO �⊥ is obtained by adapting the proof
in [5] to work with our new O2H lemma.

4.1 Security Definitions

We recall standard definitions related to PKEs, KEMs and pseudo-random func-
tions (PRFs) in the full version of the paper [16]. Here we recall less standard
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definitions that will be needed in the analysis of the transform to an IND-CCA
KEM.

We start with the definitions of a valid ciphertext and a security property
called “finding failing ciphertext” (FFC). The latter was introduced in [5] to
capture a decryption error requirement on the dPKE scheme needed for the
IND-CCA security of the U �⊥ transform (recalled below). Notice that the success
event of the FFC experiment is not efficiently checkable, which may at first sight
seem incompatible with our O2H lemma; looking ahead, this event corresponds
to the Fail event in the proof of Theorem4.6, which we handle without invoking
our O2H lemma.

Definition 4.1 (Valid Ciphertext). Let P = (KeyGen,Encr,Decr) be a deter-
ministic PKE. We call a ciphertext c ∈ C valid for a public key pk if there exists
a message m ∈ M such that c = Encr(pk,m).

Definition 4.2 (Finding Failing Ciphertext). Let P = (KeyGen,Encr,Decr)
be a PKE and A be an adversary executing an attack against the finding failing
ciphertext property (FFC), as specified by the following experiment:

1. H
$← H

2. (pk, sk) ← KeyGen(λ)
3. L ← AH(pk)
4. return [∃m ∈ M, c ∈ L : Encr(pk,m) = c ∧ Decr(sk, c) �= m]

The advantage of A in the above experiment is defined as:

AdvFFCP (A) := Pr[1 ← ExptFFCP (A)].

In the analysis of the U �⊥ transform, we will also need a dPKE satisfying the
following injectivity property.

Definition 4.3 (Injectivity of a dPKE). Let η ≥ 0. A dPKE scheme P =
(KeyGen,Encr,Decr) is η-injective if

Pr[Encr(pk, ·) is not injective: (pk, sk) ← KeyGen(1λ),H $← H] ≤ η.

4.2 Transforms

In [10], the authors showed how to build a transform T which converts
any rPKE scheme P = (KeyGen,Encr,Decr) into a dPKE scheme T (P, G) =
(KeyGen,Encrd,Decr) using a hash function G : M → R, where R is the space
of random coins of rPKE’s Encr algorithm. In [5], the authors proved the fol-
lowing security reduction from IND-CPA security of rPKE to OW-CPA security
of T (P, G). We use this result as is, since it does not suffer from a square-root
advantage loss.
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Theorem 4.4 ([5, Theorem 1]). Let P be an rPKE with message space M and
randomness space R. Let G : M → R be a quantum-accessible random oracle.
Let A be a OW-CPA adversary against P′ = T (P, G). Suppose that A queries G
at most q times with query depth at most d. Then we can construct an IND-CPA
adversary B, running in time ≈ TA, such that:

AdvOW-CPA
P′ (A) ≤ (d + 2) ·

(
AdvIND-CPA

P (B) +
8 · (q + 1)

|M|

)
.

The following result provides a bound on the FFC advantage for a scheme
obtained via the transform above.

Lemma 4.5 ([5, Lemma 6]). Let P = (KeyGen,Encr,Decr) be a δ-correct
rPKE with messages in M and randomness in R. Let G : M → R be a random
oracle, so that T (P, G) := (KeyGen,Encr1,Decr) is a derandomized version of P.
Suppose that T (P, G) is η-injective. Let A be an FFC adversary against T (P, G)
which makes at most q queries to G with query depth at most d and returns a
list of at most qdec ciphertexts. Then

AdvFFCT (P,G)(A) ≤ ((4d + 1)δ +
√

3η) · (q + qdec) + η.

We now recall the U �⊥ transform from [10]. It converts a dPKE P =
(KeyGenP,Encr,Decr) into a KEM K = (KeyGen,Encaps,Decaps) using a pseudo-
random function F : KF × C → K and a hash function H : M × C → K for given
key spaces KF and K. Here M and C denote the message and cipher spaces of P.
The PRF is used in case the ciphertext happens to be invalid. The transform is
defined by the following three algorithms:

– KeyGen(1λ). On input a security parameter λ, this algorithm runs (pk, skP)

← KeyGenP(1λ), samples a random key prfk
$← KF and sets sk = (skP, prfk).

The algorithm returns a pair of public and secret keys (pk, sk).
– Encaps(pk). On input a public key pk, this algorithm samples a random

message m
$← M, encrypts it running the encryption algorithm of P, i.e.,

c ← Encr(pk,m), and computes a hash value k ← H(m, c). It outputs (k, c).
– Decaps(sk, c). This algorithm parses sk as sk = (skP, prfk) and runs the decryp-

tion algorithm of P to decrypt c, i.e., m′ ← Decr(skP, c). If m′ = ⊥, then
it returns F(prfk, c). If m′ �= ⊥ but Encr(pk,m′) �= c, then it also returns
F(prfk, c). In all other cases (i.e., if m′ �= ⊥ and Encr(pk,m′) = c), it returns
H(m′, c).

4.3 Analysis of the U �⊥ Transform

We are now ready to state our main application of the O2H lemma from Sect. 3.
In the following theorem, we state that U �⊥(P,F,H) is an IND-CCA secure KEM
as long as the following four conditions are satisfied: (i) the dPKE scheme P is
OW-CPA secure, (ii) it is η-injective for a negligible η, (iii) it is FFC secure, and
(iv) F is a secure PRF. The latter is as in prior works: the improvement is in the
security loss.
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Theorem 4.6. Let H : M × C → K be a quantum-accessible random oracle,
F : KF × C → K be a PRF and P be an η-injective dPKE which does not depend
of H. Let U �⊥(P,F,H) be the KEM obtained by applying the U �⊥ transform to P,
F and H. Let A be an adversary against the IND-CCA security of U �⊥(P,F,H)
issuing at most q (quantum oracle) queries to H with query depth at most d,
and qdec classical queries to the decapsulation oracle.

Then, we can construct three algorithms whose run-times are � 3TA. These
algorithms are:

– a OW-CPA-adversary B1 against P,
– an FFC-adversary B2 against P, returning a list of at most qdec ciphertexts,
– a PRF-adversary B3 against F making qdec queries.

These algorithms satisfy the following:

AdvIND-CCA
U �⊥(P,F,H)(A) ≤ 4d · AdvOW-CPA

P (B1) + 6AdvFFCP (B2) + 2AdvPRFF (B3)

+ (4d + 6) · η.

Proof. Our proof uses a sequence of games. All six games in our proof are essen-
tially the same as in the proof of [5, Theorem 2], the only difference being the
analysis of Game 5 to apply our new O2H lemma instead of the O2H lemma
from [5]. For the sake of completeness, we present all the games.

In each of the following games, the probability space is partitioned into three
mutually exclusive classical outcomes (events) called Win, Lose and Draw, respec-
tively corresponding to A succeeding in its IND-CCA attack (b′ = b), failing
(b′ �= b) and a kind of intermediate outcome between the two, defined precisely
in Game 2. Outcome Draw is defined to have probability 0 in Games 0 and 1,
but in later games, whenever Draw occurs, the game continues and returns a
Draw in the end regardless of b and b′. In Game i (for i ∈ {0, . . . , 5}), we define
the attacker’s ‘score’ wi as

wi := Pr[Win : Game i] +
1
2

Pr[Draw : Game i]

=
1
2

+
1
2

(Pr[Win : Game i] − Pr[Lose : Game i]) ,

where the last equality comes from the fact that Win, Lose and Draw partition
the probability space in each game.

Game 0 (IND-CCA). This game is the original IND-CCA experiment against
U �⊥(P,F,H).

Game 1 (PRF is random). This game is the same as Game 0, except that
the simulator replaces the PRF F(prfk, ·) in the decapsulation algorithm by a

random function R
$← KC . We construct a PRF adversary B3 by replacing calls

to F(prfk, ·) by calls to B3’s oracle. Adversary B3 runs A and outputs 1 if A
wins the IND-CCA game and 0 otherwise. If B3’s oracle is F, then it simulates
Game 0, and if B3’s oracle is R, then it simulates Game 1. Therefore, we have
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Pr[BF(k,·)
3 = 1] = Pr[Win : Game 0] and Pr[BR(·)

3 = 1] = Pr[Win : Game 1], and
hence

|w1 − w0| = AdvPRFF (B3).

Game 2 (Draw on fail). We let Fail be the (classical) event that at least one
query of A to the decapsulation oracle OD fails to decrypt a valid ciphertext.,
i.e., adversary A queries a c such that there exists some message m ∈ M such
that c = Encr(pk,m), but with Decr(sk, c) �= m. We also let Inj denote the
(classical) event that the encryption mapping Encr(pk, ·) is injective over the
message space M. In Game 2 and the subsequent games, we define the Draw
event as Draw := Fail ∨ ¬Inj (which implies ¬Draw := ¬Fail ∧ Inj). We define
di := Pr[Draw : Game i], for i ≥ 2. For i < 2, we define Draw as the empty event
and di = 0.

We have:

|w2 − w1| =
∣∣∣∣Pr[Win : Game 2] − Pr[Win : Game 1] +

d2

2

∣∣∣∣ ≤ d2
2

,

where the first equality holds since d1 = 0 and the inequality holds true as
−d2 ≤ Pr[Win : Game 2] − Pr[Win : Game 1] ≤ 0. Note that the simulator
may not be able to efficiently check whether Draw occurs, but the games will
not require the simulator to perform this check.

Game 3 (Reprogram H(m, c) to R(c)). This game differs from Game 2 by
reprogramming the hash function return value H(m, c) on input (m, c) to R(c)
if c = Encr(pk,m).

The change from Game 2 to Game 3 does not affect the probability of Win
and Draw so that w3 = w2 and d3 = d2. This is because in Game 3, the joint dis-
tribution of the oracle H and the attacker’s view remains the same as in Game 2,
as long as Draw does not occur. In particular, the distribution of H(m, c) for each
(m, c) remains uniformly random thanks to the uniformly random choice of R(c).
The H(m, c) values also remain independent for distinct pairs (m, c) �= (m′, c′)
if Draw does not occur, since the latter implies that Inj occurs (i.e., there do not
exist two distinct messages m �= m′ with c = Encr(pk,m) = Encr(pk,m′) = c′).
Also, if Draw does not occur, then for any ciphertext c queried to and failing
decryption by the Decaps oracle (meaning that Encr(pk,Decr(sk, c)) �= c), the
Decaps oracle returns a value R(c) that is statistically independent of the value
of H(m, c) for all messages m ∈ M (since if there would exist some m with
H(m, c) = R(c), i.e., Encr(pk,m) = c, it would imply that c is a valid ciphertext
which failed to decrypt in Decaps, so that Draw occurred).

Game 4 (Decapsulation oracle returns R(c)). This game is the same as
Game 3 except that Decaps is modified to output R(c) for all ciphertexts but
the challenge ciphertext (for the challenge ciphertext, it still outputs ⊥). Since
in Game 3, Decaps already responds in this way (as both F and H have been
reprogrammed to respond with R(c)), the values of w4, d4 are not affected, i.e.,
w4 = w3 and d4 = d3. The only change is that in Game 4 and onwards, the secret
key is not used anymore in the simulation. We conclude that all probabilities di

of Draw in Games 2 to 4 are the same.
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To bound this Draw probability, we construct an adversary B2 which, given a
public key pk, simulates Game 4 with A, and outputs the list L of A’s decapsula-
tion queries. Note that if the event Fail occurs, then L contains a valid ciphertext
c that fails decryption by Decr. Therefore, according to Definition 4.2, algorithm
B2 is an FFC adversary against P which runs in almost the same time as A and
has FFC advantage

AdvFFCP (B2) = Pr[Fail : Game 4]
≥ Pr[Draw : Game 4] − Pr[¬Inj : Game 4]
= d4 − η,

using the fact that P is η-injective. We conclude that

d2 = d3 = d4 ≤ AdvFFCP (B2) + η. (19)

Game 5 (Change shared secret). This game differs from Game 4 by chang-
ing the challenge shared secret k∗

b given to A to always be an independent uni-
formly random value r (whereas in Game 4, the challenge shared secret k∗

b was
chosen as an independent random value r = k∗

1 if b = 1 but chosen as R(c∗)
if b = 0). Additionally, if b = 0 then R(c∗) is reprogrammed to return r (i.e.,
H(m, c∗) = r for all messages m such that Encr(pk,m) = c∗; we denote by S∗

the set of such messages m), but if b = 1 then R(c∗) is not reprogrammed.
In fact, the change from Game 4 to Game 5 is purely conceptual and does not

change the joint distribution of the view of A. Indeed, in both games, if b = 0,
the input shared key k∗

0 to A is uniformly random and equal to H(m, c∗) = R(c∗)
for all m ∈ S∗. And in both games, if b = 1, the input shared key k∗

1 to A is
uniformly random and statistically independent of the uniformly random value
of H(m, c∗) = R(c∗) for all m ∈ S∗. Therefore, we have w5 = w4 and d5 = d4.

In Game 5, the distribution of the input z = (pk, c∗, k∗
b = r) to A is inde-

pendent of b, and the random oracle queried by A and the simulator is either
H if b = 1 (where H(m, c) = R(c) if Encr(pk,m) = c) or H ′ if b = 0, where
H ′ is equal to H on all inputs except those in the set S := {(m, c∗) : m ∈ S∗};
for inputs in S, H ′ returns r. The simulation in Game 5 runs in time ≈ TA.
Therefore, the algorithm A together with the simulator in Game 5 constitutes
an O2H distinguisher algorithm for distinguishing oracle H from H ′ with run-
time ≈ TA. Therefore, applying Lemma 3.3, we can construct algorithm D, with
run-time � 3TA and making oracle calls to H ′ and H, such that

Δ := |Pr[0 ← A : b = 0] − Pr[0 ← A : b = 1]|

=
∣∣∣Pr[0 ← AH′

] − Pr[0 ← AH ]
∣∣∣

≤ 4d · Pr[T ∩ S �= ∅ : T
$← DH′,H(z)]. (20)

Using D, we can construct an algorithm B1 against the OW-CPA security of
P that given (pk, c∗, r), runs DH′,H and when D returns its output set T of
candidates for m∗, algorithm B1 tests each m ∈ T to check whether m ∈ S,



Measure-Rewind-Measure: Tighter Quantum Random Oracle Model Proofs 725

i.e., whether Encr(pk,m) = c∗, and returns any such m if it is found. Note that
TB1 ≈ TD. Further, algorithm B1 succeeds (i.e., outputs m∗) if T ∩S �= ∅, unless
¬Inj occurs (in the latter case, the output of B1 may be a different decryption
of c∗ than m∗). Since P is η-injective, we have

Pr[T ∩ S �= ∅ : T
$← DH′,H(pk, c∗)] ≤ AdvOW-CPA

P (B1) + η. (21)

On the other hand, in Game 5 we have:

2
∣∣∣∣w5 − 1

2

∣∣∣∣ = |Pr[Win : Game 5] − Pr[Lose : Game 5]|

=
∣∣∣∣
1
2

Pr[0 ← A ∧ ¬Draw : b = 0] +
1
2

Pr[0 ← A ∧ ¬Draw : b = 1]

−1
2

Pr[0 ← A ∧ ¬Draw : b = 1] − 1
2

Pr[1 ← A ∧ ¬Draw : b = 0]
∣∣∣∣

≤ 1
2
|Δ0,¬Draw| +

1
2
|Δ1,¬Draw|, (22)

where we define, for v ∈ {0, 1},

Δv,¬Draw := Pr[v ← A ∧ ¬Draw : b = 0] − Pr[v ← A ∧ ¬Draw : b = 1].

We further define:

Δv,Draw := Pr[v ← A ∧ Draw : b = 0] − Pr[v ← A ∧ Draw : b = 1],

which satisfies

|Δv,Draw| ≤ Pr[v ← A ∧ Draw : b = 0] + Pr[v ← A ∧ Draw : b = 1]
= 2 · (Pr[v ← A ∧ Draw ∧ b = 0] + Pr[v ← A ∧ Draw ∧ b = 1])
≤ 4 · Pr[Draw] = 4 · d5. (23)

Now, for v ∈ {0, 1}, observe that Δv,¬Draw + Δv,Draw = Δ, so we have, by the
triangle inequality, (23), (20) and (21):

Δv,¬Draw ≤ |Δ| + |Δv,Draw|

≤ 4d ·
(
AdvOW-CPA

P (B1) + η
)

+ 4d5. (24)

and plugging (24) into (22) for v ∈ {0, 1} gives
∣∣∣∣w5 − 1

2

∣∣∣∣ ≤ 2d ·
(
AdvOW-CPA

P (B1) + η
)

+ 2d5.

Summing up the differences of wi’s over all games, we get

AdvIND-CCA
U �⊥(P,F,H)(A) = 2|w0 − 1/2|

≤ 4d ·
(
AdvOW-CPA

P (B1) + η
)

+ 4d5 + 2d2 + 2AdvPRFF (B3)

≤ 4d · AdvOW-CPA
P (B1) + 6AdvFFCP (B2) + 2AdvPRFF (B3)

+ (4d + 6) · η,

where in the last line we plugged in the bound on d5 = d2 from (19). ��



726 V. Kuchta et al.

Combining Theorem 4.6 with Theorem 4.4 and Lemma 4.5, we immediately
obtain the following result for the IND-CCA security of the FO-transformed
scheme FO �⊥(P,F, G,H) = U�⊥(T (P, G),F,H) from the IND-CPA security of
scheme P.

Corollary 4.7. Let P be a δ-correct rPKE with message space M and random-
ness space R. Let G : M → R and H : M × C → K be quantum-accessible
random oracles, and F : KF × C → K be a PRF. Suppose that P′ = T (P, G) is
η-injective and let FO �⊥(P,F, G,H) = U�⊥(T (P, G),F,H). Let A be an adversary
against the IND-CCA security of FO �⊥(P,F, G,H) issuing at most qG (resp. qH)
quantum queries to G (resp. H) with query depth at most dG (resp. dH) and at
most qdec classical queries to the decapsulation oracle of FO �⊥(P,F, G,H).

Then, we can construct two algorithms whose run-times are � 3TA. These
algorithms are:

– an IND-CPA-adversary B1 against P,
– a PRF-adversary B2 against F issuing at most qdec queries.

These algorithms satisfy the following:

AdvIND-CCA
FO�⊥(P,F,G,H)(A) ≤ 8dH · (dG + 1) ·

(
AdvIND-CPA

P (B1) +
8 · (3qG + 1)

|M|

)

+ 6 · (3qG + qdec) ·
(
(8dG + 1) · δ +

√
3η

)

+ (4dH + 12) · η + 2AdvPRFF (B2).
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