
Tightly-Secure Authenticated
Key Exchange, Revisited

Tibor Jager1(B), Eike Kiltz2, Doreen Riepel2, and Sven Schäge2

1 Bergische Universität Wuppertal, Wuppertal, Germany
tibor.jager@uni-wuppertal.de

2 Ruhr-Universität Bochum, Bochum, Germany
{eike.kiltz,doreen.riepel,sven.schaege}@rub.de

Abstract. We introduce new tightly-secure authenticated key exchange
(AKE) protocols that are extremely efficient, yet have only a constant
security loss and can be instantiated in the random oracle model both
from the standard DDH assumption and a subgroup assumption over
RSA groups. These protocols can be deployed with optimal parame-
ters, independent of the number of users or sessions, without the need to
compensate a security loss with increased parameters and thus decreased
computational efficiency.

We use the standard “Single-Bit-Guess” AKE security (with forward
secrecy and state corruption) requiring all challenge keys to be simultane-
ously pseudo-random. In contrast, most previous papers on tightly secure
AKE protocols (Bader et al., TCC 2015; Gjøsteen and Jager, CRYPTO
2018; Liu et al., ASIACRYPT 2020) concentrated on a non-standard
“Multi-Bit-Guess” AKE security which is known not to compose tightly
with symmetric primitives to build a secure communication channel.

Our key technical contribution is a new generic approach to construct
tightly-secure AKE protocols based on non-committing key encapsula-
tion mechanisms. The resulting DDH-based protocols are considerably
more efficient than all previous constructions.

Keywords: Authenticated key exchange · Tightness ·
Non-committing encryption · Forward security

1 Introduction

Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive
with immense practical importance. The goal is to securely establish a session
key between two parties in a network where an adversary can read, send, modify
or delete messages and may also corrupt selected parties and sessions.

Tightness of AKE. When proving a cryptographic scheme secure, one com-
monly describes a security reduction which transforms an adversary A that
breaks the cryptographic scheme into an adversary B that solves some underly-
ing complexity assumption. For instance, if A has advantage ε in breaking the
c© International Association for Cryptologic Research 2021
A. Canteaut and F.-X. Standaert (Eds.): EUROCRYPT 2021, LNCS 12696, pp. 117–146, 2021.
https://doi.org/10.1007/978-3-030-77870-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77870-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-77870-5_5

118 T. Jager et al.

scheme and B solves the problem with advantage ε′ = ε/L, then L is called the
reduction’s security loss. If L is constant (and in particular independent of the
number of A’s oracle queries) and additionally the running times of A and B are
roughly identical, then we say the reduction is tight. Especially when choosing
protocol-specific system parameters, the tightness of a security proof plays an
important role. In the security model for AKE the attacker can actively con-
trol all messages sent between the involved parties and is additionally allowed
to reveal secret information such as a long-term secret key (by corrupting a
party), or a session key. The adversary breaks security if it is able to distinguish
non-revealed session keys from random.

Multi-Challenge Security definitions. The standard and well established
security notion in the context of multiple challenges [3,10,18,20] is “Single-Bit
Guess” (SBG) security. The blueprint of a SBG security experiment is as follows.
First, the experiment picks a secret random bit b ∈ {0, 1}. Next, the adversary
is allowed to make multiple (up to, say, T) challenge queries. On each challenge
query, the experiment returns a “real key” if b = 0, and an independent “random
key” if b = 1. The adversary wins if it can guess the challenge bit b with a
probability better than 1/2.

In AKE protocols, challenge queries are usually called test queries and non-
revealed session keys can be accessed by making multiple calls to a Test oracle.
If b = 0, a query to Test returns the real challenge key; if b = 1, a query to Test

returns an independent random challenge key. This notation of multi-challenge
SBG security for AKE was first formalized in 2019 by Cohn-Gordon et al. [10].
By conditioning on bit b, SBG security is known to be tightly equivalent to
(single-bit) “Real-Or-Random” (ROR) security, where the adversary has to dis-
tinguish a real game (where all challenge keys output by Test are real) from a
random game (where all challenge keys are random). Using the above equiva-
lence, SBG security precisely captures the intuition that all challenge keys are
simultaneously pseudo-random.

Surprisingly, in the first publication on tightly secure AKE protocols in 2015,
Bader et al. [1] defined a different and non-standard “Multi-Bit-Guess” (MBG)
AKE security notion. In MBG security, the experiment picks multiple indepen-
dent challenge bits b1, . . . , bT and, on the i-th Test query, it returns a real
challenge key if bi = 0 and a random challenge key if bi = 1. That is, each of the
T challenge keys depends on an independent challenge bit bi. The adversary wins
if it can guess correctly one of the T challenge bits bi∗ with a probability better
than 1/2. We are not aware of any meaningful multi-bit ROR security game that
is tightly equivalent to MBG security.1 This makes it difficult to provide a good
intuition of what MBG security tries to model.

1 If one tries to apply a similar conditioning argument as in the single-bit case, MBG
can be shown equivalent to a ROR-type security experiment where in the real game
(bi∗ = 0) the i∗-th challenge key output by Test is real and in the random game
(bi∗ = 1) it is random. However, the remaining T − 1 keys still depends on the
random bits bi (i �= i∗): the i-th challenge key is real if bi = 0 and it is random if
bi = 1. Hence, about one half of the challenge keys is expected to be real (the ones

Tightly-Secure Authenticated Key Exchange, Revisited 119

Choosing a Meaningful Security Model for AKE. SBG and MBG secu-
rity are asymptotically equivalent but only imply each other with a security loss
of T , the total number of Test queries. Hence, when considering tightness, one
has to carefully choose a meaningful security model.

First off, as already pointed out, SBG security is the standard and well
established security notion in the context of multiple challenges [3,10,18,20].
Cohn-Gordon et al. [10, Section 3] already pointed out that, in the AKE setting,
SBG security tightly composes with symmetric primitives, whereas MBG secu-
rity doesn’t. Let us elaborate. AKE is not intended to be used as a stand-alone
primitive. Rather, it is naturally composed with symmetric primitives to estab-
lish a secure channel [7,24], for example to encrypt (e.g., using AES) a message
with the session key. Since SBG security is tightly equivalent to ROR security,
it offers precisely the right security interface to switch all challenge keys at once
from real to random. This step allows to infer the privacy of the encrypted mes-
sages from the security properties of the symmetric primitive. MBG security, on
the other hand, does not have a meaningful ROR-style security, which makes it
difficult to argue about the privacy of the encrypted messages without relying on
a hybrid argument. In summary, in the context of tightness of AKE protocols,
SBG security is a meaningful notion whereas MBG isn’t.

Previous Results. Previous work on tight AKE protocols by Gjøsteen and
Jager [21] and Liu et al. [32] exclusively concentrated on the MBG model by
Bader et al. [1]. We now give a brief overview of existing AKE protocols in the
context of tight SBG security.

– At CRYPTO 2019, Cohn-Gordon et al. [10] presented highly efficient two mes-
sage AKE protocols with implicit authentication, in the style of HMQV [26]
and similar protocols. Their schemes achieve a loss of O(N) in the SBG secu-
rity model with weak forward secrecy, where N is the number of users. They
also extend the impossibility results from [2] to show that a loss of O(N) is
unavoidable for many natural protocols (including HMQV [26], NAXOS [28],
Kudla-Paterson [27], KEA+ [29], and more) with respect to typical crypto-
graphic security proofs (so-called simple reductions). Furthermore, since their
protocol does not feature explicit authentication, a well-known impossibility
result applies [6,26,34] and their protocol cannot achieve full forward security.

– Diemert and Jager [16] and independently Davis and Günther [15] considered
the three message TLS 1.3 handshake AKE protocol with explicit authenti-
cation. Its design follows the standard “1×KEM+2×SIG” (aka. signed Diffie-
Hellman) AKE approach [9,14–16,21,32]. TLS 1.3, when instantiated with
standardized signatures (e.g., RSA-PSS, RSA-PKCS #1 v1.5, ECDSA, or
EdDSA), has rather non-tight SBG security with full forward security. But
when instantiated with tightly secure signatures in the multi-user setting with
adaptive corruptions [1], then SBG security of TLS 1.3 actually becomes tight.
Since the TLS 1.3 protocol contains two signatures, the inefficiency of cur-

with bi = 0) whereas the other half is random, and the adversary does not have any
information on them.

120 T. Jager et al.

rently known tightly secure signature schemes [1,21] makes the resulting TLS
instantiation very impractical.

1.1 The Difficulty of Constructing Tightly Secure AKE

Security models for authenticated key exchange are extremely complex, as they
consider very strong adversaries that may modify, drop, or inject messages. Fur-
thermore, usually an adversary may adaptively corrupt users’ long-term secrets
via Corrupt-queries, session keys via Reveal-queries, and sometimes even
ephemeral states of sessions via Rev-State-queries. Security is formalized with
multiple Test queries, where the adversary specifies a session, receives back a
real key or a random key, and has to distinguish these. This complexity makes
achieving tight security challenging, particularly because all the following diffi-
culties must be tackled simultaneously.

The “commitment” problem. As explained in more detail in [21], this prob-
lem is the reason why nearly all security proofs of classical key exchange protocols
have a quadratic security loss. Essentially, the problem is that most AKE pro-
tocols have security proofs where a reduction can only extract a solution to a
computationally hard problem if an instance of the problem is embedded into
the protocol messages of the Tested sessions, but at the same time the reduc-
tion is not able to answer Reveal queries for such sessions. The standard way
to resolve this is to let the reduction guess the Tested session, and to embed
an instance of a computationally hard problem only there. However, this incurs
a significant security loss. A tight reduction has to be able to respond to both
Test and Reveal queries for every session.

The problem of long-term key reveals. A Corrupt query in typical
AKE security models enables the adversary to obtain the long-term key of cer-
tain users. If we want to avoid a security loss that results from guessing corrupted
and non-corrupted parties, then we must be able to construct a reduction that
“knows” valid-looking long-term keys for all users throughout the security exper-
iment. However, this is a major difficulty, for instance, in protocols where the
long-term keys are key pairs for a digital signature scheme. The difficulty is
that in the security proof we would have to describe a reduction that is able to
extract a solution to a computationally hard problem from a forged signature,
even though it “knows” the signing key and thus is able to compute a valid
signature itself. Hence, in order to obtain a tightly-secure AKE protocol, one
needs to devise a way such that a reduction always knows all secret keys, yet is
able to argue that an adversary is, e.g., not able to forge signatures.

In order to resolve this issue, previous works [1,21] constructed signature
schemes based on non-interactive OR-proof systems, which enable a reduction
to “know” one out of two signing keys. It is argued that the adversary will forge
a signature with respect to the other, unknown key with sufficiently high prob-
ability. However, these signature schemes are much less efficient than classical
ones, and thus impose a performance penalty on the protocols.

Tightly-Secure Authenticated Key Exchange, Revisited 121

The problem of ephemeral state reveals. Yet another difficulty arises
when the security model allows ephemeral state reveals. Previous works on
tightly-secure AKE did not consider this very strong security notion at all,
therefore we face (and solve) this problem for the first time. From a high-level
perspective, the issue is similar to the long-term key reveal problem, except
that ephemeral states are considered. In order to achieve tightness, the reduc-
tion must be able to output valid-looking states for all sessions. Note that this
includes even Tested sessions, where ephemeral states may be revealed when
parties are not corrupted.

1.2 Main Contributions

Summarizing the previous paragraphs, we can formulate the following natural
questions related to tightly secure AKE:

Q1: Do there exist implicitly authenticated two-message AKEs with tight SBG
security, state reveals, and weak forward security?

Q2: Do there exist explicitly authenticated two-message AKEs with tight SBG
security, state reveals, and full forward security, with one single signature?

In this work, we answer the two questions to the positive. Following [4,10], we
consider SBG security, allowing adaptive corruptions of long-term secrets, adap-
tive reveals of session keys, and multiple adaptive Test queries. Our model also
captures (weak and full) forward security (FS), and prevents key-compromise
impersonation and reflection attacks. In comparison to prior work on tightly-
secure key exchange [1,10,15,16,21], we consider a model which additionally
allows to reveal some internal state information.

Our DDH-Based AKE Protocols. Our two protocols instantiated from
DDH are given in Fig. 1. AKEwFS,DDH is an implicitly-authenticated two-message
protocol AKEwFS,DDH in the sense of [26]. It requires the exchange of only five
group elements in total, and thus is the first efficient implicitly-authenticated
protocol with weak FS that achieves full tightness.

Our second protocol AKEFS,DDH achieves full FS. Instead of using the
standard “1×KEM+2×SIG” approach, it replaces one of the signatures with
a more efficient MAC and an additional KEM ciphertext, which yields a
“2×KEM+1×SIG+1×MAC” construction. When instantiated at “128-bit secu-
rity” with the most efficient tightly-secure signatures of [21],2 the communication
complexity is 448 bytes, again with ephemeral state reveals. In comparison, the
previously most efficient tightly and fully forward-secure protocol with SBG
security TLS∗ (which is TLS 1.3 instantiated with the tightly-secure signature of
[21]) requires three messages, the transmission of 704 bytes and does not allow
state reveals. See Fig. 2 for a comparison of our protocols with previous works.
Note that the communication bottleneck in all full FS protocols is the number
of signatures. For completeness the figure also list previous protocols with tight
MBG security [21,32].
2 The signatures of [21] consist of 2 group elements, 4 elements in Zp and 2 hashes in

{0, 1}κ. At “128-bit security” this corresponds to 256 bytes per signature.

122 T. Jager et al.

Fig. 1. The two message protocols AKEwFS,DDH (without the gray boxes) and AKEFS,DDH

(including the gray boxes), where K is the resulting session key. We define context :=

(A, B, X, vk , gs
1, g

s
2, g

t
1, g

t
2, σ, π). H,HA,HB ,HX and F are hash functions.

Generic constructions of AKE from NCKE. Our main technical tool is a
new approach to achieve a tight reduction for authenticated key exchange proto-
cols. Our starting point is an extension of (receiver) non-committing encryption
(NCE) [8,33] to non-committing key encapsulation (NCKE) in the multi-user
setting with corruptions. We construct an NCKE scheme in the random oracle
model from any smooth projective hash proof system (HPS) [11]. If the HPS’
subset membership problem (SMP) is hard in the multi-instance setting, then
the NCKE scheme is also tightly secure in our multi-user setting. We provide
two such HPS, one from the DDH assumption, and another one from a subgroup
assumption over groups of unknown order. The construction allows us to address
the commitment problem described above.

We give a generic construction of an implicitly authenticated two-message
AKE protocol AKEwFS with weak forward security from any NCKE scheme,
whose security is tightly based on the multi-user security of the underlying
NCKE scheme. Furthermore, we give a generic construction of an explicitly
authenticated two-message AKE protocol AKEFS with perfect forward security
by adding a tightly-secure signature scheme and a message authentication code
(MAC) to our first construction, see Fig. 3. Thus, we require only a single signa-
ture which is particularly useful for tightly-secure key exchange, because known
constructions of suitable tightly-secure signature schemes [1,21] have relatively
large signatures and replacing one signature with a MAC significantly improves
the computational efficiency and communication complexity of the protocol.3

All these generic constructions leverage NCKE in order to resolve the tech-
nical difficulties in constructing tightly-secure AKE protocols described before.

3 [31] showed how to generically avoid signatures in forward-secure AKE protocols,
but at the cost of additional messages.

Tightly-Secure Authenticated Key Exchange, Revisited 123

Fig. 2. Comparison of AKE protocols over a group G, where N refers to the number
of parties, � to the number of sessions per party and T is the number of test queries.
TLS∗ refers to the TLS 1.3 handshake, instantiated with the tightly-secure signatures
of [21]. The column Comm. counts the communication complexity of the protocols in
terms of the number of group elements, hashes, and signatures. The column Model
lists the AKE security model and distinguishes between multi-bit guessing (MBG) and
the single-bit-guessing (SBG) security.

Fig. 3. Overview of our transformations, where N is the maximum number of users in
the NCKE security game and in the SUF-CMA security game. The subset membership
problem of HPS is m-fold for m = N · q, where q is the maximum number of challenge
queries in the NCKE security game.

Handling Ephemeral State Reveals. Our protocols are secure against
ephemeral state reveals. We construct the first tightly-secure protocols to achieve
this. Note that this requires us to deal with the situation that the reduction must
“know” valid ephemeral states for all sessions, even tested sessions. To this end,
we encrypt the state information with a symmetric long-term key. An adversary
now needs to query both long-term secret key and ephemeral state to reveal the
secret state information, similarly to the approach used in the NAXOS protocol
[28]. While the idea of achieving security against ephemeral state reveals by rely-
ing on the security of long-term keys was used before [5,19,28,36], the approach
to simply encrypt the state is new. It avoids the expensive re-computation of
protocol messages required in prior generic approaches, which makes it particu-
larly efficient. Also, previous work did not focus on tightness and it is unclear if
a tight proof can be achieved in an even stronger security model which requires
to reveal the randomness.

124 T. Jager et al.

Our approach does not work generically, e.g., it cannot be applied to the
protocols in [10,21], so we have to design our protocols such that they are com-
patible. This is due to the fact that in both works, the state is a secret DH
exponent which is implicitly determined by rerandomizing the CDH (or DDH)
challenge and then is embedded in multiple sessions. Thus, the reduction is able
to extract the solution independently of which session is the test session, but it
also does not know any of the secret exponents, which the adversary could reveal
for non-test sessions.

1.3 Related Work and Open Problems

Concurrent and independent work of Liu et al. [32] also proposed a tightly secure
2-message AKE with full forward security. Compared to our protocols, they do
not consider state reveal attacks and their proofs only hold in the MBG security
model. Their AKE construction LLGW follows the well known 1×KEM+2×SIG
approach, meaning that even neglecting the issues with the MBG security model,
it is still considerably less efficient than ours (c.f. Fig. 2). The main novelty of
[32] is the new KEM security notion of (multi-bit) “IND-mCPA with adaptive
reveals” that gives them the handle to prove tight MBG security. It is a natu-
ral question whether this KEM security notion can be adapted to a single-bit
notion such that the resulting AKE protocol achieves tight SBG (rather than
MBG) security. This is in particular interesting since IND-mCPA KEMs with
adaptive reveals can be instantiated in the standard model, whereas our NCKE
notion seem to inherently rely on random oracles. More concretely this raises
the question whether (variants of) [32] can also be proved in the SBG model,
without relying on random oracles.

2 Preliminaries

For an integer n, [n] denotes the set {1, ..., n}. For a set S, s $← S denotes that
s is sampled uniformly and independently at random from S. y ← A(x1, x2, ...)
denotes that on input x1, x2, ... the probabilistic algorithm A returns y. AO

denotes that algorithm A has access to oracle O. We will use code-based games
as introduced in [35]. An adversary is a probabilistic algorithm. Pr[GA ⇒ 1]
denotes the probability that the final output GA of game G running adversary
A is 1.

3 Multi-receiver Non-committing Key Encapsulation

In this section, we introduce Multi-Receiver Non-Committing Key Encapsula-
tion (NCKE). We will use this concept to resolve the “commitment problem”
described in the introduction, which often makes proofs for multi-party protocols
with adaptive corruptions non-tight, as for example AKE protocols.

Syntax. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists
of three algorithms. The key generation algorithm Gen outputs a key pair (pk, sk),

Tightly-Secure Authenticated Key Exchange, Revisited 125

where pk is the public key and sk the secret key. The encapsulation algorithm
inputs a public key pk and outputs a ciphertext c and a key K from the key
space K, where c is called an encapsulation of K. The deterministic decapsulation
algorithm inputs the secret key sk and a ciphertext c and outputs K.

By μ we denote the collision probability of the key generation algorithm. In
particular,

Pr[(pk, sk) ← Gen, (pk′, sk′) ← Gen : pk = pk′] ≤ 2−μ .

We denote the min-entropy of the encapsulation algorithm Encaps by γ(pk) :=
− log maxc∈C Pr[c = Encaps(pk)]. We say KEM is γ-spread if for all (pk, sk) ←
Gen : γ(pk) ≥ γ. This implies that for all c ∈ C:

Pr[c = Encaps(pk)] ≤ 2−γ .

Security. Following [33], we introduce a security definition of Multi-Receiver
Non-Committing Key Encapsulation (NCKE) for a key encapsulation mechanism
KEM in the random oracle model, i. e., the KEM algorithms have access to a ran-
domoracleH : {0, 1}∗ → {0, 1}κ, indicatedbyEncapsH .Ourdefinition is relative to
a simulator Sim = (SimGen,SimEncaps,SimHash). The simulated key generation
algorithm SimGen generates a key pair (pk, sk). The simulated encapsulation algo-
rithm SimEncaps takes both the public and private key and outputs a ciphertext
c. The simulated hash algorithm SimHash inputs the key pair as well as three sets
(used for bookkeeping) and deterministically computes a simulated hash value.

We define the two games NCKEreal and NCKEsim in Fig. 4 where we consider
N receivers each holding a key pair (pkn, skn). In the NCKEreal game, the original
Encaps algorithm is used. We give each user an individual hash function Hn such
that keys are computed independently. (In general, this can be implemented by
using the user’s public key and identity as input to the hash function as well,
where collisions have to be considered.) In the NCKEsim game, the SimEncaps
algorithm is used to compute the ciphertexts. Keys are chosen uniformly at
random. The adversary may also adaptively corrupt some receivers. We require
that ciphertexts of corrupted receivers always decapsulate to the key output by
Encaps, which is modeled by the SimHash algorithm. Therefore, if the receiver
is corrupted, the algorithm takes sets CK, D and H, where the first one stores all
challenge ciphertexts and keys output to the adversary, the second one stores all
decapsulation queries and the third one stores all hash queries which have been
issued so far. Thus, the SimHash algorithm can answer future queries based on
everything that is known to the adversary. If the receiver is not corrupted, set C
is used instead of CK. This set stores only challenge ciphertexts and thus a hash
value is computed independently of previous challenge keys.

The goal of an adversary A is to distinguish between the real KEM algorithms
used in game NCKEreal and the simulated algorithms used in game NCKEsim. This
is captured in Definition 1. Note that the non-committing property is due to the
SimHash algorithm. In particular, the SimHash algorithm ensures that a (uni-
formly random) challenge key can be explained by the corresponding ciphertext
generated by SimEncaps as soon as the receiver is corrupted.

126 T. Jager et al.

Fig. 4. Real and simulated game for N -receiver non-committing key encapsulation in
the random oracle model.

Definition 1 (N-Receiver Non-Committing Key Encapsulation). We
define games NCKEreal and NCKEsim as in Fig. 4, where N is the number of
users. The simulator Sim = (SimGen,SimEncaps,SimHash) is defined relative to
KEM and is used in NCKEsim. The advantage of an adversary A against KEM
and Sim is defined as

AdvN-NCKE
KEM,Sim(A) :=

∣
∣
∣Pr[NCKEA

real ⇒ 1] − Pr[NCKEA
sim ⇒ 1]

∣
∣
∣ .

When we write NCKE, we mean NCKE-CCA, where the adversary is allowed to
access a decapsulation oracle. Sometimes we will explicitly write NCKE-CCA to
differentiate from NCKE-CPA, where the adversary cannot issue decapsulation
queries.

We stress that compared to the standard definition of non-committing
encryption in the random oracle model (e.g., [33]), Definition 1 is for KEMs
(rather than encryption), only considers receiver corruptions (rather than sender
and receiver corruptions), and considers multiple receivers (rather than one sin-
gle receiver).

Instantiations from Hash Proof Systems. We recall the definition of hash
proof systems by Cramer and Shoup [11] and properties defined in [25].

Smooth Projective Hashing. Let Y and Z be sets and X ⊂ Y a language.
Let Λsk : Y → Z be a hash function indexed with sk ∈ SK, where SK is a
set. A hash function Λsk is projective if there exists a projection μ : SK → PK
such that μ(sk) ∈ PK defines the action of Λsk over X . In particular, for every
c ∈ X , Z = Λsk(c) is uniquely determined by μ(sk) and c. However, there is no
guarantee for c ∈ Y \X and it may not be possible to compute Λsk(c) from μ(sk)
and C. A projective hash function is k-entropic if for all c ∈ Y \ X it holds that
H∞(Λsk(c) | pk) ≥ k, where pk = μ(sk) for sk $← SK.

Tightly-Secure Authenticated Key Exchange, Revisited 127

Fig. 5. Key encapsulation mechanism KEM = (Gen,Encaps,Decaps).

Fig. 6. Simulator Sim = (SimGen, SimEncaps, SimHash) for KEM, where SimGen = Gen.
List E is either CK or C.

Hash Proof System. A hash proof system HPS = (Par,Priv,Pub) consists
of three algorithms. The randomized algorithm Par generates parametrized
instances of par = (group,Z,Y,X ,PK,SK, Λ(·) : Y → Z, μ : SK → PK),
where group may contain additional structural parameters. The deterministic
public evaluation algorithm Pub inputs the projection key pk = μ(sk), c ∈ X
and a witness r of the fact that c ∈ X and returns Z = Λsk(c). The determinis-
tic private evaluation algorithm Priv takes sk ∈ SK and returns Λsk(c) without
knowing a witness. Furthermore, we assume that μ is efficiently computable and
that there are efficient algorithms for sampling c ∈ X uniformly together with a
witness r, sampling c ∈ Y uniformly and checking membership in Y.

(m-fold) Subset Membership Problem. We define the m-fold subset mem-
bership problem for HPS which requires to distinguish m ciphertexts uniformly
drawn from X from m ciphertexts uniformly drawn from Y \ X . The advantage
of an adversary A is defined as

Advm−SM
HPS (A) := |Pr[A(Y,X , c1, ..., cm) ⇒ 1] − Pr[A(Y,X , c′

1, ..., c
′
m) ⇒ 1]| ,

where c1, ..., cm
$← X and c′

1, ..., c
′
m

$← Y \ X .

N-Receiver NCKE from HPS. We use a k-entropic hash proof system HPS =
(Par,Pub,Priv) with m-fold subset membership problem and a random oracle H :
{0, 1}∗ → {0, 1}κ in order to construct a key encapsulation algorithm KEM and
a simulator Sim as shown in Figs. 5 and 6. The encapsulation algorithm Encaps
samples an element c from X and a witness r. It runs the public evaluation algo-
rithm and computes the key K asH(c,Pub(pk, c, r)). The decapsulation algorithm
Decaps uses the result of the private evaluation algorithmPriv as input toH to com-
pute K. Instead of sampling an element from X , the SimEncaps algorithm samples
an element c uniformly at random fromY \ X and only returns c. The SimHash
algorithm takes as input three sets E ,D,H, where E ∈ {C, CK}, and the value
M = (c, Z) chosen by the adversary. If there exists a key K such that (c,K) ∈ E
(note that for E = C this will never be true) and the adversary’s input toH satisfies
Priv(sk, c) = Z, then the output value h is set to K.

128 T. Jager et al.

Theorem 1 (k-entropic HPS with (N · qE)-fold SMP ⇒ N -NCKE). For
any N -NCKE adversary A against KEM and Sim that issues at most qE queries to
Encaps, qD queries to Decaps and at most qH queries to each random oracle
Hn for n ∈ [N], there exists an adversary B against the (N · qE)-fold subset
membership problem of HPS such that

AdvN-NCKE
KEM,Sim(A) ≤ Adv(N ·qE)-SM

HPS (B) +
N · qE · qH

2k
+

N · qE · qD

|Y \ X | ,

where HPS is k-entropic, Y is the set of all ciphertexts and X is the set of valid
ciphertexts.

We will give an instantiation based on the DDH assumption in Sect. 7.1. For
the proof of Theorem 1 and an instantiation based on the higher residuosity
assumption, we refer to the full version [23].

4 Security Model for Two-Message Authenticated Key
Exchange

A two-message key exchange protocol AKE = (GenAKE, InitI,DerR,DerI) consists
of four algorithms which are executed interactively by two parties as shown in
Fig. 7. We denote the party which initiates the session by Pi and the party which
responds to the session by Pr. The key generation algorithm GenAKE outputs
a key pair (pk, sk) for one party. The initialization algorithm InitI inputs the
initiator’s long-term secret key ski and the responder’s long-term public key pkr

and outputs a message I and a state st. The responder’s derivation algorithm
DerR takes as input the responder’s long-term secret key skr, the initiator’s long-
term public key pki and a message I. It computes a message R and a session
key K. The initiator’s derivation algorithm DerI inputs the initiator’s long-term
secret key ski, the responder’s long-term public key pkr, a message R and a state
st. It outputs a session key K. Note that in contrast to the initiating party Pi, the
responding party Pr will not be required to save any (secret) state information
besides the session key K. The session key can be derived immediately after
receiving the initiator’s message.

Fig. 7. Running a key exchange protocol between two parties.

Following [22], we define a game-based security model for authenticated key
exchange using pseudocode. Our models for two different levels of security

Tightly-Secure Authenticated Key Exchange, Revisited 129

Fig. 8. Games IND-wFS-Stb and IND-FS-Stb for AKE, where b ∈ {0, 1}. A has access
to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test}.
Helper procedures Fresh and Valid are defined in Fig. 9. If there exists any test
session which is neither fresh nor valid, the game will return 0.

are given in Fig. 8. We consider N parties P1, ...,PN with long-term key pairs
(pkn, skn), n ∈ [N]. Each session between two parties has a unique identification
number sID and variables which are defined relative to sID:

– init[sID] ∈ [N] denotes the initiator of the session.
– resp[sID] ∈ [N] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator

or the responder computes the session key.
– I[sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the state information that is stored by the initiator.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to
oracles SessionI and SessionR, where the first one starts a session of type “In”

130 T. Jager et al.

Fig. 9. Helper procedures Fresh and Valid for games IND-wFS-St and IND-FS-St
defined in Fig. 8. Procedure Fresh checks if the adversary performed some trivial
attack. In procedure Valid, each attack is evaluated by the set of variables shown
in Table 1 (IND-wFS-St) or Table 2 (IND-FS-St) and checks if an allowed attack was
performed. If the values of the variables are set as in the corresponding row, the attack
was performed, i. e. attack = true, and thus the session is valid.

and the second one of type “Re”. Following [26,28], these oracles also take the
intended peer’s identity as input. In order to complete the initiator’s session,
the oracle DerI has to be queried. Furthermore, the adversary has access to
oracles Corrupt,Reveal and Rev-State to obtain secret information. As
the responder can directly compute the key in a two-message protocol, we only
require the initiator to store a state. The state contains information that is
needed to compute the session key when the response is received, so it will
consist of public and private information. We do not require to reveal the full
randomness as in the eCK model [28]. A Rev-State query may be issued at
any time. We use the following boolean values to keep track of which queries the
adversary made:

– corrupted[n] denotes whether the long-term secret key of party Pn was given
to the adversary.

– revealed[sID] denotes whether the session key was given to the adversary.
– revState[sID] denotes whether the state information of that session was given

to the adversary.
– peerCorrupted[sID] denotes whether the peer of the session was corrupted at

the time the session key is computed, which is important for forward security.

The adversary can forward messages between sessions or modify them. By
that, we can define the relationship between two sessions:

– Matching Session: Two sessions sID, sID′ match if the same parties are
involved (init[sID] = init[sID′] and resp[sID] = resp[sID′]), the messages sent

Tightly-Secure Authenticated Key Exchange, Revisited 131

and received are the same (I[sID] = I[sID′] and R[sID] = R[sID′]) and they
are of different types (type[sID] 	= type[sID′]).

– Partially Matching Session: A session sID′ of type “In” is partially
matching to session sID of type “Re” if the initial messages are the same
(I[sID] = I[sID′]).

Finally, the adversary is given access to oracle Test which will return either
the session key of the specified session or a uniformly random key. In our secu-
rity models, we allow multiple test queries. We store test sessions in a set S. In
general, the adversary can disclose the complete interaction between two parties
by querying the long-term secret keys, the state information and the session
key. However, for each test session, we require that the adversary does not issue
queries such that the session key can be trivially computed. We define the prop-
erties of freshness and validity which all test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed.
Furthermore, if there exists a matching session, we require that this session’s
key is not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary per-
formed any attack which is defined in the security model. We capture this
with attack tables (cf. Tables 1 and 2). A description of how to read the tables
is given below.

Attack Tables. All attacks are defined using variables to indicate which queries
the adversary may (not) make. We consider three dimensions covering all possible
combinations of reveal queries the adversary can make:

– whether the test session is on the initiator’s (type[sID∗] =“In”) or the respon-
der’s side (type[sID∗] =“Re”),

– all combinations of long-term secret key and state reveals (corrupted and
revState variables), also taking into account when a corruption happened
(peerCorrupted),

– whether the adversary acted passively (matching session), partially active
(partially matching session) or actively (no matching session).

This yields a full table of 24 attacks, in particular capturing key compromise
impersonation (KCI) and maximal exposure (MEX) attacks. An attack was per-
formed if the variables are set to the corresponding values in the table. However,
when considering two-message protocols, where the responder’s side does not
have a state, and we only consider weak forward security, some of the attacks
are redundant. Thus, we obtain distilled tables. We exclude trivial attacks, e.g.,
the generic attack on two-message AKE protocols with state-reveals described
in [30]. Therefore, the adversary is not allowed to obtain the state of a partially
matching session. Also note that by definition, a partially matching session for a
two-message protocol can only be of type “Re”. Table 1 is the distilled table used
for the IND-wFS-St security game and Table 2 is used for the IND-FS-St security
game. Note that the numbering of attacks in the distilled tables is inherited from
the full table given in the full version [23].

132 T. Jager et al.

Table 1. Distilled table of attacks for wFS adversaries against two-message protocols.
This table is obtained from the full table of attacks by using that responders do not
have a state and that we are considering weak forward security. The numbering of
attacks is inherited from the full table. An attack is regarded as an AND conjunction
of variables with specified values as shown in the each line, where “–” means that this
variable can take arbitrary value. F means “false” and “n/a” indicates that there is no
state which can be revealed as no (partially) matching session exists.

A gets (Initiator, Responder) c
o
rr
u
p
te
d
[i

∗]

c
o
rr
u
p
te
d
[r

∗]

ty
p
e
[s
ID

∗]

re
v
S
ta

te
[s
ID

∗]

∃s
ID

∈
M

(s
ID

∗)
:

re
v
S
ta

te
[s
ID

]

|M
(s
ID

∗)
|

∃s
ID

∈
P
(s
ID

∗)
:

re
v
S
ta

te
[s
ID

]

|P
(s
ID

∗)
|

(0) multiple partially matching sessions – – – – – – – > 1

(1∨2) (long-term, long-term) – – – F F 1 – –

(7∨8) (state, long-term) F – – – – 1 – –

(10) (long-term, long-term) – – “Re” F n/a 0 F 1

(16) (state, long-term) F – “Re” F n/a 0 – 1

(19) (state, state) F F “In” – n/a 0 n/a 0

(21) (long-term, state) – F “In” F n/a 0 n/a 0

(24) (state, long-term) F – “Re” F n/a 0 n/a 0

Table 2. Distilled table of attacks for full FS adversaries against two-message protocols.
This table is obtained from the full table of attacks by removing redundant rows and
using that responders do not have a state. The numbering of attacks is inherited from
the full table. An attack is regarded as an AND conjunction of variables with specified
values as shown in the each line, where “–” means that this variable can take arbitrary
value. F means “false” and “n/a” indicates that there is no state which can be revealed
as no (partially) matching session exists.

A gets (Initiator, Responder) c
o
rr
u
p
te
d
[i

∗]

c
o
rr
u
p
te
d
[r

∗]

p
e
e
rC

o
rr
u
p
te
d
[s
ID

∗]

ty
p
e
[s
ID

∗]

re
v
S
ta

te
[s
ID

∗]

∃s
ID

∈
M

(s
ID

∗)
:

re
v
S
ta

te
[s
ID

]

|M
(s
ID

∗)
|

∃s
ID

∈
P
(s
ID

∗)
:

re
v
S
ta

te
[s
ID

]

|P
(s
ID

∗)
|

(0) multiple partially matching sessions – – – – – – – – > 1

(1∨2) (long-term, long-term) – – – – F F 1 – –

(7∨8) (state, long-term) F – – – – – 1 – –

(10) (long-term, long-term) – – F “Re” F n/a 0 F 1

(16) (state, long-term) F – – “Re” F n/a 0 – 1

(17) (long-term, long-term) – – F “In” F n/a 0 n/a 0

(18) (long-term, long-term) – – F “Re” F n/a 0 n/a 0

(23) (state, long-term) F – F “In” – n/a 0 n/a 0

Tightly-Secure Authenticated Key Exchange, Revisited 133

However, if the protocol does not use appropriate randomness, it should not
be considered secure in our model. Thus, if the adversary is able to create more
than one (partially) matching session to a test session, it may also run a trivial
attack. We model this in row (0) of Tables 1 and 2.

Example. If the test session is an initiating session (type[sID∗] =“In”), the
state was not revealed (revState[sID∗] = false) and there is a matching ses-
sion (|M(sID∗)| = 1), then row (1∨2) will evaluate to true. In this scenario, the
adversary is allowed to query both long-term secret keys.

For all test sessions, at least one attack has to evaluate to true. Then, the
adversary wins if it distinguishes the session keys from uniformly random keys
which it obtains through queries to the Test oracle.

Definition 2 (Key Indistinguishability of AKE). We define games IND-
wFS-Stb and IND-FS-Stb for b ∈ {0, 1} as in Figs. 8 and 9. The advantage of an
adversary A against AKE in these games is defined as

AdvIND-wFS-St
AKE (A) :=

∣
∣
∣Pr[IND-wFS-StA1 ⇒ 1] − Pr[IND-wFS-StA0 ⇒ 1]

∣
∣
∣ and

AdvIND-FS-St
AKE (A) :=

∣
∣
∣Pr[IND-FS-StA1 ⇒ 1] − Pr[IND-FS-StA0 ⇒ 1]

∣
∣
∣ .

When proving the security of a protocol, the success probability for each attack
strategy listed in the corresponding table will have to be analyzed, thus showing
that independently of which queries the adversary makes, it cannot distinguish
the session key from a uniformly random key.

4.1 Relation to Other Definitions

In this section, we will refer to the most widely used security definitions for
authenticated key exchange protocols. In the first place, these include the CK
model [9] and the stronger definition used for the HMQV protocol (CK+) in [26],
the eCK model [28] and the strengthened version of [14], the definitions given in
[24] and [1] which are both extensions of the BR model [4], and the definition of
IND-Å security in [22]. In [12,13], Cremers showed that the CK, CK+ und eCK
model are incomparable. Thus, we will not do a formal comparison of security
models, but only point out similarities and differences between our definition
and the definitions listed above.

Party Corruption. We allow the adversary to corrupt a party which means
that it will obtain that party’s long-term secret key as in the eCK model and
the models given in [1,22,24]. In contrast, a corrupt query in the CK and CK+
model will reveal all information in the memory of that party, i. e. long-term
secrets and session-specific information.

State-Reveals.Our model only allows state-reveal queries on initiating sessions
because the initiator has to wait for the response to compute the session key. Thus,
the state contains all that information that is needed to derive the session key

134 T. Jager et al.

as soon as the responder’s message is received. The responder can directly com-
pute the session key and does not have to store other information. The eCK model
explicitly defines the state as the randomness that is used in the protocol. In the
CK model, it is not clear which information is included in the state, but it is left
to be specified by the AKE protocol itself. Other models such as [24], its extension
given in [1] and the one used in [10] do not allow state-reveals at all. Here, we want
to emphasize that in particular all previous work on tight AKE does not consider
state reveals and we are the first ones to address this problem.

(Weak) Forward Security. Following Krawczyk [26], we specify two levels of
forward security. IND-wFS-St models weak forward security, whereas IND-FS-St
models full forward security. The first one is intended for 2-message protocols
with implicit authentication, as those cannot achieve full forward security [26].
The second one is intended for protocols with explicit authentication. With those
definitions, we capture the same properties as the most common security mod-
els given in [1,9,24,26,28], where some of them only define either weak or full
forward security depending on whether they consider implicitly or explicitly
authenticated protocols.

Matching Sessions and Partnering. As most security models, ours use the
concept of matching sessions to define a relation between two sessions. Following
Cremer and Feltz [14], we additionally use the term of origin (or partially match-
ing) sessions, which refers to a relaxation of the definition of matching sessions.
The concept of origin sessions is used for full forward security, in particular we
need this to handle the no-match attack described by Li and Schäge [30], where
two sessions compute the same session key but do not have matching conversa-
tions. Recent works such as [10,21] take up the approach of origin sessions and
oracle partnering based on session keys as additional requirement.

Onregistering corrupt keys. Some security models for AKE allow the adver-
sary also to register adversarially-generated keys, this holds in particular for pre-
vious works considering tightly-secure key exchange [1,10,21]. Technically this
makes the security model strictly stronger, as one can easily construct contrived
protocols that are insecure with adversarially-registered keys, but secure without.

However, in the actual security proofs in [1,10,21], adversarially-registered
keys are treated no differently than corrupted keys. We chose to keep model, secu-
rity proofs and notation as simple as possible (it is already complex enough, any-
way), and thus omitted this query. However, it is straightforward to extend our
model with it, and the proofs need not to be changed. Whenever the adversary
registers a new key, it would immediately be marked as “corrupted” (just like
in [1,10,21]). Apart from that, no additional changes to the proofs are required,
since the proofs deal with all corrupted keys in the same way, regardless of their
distribution or whether they are generated by the experiment or an external entity.
We also do not require a proof of knowledge of the corresponding secret key for the
registration, or a proof that the registered public key is valid in any sense.

Tightly-Secure Authenticated Key Exchange, Revisited 135

5 AKE with Weak Forward Security

In this section, we show how to build an implicitly authenticated AKE protocol
using the concept of non-committing key encapsulation.

In particular, from two key encapsulation mechanisms KEMCPA = (GenCPA,
EncapsCPA, DecapsCPA) and KEMCCA = (GenCCA,EncapsCCA,DecapsCCA), we con-
struct a two-message authenticated key exchange protocol AKEwFS = (GenAKE,
InitI,DerR,DerI) as shown in Figs. 10 and 11. W.l.o.g. KEMCPA, KEMCCA, AKEwFS

have identical key space K. Each party holds a long-term key pair (pk, sk) for
KEMCCA and a symmetric key k to encrypt the secret state information which
has to be stored by the initiating party. State encryption protects against state
attacks and is implemented using a symmetric encryption scheme defined as
Ek(st′) := (IV,G(k, IV)⊕st′) for a random nonce IV . Here G : {0, 1}∗ → {0, 1}d

is a random oracle and d is an integer denoting the maximum bit length of the
unencrypted state st′. The protocol uses an additional cryptographic hash func-
tion H : {0, 1}∗ → K to output the session key.

Fig. 10. Visualization: Running protocol AKEwFS between two parties.

The initiating party generates an ephemeral key pair for KEMCPA, then runs the
EncapsCCA algorithm on the peer’s public key to output a ciphertext cr and a
key Kr and sends the ephemeral public key and cr to the intended receiver. All
values are stored temporarily and encrypted as described above, as they will
later be needed to compute the session key. The responding party uses its secret
key skr to compute key Kr from cr. Next, it runs the EncapsCPA algorithm on
the received ephemeral public key to compute a ciphertext c̃ and a key K̃ and
then the EncapsCCA algorithm on the initiator’s public key to output ci and Ki.
It sends both ciphertexts to the initiating party and computes the session key
evaluating the hash function H on all public context and the three shared keys
Kr, Ki and K̃. The initiator retrieves the secret state information and computes
Ki and K̃ from ci and c̃. Now, it can also establish the session key.

136 T. Jager et al.

Fig. 11. Authenticated key exchange protocol AKEwFS from KEMCPA and KEMCCA.
Lines written in purple color are only used to encrypt the state.

Theorem 2 (KEMCPA NCKE-CPA + KEMCCA NCKE-CCA ROM⇒ AKEwFS IND-
wFS-St). For any IND-wFS-St adversary A against AKEwFS with N parties that
establishes at most S sessions and issues at most T queries to the test oracle
Test, qG queries to random oracle G and at most qH queries to random oracle
H, there exists an N -NCKE-CCA adversary B against KEMCCA and SimCCA and
an S-NCKE-CPA adversary C against KEMCPA and SimCPA such that

AdvIND-wFS-St
AKEwFS

(A) ≤ 2 ·
(
AdvN-NCKE-CCA

KEMCCA,SimCCA
(B) + AdvS-NCKE-CPA

KEMCPA,SimCPA
(C)

)
+ T ·

(
qG

2κ
+

qH

|K|
)

+ N2 ·
(

1

2μCCA
+

1

2κ

)
+ S2 ·

(
1

2μCPA
+

1

2γCCA
+

1

2γCPA
+

1

2κ

)
+ 2S · qG

22κ
,

where SimCCA and SimCPA are the simulators from the NCKE experiments, μCCA

and μCPA are the collision probability of the key generation algorithms GenCCA
and GenCPA, γCCA and γCPA are the spreadness parameters of the encapsulation
algorithms EncapsCCA and EncapsCPA and κ is a security parameter. The run-
ning times of B and C consist essentially of the time required to execute the
security experiment with the adversary once, plus a minor number of additional
operations (including bookkeeping, lookups etc.).

Proof (Sketch). Let A be an adversary against IND-wFS-St security of AKEwFS.
For b ∈ {0, 1}, game G0,b is the IND-wFS-Stb game, where we additionally exclude
that collisions between long-term key pairs, ephemeral key pairs, ciphertexts and
nonces occur.

In game G1,b , we replace the computations for KEMCCA by the simulator
SimCCA, which allows to draw keys Ki and Kr uniformly at random. This change
affects all sessions which makes the proof tight. If the adversary reveals a long-
term key pair of any user, the property of receiver non-committing key encapsula-
tion ensures that the correct keys Ki and Kr can be computed by the adversary.

Tightly-Secure Authenticated Key Exchange, Revisited 137

Next, we want to replace the computations for KEMCPA by the simula-
tor SimCPA, which allows to draw keys K̃ uniformly at random. However, the
ephemeral secret key s̃k is part of the state and will not be available to the
NCKE-CPA reduction in the first place. Thus, we introduce an intermediate game
G2,b and do not compute the state when the session is initiated but only when
the adversary queries the Rev-State oracle. In game G3,b , we can then use
the simulator for KEMCPA and draw keys K̃ uniformly at random, whenever the
ephemeral public key p̃k comes from the experiment (i.e. the adversary creates
a partially matching session). Again, the non-committing property of KEMCPA

ensures consistency in case the adversary reveals both the state of a session and
the long-term key of the initiator, which reveals the ephemeral secret key s̃k.

Depending on whether there exists a (partially) matching session and which
queries to Rev-State and Corrupt the adversary makes, we can argue that at
least one key Ki, Kr or K̃ in each test session is chosen uniformly at random and
unknown to A and thus it cannot distinguish the session key from a uniformly
random key in the last game G4,b. �
The full proof of Theorem 2 can be found in the full version [23]. Note that
the non-committing property is essential to embed random KEM keys in each
session and thus to achieve tightness. This way, we only need to make a case
distinction at the end and can argue that for all test sessions at least one KEM
key is independent of the adversary’s view no matter which queries it has made
(provided it did not make a trivial attack). Relying on a weaker assumption
requires to make a case distinction earlier in the proof and may involve guess-
ing as in some cases it is not clear which KEM key will be revealed (through
corruption and/or reveal or state reveal) at a later point in time.

6 AKE with Full Forward Security

We show how to build an explicitly authenticated AKE protocol using the con-
cept of non-committing key encapsulation. As we also need a signature scheme,
we will first give the relevant definitions.

6.1 Digital Signatures

A digital signature scheme SIG = (GenSIG,Sign,Vrfy) consists of three algorithms.
The key generation algorithm GenSIG outputs a key pair (vk, sigk), where vk is
the verification key and sigk the signing key. The signing algorithm Sign inputs a
signing key sigk and a message m and outputs a signature σ. The deterministic
verification algorithm Vrfy inputs the verification key vk, a message m and a
signature σ and outputs 1 if σ is a valid signature for m, otherwise it outputs 0.

In Fig. 12, we define the security game N user Strong UnForgeability under
Chosen Message Attacks with corruptions (N -SUF-CMA). The definition is sim-
ilar to the one given in [1], except that we require strong unforgeability, i. e. the

138 T. Jager et al.

adversary may also find a new signature for a message it queried to the Sign

oracle before. The advantage of an adversary A is defined as

AdvN-SUF-CMA
SIG (A) := Pr[N -SUF-CMAA ⇒ 1] .

Fig. 12. Game N -SUF-CMA for SIG.

6.2 Transformation Using NCKE and a Signature Scheme

From two key encapsulation mechanisms KEMCPA = (GenCPA,EncapsCPA,
DecapsCPA) andKEMCCA = (GenCCA,EncapsCCA,DecapsCCA) with key space K and
a digital signature scheme SIG = (GenSIG,Sign,Vrfy), we construct a two-message
authenticated key exchange protocol AKEFS = (GenAKE, InitI,DerR,DerI) with key
space K as shown in Figs. 13 and 14. Each party has a key pair (vk, sigk) for SIG,
a key pair (pk, sk) for KEMCCA and a symmetric key k to encrypt the secret state
information which has to be stored by the initiating party (cf. Sect. 5). The proto-
col uses additional cryptographic hash functions F : {0, 1}∗ → {0, 1}κ to compute
value π and H : {0, 1}∗ → K to output the session key.

The initiating party computes an ephemeral key pair for KEMCPA, runs the
EncapsCCA algorithm on the intended receiver’s public key pkr to obtain a cipher-
text cr and a key Kr and signs both the ephemeral public key and cr, which are
sent to the receiver along with the signature. The receiver verifies the signature
and then runs the EncapsCPA algorithm on the ephemeral public key to output
a ciphertext c̃ and a key K̃. It computes Kr using its secret key skr. It then
tags the received message together with c̃ and Kr by evaluating hash function F
and sends the output together with c̃ to the initiator. The initiator retrieves Kr

from the secret state and also evaluates F. If the output is the same, it computes
K̃ using the ephemeral secret key. The session key is computed evaluating hash
function H on all public context and key K̃. We establish the following theorem
and give a proof sketch. The full proof can be found in the full version [23].

Theorem 3 (KEMCPA NCKE-CPA + KEMCCA NCKE-CCA +
SIG N -SUF-CMA

ROM⇒ AKEFS IND-FS-St). For any IND-FS-St adversary A

Tightly-Secure Authenticated Key Exchange, Revisited 139

Fig. 13. Visualization: Running AKEFS between two parties, where K is the resulting
session key and context := (vki, pki, vkr, pkr, ˜pk, cr, c̃, σ, π)

Fig. 14. Authenticated key exchange protocol AKEFS from KEMCPA, KEMCCA and SIG.
Lines written in purple color are only used to encrypt the state.

against AKEFS with N parties that establishes at most S sessions and issues
at most T queries to test oracle Test, at most qH, qG and qF queries to random
oracles H, G and F, there exists an N -SUF-CMA adversary B against SIG, an
S-NCKE-CPA adversary C against KEMCPA and SimCPA and an N -NCKE-CCA
adversary D against KEMCCA and SimCCA such that

Adv
IND-FS-St
AKEFS

(A) ≤ 2 ·
(
Adv

N-SUF-CMA
SIG (B) + Adv

S-NCKE-CPA
KEMCPA,SimCPA

(C) + Adv
N-NCKE-CCA
KEMCCA,SimCCA

(D)
)

+ T ·
(

qG

2κ
+

qH

|K|
)

+ N
2 ·

(
1

2μSIG
+

1

2μCCA
+

1

2κ

)

+ S
2 ·

(
1

2μCPA
+

1

2γCCA
+

1

2γCPA
+

1

2κ

)
+ 2S · qG

22κ
,

140 T. Jager et al.

where SimCPA and SimCCA are the simulators from the NCKE-CPA and NCKE-CCA
experiment, μSIG, μCPA, μCCA are collision probabilities of the key generation algo-
rithms GenSIG, GenCPA and GenCCA and γCPA, γCCA are the spreadness parame-
ters of the encapsulation algorithms. The running times of B, C and D consist
essentially of the time required to execute the security experiment with the adver-
sary once, plus a minor number of additional operations (including bookkeeping,
lookups etc.).

Proof (Sketch). Let A be an adversary against IND-FS-St security of AKEFS. For
b ∈ {0, 1}, G0,b is the IND-FS-Stb game, where we exclude that collisions between
long-term key pairs, ephemeral key pairs, ciphertexts and nonces occur.

In game G1,b , we abort when A computes a valid signature for an uncorrupted
user that was not output by the experiment, reducing to N -SUF-CMA security
of the signature scheme.

In game G2,b , we replace the computations for KEMCCA by the simulator
SimCCA in all sessions using the non-committing property of KEMCCA, which
allows to draw key Kr which serves as key for the MAC uniformly at random.
Thus, the adversary cannot compute a valid MAC for an uncorrupted user.

In game G3,b (as in the proof of Theorem 2), we do not compute the state
when the session is initiated but only when the adversary queries the Rev-State

oracle. After that, we can switch KEMCPA to the corresponding simulator SimCPA

in game G4,b and draw keys K̃ uniformly at random, whenever the ephemeral
public key p̃k comes from the experiment (i.e. the adversary creates a partially
matching session). As the adversary can only complete a (partially) matching
sessions (otherwise it would have forged a signature or MAC), we can argue that
K̃ in each test session is chosen uniformly at random and unknown to A and
thus he cannot distinguish the session key from a uniformly random key in the
last game G5,b . �

7 Concrete Instantiation of AKE Protocols

7.1 NCKE from the DDH Assumption

Let us first describe the hash proof system we will use. Therefore, let GGen be a
group generation algorithm which takes the security parameter 1κ as input and
returns (G, p, g1), where g1 is a generator of the cyclic group G with prime order
p. Define group = (G, p, g1, g2), where g2 = gw

1 for w $← Zp. Define Y = Z
2
p and

X = {(gr
1, g

r
2) : r ∈ Zp}. A value r is a witness that (c1, c2) ∈ X . Define SK = Z

2
p,

PK = Zp and Z = Zp. For sk = (x1, x2) ∈ Z
2
p, define μ(sk) = X = gx1

1 gx2
2 . This

defines the output of the parameter generation algorithm Par.
For (c1, c2) ∈ Y define Λsk(c1, c2) := Z = (cx1

1 cx2
2). This defines the private

evaluation algorithm Priv(sk, (c1, c2)). Given pk = μ(sk) = X, (c1, c2) ∈ X and
a witness r ∈ Zp such that (c1, c2) = (gr

1, g
r
2), the public evaluation algorithm

Pub(pk, (c1, c2), r) computes Z = Λsk(c1, c2) as Z = Xr.
We define KEMDDH = (GenDDH,EncapsDDH,DecapsDDH) with global parame-

ters par := (G, p, g1, g2) as shown in Fig. 15.

Tightly-Secure Authenticated Key Exchange, Revisited 141

Fig. 15. Key encapsulation mechanism KEMDDH = (GenDDH,EncapsDDH,DecapsDDH).

Definition 3 (m-fold DDH Problem). Let GGen be a PPT algorithm that
on input 1κ outputs a cyclic group G of prime order 2k−1 ≤ p ≤ 2k with
generator g1. Furthermore let g2 = gω

1 for ω $← Zp. The m-DDH problem requires
to distinguish m DDH tuples from m uniformly random tuples:

Advm-DDH
GGen (A) :=

∣
∣Pr[A(G, p, g1, g2, (gri

1 , gri
2)i∈[m]) ⇒ 1]

−Pr[A(G, p, g1, g2, (gri
1 , g

r′
i

2)i∈[m]) ⇒ 1]
∣
∣
∣ ,

where probability is taken over (G, p, g) ← GGen, ri, r
′
i

$← Zp for i ∈ [m], as well
as the coin tosses of A.

Lemma 1 (Random self-reducibility of DDH [17]). For any adversary C
against the m-fold DDH problem, there exists an adversary B against the DDH
problem with roughly the same running time such that

Advm-DDH
GGen (C) ≤ AdvDDH

GGen(B) +
1

p − 1
.

The following theorem establishes that the construction given in Fig. 15 is an
N -receiver non-committing encapsulation mechanism under the DDH assump-
tion.

Theorem 4. Under the DDH assumption and in the random oracle model,
KEMDDH is an N -receiver non-committing key encapsulation mechanism. In par-
ticular, for any N -NCKE-CCA adversary A against KEMDDH and SimDDH that
issues at most qE queries per user to Encaps, qD queries to Decaps and at
most qH queries to each random oracle Hn, n ∈ [N], there exists an adversary B
against DDH with roughly the same running time such that

AdvN-NCKE-CCA
KEMDDH,SimDDH

(A) ≤ AdvDDH
GGen(B) +

N · qE · (qH + qD + 1)
p

+
1

p − 1
,

where SimDDH is the simulator defined relative to KEMDDH.

Proof. We apply Theorem 1 and analyze the entropy of the underlying HPS.
The key space Z is Zp. For sk = (x1, x2) $← Z

2
p, pk = μ(sk) = gx1

1 gx2
2 and

Z = Priv(sk, (c1, c2)) = cx1
1 cx2

2 , where (c1, c2) = (gr
1, g

r′
2) and (r, r′) $← Z

2
p, we

have
(

logg1
pk

logg1
Z

)

= M

(
x1

x2

)

, where M =
(

1 w
r wr′

)

.

142 T. Jager et al.

If r 	= r′, then detM = w(r′ − r) 	= 0, which implies that pk and Z are random
and independent group elements as long as x1, x2 are unknown. Thus, for all
Z ′ ∈ Z, holds that Pr[Z = Z ′] = 1/p . In Definition 3, all values ri and r′

i

are drawn uniformly at random from Zp. The probability that ri = r′
i for any

i ∈ [N · qE] is upper bounded by N · qE/p. Furthermore, the probability that a
specific challenge ciphertext is issued to Decaps before it is output by Encaps

is at most qD/p. It follows that

AdvN-NCKE-CCA
KEM,Sim (A) ≤ Advm-DDH

GGen (B) +
N · qE

p
+

N · qE · qH
p

+
N · qE · qD

p
.

Now Theorem 4 follows directly from Lemma 1. �

7.2 Concrete Instantiation of AKE Protocols

We instantiate protocols AKEwFS (Sect. 5) and AKEFS (Sect. 6.2) with KEMDDH

(Sect. 7.1) for both KEMCPA and KEMCCA. We will not give a concrete instantia-
tion of the signature scheme used in AKEFS at this point. The resulting protocols
AKEwFS,DDH and AKEFS,DDH are shown in Fig. 1 in the introduction.

Note that for AKEwFS,DDH we can improve efficiency by sending only one
ciphertext for both p̃k and pki in the second message, as KEMDDH is a multi-
recipient KEM. We establish Theorem 5 and give a proof sketch.

Theorem 5 (IND-wFS-St security of AKEwFS,DDH). Under the DDH assump-
tion, AKEwFS,DDH is IND-wFS-St secure in the random oracle model. In partic-
ular, for any IND-wFS-St adversary A against AKEwFS,DDH with N parties that
establishes at most S sessions and issues at most T queries to the test oracle
Test, qG queries to random oracle G, qH̃, qHn

queries to each random oracle H̃sID

and Hn and at most qH queries to random oracle H, there exists an adversary B
against DDH with roughly the same running time such that

AdvIND-wFS-St
AKEwFS,DDH

(A) ≤ 2 · AdvDDH
GGen(B) + T · qG + qH

2κ
+ (N + S)2 · 1

p
+ N2 · 1

2κ

+ S2 ·
(

2
p

+
1
2κ

)

+ 2S ·
(

qG
22κ

+
qH̃ + qHn

+ 1
p

)

+
2

p − 1
,

where κ is a security parameter.

Due to the improved construction, we cannot apply Theorem 2 directly, but we
give a proof sketch from the DDH assumption and show that the same technique
as in the proofs of Theorems 2 and 4 can be used.

Proof. We proceed similar and consider collisions first. We assume that all key
pairs generated by GenDDH are different. Note that we also have to consider
collisions between long-term and ephemeral public keys. It holds that

Pr[x1, x2, x
′
1, x

′
2

$← Zp : gx1
1 gx2

2 = g
x′
1

1 g
x′
2

2] = 1/p .

Tightly-Secure Authenticated Key Exchange, Revisited 143

Union bound yields (N +S)2/p, as we have N long-term public keys and at most
S ephemeral public keys. For ciphertexts (c1, c2) ∈ C output by the encapsulation
algorithm EncapsDDH, it holds that Pr[r $← Zp : (c1, c2) = (gr

1, g
r
2)] = 1/p, which

yields an upper bound for collisions of S2/p, as there are at most S sessions with
one ciphertext. We also assume that values IV are different in all sessions and
keys kn are different for all parties.

We use the secret keys to compute keys Ki, Kr and K̃. Next, we replace all
ciphertexts by uniformly random group elements at the same time, reducing to
the S-fold DDH assumption and use the random self-reducibility property. In
addition to that, we ensure that all ciphertexts are indeed invalid by adding S/p
which is the probability that exponents are the same for any ciphertext.

Instead of the corresponding random oracles, we use internal hash functions
H̃′

sID and H′
n for sID ∈ [S] and n ∈ [N] to compute keys Ki, Kr and K̃, but

patch the random oracles if the secret key is known to the adversary. As there
are at most S challenge keys computed with a long-term key pair and at most
S challenge keys computed with an ephemeral key pair, the difference can be
upper bounded by S · qHn

/p + S · qH̃/p using a hybrid argument. Now we can
replace Ki, Kr and K̃ by uniformly random keys.

The rest of the proof is equal to the proof of Theorem 2. The size of the key
space of KEMDDH is 2κ and the bound follows by collecting all probabilities. �

For protocol AKEFS,DDH, we apply Theorem 3 to show IND-FS-St security.
The collision probabilities for KEMDDH are already shown in the previous proof.
Additionally, we need a strongly unforgeable signature scheme.

Theorem 6 (IND-FS-St security of AKEFS,DDH). For an N -SUF-CMA secure
signature scheme SIG and under the DDH assumption, AKEFS,DDH is IND-FS-St
secure in the random oracle model. In particular, for any IND-FS-St adversary A
against AKEFS,DDH with N parties that establishes at most S sessions and issues
at most T queries to the test oracle Test, qG queries to random oracle G, qF
queries to random oracle F, qH̃, qHn

queries to each random oracle H̃sID and Hn

and at most qH queries to random oracle H, there exists an adversary B against
DDH and an adversary C against N -SUF-CMA such that

AdvIND-FS-St
AKEFS,DDH

(A) ≤ 4 · AdvDDH
GGen(B) + 2 · AdvN-SUF-CMA

SIG (C) + T · qF + qG + qH
2κ

+ N2 ·
(

1
2μSIG

+
1
p

+
1
2κ

)

+ S2 ·
(

2qH̃ + 6
p

+
1
2κ

)

+ 2NS · qHn
+ 2

p
+ 2S · qG

22κ
+

4
p − 1

,

where μSIG is the collision probability of the key generation algorithm GenSIG and
κ is a security parameter.

The signature scheme can be instantiated with the tight scheme based on the
DDH and CDH assumption proposed by Gjøsteen and Jager in [21], which is also
used in their authenticated key exchange protocol.

144 T. Jager et al.

Acknowledgments. Tibor Jager was supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme, grant agreement 802823. Eike Kiltz was supported by the BMBF iBlockchain
project, the EU H2020 PROMETHEUS project 780701, DFG SPP 1736 Big Data,
and the DFG Cluster of Excellence 2092 CASA. Doreen Riepel was supported by
the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence 2092 CASA. Sven
Schäge was supported by the German Federal Ministry of Education and Research
(BMBF), Project DigiSeal (16KIS0695) and Huawei Technologies Düsseldorf, Project
vHSM.

References

1. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

2. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 10

3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

5. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

6. Boyd, C., Nieto, J.G.: On forward secrecy in one-round key exchange. In: Chen,
L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 451–468. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25516-8 27

7. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 2011, pp. 51–62. ACM Press (2011). https://doi.org/10.1145/2046707.
2046716

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press (1996). https://doi.
org/10.1145/237814.238015

9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

10. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 25

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-642-25516-8_27
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/237814.238015
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-030-26954-8_25

Tightly-Secure Authenticated Key Exchange, Revisited 145

11. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

12. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: Cheung, B.S.N.,
Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 11, pp. 80–91. ACM Press
(2011)

13. Cremers, C.J.F.: Session-state Reveal is stronger than Ephemeral Key Reveal: attack-
ing the NAXOS authenticated key exchange protocol. In: Abdalla, M., Pointcheval,
D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9 2

14. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 42

15. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. Cryptology ePrint Archive, Report 2020/1029 (2020). https://eprint.
iacr.org/2020/1029

16. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound crypto-
graphic parameters for real-world deployments. Cryptology ePrint Archive, Report
2020/726 (2020). https://eprint.iacr.org/2020/726

17. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

18. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 17

19. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 28

20. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

21. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 4

22. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 14

23. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. Cryptology ePrint Archive, Report 2020/1279 (2020). https://
eprint.iacr.org/2020/1279

https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-01957-9_2
https://doi.org/10.1007/978-3-642-33167-1_42
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-030-45388-6_14
https://eprint.iacr.org/2020/1279
https://eprint.iacr.org/2020/1279

146 T. Jager et al.

24. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

25. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 34

26. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

27. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer,
Heidelberg (2005). https://doi.org/10.1007/11593447 30

28. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

29. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 25

30. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press (2017).
https://doi.org/10.1145/3133956.3134006

31. Li, Y., Schäge, S., Yang, Z., Bader, C., Schwenk, J.: New modular compilers for
authenticated key exchange. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 1–18. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07536-5 1

32. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 27

33. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

34. Schäge, S.: TOPAS: 2-pass key exchange with full perfect forward secrecy and
optimal communication complexity. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015, pp. 1224–1235. ACM Press (2015). https://doi.org/10.1145/2810103.
2813683

35. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/
332

36. Yoneyama, K.: One-round authenticated key exchange with strong forward secrecy
in the standard model against constrained adversary. In: Hanaoka, G., Yamauchi,
T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 69–86. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34117-5 5

https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-01001-9_34
https://doi.org/10.1007/978-3-642-01001-9_34
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11593447_30
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/11745853_25
https://doi.org/10.1007/11745853_25
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-319-07536-5_1
https://doi.org/10.1007/978-3-319-07536-5_1
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1145/2810103.2813683
https://doi.org/10.1145/2810103.2813683
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://doi.org/10.1007/978-3-642-34117-5_5

	Tightly-Secure Authenticated Key Exchange, Revisited
	1 Introduction
	1.1 The Difficulty of Constructing Tightly Secure AKE
	1.2 Main Contributions
	1.3 Related Work and Open Problems

	2 Preliminaries
	3 Multi-receiver Non-committing Key Encapsulation
	4 Security Model for Two-Message Authenticated Key Exchange
	4.1 Relation to Other Definitions

	5 AKE with Weak Forward Security
	6 AKE with Full Forward Security
	6.1 Digital Signatures
	6.2 Transformation Using NCKE and a Signature Scheme

	7 Concrete Instantiation of AKE Protocols
	7.1 NCKE from the DDH Assumption
	7.2 Concrete Instantiation of AKE Protocols

	References

