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Abstract. We observe that all previously known lattice-based blind sig-
nature schemes contain subtle flaws in their security proofs (e.g., Rück-
ert, ASIACRYPT ’08) or can be attacked (e.g., BLAZE by Alkadri et al.,
FC ’20). Motivated by this, we revisit the problem of constructing blind
signatures from standard lattice assumptions.

We propose a new three-round lattice-based blind signature scheme
whose security can be proved, in the random oracle model, from the
standard SIS assumption. Our starting point is a modified version of the
(insecure) BLAZE scheme, which itself is based Lyubashevsky’s three-
round identification scheme combined with a new aborting technique
to reduce the correctness error. Our proof builds upon and extends the
recent modular framework for blind signatures of Hauck, Kiltz, and Loss
(EUROCRYPT ’19). It also introduces several new techniques to over-
come the additional challenges posed by the correctness error which is
inherent to all lattice-based constructions.

While our construction is mostly of theoretical interest, we believe it
to be an important stepping stone for future works in this area.

Keywords: Blind signatures · Forking lemma · Lattices

1 Introduction

Blind Signatures. Blind signatures, first proposed by Chaum [18], are a fun-
damental cryptographic primitive with many applications such as eVoting [54],
eCash [18], anonymous credentials [6,8,14–16,19,46], and, as of late, privacy
preserving protocols in the context of blockchain protocols [61]. Informally, a
blind signature scheme is an interactive protocol between a signer S (holding a
secret key sk) and a user U (holding a public key pk and a message m) with
the goal that U obtains a signature σ on m. The protocol should satisfy correct-
ness (i.e., σ can be verified using the public key pk of S and m), unforgeability
(i.e., only S can issue signatures), and blindness (i.e., S is not able to link σ
to a particular execution of the protocol in which it was created). Blind signa-
tures are among the most well-studied cryptographic primitives and it is well
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known how to construct blind signatures from general complexity assumptions
[22,23,34]. However, achieving efficient constructions from standard assumptions
is known to be a notoriously difficult task with only a handful of constructions
being known. To make matters worse, even among these works, some have been
pointed out to contain flawed security proofs [2,56]. Effectively, this leaves only
the original works due to Pointcheval and Stern [50–53] based on Schnorr [57]
and Okomoto-Schnorr [44] signatures. Blind Signatures from Lattices. In
this work, we revisit the problem of constructing blind signatures from stan-
dard lattice assumptions. This question was first addressed by Rückert [56], who
gave a candidate construction based on Lyubashevsky’s identification scheme
[38] from the SIS assumption. Unfortunately, as we will explain in Sect. 1.2, his
security proof contains a subtle flaw. While the recent work of Hauck, Kiltz, and
Loss [32] introduces a general framework to obtain blind signatures from (colli-
sion resistant) linear hash functions, their framework does not cover the setting
of lattice assumptions. Informally, the reason for this is that in the context of
lattice-based constructions, most known cryptographic primitives exhibit some
form of noticeable correctness error. Indeed, this is also true for Lyubashevsky’s
identification scheme/linear hash function implicitly used in [56]. This makes it
impossible to apply the analysis of [32] directly, since it crucially relies on the
fact that if both S and U behave honestly, U always obtains a valid signature.
Since [56] was published, more lattice-based constructions of blind signatures
have been proposed. As we will discuss in detail below, all of these schemes
either inherit the proof errors from [56] or introduce new ones. The main goal
of our work is to give the first direct lattice-based blind signature scheme with
a correct security proof.

1.1 Our Contributions

We construct a blind signature scheme from any linear hash functions [5,32]
with noticeable correctness error. We use the aborting technique introduced by
Alkadri, El Bansarkhani, and Buchmann [4] to reduce the correctness error of
the blind signature scheme. Instantiating our construction with Lyubashevsky’s
linear hash function [38] we obtain a lattice-based blind signature scheme from
the SIS assumption.

While our work offers the first correct proof for a lattice-based blind signa-
ture scheme, it comes with several severe drawbacks. First, we can only prove
blindness in the weaker honest signer model [34] as compared to the malicious
signer model [23]. We leave the construction of a scheme in the malicious signer
setting as an open problem. Second, our construction comes with an exponential
security loss in the reduction from the underlying hardness assumption (here, the
SIS assumption). This is inherited from the proof technique of Pointcheval and
Stern in the discrete logarithm setting [53]. This strongly restricts the number
of signatures that can be issued per public key to a poly-logarithmic amount.
Indeed, a sub-exponential attack due to Schnorr and Wagner [58,60] resulting
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from the ROS1 problem shows that for the Schnorr and Okamoto-Schnorr blind
signature schemes, these parameters are optimal. Extending [32,58], we are also
able to relate the security of our blind signature to a Generalized ROS problem
whose hardness is independent of the SIS problem. However, the sub-exponential
attack of Schnorr and Wagner cannot be directly translated to the Generalized
ROS problem due to the algebraic structure of our lattice-based instantiation
(see Sect. 7). Therefore, an interesting open question is whether our “lattice”
variant of the Generalized ROS problem can be solved in sub-exponential time.
Nevertheless, we believe that our scheme makes an important first step toward
future endeavors in this area by giving the first comprehensive and modular
security proof for a blind signature scheme from lattice assumptions. While our
scheme might not be practical by itself (our example instantiation has signatures
sizes of roughly 36MB),2 it seems reasonable to apply similar ideas as in [49] to
extend the number of allowed sessions per public key to a polynomial amount at
not much overhead (but at the restriction of issuing signatures in a sequential
fashion).

1.2 Problems with Existing Schemes

In the following we will first explain in detail the problems in the proof of Rück-
ert’s lattice-based blind signature scheme and then sketch how these errors prop-
agate to subsequent schemes. We also list some other lattice-based constructions
which have been found to be incorrect.

Rückert’s Blind Signature Scheme. The key idea in the proof of Rückert’s
lattice-based blind signature scheme [56] is to rewind the forger (with partially
different random oracles) so as to obtain two distinct values χ and χ′ satisfying
F(χ) = F(χ′), i.e., a collision in the underlying linear hash function. (In the lattice
setting, a collision in the hash function directly implies a non-trivial solution
χ − χ′ to the SIS problem.) To argue that χ �= χ′, [56] attempts to apply the
general forking lemma of Bellare and Neven [9] to the forger and argues that
witness indistinguishability alone is sufficient to ensure χ �= χ′. Here, [56] relies
on Lemma 8 from Pointcheval and Stern’s proof [53], who followed a similar
approach. However, Lemma 8 does not state that χ and χ′ are distinct; only
that (by witness indistinguishability of their scheme) there exist two distinct
secret keys sk , sk ′, which can lead to identical transcripts. This is insufficient to
ensure χ �= χ′ in the subsequent rewinding step. In fact, the Generalized ROS
attack mentioned above works independently of the concrete secret key that is
being used. Using this attack, it is always possible to force an outcome of χ = χ′

if the number of signatures per public key becomes larger than polylogarithmic in
the security parameter. The crucial argument toward proving χ �= χ′ only follows
from Lemma 9 and the subsequent parts of Pointcheval and Stern’s proof and is
1 ROS stands for Random inhomogenities in an Overdetermined, Solvable system of

linear equations.
2 It is not even clear how much better our scheme performs compared to generic

constructions using non-interactive zero-knowledge proofs [23].
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completely missing from Rückert’s proof. It relies on a very subtle probabilistic
method argument that only works in a (small) range of parameters for which the
ROS problem remains information theoretically hard. Moreover, both Lemma 8
and 9 of [53] apply exclusively to the Okamoto-Schnorr scheme and cannot be
transferred to other schemes directly. Adapting these lemmas to a setting with
correctness error is one of the key novelties in our proof.

BLAZE and BLAZE+. BLAZE by Alkadri, El Bansarkhani, and Buchmann [3]
improves Rückert’s construction in the following two aspects. Firstly, BLAZE
applies Gaussian rejection sampling [39] instead of uniform [38]. Secondly, it
introduces the concept of signed permutations which allows to get rid of rejec-
tion sampling on the unblinded challenge values. While BLAZE introduces several
interesting new concepts for constructing lattice-based blind signatures, its secu-
rity analysis reuses the (incorrect) security arguments of Rückert at a crucial
point in the reduction, and hence inherits its problems. Concretely, in the one-
more unforgeability proof of [3, Theorem 3] it is missing the argument that the
candidate solution for the inhomogeneous RSIS problem computed in Case 2 is
non-trivial. Even worse and independent of the aforementioned problems with
the proof, BLAZE is not one-more unforgeable as we will sketch now. Consider a
user U interacting with the signer S in the one-more unforgeability experiment.
At the end of the protocol execution, an honest U performs rejection sampling on
some values (ẑ1, ẑ2) contained in the signature. (Rejection sampling on U’s side
is used to ensure blindness.) If rejection sampling rejects, U sends the random
coins used for rejection sampling as a proof to S which, upon successful verifica-
tion, triggers a restart of the protocol. However, even in case rejection sampling
rejects, the signature can still be valid and which case a dishonest U can trigger a
restart of the protocol while still learning a valid signature. Since by the restart of
the protocol U learns another valid signature, this observation can be turned into
a simple one-more unforgeability attack. The aforementioned attack on BLAZE
actually disappears in the recently proposed BLAZE+ protocol [4] because U
performs multiple rejection samplings in parallel and the probability that all of
them reject becomes negligible. BLAZE+ introduces a new technique of reducing
correctness error by performing multiple rejection samplings in parallel in order
to reduce the communication complexity. Unfortunately, the security analysis
also reuses the (incorrect) security arguments of Rückert and hence inherits its
problems.

Further Schemes. Three recent works [13,37,47] propose new lattice-based
blind signatures, but they also rely on the same analysis as Rückert to argue
that a collision can be found with non-negligible probability when rewinding
(see above). Unfortunately, this implies that all of these schemes do not have
a valid security proof. There has been a line of research on lattice-based blind
signatures using preimage sampleable trapdoor functions [20,28,29,62,63]. As
shown by [3], all these schemes are insecure. Concretely, they give attacks which
either recover the secret key or solve the underlying lattice problem in at most
two executions of the signing protocol.
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1.3 Related Work

Three round blind signatures are not achievable in the standard model [25]. We
circumvent their result by using (programmable) random oracles and therefore
believe that our proof strategies cannot be easily extended to the standard model.
Blind signatures are impossible to construct from one-way permutations [35],
even in the random oracle model. We circumvent their result by relying on the
stronger assumption of collision resistance. A large class of Schnorr-type blind
signature schemes cannot be proved secure if the underlying identification scheme
has a unique witness [7]. We circumvent their result by requiring our underlying
hard problem to have multiple witnesses corresponding to each public key.

As already mentioned, round optimal blind signatures can be constructed
from general complexity assumptions beyond one-way permutations [22,23,31,
34]. The impossibility results of [25] are circumvented by either relying on a CRS
[23] or using complexity leveraging [22,31]. We refer to [22] for a detailed discus-
sion on the topic of constructing blind signatures from general assumptions.

Several works [2,7,12,26,30,31,45,51,53] show how to construct efficient
blind signatures schemes from concrete assumptions in the setting of prime-order
groups, in some cases relying on bilinear maps.

1.4 Organization

After establishing some preliminaries in Sect. 2, in Sect. 3 we will introduce the
notion of linear hash functions LHF with noticeable correctness error. In Sect. 4
we will define syntax and security of canonical (three-round) blind signature
schemes. Figure 5 constructs a blind signature scheme BSη[LHF,H,G] from any
linear hash function LHF and two standard hash functions H and G. This section
also contains our main theorems about one-more unforgeability (Theorem 1) and
blindness (Theorem 2). As a first step in the proof of Theorem 1, in Sect. 5 we will
reduce the one-more unforgeability of BSη,ν,μ[LHF,H,G] to one-more man-in-the-
middle security of the underlying canonical identification scheme IDη′ [LHF] in the
random oracle model. The proof of the one-more man-in-the-middle security of
IDη′ [LHF] will be given in the full version [33]. In Sect. 6 we will provide an exam-
ple instantiation of our framework based on the standard SIS assumption. Finally,
Sect. 7 generalizes the ROS attack to our setting and proves that any attack on
it also implies an attack on the one-more unforgeability of BSη,ν,μ[LHF,H,G].

2 Preliminaries and Notation

Sets and Vectors. For n ∈ N, [n] denotes the set {1, . . . , n}. We use bold-
faced, lower case letters h to denote a vector of elements and denote the length
of h as |h|. For j ≥ 1, we write hj to denote the j-th element of h and we
write h[j] to refer to the first j entries of h, i.e., the elements h1, ...,hj . We use
boldface, upper case letters A to denote matrices. We denote the i-th row of A
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as Ai and the j-th entry of Ai as Ai,j . We let Δ(X,Y ) indicate the statistical
distance between two distributions X,Y .

Sampling from Sets. We write h $← S to denote that the variable h is uni-
formly sampled from the finite set S. For 1 ≤ j ≤ Q and g ∈ Sj−1, we write
h′ $← SQ|g to denote that the vector h′ is uniformly sampled from SQ, condi-
tioned on h′

[j−1] = g. This sampling process can be implemented by copying
vector g into the first j−1 entries of h′ and next sampling the remaining Q−j+1
entries of h, (i.e., h′

j , . . . ,h
′
Q

$← SQ−j+1).

Algorithms. We use uppercase, serif-free letters A,B to denote algorithms.
Unless otherwise stated, algorithms are probabilistic and we write (y1, . . .) $←
A(x1, . . .) to denote that A returns (y1, . . .) when run on input (x1, . . .). We
write AB to denote that A has oracle access to B during its execution. To make
the randomness ω of an algorithm A on input x explicit, we write A(x;ω). Note
that in this notation, A is deterministic. For a randomised algorithm A, we use
the notation y ∈ A(x) to denote that y is a possible output of A on input x.

Security Games. We use standard code-based security games [11]. A game G
is a probability experiment in which an adversary A interacts with an implicit
challenger that answers oracle queries issued by A. G has one main procedure and
an arbitrary amount of additional oracle procedures which describe how these
oracle queries are answered. To distinguish game-related oracle procedures from
algorithmic procedures more clearly, we denote the former using monospaced
font, e.g., Oracle. We denote the (binary) output b of game G between a chal-
lenger and an adversary A as GA ⇒ b. A is said to win G if GA ⇒ 1. Unless
otherwise stated, the randomness in the probability term Pr[GA ⇒ 1] is over all
the random coins in game G.

Algebra. We let ⊕ denote the bitwise XOR operation. A module is specified
by two sets S and M, where S is a ring with multiplicative identity element 1S
and 〈M,+, 0〉 is an additive Abelian group and a mapping · : S × M → M,
s.t. for all r, s ∈ S and x, y ∈ M we have (i) r · (x + y) = r · x + r · y; (ii)
(r + s) · x = r · x + s · x; (iii) (rs) · x = r · (s · x); and (iv) 1S · x = x.

Security Notions. We formalize all security notions relative to some fixed
parameters par . This streamlines the exposition considerably. In doing so, we
consider a non-uniform notion of security, as the RSIS problem is not hard
for fixed par , but only for par drawn (uniformly) at random in the security
experiment. This is comparable to considerations as in [55]. However, we remark
that using the splitting lemma our theorems can easily be made to work in a
setting where par is indeed chosen at random along with the remaining (random)
parts.

3 Linear Hash Functions

In this section we define linear hash function families with correctness error
which are a generalization of linear (hash) function families with perfect correct-
ness [5,32].
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Syntax. A linear hash function family LHF is a tuple of algorithms (PGen,F).
On input the security parameter, the randomized algorithm PGen returns some
parameters par , which implicitly define the sets

S = S(par), D = D(par), and R = R(par),

where S is a set of scalars such that D and R are modules over S. The parameters
par also define 9 filter sets

Sxxx ⊆ S (xxx ∈ {β, c, c′}) and Dyyy ⊆ D (yyy ∈ {sk , r, s, s′, α}).
Throughout the paper, we will assume that par is fixed and implicitly given to
all algorithms. For linear hash function families with perfect correctness [32], the
filter sets are trivial, i.e., Sxxx = S and Dyyy = D.
Algorithm F(par , ·) implements a mapping from D to R. To simplify our presen-
tation, we will omit par from F’s input from now on. F(·) is required to be a
module homomorphism, meaning that for any x, y ∈ D and s ∈ S:

F(s · x + y) = s · F(x) + F(y) . (1)

We now define the technical conditions of torsion-freeness, regularity, enclosed-
ness, and smoothness of LHF that will be useful for proving correctness and
security of blind signatures constructed from LHF.

Torsion-Freeness and Regularity. We say that LHF has a torsion-free ele-
ment from the kernel if for all par generated with PGen, there exist z∗ ∈ D \ {0}
such that (i) F(z∗) = 0; and (ii) for all c1, c2 ∈ Sc satisfying (c1 − c2) · z∗ = 0 we
have c1 − c2 = 0. Note that the existence of such an element implies that F is a
many-to-one mapping.

We call LHF (ε,Q′)-regular, if for all par generated with PGen, there exist sets
D′

sk ,D′
r and a torsion-free element from the kernel z∗ s.t.

|D′
sk|

|Dsk| ·
( |D′

r|
|Dr|

)Q′

≥ 1 − ε/4,

and where
D′

sk := {sk ∈ Dsk : sk + z∗ ∈ Dsk}
and

D′
r := {r ∈ Dr : ∀c ∈ Sc, r + cz∗ ∈ Dr}.

Similar to the work of Hauck et al. [32], our proof of one-more unforgeability
uses torsion-freeness and regularity to argue that a transcript of the scheme with
a secret key sk can be preserved when switching to a different (valid) secret key
sk ′ := sk + z∗, with high probability.

Enclosedness Error. We say that LHF has enclosedness errors (δ1, δ2, δ3) if
for all par ∈ PGen(1κ), c′ ∈ Sc′ , c ∈ Sc, s ∈ Ds, sk ∈ Dsk ,

Pr
β

$←Sβ

[β + c′ �∈ Sc] < δ1, Pr
r

$←Dr

[c · sk + r �∈ Ds] < δ2, and Pr
α

$←Dα

[α + s �∈ Ds′ ] < δ3.
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The enclosedness error of LHF is directly linked to the correctness error of our
schemes. Intuitively, the smaller this error, the easier it is to get a scheme which
almost always works correctly.

Smoothness. We say that LHF is smooth if the following conditions hold for all
par ∈ PGen(1κ):

(S1) For all s ∈ Ds and s′ ∈ Ds′ , we have ‖s′ − s‖∞ ∈ Dα

(S2) For all s1, s2 ∈ Ds and random variables α∗ $← {α ∈ Dα | α + s1 ∈ Ds′},
α̂ $← {α ∈ Dα | α+s2 ∈ Ds′} we have that α̂+s2 and α∗+s1 are identically
distributed.

(S3) For all s1, s2 ∈ Ds and random variables α∗ $← {α ∈ Dα | α + s1 �∈ Ds′},
α̂ $← {α ∈ Dα | α+s2 �∈ Ds′} we have that α̂+s2 and α∗+s1 are identically
distributed.

(S4) For all c′ ∈ Sc′ and c ∈ Sc, we have ‖c − c′‖∞ ∈ Sβ .
(S5) For all c′

1, c
′
2 ∈ Sc′ and random variables β∗ $← {β ∈ Sβ | β + c′

1 ∈ Sc},
β̂ $← {β ∈ Sβ | β + c′

2 ∈ Sc} we have that β̂ + c′
2 and β∗ + c′

1 are identically
distributed.

(S6) For all c′
1, c

′
2 ∈ Sc′ and random variables β∗ $← {β ∈ Sβ | β + c′

1 �∈ Sc},
β̂ $← {β ∈ Sβ | β + c′

2 �∈ Sc} we have that β̂ + c′
2 and β∗ + c′

1 are identically
distributed.

Smoothness of LHF will be a crucial tool for proving blindness of our schemes.
Intuitively, smoothness allows to ‘match’ any message/signature pair (mi, σi)
that was generated via the ith run of the scheme to the transcript Tj of any run
j ∈ {1, ..., i, ...}.

Collision Resistance. LHF is (ε, t)-CR relative to par ∈ PGen(1κ) if for all
adversaries running in time at most t,

Pr
(x1,x2)

$←A(par)

[(F(x1) = F(x2)) ∧ (x1 �= x2)] ≤ ε.

4 Canonical Blind Signature Schemes

In this section, we recall syntax and security of a special type of blind signature
scheme, called canonical three-move blind signature scheme [32]. In Sect. 4.1, we
first recall the syntax of such schemes and give the proper security definitions.
Next, in Sect. 4.3, we give a generic construction that gives a canonical three-
move blind signature scheme BS[LHF] from any linear hash function family LHF.

4.1 Definitions

Definition 1 (Canonical Three-Move Blind Signature Scheme). A
canonical three-move blind signature scheme BS is a tuple of algorithms BS =
(PGen,KG,S,U,BSVer).
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– The randomised parameter generation algorithm PGen returns system param-
eters par .

– The randomised key generation algorithm KG takes as input system param-
eters par and outputs a public key/secret key pair (pk , sk). We assume that
pk defines a challenge set C := C(pk) and that pk is known to all parties.

– The signer algorithm S is split into two algorithms, i.e., S := (S1,S2), where:
• The randomised algorithm S1 takes as input the secret key sk and returns

a commitment R and the signer’s state stS .
• The deterministic algorithm S2 takes as input the signer’s state stS , a

secret key sk , a commitment R, and a challenge c ∈ C. It returns the
response s.

– The user algorithm U is split into two algorithms, i.e., U := (U1,U2), where:
• The randomised algorithm U1 takes as input the public key pk , a commit-

ment R, and a message m. It returns the user’s state stU and a challenge
c ∈ C.

• The deterministic algorithm U2 takes as input the public key pk , a com-
mitment R, a challenge c ∈ C, a response s, a message m, and the user’s
state stU . It returns a signature σ where, possibly, σ = ⊥.

– The deterministic verification algorithm BSVer takes as input the public key
pk , a signature σ, and a message m. It outputs 1 (accept) or 0 (reject). We
make the convention that BSVer always outputs 0 on input a signature σ = ⊥.

We note that modeling S2 and U2 as deterministic algorithms is w.l.o.g. since
randomness can be transmitted through the states.

Consider an interaction (R, c, s, σ) ← 〈S(sk),U(pk ,m)〉 between signer S and
user U, as defined in Fig. 1. We say that BS = (PGen,KG,S,U,BSVer) has correct-
ness error δ, if for all messages m ∈ {0, 1}∗, par ∈ PGen(1κ), (pk , sk) ∈ KG(par),

Pr
(a,σ)

$←〈S(sk),U(pk ,m)〉

[
BSVer(pk ,m, σ) �= 1

] ≤ δ .

Fig. 1. Interaction (R, c, s, σ) ← 〈S(sk),U(pk , m)〉 between signer S and user U.

SecurityNotions. Security of a Canonical Three-Move Blind Signature Scheme
BS is captured by two security notions: blindness and one-more unforgeability.

Intuitively, blindness ensures that a signer S that issues signatures on two
messages (m0,m1) of its own choice to a user U, can not tell in what order it
issues them. In particular, S is given both resulting signatures σ0,σ1, and gets
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Fig. 2. Games defining BlindBS,par for a canonical three-move blind signature scheme
BS, with the convention that adversary A makes exactly one query to Init at the
beginning of its execution.

to keep the transcripts of both interactions with U. We remark that we consider
for this work the weaker notion of blindness in the honest signer model [34] as
compared to the malicious signer model [23]. The difference between these two
models is that in the honest signer model, the adversary obtains the keys from the
experiment, whereas in the malicious signer model, the adversary gets to choose
its own keys. Also, our notion does not capture security of blind signatures under
aborts, where S or U may stop the interactive signing protocol prematurely [17,
59]. The work of [24] proposes generic transformation to achieve such a stronger
notion. We formalize the notion of blindness (for a canonical three-move blind
signature scheme BS and for parameters par ∈ PGen) via game BlindBS,par

depicted in Fig. 2. In BlindBS,par , the game takes the role of the user and A takes
the role of the signer. First, the game selects a random bit b which determines
the order of adversarially chosen messages in both transcripts. It then runs A
on a freshly generated key pair (pk , sk). A is given access to the three oracles
Init, U1 and U2. By convention, A first has to query oracle Init. Subsequently,
A may open at most two sessions. For each of these two sessions, A obtains
corresponding transcripts T1 = (R1, c1, s1) and T2 = (R2, c2, s2). The game
uses mb and m1−b to generate the transcripts T1 and T2, respectively. If A
honestly completes both sessions with the game, it obtains signatures σb and
σ1−b on messages mb and m1−b. Note that A obtains σb and σ1−b by calling U2
twice. More precisely, the first call to U2 closes the first session and the second
call closes the second session. Once both sessions are closed, the game checks
if A acted honestly in both of them and if so, returns the signatures (σb,σ1−b).
If instead A has behaved dishonestly and, as a result, σb = ⊥ or σ1−b = ⊥
at the time of closing the second session, U2 returns (⊥,⊥). At the end of the
experiment, A has to guess the bit b. We define the advantage of adversary A in
BlindBS,par as AdvBlind

BS,par (A) :=
∣∣∣Pr[BlindA

BS,par ⇒ 1] − 1
2

∣∣∣.
Definition 2 (Perfect Blindness). Let BS be a canonical three-move blind
signature scheme. We say that BS is perfectly blind relative to par ∈ PGen(1κ)
if for all adversaries A, AdvBlind

BS,par (A) = 0.
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OMUF of Blind Signature Schemes. Intuitively, one-more unforgeability
ensures that a user U can not produce even a single signature more than it should
be able to learn from its interactions with the signer S. Our notion does not cover
the stronger notion of honest-user unforgeability but a generic transformation
from [59] can be applied to achieve it. We formalize the notion of one-more
unforgeability (for a canonical three-move blind signature scheme BS and for
all parameter par ∈ PGen) via game OMUFBS,par as depicted in Fig. 3. In
OMUFBS,par , an adversary A in the role of U is run on input the public key of
the signer S and subsequently interacts with oracles that imitate the behaviour
of S. A call to S1 returns a new session identifier sid and sets flag sesssid to open.
A call to S2(sid , ·) with the same sid sets the flag sesssid to closed. The closed
sessions result in (at most) QS2 transcripts (Rk, ck, sk), where the challenges ck

are chosen by A. (The remaining (at most) QS1 abandoned sessions are of the
form (Rk,⊥,⊥) and hence do not contain a complete transcript.) A wins the
experiment, if it is able to produce 
(A) ≥ QS2(A) + 1 signatures (on distinct
messages) after having closed QS2(A) ≤ QS2 signer sessions (from which it should
be able to compute QS2(A) signatures). We define the advantage of adversary
A in OMUFBS,par as AdvOMUF

BS,par (A) := Pr[OMUFA
BS,par ⇒ 1] and denote its

running time as TimeOMUF
BS,par (A).

Fig. 3. Game OMUFBS,par with adversary A.

We remark that the definition of OMUF security is only meaningful for blind
signature schemes with negligible correctness error: If the scheme has noticeable
correctness error, then even an honest adversary would not be able to produce
even 
 valid signatures after having interacted with 
 signing sessions. Thus an
adversary may learn less than 
 signatures, but still has to come up with 
 + 1
signatures. This results in a significant weakening of the definition.
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Definition 3 (One-More Unforgeability). Let BS be a canonical three-move
blind signature scheme. We say that BS is (ε, t,QS1 , QS2)-OMUF relative to
par ∈ PGen if for all adversaries A satisfying

TimeOMUF
BS,par (A) ≤ t, QS1(A) ≤ QS1 , QS2(A) ≤ QS2 , (2)

we have AdvOMUF
BS,par (A) ≤ ε.

4.2 Hash Trees

In this section we define hash trees to build trees of commitments similarly as
in [4]. The main advantage of this technique is that it significantly reduces the
probability of abort in the signing protocol by performing a rejection sampling
[38] multiple times and representing each trial as a leaf of the hash tree.

Let G : {0, 1}∗ �→ {0, 1}2λ be a hash function. A hash tree HT[G] associated to
G is the tuple of three deterministic algorithms (HashTree,BuildAuth,RootCalc)
from Fig. 4. Algorithm HashTree takes as input a list of commitments v and
returns a sequence of nodes tree spanning the tree and the root root of the tree;
Algorithm BuildAuth takes as input a list of indices as well as a tree and outputs
an authentication path auth; Algorithm RootCalc takes as input a node and an
authentication path auth and returns the root root of a hash tree.

Note that for all nodes (v1, . . . ,v	) and for all indices m ∈ [
], we have
RootCalc(vm, auth) = root, where (root, tree) ← HashTree(v1, . . . ,v	) and
auth ← BuildAuth(m, tree).

Fig. 4. Description of the algorithms for HT[G] = (HashTree,BuildAuth,RootCalc) asso-
ciated to G.

4.3 Blind Signature Schemes from Linear Hash Function Families

Let LHF be a linear hash function family and H : {0, 1}∗ → C, G : {0, 1}∗ →
{0, 1}2λ be hash functions where C = Sc′ . Let η, ν, μ ∈ N be repetition parame-
ters. In the following we define mappings which convert a tuple of integers to an
unique larger integer and vice versa. We define 2Intη,ν,μ : [η] × [ν] × [μ] → [ηνμ]
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as the mapping (i, j, k) �→ i+η ·(j−1)+ην ·(k−1), such that 2Intη,ν,μ(1, 1, 1) = 1
and 2Intη,ν,μ(η, ν, μ) = ηνμ.

Figure 5 shows how to construct a canonical three-move blind signature
scheme BSη,ν,μ[LHF,G,H], where the hashtree algorithms HT[G] = (HashTree,
BuildAuth,RootCalc) are defined in Fig. 4.

Fig. 5. Construction of the canonical three-move blind signature scheme BS :=
BSη,ν,μ[LHF,G,H] from a linear hash function family LHF = (PGen,F), where BS :=
(PGen,KG, S = (S1, S2),U = (U1,U2),BSVer) and challenge set C := Sc′ .

We begin by proving correctness of BSη,ν,μ[LHF,G,H].

Lemma 1 (Correctness). Let LHF be a linear hash function family, let
G : {0, 1}∗ → {0, 1}2λ and H : {0, 1}∗ → C be hash functions and HT[G] be a hash
tree and BS := BSη,ν,μ[LHF,G,H]. If LHF has enclosedness errors (δ1, δ2, δ3) then
BS has correctness error δμ

1 + δη
2 + δν

3 .

Proof. Consider an execution of BS defined in Fig. 5. From the definition of
enclosedness errors (δ1, δ2, δ3) it follows directly that the probability that during
the execution lines 13, 31 and 43 abort are δη

2 , δμ
1 and δν

3 , respectively.

We continue with a statement about OMUF security of BSη,ν,μ[LHF,G,H]. Its
proof will be given in Sect. 5.
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Theorem 1 (OMUF). Let LHF = (PGen,F) be a (ε, ηνμQS1)-regular linear
hash function family with a torsion-free element from the kernel, let G : {0, 1}∗ →
{0, 1}2λ and H : {0, 1}∗ → C be random oracles. If LHF is (ε′, t′)-CR relative
to par ∈ PGen(1κ), then BSη,ν,μ[LHF,G,H] is (ε, t,QS1 , QS2 , QG, QH)-OMUF
relative to par in the random oracle model, where

t′ = 2t, ε′ = O

((
ε2 − Q2

G + QG

2λ
− (QVQP1)

QP2+1

|C|
)2 1

Q2
VQ3

P2

)
,

QG and QH are the number of queries to random oracles G and H.

Theorem 2 (Blindness). Let LHF = (PGen,F) be a smooth linear hash func-
tion family and let G : {0, 1}∗ → {0, 1}2λ and H : {0, 1}∗ → C be random oracles.
Then BSη,ν,μ[LHF,G,H] is perfectly blind relative to all par ∈ PGen(1κ).

Let BS := BSη,ν,μ[LHF,G,H]. Intuitively the goal of an adversary in the
BlindBS,par experiment is as follows. The adversary interacts twice with the
experiment and thus creates two transcripts. At the end of the interaction the
adversary learns two message/signature pairs and tries to unblind which mes-
sage/signature pair was created in which session. Intuitively to prevent the adver-
sary from doing so, any combination of a transcript and a message/signature pair
can be explained by some randomness (of the user) which (i) could have been
used to create both the transcript and the message/signature pair and (ii) is
indistinguishable from uniformly drawn randomness.

Proof. Fix two messages m0,m1 and let A be an adversary in the BlindBS,par

experiment (cf. Fig. 2).
Given the output of an interaction (R1, . . . ,Rη, c, s,m, σ) $← 〈S(sk),U(pk)〉

we define a transcript T := (R1, . . . ,Rη, c, s). Consider A’s view in an execution
of BlindBS,par , which consists of the two transcripts (T1,T2) and the two signa-
tures (σ0,σ1), where signature σb corresponds to transcript T1, signature σ1−b

corresponds to transcript T2, and b is the secret choice bit. Note that it is w.l.o.g.
that σ0,σ1 �= ⊥. Now, the theorem is implied by the following two claims.

(B1) For each of the four combinations (Tsid ,σi), where (sid , i) ∈ {1, 2}×{0, 1},
there exists randomness rndU sid,i := (αsid,i,1 . . . ,αsid,i,ν ,βsid,i,1, . . . ,
βsid,i,μ,γsid,i) of the user algorithm which results in the tuple (Tsid ,σi).

(B2) The real randomness (rndU 1,b, rndU 2,1−b) used in BlindBS,par is iden-
tically distributed to the “fake” randomness (rndU 1,1−b, rndU 2,b) .

To prove condition (B1) we argue as follows. Let 2Int−1 : [ηνμ] → [η] × [ν] × [μ]
be the inverse of 2Intη,ν,μ, defined in Sect. 4.3. Let (c′

i, s
′
i, authi) ← σi. Let

(ii, ji,ki) ← 2Int−1(ni), where (ni,ai,1, . . . ,ai,h) ← authi. Define αsid,i,ki
:=

s′
ki

− ssid , βsid,i,ji
:= csid − c′

ji
and for all 
 ∈ [ν] \ {ki}, αsid,i,	

$← {α ∈
Dα | α + ssid �∈ Ds′} for all 
 ∈ [μ] \ {ji}, βsid,i,	

$← {β ∈ Sβ | β + csid �∈
Sc}. Set isid ∈ [η] to be the smallest value s.t. F(ssid) = csid · pk + Rsid,isid .
Define γsid,i ← isid ⊕ ii. By smoothness conditions (S1) and (S4) it follows that
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αsid,i,ki
∈ Dα and βsid,i,ji

∈ Sβ . Clearly, for all 
 ∈ [ν] \ {ki}, αsid,i,	 ∈ Dα

for all 
 ∈ [μ] \ {ji}, βsid,i,	 ∈ Sβ . Clearly, γsid,i ∈ [η]. Let R′
sid,i,ii,ji,ki

=
Rsid,ii

+βsid,i,jj
·pk+F(αsid,i,ki

). Let rootsid,i ← RootCalc(R′
sid,i,ii,ji,ki

, authi).
To show that c′

i = H(rootsid,i,mi) we continue as follows. Since Tsid is a valid
transcript, we have F(ssid) = Rsid,ii

+ csid · pk . Therefore,

Rsid,ii
+ βsid,i,ji

· pk + F(αsid,i,ki
) = Rsid,ii

+ (csid − c′
i) · pk + F(s′

i − ssid )

= Rsid,ii
+ csid · pk − F(ssid ) + F(s′

i) − c′
i · pk

= F(s′
i) − c′

i · pk .

Since σi is a valid signature we have c′
i = H(RootCalc(F(s′

i)−c′
i·pk , authi),mi) =

H(rootsid,i,mi).
To show condition (B2) we continue as follows. By smoothness condition (S2)

if follows that α1,b,kb
and α2,1−b,k1−b

have the same distribution as α1,1−b,k1−b

and α2,b,kb
. By smoothness condition (S5) it follows that β1,b,jb

and β2,1−b,j1−b

have the same distribution as β1,1−b,j1−b
and β2,b,jb

. By smoothness condi-
tion (S3) for all 
 ∈ [ν] \ {kb,k1−b}, α1,b,	 and α1,1−b,	 have the same distribution
as α2,b,	 and α2,1−b,	. By smoothness condition (S6) for all 
 ∈ [μ] \ {jb, j1−b},
β1,b,	 and β1,1−b,	 have the same distribution as β2,b,	 and β2,1−b,	. Clearly, all
four γ1,0, γ1,1, γ2,0 and γ2,1 have the same distribution.

5 Proof of One-More Unforgeability

In this section, we will make a first step to the proof of Theorem 1, the one-
more unforgeability of BSη,ν,μ[LHF,H,G] defined in Fig. 5. To this end we first
define canonical identification schemes and prove in Theorem 3 that one-more
unforgeability of BSη,ν,μ[LHF,H,G] is implied by one-more man-in-the-middle
security of the underlying identification scheme IDη′ [LHF]. Next, in Theorem 4
we will state that collision-resistance of LHF implies one-more man-in-the-middle
security of the canonical identification scheme IDη′ [LHF].

5.1 Canonical Identification Schemes

We recall syntax of canonical (three-move) identification schemes [1].

Definition 4 (Canonical Three-Move Identification Scheme). A canoni-
cal three-move identification scheme is a tuple of algorithms ID = (PGen,KG,P =
(P1,P2), IDVer).

– The randomised parameter generation algorithm PGen returns system param-
eters par .

– The randomised key generation algorithm KG takes as input system param-
eters par and returns a public/secret key pair (pk , sk). We assume that pk
implicitly defines a challenge space C := C(pk) and that pk is distributed (and
hence known) to all parties.

– The prover algorithm P is split into two algorithms, i.e., P := (P1,P2), where:
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• The randomised algorithm P1 takes as input a secret key sk and returns
a commitment R and a state st .

• The deterministic algorithm P2 takes as input a secret key sk , a commit-
ment R, a challenge c, and a state st . It returns a response s.

– The deterministic verification algorithm IDVer takes as input a public key pk ,
a commitment R, a challenge c, and a response s. It returns 1 (accept) or 0
(reject).

Figure 6 shows the interaction between algorithms P1,P2, and IDVer. Since we
will use ID only for the purpose of simplifying our main security statement, we
refrain from giving the standard correctness definition.

Fig. 6. Interaction (R, c, s) ← 〈P(sk), IDVer(pk)〉 of a canonical three-move identifica-
tion scheme ID = (PGen,KG,P1,P2, IDVer).

We now recall One-More Man-in-the-Middle security for canonical identi-
fication schemes [32]. The One-More Man-in-the-Middle (OMMIM) security
experiment for an identification scheme ID and an adversary A is defined in Fig. 7.
Adversary A simultaneously plays against a prover (modeled through oracles P1
and P2) and a verifier (modeled through oracles V1 and V2). Session identifiers
pSid and vSid are used to model an interaction with the prover and the verifier,
respectively. A call to P1 returns a new prover session identifier pSid and sets
flag pSesspSid to open. A call to P2(pSid , ·) with the same pSid sets the flag
pSesspSid to closed. Similarly, a call to V1 returns a new verifier session iden-
tifier vSid and sets flag vSessvSid to open. A call to V2(vSid , ·) with the same
vSid sets the flag vSessvSid to closed. A closed verifier session vSid is success-
ful if the oracle V2(vSid , ·) returns 1. Lines 04–07 define several internal random
variables for later reference. Variable QP2(A) counts the number of closed prover
sessions and QP1(A) counts the number of abandoned sessions (i.e., sessions
that were opened but never closed). Most importantly, variable 
(A) counts the
number of successful verifier sessions and variable QP2(A) counts the number of
closed sessions with the prover. Adversary A wins the OMMIMID,par game, if

(A) ≥ QP2(A)+1, i.e., if A convinces the verifier in at least one more successful
verifier sessions than there exist closed sessions with the prover. A’s advantage in
OMMIMID,par is defined as AdvOMMIM

ID,par (A) := Pr[OMMIMA
ID,par ⇒ 1] and

we denote its running time as TimeOMMIM
ID,par (A).

Definition 5 (One-more man-in-the-middle security). We say that ID is
(ε, t,QV, QP1 , QP2)-OMMIM relative to par ∈ PGen(1κ) if for all adversaries
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A satisfying TimeOMMIM
ID,par (A) ≤ t, QV(A) ≤ QV, QP2(A) ≤ QP2 , and QP1(A) ≤

QP1 , we have AdvOMMIM
ID,par (A) ≤ ε.

Fig. 7. The One-More Man-in-the-Middle security game OMMIMA
ID,par

We remark that security against impersonation under active and passive
attacks [1] is a weaker notion than OMMIM security, whereas man-in-the-middle
security [10] is stronger.

5.2 Identification Schemes from Linear Hash Function Families

Let LHF be a linear hash function family and η′ be a repetition parameter.
Consider the canonical three-move blind signature scheme BSη,ν,μ[LHF,H,G] =
(PGen,KG,S = (S1,S2),U = (U1,U2),BSVer) from Fig. 5. BS directly implies a
canonical identification scheme IDη′ [LHF] = (PGen,KG,P, IDVer) with challenge
set C := Sc′ , where prover P plays the role of the signer S, i.e., P = (P1,P2) :=
(S1,S2) and algorithm IDVer is defined as follows.

Algorithm IDVer(pk ,R1, . . . ,Rη′ , c, s) :
01 For i ∈ [η′] :
02 If (Ri = F(s)− c · pk)∧ (s ∈ Ds) :
03 Return 1
04 Return 0
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The identification scheme IDη′ [LHF] can be seen as the projection of
BSη,ν,μ[LHF,H,G] to the signer, i.e., all user algorithms (involving the techniques
to achieve blindness) are removed. This makes it conceptually much simpler.

We will now show that OMUF security of BSη,ν,μ[LHF,G,H] is implied (in
the ROM) by OMMIM security of IDη′ [LHF], where η′ = ηνμ.

Theorem 3. Let LHF be a linear hash function family, let G : {0, 1}∗ → {0, 1}2λ

and H : {0, 1}∗ → C be random oracles and let ID := IDη′ [LHF],BS :=
BSη,ν,μ[LHF,G,H]. If ID is (ε′, t′, QV, QP1 , QP2)-OMMIM relative to par ∈
PGen(1κ) then BS is (ε, t,QS1 , QS2 , QG, QH)-OMUF relative to par in the ran-
dom oracle model, where

t′ ≈ t, ε′ = ε − Q2
G

22λ
− QG

22λ
, η′ = ηνμ, QV = QH, QP1 = QS1 , QP2 = QS2 ,

QG and QH are the number of queries to random oracles G and H;

Proof. The technical proof of this theorem is comparable to the proof given
in [32] and will be given in the full version [33].

We will now state that IDη′ [LHF] is OMMIM secure.

Theorem 4. Let LHF be a (ε, η′QP1)-regular linear hash function family with
a torsion-free element from the kernel. If LHF is (ε′, t′)-CR relative to par ∈
PGen(1κ) then IDη′ [LHF] is (ε, t,QV, QP1 , QP2)-OMMIM relative to par , where

t′ = 2t, ε′ = O

((
ε2 − (QVQP1)

QP2+1

|C|
)2 1

Q2
VQ3

P2

)
.

The technical proof of this theorem will be given in the full version [33].

6 Instantiation from Lattices

We now give a lattice-based example of a LHF with noticeable correctness error
which is derived from Lyubashevsky’s identification scheme [38] and has also
been implicitly used in [56].

Notation. Let R and Rq denote the rings Z[X]/〈Xn +1〉 and Zq[X]/〈Xn +1〉,
for integer n = 2r, where r ∈ Z

+ and q is an odd integer. Polynomials in Rq have
degree at most n − 1 and coefficients in range [−(q − 1)/2, (q − 1)/2]. For such
coefficients we abuse the notation mod to denote with x′ = x mod q, the unique
element x′ s.t. for any integer k: x′ = x + kq and x′ ∈ [−(q − 1)/2, (q − 1)/2].
Bold lower-case letters denote elements in Rq and bold lower-case letters with
a hat denote vectors of vectors with coefficients in ring Rq. To measure the
size of elements x = x0 + x1X

1 + · · · + xn−1X
n−1 in ring Rq we define norm

p∞ as ‖x‖∞ := max
i

|xi mod q|. In rings R and Rq, ‖xi‖∞ represents |xi| and

|xi mod q|, respectively. Similarly, for x̂ = (x0, . . . ,xk−1), we define norm p∞ as
‖x̂‖∞ := max

i
‖xi‖∞. Further we define the p1 norm as ‖x‖1 :=

∑
i |xi| and p2
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norm as ‖x‖2 := (
∑

i |xi|2)1/2. It is not hard to see that for any two polynomials
e, f ∈ Rq,

‖e · f‖∞ ≤ ‖e‖∞ ‖f‖1 ≤ n ‖e‖∞ ‖f‖∞ . (3)

We now recall the R-SISq,n,m,d problem over Rq [40,48].

Definition 6 (R-SISq,n,m,d). We say that R-SISq,n,m,d is (ε, t)-hard if for all
adversaries A running in time at most t, the probability that A(â) (where â $← Rm

q )
outputs a non-zero ẑ ∈ Rm

q s.t.
∑m

i=1 ai · zi = 0 and ‖ẑ‖∞ ≤ d, is bounded by ε.
Similarly, R-SISq,n,m,d is (ε, t)-hard relative to â ∈ Rm

q if for all adversaries
A running in time at most t, the probability that A outputs a non-zero ẑ ∈ Rm

q

s.t.
∑m

i=1 ai · zi = 0 and ‖ẑ‖∞ ≤ d, is bounded by ε.

Let us first estimate the concrete hardness of solving the R-SISq,n,m,d problem
for uniformly random â which is equivalent to finding a short vector in the related
lattice

Λ⊥
q (â) = {ẑ ∈ Rm

q :
m∑

i=1

ai · zi = 0}.

Gama and Nguyen [27] classified algorithms for finding short vectors in random
lattices in terms of the root Hermite factor δ. Such algorithms compute a vector
of length δn times the shortest vector of the lattice. Whereas δ = 1.01 can be
achieved, it is conjectured that a factor of δ = 1.007 may not be achievable [21].

We use the following estimation from [38, Eqn. 3] to estimate the length of
the shortest vector (in p∞ norm) which can be efficiently found in lattice Λ⊥

q (â)
as

svδ(n, q) := min{q, 22
√

n log(q) log(δ)(n log(q)/ log(δ))−1/4}.

We make the following conjecture about R-SISq,n,m,d with δ = 1.005.

Conjecture 1. If d < sv1.005(n, q) then no efficient algorithm can solveR-SISq,n,m,d.

We note that security of our blind signature scheme depends on the hardness of
R-SISq,n,m,d relative to fixed â. However, as discussed in Sect. 2, our theorems
can be easily re-written to work in a setting where â $← Rm

q is chosen uniformly
at random.

Linear Hash Function. We select the parameters according to Fig. 8. Firstly,
variables q, n specify the ring Rq := Zq[X]/〈Xn + 1〉, where n is a power of two.
Define the sets

S := Rq,D := Bq(d)m, and R := Bq(d),

where Bq(w) is defined as

Bq(w) := {s ∈ Rq : ‖s‖∞ ≤ w}.

Note that the size of the challenge set C = Sc′ is equal to 31024, hence 1/|C| is
negligible.

For ê, f̂ ∈ D and g ∈ S we define addition ê + f̂ := (e1 + f1, . . . , em +
fm), multiplication ê · f̂ := (e1f1, . . . , emfm), and scalar multiplication g · ê =
(ge1, . . . ,gem). This makes R and D modules over S.
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Algorithm PGen(1κ) returns a random element par = â $← Rm. Algorithm
F : D �→ R is defined for any ẑ ∈ D as,

F(ẑ) :=
m∑

i=1

ai · zi mod q .

Clearly, F is a module homomorphism since for every ŷ, ẑ ∈ D, c ∈ R:
F(ŷ + ẑ) = â(ŷ + ẑ) = âŷ + âẑ = F(ŷ) + F(ẑ) and F(ŷc) = â(y1c, . . . ,ymc) =
a1y1c + · · · + amymc = F(ŷ)c.

For xxx ∈ {β, c, c′} and yyy ∈ {sk , r, s, s′, α}, the filter sets are defined as

Sxxx := Bq(dxxx) ⊆ S, Dyyy := Bm
q (dyyy) ⊆ D.

Fig. 8. Definition of parameters for the lattice-based LHF.

To estimate the membership of sums and products of ê, f̂ ∈ D to specific
subsets of D we use the lemma proven by Rückert [56].

Lemma 2. Let k, da, db and γ be integers, s.t. db ≥ γknda. Then, for all â ∈
Bk

q (da),

Pr
b̂

$←Bk
q (db)

[∥∥∥â + b̂
∥∥∥

∞
≤ db − da

]
> e−1/γ − o(1) .
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Enclosedness Errors and Smoothness. First, we focus on calculating the
enclosedness errors of LHF based on parameters chosen in Fig. 8. Later on, we
also show that LHF is smooth.

Lemma 3. If dβ , dr, dα, dc, ds, ds′ are defined as in Fig. 8 and LHF is defined as
above, then LHF has enclosedness errors equal to:

(
1 − e−1/u + o(1), 1 − e−1/v + o(1), 1 − e−1/w + o(1)

)
.

Proof. The statement follows straightforwardly from Lemma 2 and the way we
picked dβ , dr, dα, dc, ds, ds′ . ��
In Fig. 8 we select u = v = w. Thus, we need choose appropriate μ, η, ν to make
sure that correctness error of our blind signature is negligible. Indeed, we simply
pick μ = η = ν such that

(1 − e−1/u + o(1))μ < 2−130.

Then by Lemma 1, BS[LHF] has correctness error at most 3 · 2−130 < 2−128.

Lemma 4. If ds and dc are defined as in Fig. 8, then LHF is smooth.

Proof. In the following we prove smoothness conditions (S1) and (S2). Condi-
tion (S3) can be proven analogously to (S2). Conditions (S4), (S5) and (S6) can
be proven analogously to (S1), (S2) and (S3), respectively.

Since dα = ds + ds′ , for all ŝ ∈ Ds and ŝ′ ∈ Ds′ , ‖ŝ′ − ŝ‖∞ ≤ ds′ + ds = dα

and therefore ŝ′ − ŝ ∈ Dα. This proves smoothness condition (S1).
To prove (S2), we fix ŝ1, ŝ2 ∈ Ds and define sets Dα1 := {α̂ ∈ Dα | α̂+ ŝ1 ∈

Ds′} and Dα2 := {α̂ ∈ Dα | α̂ + ŝ2 ∈ Ds′}. Note that for all ŝ1, ŝ2 ∈ Ds and
ŝ′ ∈ Ds′ there exist α̂1 ∈ Dα1 and α̂2 ∈ Dα2 s.t. α̂1 + ŝ1 = ŝ′ and α̂2 + ŝ2 = ŝ′.
So, |Dα1 | = |Dα2 | = |Ds′ |.

In the following, fix ŝ1, ŝ2 ∈ Ds and define the random variables α̂′ $← Dα2

and α̂∗ $← Dα1 . To prove smoothness condition (S2), it remains to show that

Δ(α̂′, α̂∗ + ŝ1 − ŝ2) = 0, (4)

We have

Δ(α̂′, α̂) =
1
2

∑
¯̂α 	∈Dα2

∣∣∣∣∣ Pr
α̂ ′ $←Dα2

[α̂′ = ¯̂α] − Pr
α̂∗ $←Dα1

[α̂∗ + ŝ1 = ¯̂α + ŝ2]

∣∣∣∣∣

=
1
2

∑
¯̂α∈Dα2

∣∣∣∣∣ Pr
α̂ ′ $←Dα2

[α̂′ = ¯̂α] − Pr
α̂∗ $←Dα1

[α̂∗ + ŝ1 = ¯̂α + ŝ2]

∣∣∣∣∣ . (5)

To show that (5) amounts to zero, we argue as follows. If ¯̂α �∈ Ds′ then clearly

Pr
α̂ ′ $←Dα2

[α̂′ = ¯̂α] = 0 = Pr
α̂∗ $←Dα1

[α̂∗ + ŝ1 = ¯̂α + ŝ2].
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Now, suppose ¯̂α ∈ Ds′ . Since α̂′ ∈ Dα2 and random variable α̂′ takes values
in Dα2 , the probability that random variable α̂′ takes value ¯̂α is 1

|Dα2 | = 1
|Ds′ | .

So, Pr
α̂ ′∈Dα2

[α̂′ = ¯̂α] = 1
|Ds′ | . Since ¯̂α ∈ Dα2 , ¯̂α+ ŝ2 ∈ Ds′ . Also α̂∗ ∈ Dα1 implies

α̂∗+ŝ1 ∈ Ds′ . So the probability that random variable α̂∗ fulfills α̂∗+ŝ1 = ¯̂α+ŝ2

is 1

|Dα1 | = 1
|Ds′ | . Therefore, Pr

α̂∗∈Dα1

[α̂∗ + ŝ1 = ¯̂α + ŝ2] = 1
|Ds′ | . This completes

the proof.

Torsion Free Elements from the Kernel. We first observe that we only
need to find a non-zero ẑ∗ such that F(ẑ∗) = 0. Indeed, if dc is small enough then
by selecting appropriate prime q we can apply the main result of Lyubashevsky
and Seiler [41].

Lemma 5 ([41] Corollary 1.2). Let n ≥ ι > 1 be powers of 2 and q ≡ 2ι + 1
(mod 4ι) be a prime. Then Xn+1 factors into d irreducible polynomials Xn/ι−rj

modulo q and any y ∈ Rq \ {0} that satisfies

‖y‖∞ <
1√
ι

· q1/ι or ‖y‖2 < q1/ι

is invertible in Rq.

Hence, pick dc < 1
2
√

ι
·q1/ι. Then, for c1, c2 ∈ Sc, (c1−c2)ẑ∗ = 0 =⇒ c1 = c2

since otherwise c1−c2 is invertible and thus ẑ∗ = 0. Therefore, ẑ∗ is a torsion-free
element from the kernel.

Many papers investigate non-existence of a short vector in random module
lattices e.g. [36,43]. However, here we are interested in the existence. Concretely,
we want to make sure there exists a ẑ∗ from the kernel with infinity norm at most
δ < q/2. Consider the set of vectors Bδ ⊂ Rm

q of polynomials with coefficients
between 0 and δ. Clearly, for ŷ1, ŷ2 ∈ Bδ: ‖ŷ1 − ŷ2‖∞ ≤ δ < q/2. If we select δ
such that |Bδ| = (δ+1)nm > qn then by the pigeonhole principle, there exist two
distinct ŷ1, ŷ2 ∈ Bδ such that F(ŷ1) = F(ŷ2). Hence, we can set ẑ∗ = ŷ1 − ŷ2.

Collision Resistance. To estimate the hardness of finding collisions in LHF
we state the following simple lemma.

Lemma 6. If R-SISq,n,m,2d is (ε, t)-hard relative to â ∈ Rm
q then LHF is (ε, t)-

CR relative to par ∈ PGen, where par contains all the values defined in Fig. 8
along with â.

Proof. Adversary A returns distinct values x̂1, x̂2 ∈ D after being called on
parameters par . Since F(x̂1) = F(x̂2) and since F is a module homomorphism,
F(x̂2 − x̂1) = F(x̂2) − F(x̂1) = 0. Further, ‖x̂2 − x̂1‖∞ ≤ 2d. So x̂2 − x̂1 is a
solution to the R-SISq,n,m,2d problem relative to â.

As we described in the previous section, adversary A, which can win the OMUF
game, manages to extract χ̂1, χ̂2 so that F(χ̂1 − χ̂2) = 0. The norm of χ̂1 (and
similarly for χ̂2) can be simply bounded by:

‖χ̂1‖∞ ≤ ds′ + ndc′dsk < 2ds′ .
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Thus, we set d = 2ds′ . With parameters defined in Fig. 8, d ≈ 2233 and
1
2 sv1.005(n, q) ≈ 2235. Therefore, we get ‖χ̂1 − χ̂2‖∞ < 2d < sv1.005(n, q).

Regularity. We now prove that by selecting sizes dsk and dr as in Fig. 8, our
LHF is (ε,Q′)-regular where ε = 2−128 and Q′ = 7μην. Note that we only allow
seven signing queries due to a potential lattice variant of the ROS attack (see
Sect. 7).

Lemma 7. Denote ε = 2−128 and Q′ = 7μην. Then, for our selection of dsk , dr,
the LHF is (ε,Q′)-regular, i.e.

|D′
sk |

|Dsk | ·
( |D′

r|
|Dr|

)Q′

≥ 1 − 2−130 = 1 − ε/4, (6)

where
D′

sk := {ŝk ∈ Dsk : ŝk + ẑ∗ ∈ Dsk}
and

D′
r := {r̂ ∈ Dr : ∀c ∈ Sc, r̂ + cẑ∗ ∈ Dr}.

Proof. Indeed, we first picked dr so that

( |D′
r|

|Dr|
)Q′

≥ 1 − 2−131.

Simultaneously, we chose dsk which satisfies: |D′
sk |/|Dsk | ≥ 1 − 2−131. Also, we

check that dr ≥ vmn2dskdc for the enclosedness property. Then, Eq. (6) follows
by the Bernoulli inequality.

Sizes. We pick prime q ≈ 21890 so that q ≡ 2ι + 1 (mod 4ι) where ι = 64
and Xn + 1 splits into ι irreducible polynomials modulo q. Hence, we can apply
Lemma 5. Unfortunately, such a large prime modulus affects the signing time
significantly. The signature consists of three parts: ŝ′, c′ and auth. The size for ŝ′

and c′ are respectively nm log 2ds′ and n log 2dc′ . Also, auth contains the index
of the leaf (which can be represented with at most log(μην) bits) and log(μην)
outputs of the hash function G. If we assume that G : {0, 1}∗ → {0, 1}128 then
auth has at most log(μην)+128 · log(μην) bits. For parameters selected in Fig. 8,
our signature has size around 36.03 MB. We observe that the main reason of
obtaining such large signatures is the size for dr and dsk , which should satisfy
the regularity property.

7 Generalized ROS Problem

The standard ROS (Random inhomogenities in an Overdetermined, Solvable
system of linear equations) problem was first introduced by Schnorr [58] in the
context of blind signatures. If one can solve the ROS problem then one is also
able to break the security of the Schnorr as well as the Okamoto-Schnorr and
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Okamoto-Gouillou-Quisquarter blind signature schemes. Later works by Wagner
and Minder and Sinclair [42,60] proposed algorithms which solve the ROS prob-
lem in sub-exponential time. In this section, we discuss main challenges when
translating the ROS problem to general linear hash function families with correct-
ness error. To the best of our knowledge, none of previous works on lattice-based
blind signatures (e.g. [3,4,56]) consider this issue.

We start by describing the Generalized ROS (GROS) problem for linear
hash function families with correctness error. For a linear hash function family
LHF, par ∈ PGen and a positive integer 
, let X	 be the set

X	 := {(x1, ..., x	) ∈ S	 | ∀s ∈ D	
s : x · s ∈ Ds′}. (7)

The game 
-GROSLHF,par is defined via Fig. 9. The advantage of adversary A

in 
-GROSLHF,par is defined as Adv	-GROS
LHF,par (A) := Pr[
-GROSA

LHF,par ⇒ 1] and
its running time is denoted as Time	-GROS

LHF,par (A).

Fig. 9. Game 	-GROSLHF,par with adversary A. H : {0, 1}∗ → Sc′ is a random oracle.

Definition 7 (
-GROS Hardness). Let 
 ∈ N, 
 > 0 and let LHF be a linear
function family and let par ∈ PGen(1κ). 
-GROS is said to be (ε, t,QH)-hard
in the random oracle model relative to par and LHF if for all adversaries A
satisfying Time	-GROS

LHF,par (A) ≤ t and making at most QH queries to H, we have
that Adv	-GROS

LHF,par (A) ≤ ε.

The following theorem shows that an attack on 
-GROSLHF,par propagates
to an attack against OMUFBS[LHF,G,H],par .

Theorem 5. Let LHF be a linear hash function family with enclosedness error
(δ1, δ2, δ3), G : {0, 1}∗ → {0, 1}2λ and H : {0, 1}∗ → Sc′ be random oracles and
let BS := BSη,ν,μ[LHF,G,H]. If BS is (ε, t, 0, 
, QG, QH)-OMUF relative to par
in the random oracle model then 
-GROS is (ε/(1− δ2)	, t, QH)-hard relative to
LHF and par in the random oracle model.

Proof (Sketch). The proof is similar to one for perfect correctness [32,58]. For
readability, we assume that μ = ν = 1 since there is no need to blind chal-
lenges/signatures in this scenario (it can, however, be easily generalized to arbi-
trary μ, ν). We now define an adversary B in OMUFBS,par that internally runs
an adversary A against 
-GROSLHF,par with random oracle H′.



524 E. Hauck et al.

– It simultaneously opens 
 sessions with S1, receiving commitments R1, ...,R	.
Let us denote Ri = (Ri,1, . . . ,Ri,η) for i ∈ [
].

– Next, it executes AH′
(par). When A makes a fresh query a to H′, B com-

putes R′
a,j :=

∑	
i=1 ai ·Ri,j for all j ∈ [η]. It then computes (roota , treea) ←

HashTree(R′
a,1, ...,R

′
a,η) and c′ ← H(roota ,ma), for a fresh message ma , and

then returns H′(a) := c′ as the answer. Clearly, c′ is independent from com-
mitments Ri.

– When A terminates and returns (A, c), B sends the value ci as the challenge
value for the ith session with S2, where i ∈ [
], and receives an answer si. If
Ri,1 �= F(si) − ci · pk then B aborts. Note that the probability that B does
not abort at all is at least (1 − δ2)	 by definition of the enclosedness error.

– Next, for all j ∈ [
 + 1], B computes s′
j :=

∑	
i=1 Aj,i · si and retrieves

the values rootAj
, treeAj

,mAj
used to compute Aj and computes c′

j ←
H(rootAj

,mAj
), authj ← BuildAuth((0, 1, 1), tree). It sets σj := (c′

j , s
′
j , authj).

– Finally, B returns 
 + 1 message/signature pairs (σ1,mA1), ..., (σ	+1,mA�+1).

Correctness of the signatures follows because

F
(
s′

j

)
= F

(
	∑

i=1

Aj,isi

)

=
	∑

i=1

Aj,i(ci · pk + Ri,1) = R′
Aj ,1 + pk

	∑
i=1

Aj,ici = R′
Aj ,1 + pk · c′

Aj
.

Further, by (7) we have s′
i ∈ Ds′ for all i ∈ [
]. Correctness of the authentication

path can easily be verified. ��
One observes that the attack only makes sense for small values of 
 due to

the security loss of (1 − δ2)	. The reason is that we always force S2 to accept
the first rejection sampling, otherwise B aborts. On interesting point about our
attack is that it can be easily be modified to other lattice-based signatures (e.g.
[56]) since the signer in such schemes usually outputs only one commitment
per session instead of η. The ROS problem in the standard setting is a special
case where Sc′ = Sc = S are finite fields of size q and X	 = S	 [58]. In this
setting Schnorr proves that the 
-GROS problem is solvable with probability
at most

(
QH

	+1

)
/|Sc′ | < Q	+1

H /q. Wagner later proposed an algorithm A in the
(
 := 22

√
log q − 1, Q)-GROSA

LHF experiment with running time O(22
√
log q) [60].

The two main reasons that Wagner’s algorithm [60] cannot be translated to
the 
-GROS problem even with the lattice instantiation from Sect. 6 are the
following. First, let us recall that in Sect. 6 we select S := Rq = Zq[X]/〈Xn +1〉
to be a cyclotomic ring and Sc′ to be a set of short polynomials in Rq. Therefore,
we have Sc′ � Sc � S and Sc,Sc′ are not finite fields (or even rings). Secondly,
compared to the work of Hauck et al. [32], the values s′ in a signature have to lie
in the set Ds′ . This imposes a further restriction on the values in the matrix A
and the vector c returned by the GROS adversary. We believe that the studying
this variant of the GROS problem further is an interesting problem for future
work.
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