
Authenticated Key Exchange
and Signatures with Tight Security

in the Standard Model

Shuai Han1,2 , Tibor Jager3 , Eike Kiltz4 , Shengli Liu1,2,5(B) ,
Jiaxin Pan6 , Doreen Riepel4 , and Sven Schäge4

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Bergische Universität Wuppertal, Wuppertal, Germany
tibor.jager@uni-wuppertal.de

4 Ruhr-Universität Bochum, Bochum, Germany
{eike.kiltz,doreen.riepel,sven.schaege}@rub.de

5 Westone Cryptologic Research Center, Beijing 100070, China
6 Department of Mathematical Sciences,

NTNU – Norwegian University of Science and Technology, Trondheim, Norway
jiaxin.pan@ntnu.no

Abstract. We construct the first authenticated key exchange protocols
that achieve tight security in the standard model. Previous works either
relied on techniques that seem to inherently require a random oracle, or
achieved only “Multi-Bit-Guess” security, which is not known to compose
tightly, for instance, to build a secure channel.

Our constructions are generic, based on digital signatures and key
encapsulation mechanisms (KEMs). The main technical challenges we
resolve is to determine suitable KEM security notions which on the one
hand are strong enough to yield tight security, but at the same time
weak enough to be efficiently instantiable in the standard model, based
on standard techniques such as universal hash proof systems.

Digital signature schemes with tight multi-user security in presence
of adaptive corruptions are a central building block, which is used in all
known constructions of tightly-secure AKE with full forward security.
We identify a subtle gap in the security proof of the only previously
known efficient standard model scheme by Bader et al. (TCC 2015). We
develop a new variant, which yields the currently most efficient signature
scheme that achieves this strong security notion without random oracles
and based on standard hardness assumptions.

Keywords: Authenticated key exchange · Digital signatures ·
Tightness

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12828, pp. 670–700, 2021.
https://doi.org/10.1007/978-3-030-84259-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84259-8_23&domain=pdf
http://orcid.org/0000-0002-8156-7089
http://orcid.org/0000-0002-3205-7699
http://orcid.org/0000-0003-1178-048X
http://orcid.org/0000-0003-1366-8256
http://orcid.org/0000-0002-7459-6850
http://orcid.org/0000-0002-4990-0929
http://orcid.org/0000-0002-8698-4244
https://doi.org/10.1007/978-3-030-84259-8_23

AKE and Signatures with Tight Security in the Standard Model 671

1 Introduction

A tight security proof establishes a close relation between the security of a cryp-
tosystem and its underlying building blocks, independent of deployment param-
eters such as the number of users, protocol sessions, issued signatures, etc. This
enables a theoretically-sound instantiation with optimal parameters, without the
need to compensate a security loss by increasing key lengths or group sizes.

AKE. Authenticated key exchange (AKE) protocols enable two parties to
authenticate each other and compute a shared session key. In comparison to
many other cryptographic primitives, standard security models for AKE are
extremely complex. Following the approach of Bellare-Rogaway [5] and Canetti-
Krawczyk [7], a very strong active adversary is considered, which essentially
“carries” all protocol messages between parties running the protocol and thus is
able to modify, replace, replay, drop, or inject arbitrary messages. Furthermore,
the adversary may adaptively corrupt parties and reveal session keys while adap-
tively choosing which session(s) to “attack”.

Achieving security in such a strong and complex model gives very strong
security guarantees, but it also makes tightness particularly difficult to achieve.
Indeed, most security proofs of AKE protocols are extremely lossy, often even
with a quadratic security loss in the total number of sessions established over
the entire lifetime of the protocol. Considering for instance the huge number
of TLS connections per day in practice, this loss may be too large to compen-
sate in practice because the resulting increase of deployment parameters would
incur an intolerable performance overhead. Hence, such protocols could not be
instantiated in a theoretically-sound way.

Therefore tight security of AKE protocols is a well-established research area,
with several known constructions [2,11,13,19,23,29]. As recently pointed out
by Jager et al. [23], some of these constructions [2,19,29] consider a “Multi-
Bit-Guess” (MBG) security experiment, which is not known to compose tightly
with primitives that apply the shared session key, e.g., to build a secure channel.
The standard and well established security notion in the context of multiple
challenges is “Single-Bit Guess” (SBG) security. Unfortunately, the only known
constructions in the SBG model [11,13,23] apply proof techniques that seem
to inherently require the random oracle model [4]. For instance, [23] is based
on non-committing encryption, which is known to be not instantiable without
random oracles [32], whereas [11,13] use a similar approach based on adaptive
reprogramming of the random oracle.

Currently, there exists no AKE protocol which achieves tight security in a
standard (SBG) AKE security model, with a security proof in the standard
model, without random oracles, not even an impractical one.

Digital Signatures. Digital signatures are a foundational cryptographic primi-
tive and often used to build AKE protocols. All known tightly-secure AKE proto-
cols with full forward security [2,11,13,19,23,29] are based on signatures that pro-
vide tight existential unforgeability under chosen-message attacks (EUF-CMA),
but in a multi-user setting and in the presence of an adversary that may adaptively

672 S. Han et al.

corrupt users to obtain their secret keys (MU-EUF-CMAcorr security [2]). It is easy
to prove that MU-EUF-CMAcorr security is non-tightly implied by standard EUF-
CMA security, but with a linear security loss in the number of users.

The construction of a tightly MU-EUF-CMAcorr secure signature scheme has
to overcome the following, seemingly paradoxical technical problem. On the one
hand, the reduction must be able to output user secret keys to the adversary, to
respond to adaptive secret key corruption queries. However, it cannot apply a
guessing argument, as this would incur a tightness loss. Therefore it is forced to
“know” the secret keys of all users. On the other hand, it must be able to extract a
solution to a computationally hard problem from a forgery produced by an adver-
sary. This seems to be in conflict with the fact that the reduction has to know secret
keys for all users, as knowledge of the secret key should enable the reduction to com-
pute a “forged” signature by itself, without the adversary. In fact, tight multi-user
security is known to be impossible for many signature schemes, for example when
the public key uniquely defines the matching secret key [3].

Several previous works have developed techniques to overcome this seeming
paradox [1,2,12,19]. Essentially, their approach is to build schemes where secret
keys are not uniquely determined by public parameters, along with a reduction
that exploits this to evade the paradox. However, all currently known construc-
tions either use the random oracle model, and therefore cannot be used to build
tightly-secure AKE in the standard model, or are based on tree-based signatures
[2], which yields signatures with hundreds of group elements and thus would incur
even more overhead than compensating the security loss with larger parameters.
Jumping slightly ahead, we remark that [2] also describes a pairing-based sig-
nature scheme with short constant-size signatures, but we identify a gap in the
security proof. Hence, currently there is no practical signature scheme which
achieves tight security in the multi-user setting with adaptive corruptions.

1.1 Contributions

Summarizing the previous paragraphs, we can formulate the following natural
questions related to AKE and signatures:

Do there exist efficient AKEs and signature schemes with tight multi-user
security in the standard model?

Tightly-secure signatures. We identify a subtle gap in the MU-EUF-
CMAcorr security proof of the scheme from [2] with constant-size signatures
(namely, SIGC in [2, Section 2.3]). We did not find a way to close this gap and
therefore develop a new variant of this scheme and prove tight MU-EUF-CMAcorr

security in the standard model. More precisely, SIGC follows the blueprint of the
Blazy-Kiltz-Pan (BKP) identity-based encryption scheme [6], and transforms an
algebraic message authentication code (MAC) scheme into a signature scheme
with pairings. If the MAC is tightly-secure in a model with adaptive corrup-
tions, so is the signature scheme. We notice, however, that their MAC does not
achieve tight security with adaptive corruptions since the corruption queries leak
too much secret information to the adversary.

AKE and Signatures with Tight Security in the Standard Model 673

Fig. 1. The two-message protocol AKE2msg using the “KEM+2×SIG” approach and the
three-message protocols AKE3msg (including the red parts) and AKEstate

3msg (including the
red and gray parts) using the “Nonce+KEM+2×SIG” approach. (AKEstate

3msg additionally
uses a symmetric encryption scheme SE.)

To overcome this issue, we borrow recent techniques from tightly-secure hier-
archical identity-based encryption schemes [26,27] to construct a new MAC
scheme that can be proven tightly secure under adaptive corruptions. Our con-
struction is based on pairings and general random self-reducible matrix Diffie-
Hellman (MDDH) assumptions [15]. When instantiated based on the Dk-MDDH
assumption (e.g., k-Lin), a signature consists of 4k + 1 group elements. That is
5 group elements for k = 1 (SXDH). This yields the first tightly MU-EUF-
CMAcorr-secure signature in the standard model with practical efficiency.

We remark that our new signature scheme circumvents known impossibil-
ity results for signatures and MACs [3,30], since these apply only to schemes
with re-randomizable signatures or re-randomizable secret keys [3], or deter-
ministic schemes [30]. Our construction is probabilistic and not efficiently re-
randomizable in the sense of [3].1

Tightly-secure AKE in the standard model. The classical “key encap-
sulation plus digital signatures” (KEM + 2 × SIG) paradigm to construct AKE
protocols gives rise to efficient protocols and is the basis of many constructions,
e.g., [7,10,11,13,19,23,29]. To establish a session key, two parties Alice and Bob
proceed as follows (cf. Fig. 1). Alice generates an ephemeral KEM key pair (p̂k, ŝk)
and sends the signed public key to Bob. Bob then uses this public key to encap-
sulate a session key, signs the ciphertext, and sends it back to Alice. Alice then
obtains the session key K by decapsulating with the KEM secret key. For exam-
ple, one can view the classical “signed Diffie-Hellman” as a specific instantiation of
this paradigm, by considering the Diffie-Hellman protocol as the ElGamal KEM.

Our approach to construct efficient AKE protocols with tight security is based
on this KEM+2×SIG paradigm. Given a tightly MU-EUF-CMAcorr secure signa-
ture scheme, it remains to determine suitable security notions for the underlying
1 Our signatures are only re-randomizable over all strings output by the signing algo-

rithm. The impossibility result from [3] requires uniform re-randomizability over all
strings accepted by the verification algorithm, which does not hold for our scheme.

674 S. Han et al.

Fig. 2. Schematic overview of our AKE constructions.

KEM, which finds a balance between two properties. The security notion must
be strong enough to enable a tight security proof in presence of adaptive session
key reveals and possibly even state reveals. At the same time, it must be weak
enough to be achievable in the standard model. We now sketch the construction
of our three AKE protocols along with the corresponding KEM security notions,
see also Fig. 2. In terms of AKE security, we consider a generic and versatile
security model which provides strong properties, such as full forward security
and key-compromise impersonation (KCI) security. “Partnering” of oracles is
defined based on original key partnering [28]. The model is defined in pseu-
docode to avoid ambiguity.

– Our first result is a new tight security proof for the two-message protocol
AKE2msg, which follows the KEM+2 × SIG paradigm. AKE2msg is exactly the
LLGW protocol [29] and the main technical difficulty is to adopt the LLGW proof
strategy from the “Multi-Bit-Guess” to the standard “Single-Bit-Guess” set-
ting. This requires significant modifications to the proof outline and the under-
lying KEM security definition. Our new proof relies on Multi-User/Challenge
one-time CCA (MUC-otCCA) security for KEMs, allowing the adversary to
ask many challenge queries but only one decapsulation query per user. Even
though this is a slightly weaker version of the standard Multi-User/Challenge
CCA (MUC-CCA) security notion for KEMs (allowing for unbounded decap-
sulation queries [17]), the most efficient instantiations we could find are the
MUC-CCA-secure schemes with tight security from [17,18,22].2

– Our second result is a three-message protocol AKE3msg resisting replay
attacks, which extends the KEM+2×SIG protocol AKE2msg with an additional
nonce sent at the beginning of the protocol (“Nonce + KEM + 2 × SIG”). For
our security proof we require the KEM security notion of Multi-User Single-
Challenge one-time CCA (MUSC-otCCA) security, allowing the adversary to

2 We are aware of the generic constructions of bounded-CCA secure KEMs from CPA-
secure KEMs [8], but they do not seem to offer tight security in a multi-challenge
setting.

AKE and Signatures with Tight Security in the Standard Model 675

ask only one challenge and one decapsulation query per user. This notion is
considerably weaker than MUC-otCCA security and it is achievable from any
universal2 hash proof system [9]. (For example, based on a standard assump-
tion such as Matrix DDH (MDDH) [15] which yields highly efficient KEMs.)

– Our third result is a three-message protocol AKEstate
3msg, which extends the

Nonce+KEM+2×SIG protocol AKE3msg by encrypting the state with a sym-
metric encryption (SE) scheme. AKEstate

3msg has tight security in a very strong
model that even allows the adversary to obtain session states of oracles [7].
The fact that the reduction must be able to respond to adaptive queries
for session states by an adversary makes it significantly more difficult to
achieve tight security. Our key technical contribution is a new “Multi-User
SIMulatability” (ε-MU-SIM) security notion for KEMs, which we also show
to be tightly achievable by universal2 hash proof systems. We stress that the
reduction to the security of the symmetric encryption scheme is the only part
of the security proof which is not tight. We tolerate this, since compensating
a security loss for symmetric encryption incurs significantly less performance
penalty than for public key primitives.3

Note that our AKE3msg and AKEstate
3msg use nonce to resist replay attacks and admit

KEM security with one challenge per user. This can also be achieved generically
by assuming synchronized counters between parties, following the approach of
[29]. Consequently, we can also use counter instead of nonce in AKE3msg and
AKEstate

3msg, and obtain two two-message counter-based AKE protocols which have
the same efficiency and security as AKE3msg and AKEstate

3msg, respectively.

Instantiations. Table 1 gives example instantiations of our protocols from
universal2 hash proof systems from the MDDH assumption and compares them
to known protocols. The protocols BHJKL [2] and LLGW [29] only offer tight
security in the MBG model which implies security in our standard SBG model
with a loss of T , the number of test queries [23]. For more details on our instan-
tiations we refer to Sect. 6. Note that there are other works which study AKE in
the standard model (e.g., [16,24]). However, they do not focus on tightness and
have a quadratic security loss.

Technical approach to AKE. In the following, we give a brief overview of
our technical approach to tight security under our SBG-type security definition
and show how our protocols prevent replay attacks and support state reveals.

To obtain an AKE protocol with a tight security reduction in the KEM+2×
SIG framework, we rely on the tight MU-EUF-CMAcorr security of the signature
scheme to guarantee authentication and deal with corruptions, and on the tight
MUC-CCA security of KEM to deal with session key reveals. To this end, recall

3 For instance, openssl speed aes shows that AES-256 is only about 1.5 times slower
than AES-128 on a standard laptop computer. Given that the cost of symmetric key
operations is already small in comparison to the public key operations, we consider
this as negligible.

676 S. Han et al.

Table 1. Comparison of standard model AKE protocols with full forward security,
where T refers to the number of test queries. Protocols AKEstate

3msg and AKE2msg refer to
our protocols given in Fig. 1, instantiated from Dk-MDDH. The column Communi-
cation counts the communication complexity of the protocols in terms of the number
of group elements, exponents and nonces, where we instantiate all protocols with our
new signature scheme from Subsect. 5.3. The column Security Loss lists the security
loss of the reduction in the “Single-Bit-Guess” (SBG) model, ignoring all symmetric
bounds.

Protocol Communication #Msg. Assumption State Security

Reveal Loss

BHJKL [2] 11 + 11 3 SXDH no O(λT)

(2k2 + 6k + 5) + (6k + 9) Dk-MDDH

LLGW [29] 9 + 10 2 SXDH no O(λT)

(k2 + 7k + 1) + (6k + 4) Dk-MDDH

AKEstate
3msg 8 + 7 3 SXDH yes O(λ)

(5k + 3) + (5k + 2) Dk-MDDH

AKE2msg (= LLGW) 9 + 10 2 SXDH no O(λ)

(k2 + 7k + 1) + (6k + 4) Dk-MDDH

that the SBG-style security game for MUC-CCA security allows multiple encap-
sulation and decapsulation queries per user, but considers only a single challenge
bit. At the same time, observe that the reduction algorithm can always use the
challenge key (which is either the real encapsulated key or a random key) as the
session key of the simulated AKE protocol. In combination, these observations
immediately lead to a tight security proof for AKE2msg. We remark that AKE2msg

can also be proved secure under an even weaker security notion for KEM, namely
MUC-otCCA, which allows only one decapsulation query per user. This assumes
that parties choose to “close” a session once this session accepts or rejects. In
this way we can guarantee that the adversary has only a single opportunity to
submit a ciphertext per p̂k.

To prevent replay attacks we make use of an exchange of nonces resulting
in protocol AKE3msg. As a byproduct of using nonces (in combination with the
signature scheme), we can now guarantee that the adversary cannot replay any
message anymore. This includes p̂k, and thus we can ensure that the simulator
only needs to respond to one encapsulation query per p̂k in the security game.
In this way we can further weaken the security requirement that we need from
the KEM to MUSC-otCCA.

Now, to support state reveals, we use a symmetric encryption scheme SE that
is used to encrypt the ephemeral secret key ŝk of each session, similar to [23].
More concretely, we require that the state is computed as st = SE.E(s, ŝk), where
s is the secret key of SE that is made part of the long-term secret key. This mod-
ification yields protocol AKEstate

3msg. Having introduced such a state, we now also
consider a security model that allows the adversary to issue state reveal queries
to obtain the state st. But now the reduction to the MUSC-otCCA security of

AKE and Signatures with Tight Security in the Standard Model 677

the KEM cannot work as before, since the reduction algorithm cannot output
SE.E(s, ŝk) to the adversary. A natural way to address this problem is to make
use of the security of SE, and make the reduction change the state to an encryp-
tion of some dummy random key r, i.e., st = SE.E(s, r). However, now the SE
reduction algorithm is faced with a critical decision: If the adversary asks a state
reveal query, should the reduction output st = SE.E(s, ŝk) or st = SE.E(s, r)? It
seems that both choices are problematic. If the reduction responds with the
encryption of KEM secret key ŝk, then the reduction to the KEM will fail in
case the adversary asks a test query. If on the other hand the reduction outputs
an encryption of a dummy random key, then the reduction will fail in case the
adversary queries the secret key via a corrupt query. To solve this problem, the
existing approaches rely on a non-committing symmetric encryption scheme that
is proven secure in the random oracle model [23].

To obtain a tight security supporting state reveals in the standard model,
we enhance the MUSC-otCCA security of KEM to our new ε-MU-SIM-security,
so that a symmetric encryption scheme SE with comparatively weak security
guarantees suffices. The idea is to rely on a security notion for the symmetric
encryption scheme that is as weak as possible while still being able to compen-
sate for this via a stronger KEM. Somewhat surprisingly, our proof shows that
when relying on an ε-MU-SIM-secure KEM, we only need to require IND-mRPA
security (indistinguishability against random plaintext attacks) from SE. Such a
symmetric encryption scheme can be easily instantiated using any weakly secure
(deterministic) encryption scheme like as AES or even using a weak PRF. Let
us now describe ε-MU-SIM-secure KEM in slightly more detail. In a nutshell,
an ε-MU-SIM-secure KEM provides the reduction with access to an additional
encapsulation algorithm Encap∗ that is keyed with the secret key. We have secu-
rity requirements as follows:

• Computational indistinguishability between Encap and Encap∗: We require
that the reduction can switch to using Encap∗ without the adversary noticing
even given the secret key ŝk of the KEM. In particular, the resulting indistin-
guishability notion must tightly reduce to an underlying security assumption.

• Statistical ε-uniformity: When using the alternative encapsulation mechanism
Encap∗, we require that the encapsulated key in the challenge ciphertext c∗

will be indistinguishable from random with statistical distance ε (even if a
decapsulation of some distinct ciphertext c �= c∗ of its choice is given). This
is particularly useful when aiming at tight security reductions.

• Since we want to apply ε-MU-SIM-secure KEMs in a protocol setting with
multiple parties, security must in general hold in a multi-user setting.

Fortunately, such a KEM can be instantiated from universal2 hash proof systems
(HPS). In particular, we show that the ε-MU-SIM-security is implied by the
hardness of subset membership problems and the universal2-property of HPS.

Our new ε-MU-SIM-secure KEM now allows us to avoid the above mentioned
decision when dealing with state reveals and in this way opens a new avenue
towards a tight security reduction. To this end, we use a novel strategy in our
security proof.

678 S. Han et al.

1. We first switch from using Encap to Encap∗. By the security properties of our
KEM, the adversary cannot notice this, even given ŝk.

2. Next, we replace the session keys of tested sessions with random keys – one
user at a time. We apply a hybrid argument over all users. In the η-th hybrid
(η = 1, ..., μ with μ being the number of users), we replace the test session
keys related to the η-th user with random keys. We can show that this is
not recognizable by the adversary since the key K∗ generated by Encap∗ is
statistically close to uniform even if the adversary gets to see another key for
a ciphertext of its choice. We distinguish the following cases.
Case 1: The adversary corrupts the η-th user. For each session related to this

user, the adversary can either reveal the session state or test this session,
but not both. If the adversary reveals the state, we do not have to replace
the session key at all, so the change is in fact only a conceptual one. If
the session is tested, the adversary does not know the state SE.E(s, ŝk)
and thus we can replace the session key by exploiting the ε-uniformity of
Encap∗.

Case 2: The adversary does not corrupt the η-th user. In this case, we rely
on the IND-mRPA security of SE and replace ŝk in the encrypted state
with a random dummy key for this user. Then, we can use ε-uniformity
to replace all tested keys for that user with random keys, as the state
does not contain any information about ŝk. After that, we have to switch
back to using the original state encryption mechanism and encrypt the
real secret key ŝk, getting ready for the next hybrid.

After μ hybrids, we change all tested keys to random. At this point the
adversary has no advantage in the security game.

Overall, this security proof loses a factor of 2μ – but only when reducing to the
IND-mRPA security of the symmetric encryption scheme. All other steps of the
proof feature tight security reductions.

2 Security Notions for KEMs

2.1 Preliminaries

Let ∅ denote an empty string. If x is defined by y or the value of y is assigned
to x, we write x := y. For μ ∈ N, define [μ] := {1, 2, ..., μ}. Denote by x ←$ X
the procedure of sampling x from set X uniformly at random. If D is distribu-
tion, x ← D means that x is sampled according to D. All our algorithms are
probabilistic unless states otherwise. We use y ←$ A(x) to define the random
variable y obtained by executing algorithm A on input x. We use y ∈ A(x)
to indicate that y lies in the support of A(x). If A is deterministic we write
y ← A(x). We also use y ← A(x; r) to make the random coins r used in the
probabilistic computation explicit. Denote by T(A) the running time of A. For
two distributions X and Y , the statistical distance between them is defined by
Δ(X;Y) := 1

2 ·
∑

x |Pr[X = x] − Pr[Y = x]|, and conditioned on Z = z, the sta-
tistical distance between X and Y is denoted by Δ(X;Y |Z = z). For 0 ≤ ε ≤ 1,
X and Y are said to be ε-close, denoted by X ≈ε Y , if Δ(X;Y) ≤ ε.

AKE and Signatures with Tight Security in the Standard Model 679

Definition 1 (Collision-resistant hash functions). A family of hash func-
tions H is collision resistant if for any adversary A,

AdvcrH(A) := Pr[x1 �= x2 ∧ H(x1) = H(x2)|(x1, x2) ←$ A(H),H ←$ H].

2.2 Key Encapsulation Mechanisms

Definition 2 (KEM). A key encapsulation mechanism (KEM) scheme
KEM = (KEM.Setup,KEM.Gen,Encap,Decap) consists of four algorithms:

– KEM.Setup: The setup algorithm outputs public parameters ppKEM, which
determine an encapsulation key space K, public key & secret key spaces
PK × SK, and a ciphertext space CT .

– KEM.Gen(ppKEM): Taking ppKEM as input, the key generation algorithm out-
puts a pair of public key and secret key (pk, sk) ∈ PK × SK. W.l.o.g., we
assume that KEM.Gen first samples sk ←$ SK uniformly, and then computes
pk from sk deterministically via a polynomial-time algorithm KEM.PK, i.e.,
pk := KEM.PK(sk). This is reasonable since we can always take the random-
ness used by KEM.Gen as the secret key.

– Encap(pk): Taking pk as input, the encapsulation algorithm outputs a pair of
ciphertext c ∈ CT and encapsulated key K ∈ K.

– Decap(sk, c): Taking as input sk and c, the deterministic decapsulation algo-
rithm outputs K ∈ K ∪ {⊥}.

We require that for all ppKEM ∈ KEM.Setup, (pk, sk) ∈ KEM.Gen(ppKEM),
(c,K) ∈ Encap(pk), it holds that Decap(sk, c) = K.

We define two security notions for KEMs, the first one in the Multi-
User/Challenge (MUC) setting, the second one in the Multi-User and Single
Challenge (MUSC) setting. Both notions only allow for one single decapsulation
query per user.

Definition 3 (MUC-otCCA/MUSC-otCCA Security for KEM). To
KEM, the number of users μ ∈ N, and an adversary A we associate the advantage
functions Advmuc-otcca

KEM,μ (A) :=
∣
∣ Pr[Expmuc-otcca

KEM,μ,A ⇒ 1] − 1
2

∣
∣ and Advmusc-otcca

KEM,μ (A) :=∣
∣ Pr[Expmusc-otcca

KEM,μ,A ⇒ 1] − 1
2

∣
∣, where the experiments are defined in Fig. 3.

Below we recall the definition of the diversity property from [29].

Definition 4 (γ-Diversity of KEM). A KEM scheme KEM is called γ-diverse
if for all ppKEM ∈ KEM.Setup, it holds that

Pr

[
(pk, sk) ←$ KEM.Gen(ppKEM);

r, r′ ←$ R; (c, K) ← Encap(pk; r); (c′, K′) ← Encap(pk; r′)
: K = K′

]
≤ 2−γ ,

Pr

[
(pk, sk) ←$ KEM.Gen(ppKEM); (pk′, sk′) ←$ KEM.Gen(ppKEM);

r ←$ R; (c, K) ← Encap(pk; r); (c′, K′) ← Encap(pk′; r)
: K = K′

]
≤ 2−γ ,

where R is the randomness space of Encap. If γ = log |K|, then KEM is perfectly
diverse.

680 S. Han et al.

Fig. 3. The MUC-otCCA security experiment Expmuc-otcca
KEM,μ,A and the MUSC-otCCA secu-

rity experiment Expmusc-otcca
KEM,μ,A of KEM, where in the latter the adversary can query the

encapsulation oracle only once for each user.

We also propose a new security notion for KEMs called ε-MU-SIM (ε-multi-user
simulatable) security. Jumping ahead, ε-MU-SIM secure KEMs will serve as the
main building block in our generic AKE construction with state reveal later.
We present the formal definition of ε-MU-SIM security (Definition 5). We also
present simple constructions of ε-MU-SIM secure KEMs from universal2-HPS in
the full version [21].

Informally, ε-MU-SIM security requires that there exists a simulated encap-
sulation algorithm Encap∗(sk) which returns simulated ciphertext/key pairs
(c∗,K∗) satisfying the following two properties. Firstly, they should be com-
putationally indistinguishable from real ciphertext/key pairs. Secondly, given c∗

and an arbitrary single decryption query, the simulated key K∗ should be ε-close
to uniform.

Definition 5 (ε-MU-SIM Security for KEM). We require that there exists
a simulated encapsulation algorithm Encap∗(sk) which takes the secret key sk
as input, and outputs a pair of simulated c∗ ∈ CT and simulated K∗ ∈ K. For
ε-uniformity we require that for any (unbounded) adversary A, it holds that

∣
∣ Pr[c ←$ A(pk, c∗,K∗) : c �= c∗ ∧ A(pk, c∗,K∗,Decap(sk, c)) ⇒ 1]

− Pr[c ←$ A(pk, c∗, R) : c �= c∗ ∧ A(pk, c∗, R,Decap(sk, c)) ⇒ 1]
∣
∣ ≤ ε,

(1)

where the probability is over ppKEM ←$ KEM.Setup, (pk, sk) ←$ KEM.Gen
(ppKEM), (c∗,K∗) ←$ Encap∗(sk), R ←$ K and the internal randomness of A.

Furthermore, to KEM, a simulated encapsulation algorithm Encap∗, an adver-
sary A, and μ ∈ N we associate the advantage function Advmu-sim

KEM,Encap∗,μ(A) :=
∣
∣
∣Pr

[
A

(
{pki, ski, c

(0)
i ,K

(0)
i }i∈[μ]

)
⇒ 1

]
− Pr

[
A

(
{pki, ski, c

(1)
i ,K

(1)
i }i∈[μ]

)
⇒ 1

]∣
∣
∣ , (2)

where ppKEM ←$ KEM.Setup, (pki, ski) ←$ KEM.Gen(ppKEM), (c(0)i ,K
(0)
i) ←$

Encap(pki), and (c(1)i ,K
(1)
i) ←$ Encap∗(ski) for ∀i ∈ [μ].

Note that ε-MU-SIM security tightly implies MUSC-otCCArev&corr security which
is a stronger variant of MUSC-otCCA security supporting key reveal and user

AKE and Signatures with Tight Security in the Standard Model 681

corrupt queries. Reveal and corrupt queries can be tolerated since in the security
experiment (2), adversary A also obtains secret keys sk1, . . . , skμ. By (1) one can
see that one single decapsulation query is supported. In particular, ε-MU-SIM
security tightly implies MUSC-otCCA security. In the full version [21], we will
define universal2 hash proof systems, construct HPSMDDH schemes from the
MDDH assumptions, and show how they imply ε-MU-SIM secure KEMs.

3 Authenticated Key Exchange

3.1 Definition of Authenticated Key Exchange

Definition 6 (AKE). An authenticated key exchange (AKE) scheme AKE =
(AKE.Setup,AKE.Gen,AKE.Protocol) consists of two probabilistic algorithms and
an interactive protocol.

– AKE.Setup: The setup algorithm outputs the public parameter ppAKE.
– AKE.Gen(ppAKE, Pi): The generation algorithm takes as input ppAKE and a

party Pi, and outputs a key pair (pki, ski).
– AKE.Protocol(Pi(resi) � Pj(resj)): The protocol involves two parties Pi and

Pj, who have access to their own resources, resi :=(ski, ppAKE, {pku}u∈[μ])
and resj := (skj , ppAKE, {pku}u∈[μ]), respectively. Here μ is the total number
of users. After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject}, and
a session key ki (ki might be the empty string ∅), and Pj outputs (Ψj , kj)
similarly.

Correctness of AKE. For any distinct and honest parties Pi and Pj , they share
the same session key after the execution of AKE.Protocol(Pi(resi) � Pj(resj)),
i.e., Ψi = Ψj = accept, ki = kj �= ∅.

3.2 Security Model of AKE

We will adapt the security model formalized by [2,19,28], which in turn followed
the model proposed by Bellare and Rogaway [5]. We also include replay attacks
[29] and multiple test queries with respect to the same random bit [23].

First, we will define oracles and their static variables in the model. Then we
describe the security experiment and the corresponding security notions.

Oracles. Suppose there are at most μ users P1, P2, ..., Pμ, and each user will
involve at most � instances. Pi is formalized by a series of oracles, π1

i , π2
i , ..., π�

i .
Oracle πs

i formalizes Pi’s execution of the s-th protocol instance.
Each oracle πs

i has access to Pi’s resource resi := (ski, ppAKE,PKList :=
{pku}u∈[μ]). πs

i also has its own variables varsi := (stsi ,Pid
s
i , k

s
i , Ψ

s
i).

– stsi : State information that has to be stored between two rounds in order to
execute the protocol.

– Pids
i : The intended communication peer’s identity.

682 S. Han et al.

– ks
i ∈ K: The session key computed by πs

i . Here K is the session key space. We
assume that ∅ ∈ K.

– Ψs
i ∈ {∅,accept, reject}: Ψs

i indicates whether πs
i has completed the protocol

execution and accepted ks
i .

At the beginning, (stsi ,Pid
s
i , k

s
i , Ψ

s
i) are initialized to (∅, ∅, ∅, ∅). We declare that

ks
i �= ∅ if and only if Ψs

i = accept.

Security Experiment. To define the security notion of AKE, we first formalize
the security experiment ExpAKE,μ,�,A with the help of the oracles defined above.
ExpAKE,μ,�,A is a game played between an AKE challenger C and an adversary
A. C will simulate the executions of the � protocol instances for each of the μ
users with oracles πs

i . We give a formal description in Fig. 4.
Adversary A may copy, delay, erase, replay, and interpolate the messages

transmitted in the network. This is formalized by the query Send to oracle
πs

i . With Send, A can send arbitrary messages to any oracle πs
i . Then πs

i will
execute the AKE protocol according to the protocol specification for Pi. The
StateReveal(i, s) oracle allows A to reveal πs

i ’s session state.
We also allow the adversary to observe session keys of its choices. This is

reflected by a SessionKeyReveal query to oracle πs
i .

A Corrupt query allows A to corrupt a party Pi and get its long-term secret
key ski. With a RegisterCorrupt query, A can register a new party without public
key certification. The public key is then known to all other users.

We introduce a Test query to formalize the pseudorandomness of ks
i . There-

fore, the challenger chooses a bit b ←$ {0, 1} at the beginning of the experiment.
When A issues a Test query for πs

i , the oracle will return ⊥ if the session key
ks

i is not generated yet. Otherwise, πs
i will return ks

i or a truly random key,
depending on b. The task of A is to tell whether the key is the true session key
or a random key. The adversary is allowed to make multiple test queries.

Formally, the queries by A are described as follows.

– Send(i, s, j,msg): If msg =
, it means that A asks oracle πs
i to send the first

protocol message to Pj . Otherwise, A impersonates Pj to send message msg
to πs

i . Then πs
i executes the AKE protocol with msg as Pi does, computes

a message msg′, and updates its own variables varsi = (stsi ,Pid
s
i , k

s
i , Ψ

s
i). The

output message msg′ is returned to A.
If Send(i, s, j,msg) is the τ -th query asked by A and πs

i changes Ψs
i to accept

after that, then we say that πs
i is τ -accepted.

– Corrupt(i): C reveals party Pi’s long-term secret key ski to A. After corruption,
π1

i , ..., π�
i will stop answering any query from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.
If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.

– RegisterCorrupt(i, pki): It means that A registers a new party Pi (i > μ). C
distributes (Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.

– StateReveal(i, s): The query means that A asks C to reveal πs
i ’s session state.

C returns stsi to A.

AKE and Signatures with Tight Security in the Standard Model 683

Fig. 4. The security experiments ExpAKE,μ,�,A, ExpreplayAKE,μ,�,A (both without red text)

and Expreplay,stateAKE,μ,�,A (with red text). The list of trivial attacks is given in Table 2.

684 S. Han et al.

– SessionKeyReveal(i, s): The query means that A asks C to reveal πs
i ’s session

key. If Ψs
i �= accept, C returns ⊥. Otherwise, C returns the session key ks

i of
πs

i .
– Test(i, s): If Ψs

i �= accept, C returns ⊥. Otherwise, C sets k0 = ks
i , samples

k1 ←$ K, and returns kb to A. We require that A can ask Test(i, s) to each
oracle πs

i only once.

Informally, the pseudorandomness of ks
i asks that any PPT adversary A with

access to Test(i, s) cannot distinguish ks
i from a uniformly random key. Yet, we

have to exclude some trivial attacks. We will define them later and first introduce
partnering.

Definition 7 (Original Key [28]). For two oracles πs
i and πt

j, the original key,
denoted as K(πs

i , π
t
j), is the session key computed by the two peers of the protocol

under a passive adversary only, where πs
i is the initiator.

Remark 1. We note that K(πs
i , π

t
j) is determined by the identities of Pi and Pj

and the internal randomness.

Definition 8 (Partner [28]). Let K(·, ·) denote the original key function. We
say that an oracle πs

i is partnered to πt
j, denoted as Partner(πs

i ← πt
j)

4, if one of
the following requirements holds:

– πs
i has sent the first message and ks

i = K(πs
i , π

t
j) �= ∅, or

– πs
i has received the first message and ks

i = K(πt
j , π

s
i) �= ∅.

We write Partner(πs
i ↔ πt

j) if Partner(πs
i ← πt

j) and Partner(πt
j ← πs

i).

Trivial Attacks. In order to prevent the adversary from trivial attacks, we keep
track of the following variables for each party Pi and oracle πs

i :

– crpi: whether Pi is corrupted.
– Aflags

i : whether the intended partner is corrupted when πs
i accepts.

– T s
i : whether πs

i was tested.
– kRevs

i : whether the session key ks
i was revealed.

– stRevs
i : whether the session state stsi was revealed.

– FirstAccs
i : whether Pi or its partner is the first to accept the key in the

session.

Based on that we give a list of trivial attacks TA1-TA7 in Table 2.

Remark 2. We introduced variable FirstAcc to indicate whether the party or its
partner is the first to accept the key. This is used to determine whether the state
of an oracle is allowed to be revealed when the oracle or its partner is tested.

4 The arrow notion πs
i ← πt

j means πs
i (not necessarily πt

j) has computed and accepted
the original key.

AKE and Signatures with Tight Security in the Standard Model 685

– In general, the session key of the party which accepts the key after its partner
(i.e., FirstAcc = false), by the correctness of AKE, must be identical to its
partner’s. Thus, the session key is fully determined by the state and long-term
key of that party (as well as transcripts).

– However, the session key of the party which accepts the key before its partner
(i.e., FirstAcc = true) might involve fresh randomness beyond its state and
long-term key.

Thus, it is a trivial attack to reveal the state and the long-term key of the same
oracle, if the oracle or its partner is tested and the oracle accepts the key after
its partner (i.e., FirstAcc = false). This is a minimal trivial attack regarding
state reveal5, and it is formalized as TA6 and TA7 in Table 2.

The following definition also captures replay attacks. Given Partner(πs′
i′ ← πt

j),
a successful replay attack means that A resends to πs

i the messages, which
were sent from πt

j to πs′
i′ , and πs

i is fooled to compute a session key, i.e.,
Partner(πs

i ← πt
j). Note that a stateless 2-pass AKE protocol cannot be secure

against replay attacks [29]. Therefore, we also define security without replay
attacks in Definition 11.

Furthermore, we distinguish between security with state reveals (Definition 9)
and without state reveals (Definition 10), where in the latter the adversary
cannot query the session state of an oracle.

Table 2. Trivial attacks TA1-TA7 for security experiments ExpAKE,μ,�,A,

ExpreplayAKE,μ,�,A and Expreplay,stateAKE,μ,�,A, where TA6 and TA7 are only defined in Expreplay,stateAKE,μ,�,A.
Note that “Aflags

i = false” is implicitly contained in TA2-TA7 because of TA1.

Types Trivial attacks Explanation

TA1 T s
i = true ∧ Aflags

i = true πs
i is tested but πs

i ’s partner is corrupted when

πs
i accepts session key ks

i

TA2 T s
i = true ∧ kRevs

i = true πs
i is tested and its session key ks

i is revealed

TA3 T s
i = true when Test(i, s) is queried Test(i, s) is queried at least twice

TA4 T s
i = true ∧ Partner(πs

i ↔ πt
j) ∧ kRevt

j = true πs
i is tested, πs

i and πt
j are partnered to each

other, and πt
j ’s session key kt

j is revealed

TA5 T s
i = true ∧ Partner(πs

i ↔ πt
j) ∧ T t

j = true πs
i is tested, πs

i and πt
j are partnered to each

other, and πt
j is tested

TA6 T s
i = true ∧ FirstAccs

i = false

∧ stRevs
i = true ∧ crpi = true

πs
i is tested, πs

i accepts its key after its partner,

and πs
i is both corrupted and has its state stsi

revealed

TA7 T s
i = true ∧ Partner(πs

i ← πt
j) ∧ FirstAcct

j =

false ∧ stRevt
j = true ∧ crpj = true

πs
i is tested, πs

i accepts its session key before

its partner, but its partner πt
j is both corrupted

and state revealed

Definition 9 (Security of AKE with Replay Attacks and State Reveal).
Let μ be the number of users and � the maximum number of protocol executions
5 It is also possible to define the trivial attack regardless of FirstAcc, but our definition

of TA6 and TA7 is minimal and makes our security model stronger.

686 S. Han et al.

per user. The security experiment Expreplay,stateAKE,μ,�,A (see Fig. 4) is played between the
challenger C and the adversary A.

1. C runs AKE.Setup to get AKE public parameter ppAKE.
2. For each party Pi, C runs AKE.Gen(ppAKE, Pi) to get the long-term key pair

(pki, ski). Next it chooses a random bit b ←$ {0, 1} and provides A with the
public parameter ppAKE and the list of public keys PKList := {pki}i∈[μ].

3. A asks C Send, Corrupt, RegisterCorrupt, SessionKeyReveal, StateReveal and
Test queries adaptively.

4. At the end of the experiment, A terminates with an output b∗.

• Strong Authentication. Let WinAuth denote the event that A breaks authen-
tication in the security experiment. WinAuth happens iff ∃(i, s) ∈ [μ] × [�] s.t.
(1) πs

i is τ -accepted.
(2) Pj is τ̂ -corrupted with j := Pids

i and τ̂ > τ .
(3) Either (3.1) or (3.2) or (3.3) happens6. Let j := Pids

i .
(3.1) There is no oracle πt

j that πs
i is partnered to.

(3.2) There exist two distinct oracles πt
j and πt′

j′ , to which πs
i is partnered.

(3.3) There exist two oracles πs′
i′ and πt

j with (i′, s′) �= (i, s), such that both
πs

i and πs′
i′ are partnered to πt

j.
• Indistinguishability. Let WinInd denote the event that A breaks indistin-

guishability in Expreplay,stateAKE,μ,�,A above. Let b∗ be A’s output. Then WinInd happens
iff b∗ = b. Trivial attacks are already considered during the execution of the
experiment. A list of trivial attacks is given in Table 2.

Note that Expreplay,stateAKE,μ,�,A ⇒ 1 iff WinInd happens. Hence, the advantage of A is
defined as

Advreplay,stateAKE,μ,� (A) : = max{Pr[WinAuth], |Pr[WinInd] − 1/2|}
= max{Pr[WinAuth], |Pr[Expreplay,stateAKE,μ,�,A ⇒ 1] − 1/2|}.

Definition 10 (Security of AKE with Replay Attacks and without
State Reveal). The security experiment ExpreplayAKE,μ,�,A (see Fig. 4) is defined like
Expreplay,stateAKE,μ,�,A except that we disallow state reveal queries. Similarly, the advantage
of an adversary A in ExpreplayAKE,μ,�,A is defined as

AdvreplayAKE,μ,�(A) := max{Pr[WinAuth], |Pr[ExpreplayAKE,μ,�,A ⇒ 1] − 1/2|}.

Definition 11 (Security of AKE without Replay Attack and State
Reveal). The security experiment ExpAKE,μ,�,A (see Fig. 4) is defined like
Expreplay,stateAKE,μ,�,A except that we disallow replay attacks and state reveal queries. Sim-
ilarly, the advantage of an adversary A in ExpAKE,μ,�,A is defined as

AdvAKE,μ,�(A) := max{Pr[WinAuth], |Pr[ExpAKE,μ,�,A ⇒ 1] − 1/2|}.
6 Given (1) ∧ (2), (3.1) indicates a successful impersonation of Pj , (3.2) suggests one

instance of Pi has multiple partners, and (3.3) corresponds to a successful replay
attack.

AKE and Signatures with Tight Security in the Standard Model 687

Remark 3 (Perfect Forward Security and KCI Resistance). The security model
of AKE supports (perfect) forward security (a.k.a. forward secrecy [20]). That is,
if Pi or its partner Pj has been corrupted at some moment, then the exchanged
session keys computed before the corruption remain hidden from the adversary.
Meanwhile, πs

i may be corrupted before Test(i, s), which provides resistance to
key-compromise impersonation (KCI) attacks [25].

4 AKE Protocols

We construct AKE protocols AKE2msg, AKE3msg and AKEstate
3msg from a signature

scheme SIG and a key encapsulation mechanism KEM. Additionally, we use a
symmetric encryption scheme SE with key space KSE to encrypt the state in
protocol AKEstate

3msg. Apart from that, AKEstate
3msg and AKE3msg are the same. The

protocols are given in Fig. 5.
The setup algorithm generates the public parameter ppAKE := (ppSIG, ppKEM)

by running SIG.Setup and KEM.Setup. The key generation algorithm inputs the
public parameter and a party Pi and generates a signature key pair (vki, sski).
In AKEstate

3msg, it also chooses a symmetric key si uniformly from the key space
KSE. It returns the public key vki and the secret key (sski, si).

The protocol is executed between two parties Pi and Pj . Each party has access
to their own resources resi and resj which contain the corresponding secret key,
the public parameter and a list PKList consisting of the public keys of all parties.
Each party initializes its local variables Ψi, ki and sti with the empty string. To
initiate a session in AKE3msg and AKEstate

3msg, the party Pj chooses a bitstring N

uniformly from {0, 1}λ and sends it to Pi. The next message and the first message
in protocol AKE2msg is sent by Pi. It generates an ephemeral key pair (p̂k, ŝk) by
running KEM.Gen(ppKEM) and computes a signature σ1 over the identities of Pi

and Pj , the ephemeral public key and the nonce (only in AKE3msg and AKEstate
3msg).

When using state encryption, it also encrypts the ephemeral secret key using its
symmetric key si and stores the ciphertext in sti. It then sends (p̂k, σ1) to Pj .
Pj verifies the signature using vki and rejects if it is not valid. Otherwise, it con-
tinues the protocol by computing (c,K) ←$ Encap(p̂k). It computes a signature
σ2 over the identities as well as the previous message, c and the nonce (only in
AKE3msg and AKEstate

3msg). Pj accepts the session key and sets kj to K. It sends
(c, σ2) to Pi. Pi verifies the signature and rejects if it is invalid. Otherwise, it
retrieves the ephemeral secret key by decrypting the state, computes the session
key K from c and accepts.

Correctness. Correctness of AKE2msg, AKE3msg and AKEstate
3msg follows directly

from the correctness of SIG, KEM and SE.

688 S. Han et al.

Fig. 5. Generic construction of AKE2msg (without red and gray parts), AKE3msg (with
red and without gray parts) and AKEstate

3msg (with red and gray parts) from KEM, SIG
and SE. Note that the state of Pj only consists of public parts and is therefore omitted
here.

Theorem 1 (Security of AKEstate
3msg with Replay Attacks and State

Reveals). For any adversary A against AKEstate
3msg with replay attacks and

state reveals, there exist an MU-EUF-CMAcorr adversary BSIG against SIG, an
ε-MU-SIM adversary BKEM against KEM and an IND-mRPA adversary BSE

against SE such that

Advreplay,stateAKEstate
3msg,μ,�(A) ≤ Advmu-sim

KEM,Encap∗,μ�(BKEM) + 2 · Advmu-corr
SIG,μ (BSIG)

+ 2μ · Advmrpa
SE,μ(BSE) + 2μ� · ε + 2(μ�)2 · 2−γ + μ�2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N
in bits. Furthermore, T(A) ≈ T(BKEM), T(A) ≈ T(BSIG) and T(A) ≈ T(BSE).

We will give a proof sketch below. The formal proof is given in the full version
[21].

AKE and Signatures with Tight Security in the Standard Model 689

Proof Sketch. The signatures in the protocol ensure that the adversary can only
forward messages for those sessions that it wants to test. Thus the experiment
can control all ephemeral public keys p̂k and ciphertexts c that are used for test
queries. Due to the nonce, the adversary can also not replay a message containing
a particular p̂k. Thus, each p̂k is used in at most one test query.

A party will close a session when it accepts or rejects the session. Thus,
the adversary can submit at most one ciphertext c′ which is different from the
ciphertext used in the test query. Using a session key reveal query, the adversary
will only see at most one more key decapsulated with ŝk.

To deal with state reveals, the adversary A can additionally obtain the state
which is the encrypted ŝk. The reduction must know ŝk in order to answer those
queries. The simulatability property of KEM ensures that Encap and Encap∗

are indistinguishable, even given ŝk. So, we first switch from Encap to Encap∗.
Now, we want to replace the session keys of tested sessions with random keys.
Therefore, we have to do a hybrid argument over all users. In the η-th hybrid, we
replace the test session keys for party Pη. We can show that this is unnoticeable
using that the key K∗ generated by Encap∗ is statistically close to uniform even if
the adversary gets to see another key for a ciphertext of its choice. We distinguish
the following cases.

Case 1: The adversary corrupts Pη. For each session, the adversary can either
reveal the session state or test this session. If the adversary reveals the state,
we do not have to replace the session key. If the session is tested, the adversary
does not know the state E(sη, ŝk) and thus we can replace the session key by
ε-uniformity of Encap∗.

Case 2: The adversary does not corrupt Pη. In this case, we use that SE is IND-
mRPA secure and replace ŝk in the encrypted state with a random secret key
for this party. Then we can use ε-uniformity to replace all tested keys for that
party with random keys, as the state does not contain any information about
ŝk. After that, we have to switch back the state encryption to encrypt the
real secret key ŝk, getting ready for the next hybrid.

After these changes, the Test oracle will always output a random key, indepen-
dent of the bit b.

Overall, the proof loses a factor of 2μ only in the IND-mRPA security of the
symmetric encryption scheme. All other parts are tight.

Theorem 2 (Security of AKE3msg with Replay Attacks and without
State Reveals). For any adversary A against AKE3msg with replay attacks and
without state reveals, there exist an MU-EUF-CMAcorr adversary BSIG against
SIG and an MUSC-otCCA adversary BKEM against KEM such that

AdvreplayAKE3msg,μ,�(A) ≤ 2 · Advmusc-otcca
KEM,μ� (BKEM) + 2 · Advmu-corr

SIG,μ (BSIG)

+ 2(μ�)2 · 2−γ + μ�2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N
in bits. Furthermore, T(A) ≈ T(BKEM) and T(A) ≈ T(BSIG).

690 S. Han et al.

Theorem 3 (Security of AKE2msg without State Reveals and Replay
Attacks). For any adversary A against AKE2msg without state reveals and replay
attacks, there exist an MU-EUF-CMAcorr adversary BSIG against SIG and an
MUC-otCCA adversary BKEM against KEM such that

AdvAKE2msg,μ,�(A) ≤ 2 · Advmuc-otcca
KEM,μ� (BKEM) + Advmu-corr

SIG,μ (BSIG) + (μ�)2 · 2−γ ,

where γ is the diversity parameter of KEM. Furthermore, T(A) ≈ T(BKEM) and
T(A) ≈ T(BSIG).

The proofs of Theorem 2 and Theorem 3 are given in the full version [21], due
to space limitations.

5 Signatures with Tight Adaptive Corruptions

5.1 Pairing Groups and MDDH Assumptions

Let GGen be a pairing group generation algorithm that returns a description
PG := (G1,G2,GT , q,P1,P2, e) of asymmetric pairing groups where G1, G2,
GT are cyclic groups of order q for a λ-bit prime q, P1 and P2 are generators
of G1 and G2, respectively, and e : G1 × G2 is an efficient computable (non-
degenerated) bilinear map. PT := e(P1,P2) is a generator in GT . In this paper,
we only consider Type III pairings, where G1 �= G2 and there is no efficient
homomorphism between them. All constructions in this paper can be easily
instantiated with Type I pairings by setting G1 = G2 and defining the dimension
k to be greater than 1.

We use the implicit representation of group elements as in [14]. For s ∈
{1, 2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation
of a in Gs. Similarly, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the

implicit representation of A in Gs. Span(A) := {Ar | r ∈ Z
m
q } ⊂ Z

n
q denotes

the linear span of A, and similarly Span([A]s) := {[Ar]s | r ∈ Z
m
q } ⊂ G

n
s .

Note that it is efficient to compute [AB]s given ([A]s,B) or (A, [B]s) with
matching dimensions. We define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can
be efficiently computed given [A]1 and [B]2.

We recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
and related assumptions from [14].

Definition 12 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
q of full rank k in polynomial

time. Let Dk := Dk+1,k.

For positive integers k, η, n ∈ N
+ and a matrix A ∈ Z

(k+η)×n
q , we denote the k

rows of A by A ∈ Z
k×n
q and the lower η rows of A by A ∈ Z

η×n
q . Without loss of

generality, we assume A for A ←$ D�,k form an invertible square matrix in Z
k×k
q .

The D�,k-MDDH problem is to distinguish the two distributions ([A], [Aw]) and
([A], [u]) where A ←$ D�,k, w ←$ Z

k
q and u ←$ Z

�
q.

AKE and Signatures with Tight Security in the Standard Model 691

Definition 13 (D�,k-MDDH assumption). Let D�,k be a matrix distribution
and s ∈ {1, 2, T}. We say that the D�,k-MDDH assumption holds relative to
GGen in group Gs if for all adversaries A, it holds that

AdvMDDH
GGen,D�,k,Gs

(A) := |Pr[A(PG, [A]s, [Aw]s) ⇒ 1] − Pr[A(PG, [A]s, [u]s) ⇒ 1]|

is negligible where the probability is taken over PG ←$ GGen(1λ), A ←$ D�,k,
w ←$ Z

k
q and u ←$ Z

�
q.

Definition 14 (Uniform distribution). Let k, � ∈ N
+ with � > k. We call

U�,k a uniform distribution if it outputs uniformly random matrices in Z
�×k
q of

rank k in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (D�,k-MDDH ⇒ Uk-MDDH [14]). Let �, k ∈ N+ with � > k and let
D�,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an
D�,k instance. More precisely, for each adversary A there exists an adversary B
with

AdvMDDH
GGen,Uk,Gs

(A) ≤ AdvMDDH
GGen,D�,k,Gs

(B)

and T(A) ≈ T(B).

The Kernel-Diffie-Hellman assumption (Dk-KMDH) [31] is a (weaker) com-
putational analogue of the Dk-MDDH Assumption.

Definition 15 (Dk-KMDH). Let Dk be a matrix distribution. We say that the
Dk-Kernel Diffie-Hellman (Dk-KMDH) assumption holds relative to a prime
order group Gs for s ∈ {1, 2} if for all PPT adversaries A,

AdvKMDH
GGen,Dk,Gs

(A) : = Pr[c	A = 0 ∧ c �= 0 | [c]3−s ←$ A(PG, [A]s)],

where the probabilities are taken over PG ←$ GGen(1λ) and A ←$ Dk.

5.2 Previous Schemes with Tight Adaptive Corruptions

We will construct a signature scheme with tight MU-EUF-CMAcorr security and
only small constant number of elements in signatures. Such a scheme has been
proposed in [2, Section 2.3] (called SIGC), but we identify a gap in their proof.
We now present the gap in their security proof and why we think it will be hard
to close it.

The construction of SIGC follows the BKP IBE schemes [6], namely, it tightly
transforms an affine MAC [6] into a signature in the multi-user setting. In order
to have a tightly MU-EUF-CMAcorr secure signature scheme, the underlying
MAC needs to be tightly secure against adaptive corruption of its secret keys
in the multi-user setting. We will now point to potential problems in formally
proving it.

We abstract the underlying MAC of SIGC as MACBHJKL: For message space
{0, 1}�, it chooses A′ ←$ Dk and random vectors xi,j ←$ Z

k
q (for 1 ≤ i ≤ � and

j = 0, 1). Then it defines B := A′ ∈ Z
k×k
q and publishes system parameters

692 S. Han et al.

pp := ([B]1, ([B	xi,j]1)1≤i≤�,j=0,1). For each user n, it chooses its MAC secret
key as [x′

n]1 ←$ G1, and its MAC tag consist of ([t]1, [u]1), where

t = Bs ∈ Z
k
q for s ←$ Z

k
q

u = x′
n + t	 ∑

i
xi,mi

︸ ︷︷ ︸
=:x(m)

∈ Zq. (3)

In their security proof, they argue that [u]1 in the MAC tagging queries is pseudo-
random, given pp and some of the secret keys [x′

n]1 (via the adaptive corruption
queries) to an adversary.7 In achieving this, they define a sequence of hybrids
Hj for 1 ≤ j ≤ �. In each Hj , they replace x′

n for each user n with RFn,j(m|j),
where RFn,j : {0, 1}j → Zq is a random function and m is the first tagging query
to user n, and generate the MAC tag of m′ as

u = RFn,j(m′|j) + t	x(m′) (4)

with t as in Eq. (3).
In their final step (between H� and Game 4), they argue that the distribution

of u = RFn,�(m′) + t	x(m′) is uniformly random (as in Game 4) even for an
unbounded adversary, given pp and adaptive corruptions. Then they conclude
that H� (where u = RFn,�(m′) + t	x(m′)) and Game 4 (where u is chosen
uniformly at random) are identical and Pr[χ4] = Pr[H� = 1] (according to their
notation). However, this is not the case: B ∈ Z

k×k
q is full-rank and thus, given

[B	xi,j]1 in pp, xi,j ∈ Z
k
q is uniquely defined. (For concreteness, imagine a

simple example where an (unbounded) adversary A only queries one MAG tag
for message m for user n and then asks for the secret key [x′

n]1 := RFn,�(m) of
user n. Then, A sees that u = RFn,�(m)+t	x(m) is uniquely defined by [x′

n]1, [t]1
and pp in H�, while u is uniformly at random in Game 4.) We suppose this gap
is inherent, since the terms B	xi,j completely leak the information about xi,j .
This is also the same reason why the BKP MAC cannot be used to construct a
tightly secure hierarchical IBE (HIBE) (cf. [26] for more discussion).

To resolve this, we follow the tightly secure HIBE approach in [26] and choose
B ←$ Z

3k×k
q . Now, there is a non-zero kernel matrix B⊥ ∈ Z

3k×2k
q for B (with

overwhelming probability), and the mapping xi,j ∈ Z
3k
q �→ B	xi,j ∈ Z

k
q is lossy.

In particular, the information about xi,j in the orthogonal space of B is perfectly
hidden from (unbounded) adversaries, given B	xi,j .

5.3 Our Construction

Let H : {0, 1}∗ → {0, 1}λ be a function chosen from a collision-resistant hash func-
tion family H. Our signature scheme SIGMDDH := (SIG.Setup,SIG.Gen,Sign,Ver)
is defined in Fig. 6. Correctness can be verified as

[v, u]1 ◦ [A]2 = [(y′, x′) · A + t	 · (Y(hm) | x(hm)) · A]T

for ([t]1, [u]1, [v]1) ←$ Sign(ssk,m).
7 This is different to the BKP IBE where [B�xi,j]1 and [x′

n]1 are not available to an
adversary.

AKE and Signatures with Tight Security in the Standard Model 693

Fig. 6. Our signature scheme with tight adaptive corruptions, where for hm ∈ {0, 1}λ

we define the functions x(hm) :=
∑λ

i=1 xi,hmi , Y(hm) :=
∑λ

i=1 Yi,hmi , Z(hm) :=∑λ
i=1 Zi,hmi , and P(hm) :=

∑λ
i=1 Pi,hmi .

Theorem 4 (Security of SIGMDDH). For any adversary A against the
MU-EUF-CMAcorr security of SIGMDDH, there are adversaries B against the col-
lision resistance of H, B1 against the U3k,k-MDDH assumption over G1 and B2

against the Dk-KMDH assumption over G2 with

Pr[Expmu-corr
SIG,μ,A ⇒ 1] ≤AdvcrH(B) + (8kλ + 2k)AdvMDDH

GGen,U3k,k,G1
(B1)

+ AdvKMDH
GGen,Dk,G2

(B2) +
4λ + 2k + 2

q − 1
,

where T(B) ≈ T(A) ≈ T(B1) ≈ T(B2).

Proof. We prove the tight MU-EUF-CMAcorr security of SIGMDDH with a
sequence of games given in Fig. 7. Let A be an adversary against the
MU-EUF-CMAcorr security of SIGMDDH, and let Wini denote the probability that
Gi returns 1.

Game G0: G0 is the original MU-EUF-CMAcorr security experiment Expmu-corr
SIG,μ,A

(see the full version [21] for the formal definition). In addition to the original
game, we add a rejection rule if there is a collision between the forgery and a
signing query, namely, H(vki∗ ,m∗) = H(vki,m) where (i,m) is one of the signing
queries. By the collision resistance of H, we have

|Pr[Expmu-corr
SIG,μ,A ⇒ 1] − Pr[Win0]| ≤ AdvcrH(B).

For better readability, we assume all the signing queries are distinct for
the following games. If the same (i,m) is asked multiple times, we can take
the first response ([t]1, [u]1, [v]1) and answer the repeated queries with the
re-randomization ([t′]1, [u′]1, [v′]1) as t′ := t + Bs′ (for s′ ←$ Z

k
q), u′ :=

u + s′	(B	x(hm)) and v′ := v + s′	(B	x(hm)) and hm := H(vki,m). Note
that this will not change the view of A.

694 S. Han et al.

Fig. 7. Games used to prove Theorem 4.

Game G1: For verifying the forgery, in addition to using Ver, we use the secret
[x′

i∗]1 and ([xj,b]1)1≤j≤λ to check if ([t∗]1, [u∗]1) in the forgery satisfies the fol-
lowing equation:

[u∗]1 = [x′
i∗]1 + [t∗]	1 · x(hm∗). (5)

We note that

Ver(vki∗ ,m∗, σ∗) = 1

⇔(v ‖ u) · A = (y′
i∗ ‖ x′

i∗)A + t∗	 · (Y(hm) ‖ x(hm)) · A.

Thus, if Eq. (5) does not hold, then the vector [(v ‖ u)]1 − ([y′
i∗ ‖ x′

i∗]1 +[t∗]1 ·
x(hm∗)) ∈ G

1×(k+1)
1 is non-zero and orthogonal to [A]2. Therefore, we bound

the difference between G0 and G1 with the Dk-KMDH assumption as

|Pr[Win0] − Pr[Win1]| ≤ AdvKMDH
GGen,Dk,G2

(B).

AKE and Signatures with Tight Security in the Standard Model 695

Game G2: We do not use the values Yj,b (for 1 ≤ j ≤ λ and b = 0, 1) and y′
i

(for 1 ≤ i ≤ μ) to simulate G2. We make this change by substituting all Yj,b

and y′
i using the formulas

Y	
j,b = (Zj,b − xj,b · A)(A)−1 and y′

i = (z′
i − x′

i · A)(A)−1, (6)

respectively. More precisely, the public parameters pp are computed by picking
Zj,b and xj,b at random and then defining Yj,b using Eq. (6). The verification
keys vki for user i (1 ≤ i ≤ μ) are computed by picking z′

i and x′
i at random.

For OSign(i,m), we now compute

v := y′
i + t	Y(hm) ∈ Z

1×k
q

= (z′
i − x′

i · A)(A)−1 + t	(Z(hm) − x(hm) · A)(A)−1

= (z′
i + t	Z(hm) − (x′

i + t	x(hm))
︸ ︷︷ ︸

=u

·A)(A)−1.

The secret verification of the forgery can be done by knowing x′
i∗ and xj,b.

The changes in G2 are only conceptual, since Eq. (6) are equivalent to Zj,b =
(Yj,b ‖ xj,b)A and z′

i = (y′
i ‖ x′

i)A. Thus, we have

Pr[Win1] = Pr[Win2].

In order to bound Pr[Win2], consider a “message authentication code” MAC
which is defined as follows.

– The public parameters consist of ppMAC := (PG, [B]1, ([di,j]1)1≤i≤λ,j=0,1),
where di,j := B	xi,j ∈ Z

k
q for xi,j ←$ Z

3k
q and B ←$ U3k,k.

– The secret key is [x′]1.
– The MAC tag on hm is ([t]1, [u]1), where t := Bs and u := x′ + t	x(hm), for

s ←$ Z
k
q .

Note that strictly speaking MAC is not a MAC since verification cannot only be
done efficiently by knowing the values xi,j .

The following lemma states MU-EUF-CMAcorr security of MAC, with proof
in the full version [21].

Lemma 2 (Core Lemma). For every adversaries A interacting with
UF-CMAcorr, there exists an adversary B against the U3k,k-MDDH assumption
in G1 with

Pr[UF-CMAcorr
A ⇒ 1] ≤ (8kλ + 2k) · AdvMDDH

GGen,U3k,k,G1
(B1) +

4λ + 2k + 2
q − 1

,

and T(B) ≈ T(A), where Qe is the number of A’s queries to OMac.

Finally, we bound the probability that the adversary wins in G2 using our
Core Lemma (Lemma 2) by constructing an adversary BMAC as in Fig. 9.

Pr[Win2] = Pr[UF-CMAcorr
BMAC

⇒ 1].

696 S. Han et al.

Fig. 8. Game UF-CMAcorr for Lemma 2.

In order to analyze Pr[Win2] we argue as follows. The simulated pp and
(vki)1≤i≤μ are distributed as in G2. Further, queries to OSign and OCorr from
sski can be perfectly simulated using OMac and O′

Corr
, respectively. The addi-

tional group elements [v]1 from σ and [y′
i]1 can be simulated as in G2. Finally,

using a valid forgery (i∗,m∗, σ∗) output by A, BMAC wins its own game by call-
ing OVer(i∗, hm∗, ([t∗]1, [u∗]1), where ([t∗]1, [u∗]1) is a valid MAC tag on hm∗ for
user i∗. ��

Fig. 9. Reduction BMAC to bound the winning probability in G2. BMAC receives ppMAC

and gets oracle access to OMac and OVer, and O′
Corr

as in Fig. 8.

AKE and Signatures with Tight Security in the Standard Model 697

6 Concrete Instantiation of Our AKE Protocols

For AKE3msg, we use our new signature scheme SIGMDDH (Fig. 6) and the
ε-MU-SIM KEM constructed from the MDDH-based hash proof system
HPSMDDH (cf. the full version [21]). For AKEstate

3msg, the symmetric encryption
scheme to protect against state reveals can be instantiated using any weakly
secure (deterministic) encryption scheme such as AES or even a weak PRF.

For the KEM constructed in the full version [21], the KEM public key consists
of 2k group elements and the ciphertext of k + 1 group elements. A signature
consists of 4k + 1 group elements, cf. Fig. 6. Therefore, the first message is a
bitstring of length λ, the second message consists of 6k + 1 group elements and
the third message consists of 5k+2 group elements. For k = 1, we get an efficient
SXDH-based scheme with 15 elements in total.

We instantiate protocol AKE2msg using our signature scheme from Fig. 6 and
the MUC-otCCA secure KEM from Han et al. [22]. γ-diversity of the KEM
is proven in [29, Appendix D.2]. We analyze the communication complexity of
AKE2msg as follows. The KEM public key consists of k2 +3k group elements and
the ciphertext of 2k + 3 group elements. A signature consists of 4k + 1 group
elements. Therefore, the first message consists of k2 + 7k + 1 group elements
and the second message consists of 6k + 4 group elements. For k = 1, we get an
efficient SXDH-based scheme with 9 + 10 = 19 group elements in total.

For an overview we refer to Table 1 of the introduction.

Acknowledgments. We would like to thank the reviewers for their helpful com-
ments. Shuai Han and Shengli Liu were partially supported by National Natural
Science Foundation of China (Grant Nos. 61925207, 62002223), Guangdong Major
Project of Basic and Applied Basic Research (2019B030302008), Shanghai Sailing Pro-
gram (20YF1421100), Young Elite Scientists Sponsorship Program by China Associ-
ation for Science and Technology, and the National Key Research and Development
Project 2020YFA0712300. Tibor Jager was supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme, grant agreement 802823. Eike Kiltz was supported by the BMBF iBlockchain
project, the EU H2020 PROMETHEUS project 780701, DFG SPP 1736 Big Data,
and the DFG Cluster of Excellence 2092 CASA. Doreen Riepel was supported by
the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence 2092 CASA. Sven
Schäge was supported by the German Federal Ministry of Education and Research
(BMBF), Project DigiSeal (16KIS0695) and Huawei Technologies Düsseldorf, Project
vHSM.

References

1. Bader, C.: Efficient signatures with tight real world security in the random-oracle
model. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS,
vol. 8813, pp. 370–383. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12280-9 24

https://doi.org/10.1007/978-3-319-12280-9_24
https://doi.org/10.1007/978-3-319-12280-9_24

698 S. Han et al.

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 10

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

6. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 23

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

8. Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76900-2 31

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

10. Cremers, C.J.F., Feltz, M.: Beyond eCK: perfect forward secrecy under actor
compromise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 42

11. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. ACNS 2021 (2021). https://eprint.iacr.org/2020/1029

12. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: 24th International Conference on Practice and Theory
of Public-Key Cryptography, PKC 2021 (2021)

13. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically-sound crypto-
graphic parameters for real-world deployments. Cryptology ePrint Archive, Report
2020/726 (2020). https://eprint.iacr.org/2020/726

14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

15. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017)

16. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 28

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-76900-2_31
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-33167-1_42
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-30057-8_28

AKE and Signatures with Tight Security in the Standard Model 699

17. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

18. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

19. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part
II. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 4

20. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

21. Han, S., et al.: Authenticated key exchange and signatures with tight security in
the standard model. Cryptology ePrint Archive, Report 2021/863 (2021). https://
eprint.iacr.org/2021/863

22. Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from quasi-
adaptive hash proof system. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019, Part II. LNCS, vol. 11693, pp. 417–447. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26951-7 15

23. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated
key exchange, revisited. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021, Part I. LNCS, vol. 12696, pp. 117–146. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77870-5 5

24. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

25. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

26. Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. In:
Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 436–465. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 15

27. Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 129–159. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 5

28. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, Octo-
ber/November 2017

29. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 27

30. Morgan, A., Pass, R., Shi, E.: On the adaptive security of MACs and PRFs. In:
Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp.
724–753. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 24

https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/3-540-46885-4_5
https://eprint.iacr.org/2021/863
https://eprint.iacr.org/2021/863
https://doi.org/10.1007/978-3-030-26951-7_15
https://doi.org/10.1007/978-3-030-26951-7_15
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-030-17253-4_15
https://doi.org/10.1007/978-3-030-64834-3_5
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64837-4_24

700 S. Han et al.

31. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 27

32. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8

	Authenticated Key Exchange and Signatures with Tight Security in the Standard Model
	1 Introduction
	1.1 Contributions

	2 Security Notions for KEMs
	2.1 Preliminaries
	2.2 Key Encapsulation Mechanisms

	3 Authenticated Key Exchange
	3.1 Definition of Authenticated Key Exchange
	3.2 Security Model of AKE

	4 AKE Protocols
	5 Signatures with Tight Adaptive Corruptions
	5.1 Pairing Groups and MDDH Assumptions
	5.2 Previous Schemes with Tight Adaptive Corruptions
	5.3 Our Construction

	6 Concrete Instantiation of Our AKE Protocols
	References

