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Abstract. A natural and recurring idea in the knapsack/lattice cryp-
tography literature is to start from a lattice with remarkable decoding
capability as your private key, and hide it somehow to make a public key.
This is also how the code-based encryption scheme of McEliece (1978)
proceeds.

This idea has never worked out very well for lattices: ad-hoc
approaches have been proposed, but they have been subject to ad-
hoc attacks, using tricks beyond lattice reduction algorithms. On the
other hand the framework offered by the Short Integer Solution (SIS)
and Learning With Errors (LWE) problems, while convenient and well
founded, remains frustrating from a coding perspective: the underlying
decoding algorithms are rather trivial, with poor decoding performance.

In this work, we provide generic realizations of this natural idea (inde-
pendently of the chosen remarkable lattice) by basing cryptography on
the lattice isomorphism problem (LIP). More specifically, we provide:

– a worst-case to average-case reduction for search-LIP and
distinguish-LIP within an isomorphism class, by extending tech-
niques of Haviv and Regev (SODA 2014).

– a zero-knowledge proof of knowledge (ZKPoK) of an isomorphism.
This implies an identification scheme based on search-LIP.

– a key encapsulation mechanism (KEM) scheme and a hash-then-sign
signature scheme, both based on distinguish-LIP.

The purpose of this approach is for remarkable lattices to improve the
security and performance of lattice-based cryptography. For example,
decoding within poly-logarithmic factor from Minkowski’s bound in a
remarkable lattice would lead to a KEM resisting lattice attacks down
to poly-logarithmic approximation factor, provided that the dual lattice
is also close to Minkowski’s bound. Recent works have indeed reached
such decoders for certain lattices (Chor-Rivest, Barnes-Sloan), but these
do not perfectly fit our need as their duals have poor minimal distance.

1 Introduction

At repeated occasions [8,22,24,33,45], and over more than 30 years, it has been
attempted to adapt the public-key encryption scheme of McEliece [25] from codes
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to lattices. More specifically, these works attempted to construct particularly
good lattices with efficient decoding algorithms, to use it as a secret-key, and
to give a bad description of a similar lattice as the corresponding public-key.
For example, it was analysed in [11] that the Chor-Rivest cryptosystem [8] was
implicitly relying on a family of lattices for which it is possible to efficiently
decode errors up to a radius within a factor of O(log n) from optimal (Minkowski
bound). For comparison, the decoding algorithm underlying schemes based on
the Learning with Error problem [39] (LWE) fall short from the Minkowski
bound by polynomial factors; they essentially reduce decoding to the case of the
trivial lattice Z

n.
This McEliece-like approach has unfortunately not been very popular lately.

Perhaps it has suffered from the failure of the Merkle-Hellman Knapsack-based
cryptosystem [26,43] more than it should have. Indeed, from the “knapsack-
era”, only the Merkle-Hellman cryptosystem and its variants were completely
devastated by a polynomial-time attack [32]. In contrast, the best known attack
against the scheme of Chor and Rivest [8,24] remains sub-exponential in the
dimension n; what may be concerning is that those attacks are not pure lattice
reduction attacks. For both versions of this scheme, the canonical coordinates
are partially brute-forced during the best attack. Lapiha [20] found that an
Information Set Decoding attack was possible against the variant of Li et al. [24].
Brickell’s attack against the original scheme also relies on guessing over a few
canonical coordinates, inside of an arithmetic attack [8, Sec. VII.5].

However, we note that these attacks are enabled by the fact that these
schemes only re-randomize the lattice by applying a permutation of the coor-
dinates.1 Such permutations are isometries, i.e. lattice isomorphism, but those
are not the only ones. . . The isometry group On(R) acting on lattices is much
larger than the one acting on codes, and applying a random isometry from this
larger group should convincingly thwart those code-style attacks: the canonical
coordinate system becomes irrelevant.

All these remarks point toward the Lattice Isomorphism Problem (LIP) as a
potential theoretical platform for finally getting this natural approach properly
formalized, and hopefully, truely “lattice-based” in the cryptanalytic sense: the
best known attack should be based on generic lattice reduction algorithms such
as LLL [21] and BKZ [40]. The current state of the art on LIP supports this
hypothesis: all known algorithms [17,37,38,44] rely on finding short vectors. This
is the case even for algorithms specialized to the trivial lattice Z

n [46]. However,
experimental studies [6] show that the basis randomization step requires care.

While instantiating LIP with Z
n may already give rise to secure cryptosys-

tems, the end goal of this work is to enable lattice-based cryptosystems that

1 This permutation is in fact implicit, hidden in the ordering of the evaluation points
used to define the lattice. Furthermore, both in these lattice schemes and in subse-
quent versions of the McEliece, one may also discard some the evaluation points to
randomize the lattice/code itself beyond isometry. In this article, we will not consider
this extra randomization.
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could be even more secure than those based on LWE and SIS, by instantiating
the constructed schemes with remarkably decodable lattices.

1.1 Contributions

We propose a formal and convenient framework for LIP-based cryptography,
from which we build an identification scheme based on search-LIP (sLIP), a
(passively secure) Key Encapsulation Mechanism (KEM) based on distinguish-
LIP (ΔLIP), as well as signature scheme also based on ΔLIP. In more details:

– We first discuss the LIP problem, recall the quadratic form formalism
(Sect. 2.2), and rephrase the LIP problem in terms of quadratic forms to
conveniently avoid real numbers. Then, thanks to Gaussian Sampling [12,34],
we define an average-case distribution for LIP and establish a worst-case to
average-case reduction within an isomorphism class (Sect. 3). This addresses
the concerns raised by Blanks and Miller [6], and formalizes their heuristic
countermeasure.

– The above cryptographic foundations are directly inspired by the Zero-
Knowledge proof of lattice non-isomorphism of Haviv and Regev [16]. We
further extend on their techniques by proposing a Zero-Knowledge proof of
knowledge (ZKPoK) of a lattice isomorphism (Sect. 4). This directly implies
an identification scheme based on sLIP.

– We propose a KEM scheme (Sect. 5) and a hash-then-sign signature scheme
(Sect. 6), both based on ΔLIP. Perhaps surprisingly, and unlike the original
scheme of McEliece for codes, we circumvent the additional assumption that
decoding a certain class of random lattices would be hard. This is done via a
lossyness argument [36] for the KEM, and a dual argument for the signature
scheme.

– We review the state of the art for solving LIP (Sect. 7). In particular we note
that all known algorithms go through lattice reduction, and we quantify the
required approximation factor.

– We discuss natural instantiations for each scheme (Sect. 8) from any remark-
able lattice. This section handles the construction of the auxiliary lattice
appearing in ΔLIP for the lossyness arguments to get through.

1.2 Potential Advantages

The KEM. To instantiate our KEM, consider a lattice L (w.l.o.g. of volume 1)
such that:

– the minimal distance is within a factor f from Minkowski’s bound: λ1(L) �
Ω(

√
n/f),

– there exists an efficient algorithm that can decode errors in L up to radius ρ
within a factor f ′ from Minkowski’s bound: ρ � Ω(

√
n/f ′).2

2 Note that uniqueness of decoding implies f ′ � 2f .
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– the dual minimal distance is within a factor f∗ from Minkowski’s bound:
λ1(L∗) � Ω(

√
n/f∗).

Then, our instantiated KEM appears to resist lattice attack down to an approx-
imation factor O(max(f, f∗) · f∗ · f ′). More specifically, it’s security is based
on ΔLIP for two lattices whose primals and duals are all within a factor
O(max(f, f∗) · f∗ · f ′) from Minkowski’s bound.

The trivial lattice Z
n gives all three factors f, f ′, f∗ of the order Θ(

√
n). The

Barnes-Wall [28] lattice improves all three factors down to Θ( 4
√

n).
The endgame would be to instantiate with lattices for which all three factors

would be very small. In particular, one would naturally turn to recent work on
decoding the Chor-Rivest lattices [8,11,20,24] and the Barnes-Sloane lattices [31]
giving f “ polylog(n) and f ′ “ polylog(n), but unfortunately their dual are
not that good: f∗ � Θ(

√
n). Indeed, all these constructions are integer lattices

L Ă Z
n with single exponential volume det(L) “ cn: their dual L∗ have a

Minkowski’s bound of Θ(
√

n/det(L)1/n) “ Θ(
√

n), but contain all of Zn Ă L∗,
including vectors of norm 1.

Note nevertheless that there is no geometric impossibility to the existence
of the desired remarkably decodable lattice: random lattices have f “ O(1) and
f∗ “ O(1); so decoding is possible down to f ′ “ O(1) but the best known
algorithm is conjectured to take exponential time.

The Signature Scheme. The same principle also applies to our signature scheme,
but this time with respect to Gaussian sampling rather than decoding: lattices
with tight sampling (and large dual minimal distance) would lead to a scheme
resisting attacks down to very small approximation factors. Alas, even ignoring
the constraint on the dual lattice, we do not know of any lattice much better
than Z

n for efficient gaussian sampling. Yet, instantiated with Z
n our scheme

still has an interesting feature: not having to deal with any Gram-Schmidt or
Cholesky matrices over the reals. This may be a worthy practical advantage over
current hash-then-sign signature schemes [12].

The Identification Scheme. Because sLIP seems super-exponentially hard in the
dimension for well chosen lattices (large kissing number), it might be secure
to instantiate our ZKPoK with a rather small lattice dimension, maybe down
to about a hundred. Yet, this is more a theoretical curiosity than a practical
advantage—the protocol still needs soundness amplification, and each round
requires exchanging Õ(n2) bits.

1.3 Open Questions

A KEM with polylog-Approximation Factor Security. Is there any family of lat-
tices that can be efficiently decoded within a polylog factor from Minkowski’s
bound such as [8,11,20,24,31], but whose dual would also have an equally large
minimal distance?
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Tight Gaussian Sampling for Signatures. Is there any family of lattices L (of
volume 1) in which one can efficiently sample Gaussian with small parameter
σ ă o(

√
n), if not σ “ polylog(n) (with exponential smoothing σ ą η2´n(L))?

And if so, do they and their dual have a large minimal distance? Note that
quantumly, this question is related to the previous one via the reduction of
Regev [39]: decoding in the primal for a large radius gives Gaussian sampling in
the dual for a small width. But a classical algorithm would be much preferable.

Concrete Instantiation with Simple Lattices. Instantiated with Z
n, our signa-

ture scheme has the advantage of not requiring any Gram-Schmidt or Cholesky
decomposition, contrary to existing hash-then-sign signature schemes; and may
therefore be of practical interest. It could also be reasonable to instantiate our
KEM with the lattice of Barnes and Wall, thanks to the decoder of Micciancio
and Nicolesi [28].

Module-LIP. At last, it also seems natural to explore structured variants of LIP,
where both the lattice and the isometry should be structured. We note that for
any ideal lattice in complex-multiplication number fields, a classical polynomial
time algorithm is known [13,23]. Could the module variant be secure? Can our
constructions gain a linear factor on key sizes from this variant? And are there
remarkably decodable lattices that are also ideals in certain number fields? The
repeated-difference lattices (a.k.a. Craig’s lattices [9]) are indeed ideal lattices in
cyclotomic number field with large minimal distances, but a polynomial decoding
algorithm for them remains to be discovered.

2 Preliminaries

2.1 Notation

Vectors x are denoted in bold and should be interpreted as column vectors. For a
matrix B with columns b1, . . . , bn we denote its Gram-Schmidt orthogonalisation
by B∗ with columns b∗

1, . . . , b
∗
n, and we denote the matrix norm by ‖B‖ :“

maxi ‖bi‖2. We denote Tq the discretized torus Tq :“ ( 1qZ)/Z and identify it
with its set of reduced representatives {0, 1

q , . . . , q´1
q }. The statistical distance

between two random variable X and Y will be denoted Δ(X,Y ).

2.2 Lattice Isomorphism and Quadratic Forms

Abstractly, the set of (full-rank, n-dimensional) lattices can be thought as the
homogeneous space3 GLn(R)/GLn(Z): a lattice L “ L(B) :“ B ·Zn is generated
by the columns of a basis B P GLn(R), and two basis B,B′ P GLn(R) generate
the same lattice if and only if there exists a unimodular matrix U P GLn(Z) such
that B′ “ BU .
3 This quotient should read as the quotient of a set by the action of group, and not a

group quotient. Indeed GLn(Z) is not a normal subgroup of GLn(R) for n ą 1.
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Two lattices are isomorphic if there exists an orthonormal transformation
O P On(R) sending one to the other. Finding this transformation, if it exists, is
known as the Lattice Isomorphism Problem (LIP).

Definition 2.1 (LIP, lattice version). Given two isomorphic lattices L,L′ Ă
R

n find an orthonormal transformation O P On(R) such that L′ “ O · L.

Algorithmically lattices L “ L(B),L′ “ L(B′) are represented by bases B,B′ P
GLn(R), and if L′ “ O·L, then OB is a basis of L′. If OB “ B′, then we can easily
compute O :“ B′B´1, however in general OB will only be equal to B′ up to some
unimodular transformation. More specifically when L “ L(B), and L′ “ L(B′)
for some lattice bases B,B′ P GLn(R) the Lattice Isomorphism Problem asks to
find an orthonormal O P On(R) and a unimodular U P GLn(Z) such that B′ “
OBU . The presence of both the orthonormal and the unimodular transformation
is what makes LIP a hard problem. In other words, reconstructing (or even
testing) equivalence in either quotient GLn(R)/GLn(Z) or On(R)\GLn(R) is easy,
doing so in the double quotient On(R)\GLn(R)/GLn(Z) appears to be hard.

The real-valued coordinates of the basis and orthonormal transformation
can be inconvenient and inefficient to work with. We can alleviate some of these
concerns by moving to the (equivalent) quadratic form setting, where instead of
a basis B we focus on the Gram matrix Q “ BtB.

Quadratic Forms and Integral Equivalence. The idea of the Quadratic Form
point of view on LIP is to consider the quotient in the opposite order than in
the lattice point of view: first on the left by On(R) and then only on the right
by GLn(Z).

We define a quadratic form as a positive definite real symmetric matrix.
A quadratic form can be thought as a basis modulo rotation; they realize the
quotient On(R)\GLn(R). More precisely, consider the surjective Gram map γ :
GLn(R) → Są0

n (R) sending a lattice basis B to the quadratic form Q “ BtB.
Note that the preimages of γ(B) are precisely the OB for O P On(R).

For a lattice basis B the Gram matrix Q “ BtB naturally gives a quadratic
form. Additionally every quadratic form Q induces a unique upper-triangular lat-
tice basis BQ such that Q “ Bt

QBQ (Cholesky decomposition). In the quadratic
form setting lattice vectors Bx P R

n are represented by their integral basis coef-
ficients x P Z

n. The inner product with respect to a quadratic form is naturally
given by 〈x,y〉Q :“ xtQy, and the norm by ‖x‖2Q :“ xtQx. Note that this
perfectly coincides with the geometry between the original lattice vectors. We
denote the ball of radius r by BQ(r) :“ {x P R

n : ‖x‖Q � r}. Translating the
lattice definition, one get the first minimum λ1(Q) defined by

λ1(Q) :“ min
xPZn\{0}

‖x‖Q ,

and more generally the i-th minimal distance λi(Q) defined as the smallest r ą 0
such that {x P Z

n | ‖x‖Q � r} spans a space of dimension at least i.
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In this realization Są0
n (R) of the quotient On(R)\GLn(R), the action of U P

GLn(Z) is given by Q �→ U tQU . We may now rephrase LIP for two lattice bases
B and B′. Note that if B′ “ OBU , then for Q :“ BtB we have:

Q′ :“ (B′)tB′ “ U tBtOtOBU “ U tBtBU “ U tQU,

and we call Q and Q′ equivalent if such a unimodular U P GLn(Z) exists, and
denote the equivalence class by [Q], moving the real-valued orthonormal trans-
form O P On(R) out of the picture. Additionally many remarkable lattices attain
a rational-valued Gram matrix Q, removing the need for real-valued or approx-
imate arithmetic. Later in this work we will restrict ourselves to integer-valued
quadratic forms.

Weaker Equivalence (Genus). The study of integral equivalence of quadratic
forms is classically approached via weaker notions, namely, equivalence over
larger rings [9, Chapter 15, Sec 4]. In particular, we shall consider the rational
equivalence class [Q]Q of all U tQU for U P GLn(Q), as well as the p-adic integer
equivalence class [Q]Zp

of all U tQU for U P GLn(Zp). These equivalences are
coarser than integral equivalence: [Q] “ [Q′] ⇒ [Q]Q “ [Q′]Q and [Q]Zp

“ [Q′]Zp
.

These data ([Q]Q, ([Q]Zp
)p) about a quadratic form are called the genus of the

quadratic form.
One could also consider equivalence over the reals R, or over the p-adic ratio-

nals Qp. By a local-global principle (Minkowski-Hasse Theorem [42, Thm. 9, pp.
44]) these data are redundant with the rational class [Q]Q.

The Lattice Isomorphism Problem, Quadratic Form Formulation. The Lattice
Isomorphism Problem can now be restated. We start by properly defining the
worst-case problems, in both a search and distinguishing variant.

Definition 2.2 (wc-sLIPQ). For a quadratic form Q P Są0
n the problem

wc-sLIPQ is, given any quadratic form Q′ P [Q], to find a unimodular U P GLn(Z)
such that Q′ “ U tQU .

Note that the problem is equivalent to the original LIP problem as we can still
extract an orthonormal transformation by computing O “ B′(BU)´1. Moreover,
the automorphism group Aut(Q) :“ {V P GLn(Z) : V tQV “ Q} is finite, and
for any solution U P GLn(Z) to wc-sLIPQ such that Q′ “ U tQU , the full set of
solutions is given by {V U : V P Aut(Q)}.

We also consider a distinguishing variant of LIP, denoted wc-ΔLIP. It is not
to be confused with the decisional version of LIP (which we will refer to as
dLIP).4

4 In dLIPQ0 one is given an arbitrary Q′ and must decide whether Q′ belongs to [Q0].
The distinguishing version is potentially easier in that Q′ is promised to belong to
either [Q0] or [Q1] for some known fixed [Q1].



650 L. Ducas and W. van Woerden

Definition 2.3 (wc-ΔLIPQ0,Q1). For two quadratic forms Q0, Q1 P Są0
n the

problem wc-ΔLIPQ0,Q1 is, given any quadratic form Q′ P [Qb] where b P {0, 1}
is a uniform random bit, to find b.

Because (part of) the genus is efficiently computable (see Sect. 7), we will
make sure that [Q0]R “ [Q1]R for all relevant ring extensions R P {Q,R,Qp,Zp}.

Hardness Statements. When we discuss the hardness of LIP problems, we will
implicitly assume that we are not talking of a single quadratic form Q (or of
a single pair (Q0, Q1) for ΔLIP), but of a family (Qn)n (or a family of pairs
(Q0,n, Q1,n)n for ΔLIP) where n ranges over an infinite set of positive integer.

2.3 Discrete Gaussians and Sampling

Discrete Gaussian sampling has been fundamental to the development of lat-
tice based cryptography, by allowing to return short or nearby lattice vectors
without leaking information about the secret key [12]. We rephrase the relevant
definitions and propositions in the quadratic form language.

Distribution. For any quadratic form Q P Są0
n we define the Gaussian function

on R
n with parameter s ą 0 and center c P R

n by

∀x P R
n, ρQ,s,c(x) :“ exp(´π ‖x ´ c‖2Q /s2).

The discrete Gaussian distribution is obtained by restricting the continuous
Gaussian distribution to a discrete lattice. In the quadratic form setting the dis-
crete lattice will always be Z

n, but with the geometry induced by the quadratic
form. For any quadratic form Q P Są0

n we define the discrete Gaussian distribu-
tion DQ,s,c with center c P R

n and parameter s ą 0 by

Pr
X∼DQ,s,c

[X “ x] :“ ρQ,s,c(x)
ρQ,s,c(Zn)

if x P Z
n, and 0 otherwise.

If the center c is not denoted we have c “ 0. An important property of the dis-
crete gaussian distribution is the smoothing parameter, i.e. how much gaussian
noise s ą 0 is needed to ‘smooth out’ the discrete structure.

Definition 2.4 (Smoothing Parameter). For a quadratic form Q P Są0
n and

ε ą 0 we define the smoothing parameter ηε(Q) as the minimal s ą 0 such that
ρQ´1,1/s(Zn) � 1 ` ε.

The smoothing parameter is a central quantity for gaussians over lattice, for
example it permits to control the variations of ρQ,s,c(Zn) is over all centers c.

Lemma 2.5 ([29]). For any quadratic form Q P Są0
n , ε ą 0, center c P R

n and
parameter s ą ηε(Q) we have:
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(1 ´ ε)
sn

√
det(Q)

� ρQ,s,c(Zn) � (1 ` ε)
sn

√
det(Q)

.

Note that the smoothing parameter ηε(Q) is an invariant property of the simi-
larity class [Q], and so we might also denote ηε([Q]) for a similarity class. While
computing or even approximating the exact smoothing parameter is hard, we
can obtain sufficient bounds via the dual form.

Lemma 2.6 (Smoothing bound [29]). For any quadratic form Q P Są0
n we

have η2´n(Q) � √
n/λ1(Q´1) and ηε(Q) � ‖B∗

Q‖ ·√ln(2n(1 ` 1/ε))/π for ε ą 0.

Above the smoothing parameter the discrete gaussian distribution is in some
sense ‘well behaved’ and we have the following tailbound that one would expect
from a Gaussian distribution.

Lemma 2.7 (Tailbound [30, Lemma 4.4]). For any quadratic form Q P Są0
n ,

ε P (0, 1), center c P R
n and parameter s � ηε(Q), we have

Pr
x∼DQ,s,c

[‖x ´ c‖Q ą s
√

n] � 1 ` ε

1 ´ ε
· 2´n.

A constant factor above the smoothing parameter we can furthermore lower
bound the min-entropy of the distribution.

Lemma 2.8 (Min-entropy [35]). For any quadratic form Q P Są0
n , positive

ε ą 0, center c P R
n, parameter s � 2ηε(Q), and for every x P Z

n, we have

Pr
X∼DQ,s,c

[X “ x] � 1 ` ε

1 ´ ε
· 2´n.

Gaussian Sampling. While the discrete Gaussian distribution already is an
important theoretical tool, for many practical purposes we want to actually
sample (close to) the distribution in an efficient manner. In their breakthrough
work Gentry et al. [12] showed that Klein’s [19] randomized Babai’s nearest plane
algorithm does exactly that. Given a lattice basis one can sample statistically
close to the discrete Gaussian distribution with parameters depending on the
shortness of the (Gram-Schmidt) basis; a better reduced basis allows for a lower
Gaussian width s. To simplify later proofs we use an exact sampling algorithm
by Brakerski et al. [7].

Lemma 2.9 (Discrete Sampling [7, Lemma 2.3]). There is a polynomial-
time algorithm DiscreteSample(Q, s, c) that given a quadratic form Q P Są0

n ,
center c P R

n, and a parameter s � ‖B∗
Q‖ · √

ln(2n ` 4)/π, returns a sample
distributed as DQ,s,c .
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2.4 Randomness Extractors

A randomness extractor allows, using a publicly known random seed, to con-
vert a non-uniform randomness source X with high min-entropy H∞(X) :“
´ log2(maxx Pr[X “ x]) to a near-uniform random variable [3,15].5

Definition 2.10 (Extractor). An efficient function E : X ˆ {0, 1}z → {0, 1}v

is an (m, ε)-extractor, if, for all random variable X distributed over X and
H∞(X) � m, it holds that

Δ
(
(Z, E(X,Z)), (Z, V )

)
� ε

where the seed Z Ð U({0, 1}z) and V Ð U({0, 1}v) are drawn uniformly at
random, and independently of X.

When instantiating our scheme, we will rely on the existence of an (m, ε)-
extractor with parameters m “ Θ(v) and ε “ 2´Θ(m).

3 LIP and Self-reducibility

In this section we lay the foundation for using the Lattice Isomorphism Problem
in cryptography. We present an average-case distribution for any quadratic form
equivalence class, show how to sample from it, and conclude with a worst-case
to average-case reduction. Note that the worst-case to average-case reduction is
realized within an equivalence class.

3.1 An Average-Case Distribution

First we define our average-case distribution within an equivalence class [Q],
which can be seen as an extension of the techniques used by Haviv and Regev
[17] to show that LIP lies in SZK. While in their work they use a discrete
Gaussian sampler [12] to sample a generating set of the lattice, we extend this
by a linear algebra step that returns a canonically distributed lattice basis—or
in our case a quadratic form.

A posteriori, this algorithm appears very similar to the heuristic approach
of [6], but the use of Gaussian sampling formally guarantees that the output
distribution solely depends on the lattice and not on the specific input basis—or
in our case, depends only on the class of the input quadratic form.

First we consider the linear algebra step, that given a quadratic form and
short linearly independent vectors, returns a well reduced equivalent form.

Lemma 3.1 (Adapted from [27, Lemma 7.1]). There is a polynomial time
algorithm (R,U) ← Extract(Q,Y ) that on input a quadratic form Q, and
linearly independent vectors Y “ (y1, . . . ,yn) P Z

nˆn, outputs a transforma-
tion U P GLn(Z) and a quadratic form R “ U tQU equivalent to Q such that
‖B∗

R‖ � maxi ‖yi‖Q.

5 For our application, we do not need to relax the source to only have average min-
entropy, and therefore work with the simpler worst-case version.



On LIP, Quadratic Forms, Remarkable Lattices, and Cryptography 653

Proof. First let U P GLn(Z) be the unique transformation such that T “ U´1Y
is the canonical upper-diagonal Hermite Normal Form of Y . Let R “ U tQU
and note that R is equivalent to Q. Denote the column vectors of U by
u1, . . . ,un. Because T is upper triangular and in Hermite Normal Form we have
yi “ ∑i

j“1 Tj,iuj , where Tj,j � 1. In particular we have that span(y1, . . . ,yk) “
span(u1, . . . ,uk). Let y∗

i and u∗
i be the i-th Gram-Schmidt vector of Y and U

respectively w.r.t. Q. Note that y∗
i “ Ti,i · u∗

i , and thus ‖u∗
i ‖Q “ ‖y∗

i ‖Q /Ti,i �
‖y∗

i ‖Q � ‖yi‖Q. We conclude by ‖B∗
R‖ “ maxi ‖u∗

i ‖Q � maxi ‖yi‖Q . ��
For our final distribution to be well defined we need that the extracted quadratic
form only depends on the geometry of the input vectors, and not on the particular
representative Q.

Lemma 3.2 (Independence of representative). Let y1, . . . ,yn P Z
n be

linearly independent. If (R,U) ← Extract(Q,Y ), and for some unimodular
V P GLn(Z) we have (R′, U ′) ← Extract(V tQV, V ´1Y ), then R′ “ R, and
U ′ “ V ´1 · U .

Proof. From the canonicity of the Hermite Normal Form we immediately obtain
that (U ′)´1V ´1Y “ T “ U´1Y , and thus U ′ “ V ´1 · U . It follows that R′ “
(V ´1 · U)tV tQV (V ´1 · U) “ U tQU “ R. ��
Now we can formally define our average-case distribution for a parameter s ą 0.

Definition 3.3. Given a quadratic form equivalence class [Q] Ă Są0
n we define

the Gaussian form distribution Ds([Q]) over [Q] with parameter s ą 0 algorith-
mically as follows:

1. Fix a representative Q P [Q].
2. Sample n vectors (y1, . . . ,yn) “: Y from DQ,s. Repeat until linearly indepen-

dent.
3. (R,U) ← Extract(Q,Y ).
4. Return R.

By Lemma 3.2 the output is independent of the chosen representative and thus
the distribution is well-defined.

Given the algorithmic definition of Ds([Q]), an actual efficient sampling algo-
rithm follows with only a few adaptations. Firstly, we need to efficiently sample
from DQ,s which puts some constraints on the parameter s depending on the
reducedness of the representative Q. Secondly the probability that n sampled
vectors are linearly independent can be quite small, instead we sample vectors
one by one and only add them to our set Y if they are independent. Still we
require the additional constraint s � λn(Q) to show that this succeeds with a
polynomial amount of samples.

Lemma 3.4. For any quadratic form Q P Są0
n (Z), and parameter

s � max{λn(Q), ‖B∗
Q‖ ·

√
ln(2n ` 4)/π},
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Algorithm 1: Sampling from Ds([Q]).
Data: A quadratic form Q P Są0

n (Zn), and a parameter
s � max{λn(Q), ‖B∗

Q‖ · √
ln(2n ` 4)/π}.

Result: Sample R “ U tQU from Ds([Q]), with a transformation U P GLn(Z).
Y Ð H;
while |Y | ă n do

x Ð DQ,s ; // Using Lemma 2.9

if x R span(Y ) then
Append x to Y ;

end

end
(R, U) Ð Extract(Q, Y );

Algorithm 1 runs in expected polynomial time and returns (R,U) where R is
a sample from Ds([Q]), and a unimodular U P GLn(Z) such that R “ U tQU .
Furthermore, the isomorphism U is uniform over the set of isomorphisms from
Q to R.

Proof. By Lemmas 2.9 and 3.1 every step in Algorithm 1 runs in polynomial
time. What remains is to show that the number of iterations is polynomially
bounded. Let the random variable K be the number of samples before we find n
independent ones. If |Y | ă n, then because s � λn(Q) we have by [17, Lemma
5.1] that every newly sampled vector x ← DQ,s is not in the span of Y with
constant probability at least C :“ 1 ´ (1 ` e´π)´1 ą 0. So K is bounded from
above by a negative binomial distribution for n successes with success probability
C, which implies that E[K] � n

C , and in particular that Pr[K ą n2] � e´Ω(n2).
When the while loop succeeds the set Y is distributed as n vectors sampled from
DQ,s under the linear independence condition, following exactly Definition 3.3.

Suppose that the algorithm runs and finishes with a final spanning set Y ,
and returning (R,U) Ð Extract(Q,Y ). For any automorphism V P Aut(Q), i.e.
such that V tQV “ Q, it would have been just as likely that the final spanning
set equalled V Y , because the samples from DQ,s only depend on the norm of
the vectors w.r.t. Q. Then by Lemma 3.2 we have:

Extract(Q,V Y ) “ Extract((V ´1)tQV ´1, V Y ) “ (R, V U),

and thus the algorithm would have returned V U with the same probability as U ,
which makes the returned transformation uniform over the set of isomorphisms
{V U : V P Aut(Q)} from Q to R. ��

For (exponentially) large parameters s we can always efficiently sample from
the average-case distribution by first LLL-reducing the representative.

Lemma 3.5. Given any quadratic form Q P Są0
n (Z) we can sample from

Ds([Q]) in polynomial time for s � 2Θ(n) · λn([Q]).
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Proof. Run the LLL algorithm on Q to obtain a representative Q′ P [Q] for
which ‖B∗

Q′‖ � 2Θ(n) · λn([Q]). Then apply Lemma 3.4. ��
Lemma 3.6. For any quadratic form Q P Są0

n , parameter ε P (0, 1), and s �
max{λn(Q), ηε(Q)}, we have

Pr
Q′∼Ds([Q])

[‖B∗
Q′‖ ą s

√
n] � 1 ` ε

1 ´ ε
· 25n · 2´n.

Proof. Given linearly independent vectors Y “ {y1, . . . ,yn} P Z
n the extractor

returns a quadratic form Q′ such that ‖B∗
Q′‖ � maxi ‖yi‖Q and thus we can

just focus on the norms ‖yi‖Q. Let the random variable K be the number of
samples x1, . . . ,xK ← DQ,s before we find n independent ones. By Lemma 2.7
we have ‖xi‖ ą s

√
n with probability at most (1 ` ε)/(1 ´ ε) · 2´n. By the proof

of Lemma 3.4 we have E[K] � n
C � 25n, and by a union bound we conclude:

Pr
[
max

i
‖yi‖Q ą s

√
n
]

“
∞∑

k“n

Pr[K “ k] Pr
[

max
1�i�k

‖xi‖Q ą s
√

n

]

�
∞∑

k“n

Pr[K “ k] · k

︸ ︷︷ ︸
E[K]

·1 ` ε

1 ´ ε
· 2´n � n

C
· 1 ` ε

1 ´ ε
· 2´n.

��

3.2 Average Case LIP

The above definition of a distribution over a class which is efficiently sampleable
from any representative of that class leads us to a natural average-case version
of both version of LIP. It is parametrized by a width parameter s ą 0.

Definition 3.7 (ac-sLIPQ
s ). For a quadratic form Q P Są0

n and s ą 0 the prob-
lem ac-sLIPQ

s is, given a quadratic form sampled as Q′ Ð Ds([Q]), to find a
unimodular U P GLn(Z) such that Q′ “ U tQU .

Definition 3.8 (ac-ΔLIPQ0,Q1
s ). For two quadratic forms Q0, Q1 P Są0

n and
s ą 0 the problem ac-ΔLIPQ0,Q1

s is, given a quadratic form sampled as Q′ Ð
Ds([Qb]) where b P {0, 1} is a uniform random bit, to find b.

Trivially the average-case variants can be reduced to their respective worst-
case variants. In the following section we show that the reverse is also true.

3.3 A Worst-Case to Average-Case Reduction

In general lattice problems become easier when given a short basis; and
harder when given a long basis. Similarly one would expect that ac-sLIPQ

s and
ac-ΔLIPQ0,Q1

s become harder when the parameter s ą 0 increases. In fact when
s is large enough the average-case problem becomes at least as hard as any worst-
case instance; making the average-case and worst-case problems equivalent.
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Lemma 3.9 (ac-sLIPQ
s � wc-sLIPQ for large s). Given an oracle that solves

ac-sLIPQ
s for some s � 2Θ(n) · λn(Q) in time T0 with probability ε ą 0, we can

solve wc-sLIPQ with probability at least ε in time T “ T0 ` poly(n, log s).

Proof. Given any Q′ P [Q], apply Lemma 3.5 to sample Q′′ ← Ds([Q]) for
some s � 2O(n) · λn([Q]), together with a U ′′ such that Q′′ “ U ′′tQ′U ′′. Note
that Ds([Q]) “ Ds([Q′]); we can therefore apply our ac-sLIPQ

s -oracle to Q′′ and
obtain U P GLn(Z) such that Q′′ “ U tQU . Now for U ′ :“ UU ′′´1 P GLn(Z) we
have:

U ′tQU ′ “ (U ′′´1)tU tQUU ′′´1 “ (U ′′´1)tQ′′U ′′´1 “ Q′.

So given an ac-sLIPQ
s -oracle we can solve wc-sLIPQ. ��

To allow for more efficient schemes we would like to decrease the parameter s ą 0
in the worst-case to average-case reduction. We can do so at the cost of stronger
lattice reduction than LLL.

Lemma 3.10. Given an oracle that solves ac-sLIPQ
s for some s � λn(Q) in

time T0 with probability ε ą 0, we can solve wc-sLIPQ with probability at least 1
2

in time

T “ 1
ε
(T0 ` poly(n, log s)) ` C

(

n,
s

λn(Q) · √
ln(2n ` 4)/π

)

,

where C(n, f) is the cost of solving the Shortest Independent Vector Problem
(SIVP, [39]) within an approximation factor of f .

Proof. The f -approx-SIVP oracle returns n linearly independent vectors of norm
at most f · λn(Q), and thus using Lemma 3.1 we can construct an equivalent
form Q′ P [Q] with ‖B∗

Q′‖ � f · λn(Q). For f :“ s/(λn(Q) · √
ln(2n ` 4)/π) we

obtain that s � ‖B∗
Q′‖ · √ln(2n ` 4)/π, and thus we can sample efficiently from

Ds([Q]). The rest of the proofs follows similar to that of Lemma 3.9. Additionally
the reduction succeeds with some probability ε ą 0, so we need to repeat it 1

ε
times to obtain a success probability of at least 1

2 . Note that each additional
sample can be computed in polynomial time from the same representative Q′. ��
Remark 3.11. Note that the overhead is entirely additive, in particular it does
not suffer from the 1

ε amplification. So, while the reduction is not polynomial
time, concretely, one can afford huge overheads; for example an overhead of 2100

would barely affect a underlying hardness of 2128 as 2128 ´ 2100 “ 2127.999....
This situation is quite different from the usual innefficient reductions found in
the literature, where the overhead is multiplicative.

In Lemma 3.10, the SIVP oracle can be instantiated by a variant of the BKZ
algorithm [40]. With a sub-linear blocksize of β :“ n/ log(n) we could decrease
s to a quasi-polynomial factor exp(log2(n)) ·λn(Q), with only a sub-exponential
additive cost to the reduction. For security based on exponential hardness (e.g.
T0/ε “ exp(Ω(n))) this would still be meaningful, while maintaining a poly-
logarithmic bitlength for the integer entries of the manipulated matrices.
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Going down to polynomial factors s “ poly(n) · λn(Q) (and hence single
logarithmic integer bitlength) would require a linear blocksize β :“ Θ(n), and
an exponential cost 2cn. For small constants c ą 0 such that cn is smaller than the
security parameter the reduction would still be meaningful. However for provable
algorithms this constant c is rather large, and the gap between provable [1] and
heuristic results [4] is significant. As we want to keep our reduction non-heuristic
in this initial work, we will leave this regime for further research.

Using a similar strategy, one can also establish a worst-case to average-case
reduction for ΔLIP. Note that, because it is a distinguishing problem, the advan-
tage amplification now requires O(1/α2) calls to the average-case oracle.

Lemma 3.12 (ac-ΔLIPQ0,Q1
s � wc-ΔLIPQ0,Q1 for large s). Given an oracle

that solves ac-ΔLIPQ0,Q1
s for some s � 2Θ(n) · max{λn(Q0), λn(Q1)} in time T0

with advantage α ą 0, we can solve wc-ΔLIPQ0,Q1 with advantage α in time
T ` poly(n, log s).

Lemma 3.13. Given an oracle that solves ac-ΔLIPQ0,Q1
s in time T0 for some

s � max{λn(Q0), λn(Q1)} with advantage α ą 0, we can solve wc-ΔLIPQ0,Q1

with advantage at least 1
4 in time

T “ 1
α2

(T0 ` poly(n, log s)) ` C

(

n,
s

max{λn(Q0), λn(Q1)} · √
ln(2n ` 4)/π

)

,

where C(n, f) is the cost of solving the Shortest Independent Vector Problem
(SIVP, [39]) within an approximation factor of f .

4 Zero Knowledge Proof of Knowledge

At high level, the protocol of Haviv and Regev [17], as well as ours, is very
similar to protocols for other types of isomorphisms, in particular protocols for
graph ismorphism [14] and for code isomorphism [5].

A notable difference however, is that both these protocols [5,14] relied on the
action of a finite group (permutations), allowing to show zero-knowledgness by
uniformity of the distribution over an orbit. In our case, the group acting GLn(Z)
is not finite, and not even compact, admitting no such uniform distribution. It
is perhaps surprising to see that uniformity is in fact not required.

4.1 The Σ-Protocol

Efficiency and Completeness. For efficiency of Σ we have to check that Algo-
rithm 1 runs in polynomial time, and indeed by Lemma 3.4 this is the case
because

s � max
{
λn([Q0]), ‖B∗

Q0
‖ ·

√
ln(2n ` 4)/π

}
.
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Zero Knowledge Proof of Knowledge Σ

Consider two equivalent public quadratic forms Q0, Q1 P Są0
n (Z) and a secret uni-

modular U P GLn(Z) such that Q1 “ U tQ0U . Given the public parameter

s � max
{

λn([Q0]), max
{‖B∗

Q0‖, ‖B∗
Q1‖} ·

√
ln(2n ` 4)/π

}
,

we define the following protocol Σ that gives a zero-knowledge proof of knowledge of
an isomorphism between Q0 and Q1:

Prover Verifier

Sample Q′ Ð Ds([Q0]) by Alg. 1,
together with V s.t. Q′ “ V tQ0V

Q′
´́ ´́ ´́ ´́ ´́ →́ Sample c Ð U({0, 1})

Compute W “ U´c · V
c←́ ´́ ´́ ´́ ´́ ´́

W´́ ´́ ´́ ´́ ´́ →́ Check if W P GLn(Z),
and Q′ “ W tQcW .

For the verification we have that W P GLn(Z) if and only if W is integral and
det(W ) “ ±1, both of which are easy to check in polynomial time.

For the completeness of Σ note that when the prover executes the protocol
honestly we have W :“ U´c ·V P GLn(Z) because U and V are both unimodular
by definition. Additionally we have

Q′ “ V tQ0V “ (V t(U´c)t)
︸ ︷︷ ︸

W t

((U c)tQ0U
c)

︸ ︷︷ ︸
Qc

(U´cV )
︸ ︷︷ ︸

W

“ W tQcW,

and thus the verifier accepts.

Special Soundness. Suppose we have two accepting conversations (Q′, 0,W0) and
(Q′, 1,W1) of Σ where the first message is identical. The acceptance implies that
W0,W1 P GLn(Z) and W t

0Q0W0 “ Q′ “ W t
1Q1W1, and thus U ′ :“ W0W

´1
1 P

GLn(Z) gives an isomorphism from Q0 to Q1 as

U ′tQ0U
′ “ (W ´1

1 )t(W t
0Q0W0)W ´1

1 “ (W ´1
1 )t(W t

1Q1W1)W ´1
1 “ Q1.

We conclude that Σ has the special soundness property.

Special Honest-Verifier Zero-Knowledge. We create a simulator that given the
public input Q0, Q1 outputs an accepting conversation with the same probability
distribution as between a honest prover and verifier. Note that the first message
Q′ is always distributed as Ds([Q0]), the challenge c as U({0, 1}), and V is
uniform over the set of isomorphisms from Q0 to Q′ by Lemma 3.4. Because U
is an isomorphism from Q0 to Q1 we have, given the challenge c, that W “ U´c·V
is uniform over the set of isomorphisms from Qc to Q′.

To simulate this we first sample the uniformly random challenge c Ð
U({0, 1}). If c “ 0 we can proceed the same as in Σ itself, e.g. sample
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Q′ Ð Ds([Q0]) using Algorithm 1, together with a V such that Q′ “ V tQ0V ,
and set W :“ V . The final conversation (Q′, 0,W ) is accepting and follows by
construction the same distribution as during an honest execution conditioned on
challenge c “ 0.

If c “ 1 we use the fact that [Q0] “ [Q1], and that we can use Algorithm 1
with representative Q1 as input instead of Q0. So again we obtain Q′ Ð
Ds([Q1]) “ Ds([Q0]) following the same distribution, but now together with a
unimodular W P GLn(Z) such that Q′ “ W tQ1W . The conversation (Q′, 1,W ) is
accepting by construction, and Q′ follows the same distribution Ds([Q0]). Addi-
tionally by Lemma 3.4 the transformation W is indeed uniform over the set of
isomorphisms from Q1 to Q′.

We conclude that Σ has the special honest-verifier zero-knowledge property.

4.2 Identification Scheme

The Zero Knowledge Proof of Knowledge in the previous section is worst-case
in the sense that given any two equivalent forms Q0, Q1 P Są0

n (Z) and a secret
isomorphism U P GLn(Z) from Q0 to Q1 we can show knowledge of such an iso-
morphism. However to turn this Σ-protocol into an Identification Scheme (see
e.g. [10]) we need to define a distribution of U P GLn(Z) (or alternatively of
Q1 w.r.t Q0). Finding an isomorphism between Q0 and Q1 is at most as hard
as solving either ac-sLIPQ0

s or ac-sLIPQ1
s for parameter s as in Σ. Therefore a

natural choice is to have Q1 distributed according to Ds′([Q0]) for some parame-
ter s′ � max{λn([Q0]), ‖B∗

Q0
‖ ·√ln(2n ` 4)/π}, which we can efficiently sample

from using Algorithm 1. The security of our identification scheme is then solely
based on the hardness of ac-sLIPQ0

s′ .

5 Key Encapsulation Mechanism

In this section we construct a Key Encapsulation Mechanism (KEM) with a secu-
rity proof based on the hardness of ΔLIP. In short we will need a quadratic form
S along with an efficient decoder up to some radius ρ ă λ1(S)/2. The public key
will consist of a long equivalent form P :“ U tSU ← Ds([S]), while the unimod-
ular transformation U will be the secret key. Knowledge of the transformation U
allows to decode w.r.t. P via S; without any loss in decoding performance. The
key will be a random error e of norm ‖e‖P � ρ, and it can be encapsulated as
the syndrome e :“ e mod Z

n P [0, 1)n. The receiver with knowledge of the secret
transformation U can recover e by decoding via S. The correctness follows from
the fact that the decoding is unique due to ρ ă λ1(S)/2.

For the security we assume that it is (computationally) hard to differentiate
between P Ð Ds([S]) and some random sample R Ð Ds([Q]) from a special
class [Q], a class corresponding to a lattice admitting a dense sublattice. This
assumption allows us to replace P by R, which completely breaks the uniqueness
of the decoding. That is, the syndrome e has many (say expΩ(λ)) nearby points
w.r.t. R, and retrieving the exact original point becomes statistically hard.
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Key Encapsulation Scheme

Let ρ ă λ1(S)/2 and let S P Są0
n (Z) be a quadratic form with an efficient decoder

Decode with decoding radius ρ. Let E : 1
q
Z

n ˆ {0, 1}z → {0, 1}� be a (�, negl(n))-
extractor for some � “ Θ(n). Given the public parameters

s � max{λn(S), ‖B∗
S‖ ·

√
ln(2n ` 4)/π}, and

q :“
⌈

s · n

ρ
·
√

ln(2n ` 4)/π

⌉
,

we define the KEM K :“ (Gen,Encaps,Decaps) as follows:

– (pk, sk) ← Gen(1n): on input 1n do:
1. Sample P Ð Ds([S]) using Alg. 1, together with U such that P “ U tSU .
2. Output (pk, sk) “ (P, U).

– (c, k) ← Encaps(pk): on input 1n and a public key P “ pk do:
1. Sample e ← 1

q
DP,qρ/

√
n P 1

q
Z

n using Lemma 2.9.

2. Compute c ← e mod Z
n s.t. c P T

n
q “ {0, 1

q
, . . . , q´1

q
}n.

3. Sample a random extractor seed Z Ð {0, 1}z.
4. Compute k ← E(e, Z).
5. Output (c, k) where c :“ (c, Z).

– k ← Decaps(sk, c): on input c “ (c, Z) and a secret key U :“ sk do:
1. Compute y ← Decode(S, Uc) s.t. ‖y ´ Uc‖S � ρ,

output K on failure.
2. Compute k ← E(c ´ U´1y, Z).
3. Output k.

Efficiency and Correctness. We consider the efficiency and correctness of the
KEM K :“ (Gen,Encaps,Decaps) instantiated with quadratic form S P
Są0

n (Z) and public parameter

s � max{λn(S), ‖B∗
S‖ ·

√
ln(2n ` 4)/π}.

By the above constraint on s, Algorithm 1 will run in polynomial-time by
Lemma 3.4. Furthermore by Lemma 3.6 we have with overwhelming prob
ability that

qρ/
√

n � s
√

n ·
√

ln(2n ` 4)/π � ‖B∗
P ‖ ·

√
ln(2n ` 4)/π,

and thus we can efficiently sample from DP,qρ/
√

n by Lemma 2.9.
For correctness note that in the key encapsulation algorithm the sampled

error e has norm at most ‖e‖P � ρ except with negligible probability by Lemma
2.7, and we denote the encapsulated key by k :“ E(e, Z), where Z denotes the
randomness extractor’s seed. Because ρ ă λ1(S)/2 the vector x :“ c ´ e P Z

n

is the unique closest vector to c with respect to P , which makes Ux the unique
closest vector to Uc with respect to S “ (U´1)tPU´1. In the decapsulation
the decoder computes the unique vector y at distance at most ρ from Uc, which
implies that y “ Ux. So indeed the output k′ :“ E(c´U´1y, Z) “ E(c´x, Z) “
E(e, Z) “ k equals the encapsulated key with overwhelming probability.
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CPA Security. To show that our KEM is CPA-secure we fall back to a lossy trap-
door argument a la [36]. Under the hardness of decisional LIP we can replace our
unique ρ-decodable quadratic form by one that is far from uniquely decodable.
For the latter it is enough to have a dense sublattice.

Lemma 5.1. Let Q P Są0
n (Z) be a quadratic form with a rank r sublattice

DZ
r Ă Z

n. For positive ε ą 0, center c P R
n, parameter s :“ ρ/

√
n �

2ηε([DtQD]), and for every x P Z
n we have

Pr
X∼DQ,s,c

[X “ x] � 1 ` ε

1 ´ ε
· 2´r.

Proof. Let y :“ x ´ c P R
n, and decompose y “: yD ` yDK where yD P

span(DZ
r), and yDK is orthogonal to yD w.r.t Q. Then we have

Pr
X∼DQ,s,c

[X “ x] “ ρQ,s,c(x)
ρQ,s,c(Zn)

“ ρQ,s(y)
ρQ,s(y ` Zn)

� ρQ,s(y)
ρQ,s(y ` DZr)

“ ρQ,s(yDK) · ρQ,s(yD)
ρQ,s(yDK) · ρQ,s(yD ` DZr)

“ ρQ,s(yD)
ρQ,s(yD ` DZr)

.

Note that we can write yD “ Dz for some z P R
r, then the above equals

PrX∼DDtQD,s,z
[X “ 0], which by Lemma 2.8 is bounded by 1`ε

1´ε · 2´r. ��
Theorem 5.2. We consider the KEM K :“ (Gen,Encaps,Decaps) instanti-
ated with quadratic form S P Są0

n (Z), decoding radius ρ, and public key parameter
s ą 0. Let Q P Są0

n (Z) be a quadratic form with a dense rank r “ Θ(n) sub-
lattice DZ

r Ă Z
n, in particular such that η 1

2
(DtQD) � ρ/(2

√
n). Then K is

CPA-secure if ac-ΔLIPS,Q
s is hard.

Proof. Let A be a probabilistic polynomial-time adversary. We present two
games Game1 and Game2, where Game1 is the regular CPA-security game
with the original scheme, and Game2 is almost identical but with the only
change that the public key is drawn from Ds([Q]) instead of Ds([S]). By the
hardness of ac-ΔLIPS,Q

s the two games are computationally indistinguishable,
and due to the dense sublattice we can conclude that winning Game2 with a
non-negligible advantage is statistically impossible.

Let the key-size � “ Θ(n) be such that � � r ´ log2(3). The original KEM
CPA game Game1 is as follows [18]:

– Gen(1n) is run to obtain a public key pk “ P . Then Encaps(pk) is run to
generate (c, k) with k P {0, 1}�.

– A uniform bit b P {0, 1} is chosen. If b “ 0, set k̂ :“ k, if b “ 1, choose a
uniform k̂ P {0, 1}�.

– Given (pk, c “ (c, Z), k̂) the adversary A wins the experiment if b is guessed
correctly.

The only difference between Game1 and Game2 is that in Game2 we sample
the public key P from Ds([Q]) instead of Ds([S]). Note that Game1 and Game2
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both only use public information and thus by the hardness of ac-ΔLIPS,Q
s the

two are computationally indistinguishable by A.
Now we take a look at Game2. Consider the output (c “ (c, Z), k) ←

Encaps(pk) where pk :“ Q′ P [Q]. For any fixed c we have by construction that
k :“ E(e, Z), where e ← 1

q DQ′,qρ/
√

n under the condition that e “ c mod Z
n.

Equivalently we could say that e ← c´DQ′,ρ/
√

n,c , then by Lemma 5.1 we know
that e has a min-entropy of at least r´log2(3) � l, and thus k :“ E(e, Z) P {0, 1}�

is negligibly close to uniform independent of c. So in Game2 we have that k̂ is
negligibly close to uniform, independent of c and the choice of b P {0, 1}, making
it impossible for A to guess b with non-negligible advantage. ��

6 Signature Scheme

Similar to the Key Encapsulation Mechanism we propose in this section a hash-
then-sign signature scheme based on ΔLIP. The main requirement is a quadratic
form S along with an efficient discrete Gaussian sampling algorithm of smallish
width ρ/

√
n � η2´Θ(n)(S).

Again the public key will consist of some lesser reduced form P :“ U tSU ←
Ds([S]) equivalent to S, where the unimodular transformation U is the secret
key. To sign a message we use a full domain hash to obtain a uniform coset
t ` Z

n, the signature then consists of a nearby vector σ ← DP,ρ/
√

n,t w.r.t. the
form P . The nearby vector is obtained via S by the secret transformation U .

The security assumption is similar, but in some way dual to that of the
KEM. Again assume that it is computationally hard to differentiate between P
and some special class of forms [Q]; however in this case Q must admit a sparse
projection (equivalently, their dual should contain a dense lattice). The sparsity
implies that a uniformly random target t does not have a nearby vector with
overwhelming probability, making the signage vacuously hard.

Correctness. For correctness we mainly have to check that the returned signature
σ P Z

n is indeed close to t :“ H(m) w.r.t P . Because P “ U tSU we have:

‖σ ´ t‖P “ ‖U(σ ´ t)‖S “ ‖σ′ ´ Ut‖S ,

and by Lemma 2.7 we have with overwhelming probability that ‖σ ´ t‖P “
‖σ′ ´ Ut‖S � ρ/

√
n · √

n “ ρ, concluding the correctness.

Security. For the security proof we first consider a class of quadratic forms for
which the signage is vacuously hard, e.g. for a random target t P R

n/Zn there
exists no nearby vector.

Lemma 6.1. Let Q P Są0
n (Z) be a quadratic form with a dense rank k sublattice

DZ
k Ă Z

n, in particular such that ρ/
√

k � 1/(
√

8πe ·det(DtQD)1/2k). Then for
the dual form Q´1 we have

Pr
t∼U([0,1]n)

[|(t ` Bn
Q´1,ρ) X Z

n| � 1] � 2´k.
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Signature Scheme

Let S P Są0
n (Z) be a quadratic form together with a sampling algorithm

DiscreteSample that allows to sample statistically close to DP,ρ/
√

n(t ` Z
n) for

some parameter ρ/
√

n � η2´Θ(n)([S]) and any target t P T
n
q . Let H : M → T

n
q be a

full domain hash function (modeled as a random oracle). Given the public parameters

s � max{λn(S), ‖B∗
S‖ ·

√
ln(2n ` 4)/π}, and

q :“
⌈

s · n

ρ
·
√

ln(2n ` 4)/π

⌉
,

we define the signature scheme S :“ (Gen,Sign,Verify) as follows:

– (pk, sk) ← Gen(1n): on input 1n do:
1. Sample P Ð Ds([S]) using Alg. 1, together with U s.t. P “ U tSU .
2. Output (pk, sk) “ (P, U) P Są0

n (Z) ˆ GLn(Z).
– σ ← Sign(sk, m): on input a message m and a secret key U :“ sk do:

1. Compute t ← H(m).
2. Sample σ′ ← DS,ρ/

√
n,Ut using DiscreteSample.

3. Compute σ ← U´1σ′.
4. Output σ P Z

n.
– b :“ Verify(pk, m, σ): on input a public key P “ pk, a message m and a signature

σ do:
1. Compute t ← H(m).
2. If σ P Z

n, and ‖t ´ σ‖P � ρ, output b “ 1.
3. Otherwise, output b “ 0.

Proof. Let V :“ span(D) Ă R
n such that the orthogonal projection w.r.t. Q´1

of Z
n onto V defines a projected lattice CZ

k :“ πQ´1,V (Zn) of rank k, with
det(CtQ´1C) � 1/det(DtQD). Because a projection is non-increasing in length
we have

Pr
t∼U(Rn/Zn)

[|(t ` Bn
Q´1,ρ) X Z

n| � 1] � Pr
t∼U(Rk/Zk)

[|(t ` Bk
CtQ´1C,ρ) X Z

n| � 1] “ (∗).

Then using Markov’s inequality we can bound the above by

(∗) � Et∼U(Rk/Zk)[|(t ` Bk
CtQ´1C,ρ) X Z

n|] “ VolCtQ´1C(Bk
CtQ´1C,ρ)

VolCtQ´1C(Rk/Zk)

� (2πe/k)k/2 · ρk

√
det(CtQ´1C)

� 2´k.
��

Theorem 6.2. We consider the signature scheme S :“ (Gen,Sign,Verify)
instantiated with quadratic form S P Są0

n (Z), sampling parameter ρ, and pub-
lic key parameter s ą 0. Let Q P Są0

n (Z) be a quadratic form with a dense
rank k “ Θ(n) sublattice DZ

k Ă Z
n, in particular such that 2ρ/

√
k �

(
√

8πe·det(DtQDt)1/k)´1. Then S is EUF-CMA secure if ac-ΔLIPS,Q´1

s is hard.
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Proof. Let A be a probabilistic polynomial-time adversary. We present three
games Game1,Game2,Game3 where Game1 is the regular EUF-CMA game
with the original scheme, Game2 reprograms the random oracle to generate valid
signatures without knowledge of the secret key, and Game3 samples the public
key from [Q´1] instead of [S]. By a standard smoothness argument the adversary’s
view of Game1 and Game2 is statistically indistinguishable, and Game2 and
Game3 are indistinguishable by the hardness of ac-ΔLIPS,Q´1

s . Then we conclude
by Lemma 6.1 that the problem of forging a signature in Game3 is statistically
hard. The original EUF-CMA game Game1 is as follows [18]:

– Gen(1n) is run to obtain keys (pk “ P, sk “ U).
– Adversary A is given pk “ P and access to an oracle Sign(sk, ·). The adver-

sary then outputs (m,σ) where m was not queried before to the oracle.
– A succeeds if and only if Verify(pk,m,σ) “ 1.

To show that our signature scheme S is EUF-CMA secure we have to show that
Game1 succeeds only with negligible probability. We assume that the adversary
queries the oracle on l “ poly(n) distinct6 message m1, . . . ,ml. In Game1 the
secret key is used to obtain a valid signature (mi,σi) where σi ← DP,ρ/

√
n,H(mi).

InGame2 instead we first sample a random error ei ← 1
q ·DP,qρ/

√
n. By Lemma 3.6

we have qρ/
√

n � ‖B∗
P ‖·√ln(2n ` 4)/π with overwhelming probability, and thus

by Lemma 2.9 we can do the sampling without using the secret key. Then we repro-
gram the random oracle such that H(mi) :“ ti “ e mod Z

n P Tq, and return the
signature pair (mi,σi :“ ti ´ei). Note that the probability that ti equals any tar-
get t P T

n
q is proportional to ρP,ρ/

√
n,t(Zn). So ti is close to uniform by Lemma 2.5

because ρ/
√

n � η2´Θ(n)([S]) “ η2´Θ(n)([P ]), and thus the random oracle is still
simulated correctly. Additionally the conditional probability of σi conditioned on
ti is exactly the same as in Game1, so we can conclude that Game1 and Game2
are statistically indistinguishable from the adversary’s point of view.

The only difference between Game2 and Game3 is that in Game3 we sam-
ple the public key P from Ds([Q´1]) instead of Ds([S]). Note that Game2
and Game3 both only use public information and thus by the hardness of
ac-ΔLIPS,Q´1

s the two are computationally indistinguishable.
To conclude note that for any message m we obtain a random target t :“

H(m) P T
n
q . Let e′ be uniform over the Babai nearest plane region defined by P ,

then ‖e′‖P �
√

n
2 ‖B∗

P ‖, and t′ :“ t ` 1
q e′ is uniform over Rn/Zn. By Lemma 6.1

the uniformly random target t′ lies at distance at least 2ρ from Z
n w.r.t. P with

overwhelming probability. So for t we have with overwhelming probability that:

distP (t,Zn) � distP (t′,Zn) ´
∥∥∥∥

1
q
e′

∥∥∥∥
P

� 2ρ ´
√

n · ‖B∗
P ‖

2q

� 2ρ ´ ρ/(2
√

ln(2n ` 4)/π) ą ρ.

Therefore it is statistically impossible for the adversary to return a valid signa-
ture for m, and thus to win Game3. ��
6 This can be enforced by salting messages or by derandomization.
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7 Cryptanalysis of LIP

Equivalent quadratic forms Q,Q′ :“ U tQU (for some U P GLn(Z)) share many
common properties, and these invariants can be used to decide that two quadratic
forms cannot be equivalent, or can guide the search for an isomorphism.

7.1 Invariants

Arithmetic Invariants. Firstly we have det(U) “ ±1, and thus for two equivalent
quadratic forms we have det(Q′) “ det(U t) det(Q) det(U) “ det(Q). Secondly
because U and U´1 are both integral, the quantity gcd(Q) “ gcd{Qij : 1 �
i, j � n} is also an invariant.

A third and less obvious invariant is the parity of the quadratic form. The
notion is standard for unimodular lattices: it is called even if all norms are even,
and odd otherwise. More generally, writing ‖x‖Q “ ∑

i Qiix
2
i ` 2

∑
iăj xjQijxi

one gets that gcd{‖x‖Q : x P Z
n} P {1, 2} · gcd(Q). We call this factor par(Q) P

{1, 2} the parity of Q. It is also efficiently computable by noting that par(Q) “
gcd({Qii : 1 � i � n} ∪ {2 gcd(Q)})/ gcd(Q).

Further arithmetic invariants are induced by R-equivalence of quadratic
forms for extensions R ⊃ Z. The invariants for Q-equivalence can be decom-
posed via a local-global principle, namely the Hasse-Minkowski theorem [42,
Thm. 9, pp. 44]. Together with the discriminant, these invariants are complete
(they entirely determine quadratic forms up to Q-equivalence), and they can be
computed efficiently. They consists of the signature, and the Cassel-Hasse invari-
ant at each prime p. The Sylvester signature (R-equivalence) is always (n, 0)
in our case as we are only considering positive quadratic forms. The Cassel-
Hasse invariant (Qp-invariance) for a prime p is given for a diagonal matrix
D “ diag(d1, . . . , dn) by

hp “
∏

iăj

(di, dj)p (1)

where ( · , · )p denotes the Hilbert Symbol at p. Using LDLt decomposition
(Cholesky decomposition over the rationals), one can efficiently compute Hasse
invariant for any positive quadratic form.

Similarly, there are also invariants induced by p-adic equivalence of quadratic
forms: Q′ “ V tQV for V P GLn(Zp), see [9, Chap. 15, Sec 4.1].

All these arithmetic invariants provide a fingerprint

ari(Q) “ (det(Q), gcd(Q),par(Q), [Q]Q, ([Q]Zp
)p) (2)

and they appear to all be efficiently computable, but are essentially only useful to
answer the ΔLIP problem in the negative. When instantiating ΔLIP, we should
therefore make sure that these fingerprint matches.
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The Hull. In the literature for linear code equivalence a relevant notion is that
of the efficiently computable hull C X CK of a code C Ă F

n
q . Properties such

as the rank of the hull are invariant under equivalence, and a small rank even
allows to efficiently find the isometry [41]. For a lattice L and its dual L∗ we
could define the hull as L X L∗. However, for integral lattices (or more generally
if the associated quadratic form is integral) we always have L Ă L∗ and thus the
hull L X L∗ “ L does not present us with new information. We could generalize
definition to consider L X (k · L∗) for rational k P Q‰0, and although we do not
see a direct threat for our instantiation (in Sect. 8) from this, we do encourage
more research into the geometric properties of the resulting lattices.

Geometric Invariant. The defining and most important property of a unimodular
transformation U P GLn(Z) is that it gives a bijection Z

n → Z
n by x �→ Ux (or

x �→ U´1x). With respect to the quadratic forms Q,Q′ :“ U tQU this even gives
an isometry (from Q′ to Q) as

〈x,y〉Q′ “ xtQ′y “ xtU tQUy “ 〈Ux, Uy〉Q for x,y P R
n.

This isometry results in several natural geometric invariants related to the norms
and inner products of integral vectors. We have already seen some, namely the
first minimum λ1(Q) and the i-th minimum λi(Q). Further geometric invariants
can be defined, such as the kissing number κ(Q) “ |Min(Q)| where

Min(Q) :“ {x P Z
n : ‖x‖Q “ λ1(Q)},

and more generally the (formal) Theta-series ΘQ(q) “ ∑
��0 N�q

� associated to
Q, where N� “ | {x P Z

n : ‖x‖Q “ �} |.
All these geometric invariant appears to involve finding or even enumerating

short vectors; in particular they are plausibly hard to compute.

7.2 Algorithms for Distinguish-LIP and Hardness Conjecture

In Sect. 8, we will use ΔLIP with quadratic forms with different minimal dis-
tances λ1(Q0) ă λ1(Q1). However we will be careful to ensure that their arith-
metic invariant match ari(Q0) “ ari(Q1) to not make the problem trivial.

Approximate-SVP Oracle. An f -approx-SVP oracle applied to a form Q finds a
short vector of length at most f ·λ1(Q). So ΔLIP is no harder than f -approx-SVP
for f “ λ1(Q1)/λ1(Q0) in any of those lattices.

Unusual-SVP via Lattice Reduction. However even when the gap between λ1(Q0)
and λ1(Q1) is small, the minimal vectors may individually still be unusually
short, which make them significantly easier to find than in a random lattice.
This is usually formalized via the f -unique-SVP problem, but many instances of
interest do not have such a gap between λ1 and λ2; in fact Zn, Barnes-Wall and
Barnes-Sloane lattices all have λ1 “ λ2 “ · · · “ λn. But practical and heuristic
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studies have showed that uniqueness is not that relevant to lattice attacks [2]. We
therefore introduce yet another lattice problem, called unusual-SVP to discuss
such instances. A formal complexity reduction between unusual-SVP and unique-
SVP matching or approaching the heuristic state of the art appears to be a
valuable research objective, but is beyond the scope of the present article.

We define f -unusual-SVP: find a minimal vector under the promise that
λ1(Q) � gh(Q)/f , where the Gaussian Heuristic gh(Q) is a heuristic estimate
for λ1(Q) given by:

gh(Q) :“ det(Q)1/2n · 1√
π

· Γ (1 ` n/2)1/n ≈ det(Q)1/2n ·
√

n

2πe
.

State of the art lattice reduction techniques find these unusually short vector
more easily than longer vectors with length around gh(Q), and (heuristically)
the hardness is directly driven by the ratio f “ gh(Q)/λ1(Q) [2]. Given a form
Q′ P [Q0]∪ [Q1] we parametrize the lattice reduction algorithm to find a unusual
short vector with length min{λ1(Q0), λ1(Q1)}, then depending on success we
learn that either Q′ P [Q0] or Q′ P [Q1].

An Approach of Szydlo. Additionally there is one heuristic algorithm in the lit-
erature [46] for ΔLIP, that applies to lattices obtained by mild sparsification of
the orthogonal lattice Z

n. This algorithm proceeds by sampling vectors of length
O(

√
n) and then decides via a statistical test: the Theta-series appears suffi-

ciently different at such low lengths to distinguish the two lattices. Remarkably,
the parameters for state of the art lattice reduction algorithms parametrized
to solve O(

√
n)-approx-SVP for (mild sparsifications of) Z

n, match those to
solve gh(Zn)/λ1(Zn) “ O(

√
n)-unusual-SVP; instead of finding approximate

vectors we immediately find the shortest vectors. Again we see that the ratio
gh(Q)/λ1(Q) is what seems to matter.

Conclusion. To conclude, let us also note that any of the above attack can also
be run over the dual. To state a hardness conjecture capturing these attacks we
define the primal-dual gap to the Gaussian Heuristic as:

gap(Q) “ max
{

gh(Q)
λ1(Q)

,
gh(Q´1)
λ1(Q´1)

}
.

Note that this quantity might be slightly lower than 1 (but no lower than 1/2
by Minkowski bound): there might exist excellent lattice packings beating the
Gaussian Heuristic. We will be assuming7 gap(Qi) � 1, which implies that
λ1(Qi)/λ1(Q1´i) � gap(Qi), therefore also capturing the first approach.

In all the attacks above, one first searches for vector no larger than f ·λ1(Qi)
w.r.t. Qi for f “ gap(Qi), hence the following conjecture.
7 That is, we cowardly shy away from making hardness conjecture on such exception-

ally dense lattice packings. Such a regime has never been considered in practical
cryptanalysis and would deserve specific attention. We suspect that SVP in such
lattices to be even harder than in random lattices.
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Conjecture 7.1 (Hardness of ΔLIP (Strong)). For any class of quadratic forms
[Q0], [Q1] of dimension n, with ari([Q0]) “ ari([Q1]), 1 � gap([Qi]) � f , the best
attack against wc-ΔLIPQ0,Q1 requires solving f -approx-SVP in the worst-case
from either [Q0] or [Q1].

This conjecture is meant to offer a comparison point with existing lattice-
based cryptography in terms of the approximating factor. Beyond contradicting
this assumption, we also invite cryptanalysis effort toward concrete comparison
of f -approx-SVP on those instances to SIS and LWE with the same approxima-
tion factor f . If one only wishes to argue exponential security in n of the schemes
proposed in this paper, a sufficient conjecture is the following.

Conjecture 7.2 (Hardness of ΔLIP (Mild)). For any class of quadratic forms
[Q0], [Q1] of dimension n, with ari([Q0]) “ ari([Q1]), gap([Qi]) � poly(n),
wc-ΔLIPQ0,Q1 is 2Θ(n)-hard.

Note that the conjecture above are “best-case” over the choice of the isomor-
phism class, and worst-case over the representation of the class (however note
that we have a worst-case to average-case reduction over that representation).
That is, even though we may only want to use ΔLIP for specific choices of iso-
morphism classes, we gladly invite cryptanalysis effort on ΔLIP on any choice
of isomorphism classes.

7.3 Algorithms for Search-LIP and Challenges

While the above invariants allow to semi-decide LIP, the search version requires
more effort; though all methods known to us at least require the enumeration of
short primal or dual vectors. In the extended version of this work8 we discuss
these methods in more detail.

8 Instantiating ΔLIP Pairs from Remarkable Lattices

To instantiate our schemes, we do not only need a lattice with efficient decoding
or sampling; we also need a second lattice with a specific property to instantiate
the ΔLIP problem and argue security. This section deals with how the ΔLIP
pair is constructed from a single remarkable lattice.

8.1 Key Encapsulation Mechanism

To instantiate our KEM we need two quadratic forms: a form S along with an
efficient decoder that can decode up to some distance ρ ă λ1(Q)/2, and a form
Q with a dense rank k sublattice D · Zk Ă Z

n such that η 1
2
(DtQD) � ρ/(2

√
n).

For simplicity of notation we move to the lattice point of view.
We assume to have an n-dimensional lattice Λ for which gap(Λ) � f “

f(n), and for which we can decode up to ρ “ Θ(1/f) · gh(Λ) ă λ1(Λ)/2. We
8 The full version of this work is available at https://eprint.iacr.org/2021/1332.

https://eprint.iacr.org/2021/1332
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consider a general construction leading to a 2n-dimensional primary lattice ΛS

and secondary lattice ΛQ with gap bounded by O(f3) and such that ΛQ has a
dense enough sublattice to instantiate our KEM.

Note that due to the bounded gap of Λ we have by Lemma 2.6 that

η 1
2
(Λ) � η2´n(Λ) �

√
n

λ1(Λ∗)
�

√
n · f

gh(Λ∗)
“ Θ(f · det(Λ)1/n).

Now let g “ Θ(f2) be a positive integer and consider the lattices:

ΛS :“ g · Λ ⊕ (g ` 1) · Λ, and ΛQ :“ Λ ⊕ g(g ` 1)Λ,

where by construction ΛQ has a dense sublattice Λ. Note that we can still decode
ΛS up to radius ρ′ :“ g · ρ “ Θ(g/f) · gh(Λ).

Invariants Match. Both lattices have determinant gn(g ` 1)n det(Λ)2. Due to
the coprimality of g and g ` 1 we still have gcd(ΛS) “ gcd(ΛQ) “ gcd(Λ),
and similarly for the parity. It remains to check rational equivalence and p-adic
equivalence for all primes p. Let R denote a quadratic form representing Λ. Up
to integral equivalence, we have:

S :“
(

g2R 0
0 (g ` 1)2R

)
Q :“

(
R 0
0 g2(g ` 1)2R

)
.

Let In be the n ˆ n identity matrix and consider the transformations:

U1 :“
(

g´1In 0
0 gIn

)
U2 :“

(
0 (g ` 1)In

(g ` 1)´1In 0

)

Then Q “ U t
1SU1 over Q: this implies [S]Q “ [Q]Q. For any prime p we have

that either gcd(g, p) “ 1 or gcd(g ` 1, p) “ 1 (or both). So either g or (g ` 1)
is invertible over the p-adic integers Zp, and thus either U1 P GLd(Zp) exists
and Q “ U t

1SU1 over Zp or U2 P GLd(Zp) exists and Q “ U t
2SU2 over Zp. In

either case, we have established [S]Zp
“ [Q]Zp

, which concludes the comparison
of arithmetic invariants: ari(S) “ ari(Q).

Dense Sublattice. We now check the requirements for Theorem 5.2, namely that
η 1

2
(Λ) � ρ′/(2

√
2n). Given that η 1

2
(Λ) � Θ(f · gh(Λ)/

√
n), it is sufficient if

Θ(f · gh(Λ)/
√

n) � ρ′/(2
√

2n) “ Θ(g/f) · gh(Λ)/
√

n,

and thus we can conclude that some g “ Θ(f2) indeed suffices.
Following the conclusions from the cryptanalysis in Sect. 7.2 and more specif-

ically Conjecture 7.1, we take a look at the primal-dual gap for ΛS and ΛQ. We
have that gap(ΛS) “ Θ(gap(Λ)) � O(f), and gap(ΛQ) “ Θ(g ·gap(Λ)) � O(f3).
Note that following the same computation above but for a primal gap of f , dual
gap of f∗, and a decoding gap of f ′ � 2f we would have g “ Θ(f∗ · f ′) and
obtain a final primal-dual gap of O(max(f, f∗) · f∗ · f ′).
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8.2 Signature Scheme

Our signature scheme can be instantiated with any lattice for which we can
sample efficiently at small Gaussian widths, following a similar ΔLIP pair as
above. Namely, we assume to have a lattice Λ with gap(Λ) � f and such that
we can sample efficiently with parameter ρ/

√
n “ Θ(η2´Θ(n)(Λ)) close to the

smoothing bound. Similarly to the KEM we set ΛS :“ g · Λ ⊕ (g ` 1) · Λ, and
ΛQ´1 “ Λ ⊕ g(g ` 1) · Λ for some integer g � 1. In particular, as in the KEM,
we do have ari(S) “ ari(Q´1).

Then for the dual we have ΛQ “ Λ∗ ⊕ 1
g(g`1)Λ

∗, with 1
g(g`1)Λ

∗ as a dense
sublattice. The constraint of Theorem 6.2 boils down to the inequality Θ(g ·
f · det(Λ)1/n) � Θ(g2 det(Λ)1/n), and thus some g “ Θ(f) suffices. The final
primal-dual gap of ΛS and ΛQ´1 is then bounded by O(f2).

The simplest lattice for which we have very efficient samplers is of course
the integer lattice Z

n, leading to a gap of O(n) via the above construction.
Instantiating our scheme with this lattice would lead to an interesting signature
scheme where there is no need to compute any Cholesky decomposition, even for
signing, and that could be fully implemented with efficient integer arithmetic.

We refer to our last open question (Sect. 1.3) regarding lattices with a tighter
Gaussian sampler, in order to obtain a signature scheme with a better underlying
approximation factor.

Getting Down to O(f). The general constructions presented turn a good decod-
able or sampleable lattice Λ with gap f into a primary and secondary lattice with
gap O(f3) and O(f2) to instantiate our KEM and signature scheme respectively.
We suggest here that these losses might be an artifact of the security proof.

Suppose we can generate a random lattice ΛQ such that ari(ΛQ) “ ari(Λ);
without the arithmetic constraint we would have with overwhelming probability
that gap(ΛQ) “ O(1) (but even O(f) would suffice). Let’s assume that the
constraint does not affect this gap. Then similar to the scheme of McEliece, by
adding the extra security assumption that it is hard to decode in ΛQ (or hard to
sample for the signature scheme), we could remove the lossyness argument from
the security proof and directly instantiate our schemes with the pair (Λ,ΛQ),
leading to a gap of O(f).
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