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Abstract. Until recently lattice reduction attacks on NTRU lattices
were thought to behave similar as on (ring-)LWE lattices with the same
parameters. However several works (Albrecht-Bai-Ducas 2016, Kirchner-
Fouque 2017) showed a significant gap for large moduli q, the so-called
overstretched regime of NTRU.

With the NTRU scheme being a finalist to the NIST PQC competition
it is important to understand —both asymptotically and concretely—
where the fatigue point lies exactly, i.e. at which q the overstretched
regime begins. Unfortunately the analysis by Kirchner and Fouque is
based on an impossibility argument, which only results in an asymptotic
upper bound on the fatigue point. It also does not really explain how
lattice reduction actually recovers secret-key information.

We propose a new analysis that asymptotically improves on that of
Kirchner and Fouque, narrowing down the fatigue point for ternary
NTRU from q ď n2.783`o(1) to q “ n2.484`o(1), and finally explaining
the mechanism behind this phenomenon. We push this analysis further
to a concrete one, settling the fatigue point at q « 0.004 · n2.484, and
allowing precise hardness predictions in the overstretched regime. These
predictions are backed by extensive experiments.

1 Introduction

1.1 Context

One should certainly recognize that in the field of lattice-based cryptography
the NTRU cryptosystem of Hoffstein, Pipher and Silverman [HPS98,CDH+20]
was particularly ahead of its time. After two decades spent basing cryp-
tography [Ajt99,Reg05,SSTX09] on the worst-case hardness of lattice prob-
lems and concretising this theory into practical cryptosystems for standardisa-
tion [PAA+19,SAB+20,DKR+20], it is quite remarkable to see these construc-
tions landing not so far away from the original design of NTRU (q-ary lattices,
module structure over similar polynomial rings). In fact, it was even discovered
a posteriori, that, up to the choice of parameters, the NTRU scheme itself can
also be supported by worst-case hardness [SS11].

Regarding cryptanalysis, it was only recently discovered that the security
of NTRU is in fact more subtle than the problem of finding a single unusually
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short vector in a lattice. The first dent in this status quo came in 2016, from
two concurrent works work of Albrecht et al., and Cheon et al. [ABD16,CJL16],
which exploits the specific algebraic structure of the NTRU lattice to improve
upon pure lattice reduction attacks1. This approach was shown to be applicable
when the modulus q is large enough (say, super-polynomial), a regime coined
“overstretched”.

Shortly thereafter Kirchner and Fouque [KF17] showed that this improved
complexity does not require any algebraic structure, and is instead rooted in
the purely geometrical fact that the NTRU lattice contains an unusually dense
sublattice of large dimension, i.e. a sublattice of small determinant.2 They also
go further in their analysis, and conclude that moduli q as small as n2.783`o(1)

already belong to the overstretched regime —for random ternary secrets. In
particular, for q larger than this bound, the security of NTRU is significantly
less than that of Learning With Errors [Reg04] and of its Ring variant [SSTX09,
LPR13] using similar parameters.3

However, it is not so clear from the analysis of Kirchner and Fouque whether
this asymptotic quantity n2.783`o(1) is an estimate or merely an upper bound
on the fatigue point, that is the value of q separating the standard regime from
the overstretched regime. Their analysis is based on a lemma of Pataki and
Tural [PT08], that constraints the shape of lattice basis in terms of the volume
of their sublattices. While it allows to conclude that the dense sublattice must
be discovered after reducing the lattice basis beyond these constraints, it does
not really explain how lattice reduction ends up discovering the dense sublattice,
nor does it exclude that the discovery could happen earlier.

So far, it has been generally considered that only advanced schemes
—requiring very large q— such as NTRU-based Homomorphic Encryp-
tion [BLLN13] or candidate cryptographic multi-linear maps [GGH13] could be
affected by this overstretched regime. Yet, because the analysis of Kirchner and
Fouque is only asymptotic, and because it may only provide an upper bound on
the fatigue point, there is at the moment little documented evidence that the
overstretched regime may not in fact extend further down, maybe down to the
NTRU encryption scheme itself [HPS98,CDH+20]! Admittedly, this seems like a
far fetched concern: asymptotically this scheme chooses q “ O(n), with a hidden
constant between 4 and 5 in practice. However, this scheme being now a finalist
of the NIST standardisation process for post-quantum cryptography, it appears
rather imperious to refine our understanding of the phenomenon, and to finally
close this pending question.

We found further motivation to go down this rabbit hole by measuring
the concrete value of fatigue point experimentally. Until now, all documented

1 Though the idea had been inconclusively considered already in 2002 by Gentry,
Jonsson, Nguyen Stern and Szydlo as reported in [GS02, Sect. 6].

2 Note that one may associate a short vector to a dense sublattice of dimension 1.
3 In fact, the presence of n rotations of the secret key already implies a minor secu-

rity degradation compared to (Ring)-LWE already in the standard regime [MS01,
DDGR20].
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Fig. 1. Progressive BKZ with 8 tours per blocksize on matrix NTRU instances with
parameters n “ 127, σ2 “ 2

3
for several moduli q. Left: the first blocksize β at which

Progressive BKZ detects the Secret Key Recovery (SKRκ) or Dense Sublattice Discov-
ery (DSDκ) event. We did 10 runs per modulus q. For the 2016-estimates, we use the
geometric series assumption (GSA) for the shape of the basis and a probabilistic model
for the discovery of the secret vector (see Sect. 2.4). Right: the positions κ at which a
secret key or dense sublattice vector are detected over 80 runs per modulus.

experiments on the overstretched regime [ABD16,KF17,LW20] have focused on
rather large values of q, and only used weak lattice reduction (LLL [LLL82], BKZ
with blocksize 20): their goal was to demonstrate the claimed general behaviour
when parameters are far in the overstretched regime. On the contrary, we focus
our attention to the fatigue point for this preliminary experiment. That is, we
ran strong reduction (progressive-BKZ [Sch87,AWHT16] up to blocksize 60)
until a vector related to the secret key appeared for a range of moduli q. We
distinguished the standard regime from the overstretched regime by classifying
according to which event occurs first

– Secret Key Recovery (SKRκ): a vector as short as a secret key vector is
inserted in the basis at any given position κ.

– Dense Sublattice Discovery (DSDκ): a vector strictly longer than the secret
key but belonging to the dense sublattice generated by the secret key is
inserted in the basis at any given position κ.

The result (Fig. 1) is rather striking: for n “ 127, we start seeing a deviation
from the standard regime for q as small as 700, while a naive interpretation of
the prediction by Kirchner and Fouque [KF17] would suggest a fatigue point at
q « n2.783 « 700 000. We can conclude either that the asymptotic bound is not
tight, or that the hidden asymptotic term (the o(1) in n2.783`o(1)) is significantly
negative in practice. In any case, the bound of Kirchner and Fouque does not
seem to provide accurate concrete predictions.

Remark. At this point, we should clarify why the DSD event should essentially
be considered a successful attack. First, for q not too much larger than the fatigue
point, an SKR event typically quickly follows after the DSD event; what happens
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is that DSD events cascade, until the full dense sublattice has been extracted:
the first half of the reduced basis precisely generates the dense sublattice. Lattice
reduction will happen independently on each half of the basis, meaning that the
dimension of the search space for the secret key has effectively been halved, and
therefore making the problem much easier.

However, as q increases, DSD becomes easier and easier, to the point that
it becomes even easier than secret key recovery within the dense sublattice. In
other terms, there is a superstretched regime for larger q, where DSD does not
directly lead to SKR.

Nevertheless, we argue —essentially rephrasing [ABD16]— that the DSD
event is typically sufficient for an attack. First, the dense sublattice vector discov-
ered is of length significantly lower than q; in an FHE scheme such as [BLLN13]
it is sufficient to decrypt fresh ciphertexts.4 Secondly, in the case of cyclotomic
or circulant NTRU, it is possible to recover the secret key from the dense sublat-
tice by other means than pure lattice reduction; in particular the recent line of
work on the principal ideal-SVP [EHKS14,CDPR16,BEF+17] showed that this
can be done classically in sub-exponential time exp(Õ(

√
n)) and quantumly in

polynomial time.

1.2 Our Work

Having identified precisely what event distinguishes the standard regime of
NTRU from its overstretched regime, we may now proceed to a refined anal-
ysis, and determine precisely both the fatigue point and the precise cost5 of
attacks in the overstretched regime. Our refined analysis diverges from the one
of Kirchner and Fouque [KF17] on the following points:

1. we exploit the fact that BKZ runs SVP on large blocks (β ě 2) not only to
deduce the shape of the basis, but also to actually discover dense sublattice
vectors,

2. we do not solely focus on the behaviour at position κ “ n ´ β ` 1 out of
d “ 2n dimensions, but instead predict the most relevant position,

3. we propose an average-case analysis of volumes of the relevant lattices and
sublattices, leading to a concrete prediction rather than a worst-case bound,

4. we also validate our intermediate and final predictions quantitatively with
extensive experiments.

We note that contributions 1 and 2 alone already give us an important asymp-
totic result: the fatigue point of NTRU is indeed lower than predicted by Kirchner
and Fouque, namely, it should happen at q “ n2.484`o(1) instead of n2.783`o(1).

4 The secret key being shorter is only required to deal with ciphertexts obtained by
homomorphic computation.

5 In this work, we only measure cost of lattice reduction in terms of the required BKZ
blocksize; the computational cost of BKZ is essentially an orthogonal question.
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Furthermore, our concrete average case analysis also differentiates the cir-
culant version of NTRU [HPS98] from its matrix version [CG05,GGH+19]. We
note minor deviations in the concrete analysis of volumes of relevant sublattices,
that on average slightly favours the attacker in the matrix case, but also shows
a larger variance in the concrete hardness of the circulant case.

In summary: we achieve an explicative and predictive model for the fatigue of
NTRU, with concrete predictions confirmed in practice. In particular, the fatigue
point is estimated to be at q « 0.004 · n2.484 for n ą 100. All our artefacts for
experiments and predictions are open-source and can be accessed at https://
github.com/WvanWoerden/NTRUFatigue. These are based on the FPLLL and
FPyLLL libraries [dt21a,dt21b].

Impact. We wish to clarify that this work does not contradict the concrete secu-
rity of the NTRU candidate to the NIST competition [CDH+20]; on the contrary,
we close a pending question regarding a potential vulnerability.

Limitation: the Lucky-Lifts. During our experiments, we also noted rare occur-
rence of DSD events that qualitatively differ from what we expected. Namely,
the vector from the dense sublattice was found at positions κ quite larger than
what was predicted by our model. More remarkable, these vectors were extremely
unbalanced: their 2n ´ κ last (Gram-Schmidt) coordinates were much smaller
than the κ first coordinates We call these DSD events lucky-lifts (DSD-LL), while
the one we model and mostly observe are called after the Pataki-Tural Lemma
(DSD-PT). Despite those two phenomena being very distinct, they nevertheless
occured for the same BKZ blocksizes β, at least in the range of parameters we
could experiment with.

It could very well be that these rare DSD-LL events are just artefacts of the
modest parameters of our experiments and that these events vanish as the dimen-
sion grows. Yet, as they seem of a very different nature, a definitive conclusion
would require a dedicated study.

1.3 Organisation

We introduce some preliminaries, the NTRU lattice, and the state-of-the-art
estimates in Sect. 2. In Sect. 3 we introduce our new DSD-PT estimate and give
an asymptotic analysis. In Sect. 4 we give an average-case analysis to construct
a concrete estimator. In the final Sect. 5 we compare our estimate with experi-
ments.

https://github.com/WvanWoerden/NTRUFatigue
https://github.com/WvanWoerden/NTRUFatigue
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2 Preliminaries

2.1 Notation and Distributions

All vectors and matrices are denoted by bold lower and upper case letters respec-
tively. All vectors are column-vectors and we write B “ [b0, . . . ,bn´1] for a
matrix where the i-th column vector is bi. If a matrix B P R

dˆn has full rank
n we denote by L(B) :“ {Bx : x P Z

n} the lattice spanned by the columns
of B. We call a lattice vector v P L primitive if it is not a strict integer multi-
ple of another lattice vector. For a basis B and i P {0, . . . , d ´ 1} we define πi

as the orthogonal projection away from b0, . . . ,bi´1, and the Gram-Schmidt
vectors as b̊0, . . . , b̊d´1 where b̊i :“ πi(bi). We write B[l:r) for the matrix
[πl(bl), . . . , πl(br´1)], and denote the projected6 sublattice L(B[l:r)) as L[l:r)

when the basis is clear from the context. We denote the Euclidean norm of a
vector v by ‖v‖ and the volume of a lattice by vol(L(B)) :“ ∏n´1

i“0 ‖b̊i‖. We
write λ1(L) :“ min

vPL\{0}
‖v‖ for the first minimum of a lattice L. For a lattice L

we denote the dual lattice as L˚ :“ {w P span(L) : 〈w,v〉 P Z for all v P L}. We
use ‘claim’ to refer to an informal statement based on heuristics.

We denote the continuous centered Gaussian (normal) distribution with vari-
ance σ2 by χσ2 . We denote the unit sphere over k coordinates as Sk´1 and call
the uniform distribution over Sk´1 the spherical distribution. We write Bd

1 for the
d-dimensional unit ball. We write the chi-square distribution with k degrees of
freedom as χ2

k,σ2 :“ ∑k
i“1 X2

i , where X1, . . . , Xk are independently distributed
as χσ2 . The chi-square distribution has expectation kσ2, but for our concrete
estimates we consider the log-expectation.

Lemma 2.1. Let X be distributed as χ2
k,σ2 , then

E [ln (X)] “ ln(2σ2) ` ψ(k{2),
where ψ(x) :“ Γ ′(x){Γ (x) is the digamma function.

2.2 NTRU and Lattice Attacks

We start with the historical definition of NTRU.

Definition 2.2 (NTRU). Let n be prime, q a positive integer and let f , g P
(Z{qZ)[X] be polynomials of degree n with small coefficients sampled from some
distribution χ under the condition that f is invertible in Rq :“ (Z{qZ)[X]{(Xn´
1). The pair (f , g) forms the secret key, and the public key is defined as h :“
g{f mod Rq. The NTRU problem is to recover any rotation (Xif ,Xig) of the
secret key from h.

For NTRUencrypt [HPS98,CDH+20] f and g have ternary coefficients, with
a fixed number of about n{3 of each value in {´1, 0, 1}. For our analysis we

6 When l “ 0, no projection is applied, and L[0:r) is simply a sublattice of L.
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consider the case where each coefficient is sampled from a discrete Gaussian
over Z with some variance σ2 ą 0. For simplicity the ternary case is treated as
a discrete Gaussian with variance σ2 “ 2

3 .
More generally we consider a matrix description of NTRU where the polyno-

mials are replaced by matrices F ,G,H P Z
nˆn such that H :“ G · F´1 mod q

[CG05,GGH+19]. Variants of NTRU, e.g. based on different algebraic rings
[BBC+20], can be encoded in the structure of the matrices. For example,
the original problem can be encoded by setting Fi,j :“ f(i`j mod n) where
f “ ∑n´1

i“0 fiX
i, for each polynomial respectively. We call the original vari-

ant circulant NTRU, based on the resulting shape of the matrices F ,G, and we
treat f , g as n-dimensional vectors. We also consider the variant, called matrix
NTRU, where the matrices F ,G have no extra structure and the coefficients are
independently sampled from a discrete Gaussian.

To reduce the NTRU problem to a lattice problem we define the NTRU
lattice, which contains a particularly dense sublattice generated by the secret
key.

Definition 2.3. Let (n, q,F ,G,H) be an NTRU instance. We define the NTRU
lattice as

LH ,q :“
(

qIn H
0 In

)

· Z2n,

and its (secret) dense sublattice of rank n by:

LGF :“ BGF · Zn Ă LH ,q,where BGF :“
(
G
F

)

.

Solving the NTRU problem is equivalent to recovering the dense sublattice
basis BGF “ [G;F ] up to some permutation of the columns. For uniformity of
notation we will denote such a column by (g|f). These column vectors have a
length of about ‖(g|f)‖ « √

2nσ2, which for common parameters is much shorter
than the expected minimal length λ1(LH ,q) « √

nq{(πe) of the full lattice LH ,q

for a truly uniform random H P (Z{qZ)nˆn. To recover the secret key we thus
have to find these exceptionally short vectors in the full lattice LH ,q.

In [CS97] Coppersmith and Shamir showed that we can slightly relax the
problem as any small vector from the dense sublattice LGF is enough to decode
a message. We therefore focus our analysis on the recovery of elements from
LGF , and not (directly) on the full secret basis BGF . To recover short vectors
we resort to lattice reduction.

2.3 Lattice Reduction

Any lattice L “ L(B) with basis B P R
dˆd has (for d ą 1) an infinite number of

other bases B ·U with U P GLd(Z). The goal of lattice reduction is to find a good
basis: the basis vectors are preferably short and somewhat orthogonal. Looking
at the Gram-Schmidt vectors b̊0, . . . , b̊d´1 we have the invariant

∏d´1
i“0 ‖b̊i‖ “
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det(B) “ vol(L) which is independent of the basis. Therefore decreasing the
length of the first basis vector b0 “ b̊0 forces some of the other Gram-Schmidt
vectors to increase in length. We call these lengths (‖b̊i‖)i“0,...,d´1 the profile of
a basis B. A good basis has a well balanced profile; in particular one that does
not decrease too fast.

The most famous lattice reduction algorithm is the polynomial time LLL
algorithm, which gives some guarantees on the slope of an LLL-reduced basis.
We consider a generalisation, namely the BKZ algorithm, that gives a flatter
slope, but at a higher cost. A basis is BKZ reduced with blocksize β if b̊κ is
a shortest vector of the projected sublattice L[κ:min(κ`β,d)) at each position κ.
LLL-reduction corresponds to the case that β “ 2.

Definition 2.4 (BKZ). A basis B “ [b0, . . . ,bd´1] is called BKZ-β reduced if

‖b̊κ‖ “ λ1(L[κ:min (κ`β,d))) for all κ “ 0, . . . , d ´ 1.

A BKZ-reduced basis has several provable bounds on the slope of the profile. In
the context of cryptanalysis we are more interested in the average-case behaviour
and thus we fall back on heuristics to describe the shape of a BKZ-reduced
profile. The most commonly used heuristic for lattices is the Gaussian Heuristic,
that states that for a measurable volume V the number of lattice points |L X V|
approximately equals vol(V){ vol(L). Applying this to a ball allows to estimate
the first minimum of a lattice.

Heuristic 2.5. Let L be a d-dimensional lattice with volume vol(L). The expec-
tation of the first minimum λ1(L) under the Gaussian Heuristic is given by

gh(L) :“ vol(L)1{d

vol(B1)1{d « √
d{(2πe) · vol(L)1{d.

We also denote gh(d) « √
d{(2πe) for the expected first minimum of a

d-dimensional lattice with volume 1.

Applying the above heuristic to the value of ‖b̊κ‖ “ λ1(L[κ:min (κ`β,d)))
at each position κ gives us relations between the Gram-Schmidt lengths
‖b̊0‖ , . . . ,

∥
∥b̊d´1

∥
∥. Solving these relations for β ! d shows that ‖b̊κ‖ { ‖b̊κ`1‖ «

αβ for some constant αβ only depending on β. So heuristically the profile forms a
geometric series. This is made more precise by the Geometric Series Assumption.

Heuristic 2.6 (Geometric Series Assumption (GSA)). Let B be a BKZ-β
reduced basis, then the profile satisfies

ln(‖b̊i‖) “ d ´ 1 ´ 2i
2

· ln(αβ) ` ln(det(B))
d

,

where αβ “ gh(β)2{(β´1).
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The GSA is reasonably precise for say β ě 50 and a not too large blocksize β ! d
compared to the lattice dimension.

The BKZ algorithm (see Algorithm 1) computes a BKZ-reduced basis from
any other basis. The algorithm greedily attempts to satisfy the BKZ condition at
each position by computing a shortest vector in each block B[κ:min (κ`β,d)), and
replacing the basis vector bκ accordingly. This makes the basis BKZ-β reduced
at position κ, but might invalidate the condition at other positions. Applying
this once to all positions κ “ 0, . . . , d ´ 2 is called a tour. The BKZ algorithms
repeats such tours until the basis remains unchanged and is thus BKZ-reduced.

Algorithm 1: The BKZ algorithm.
Data: A lattice basis B, blocksize β.
while B is not BKZ-β reduced do

for κ “ 0, . . . , d ´ 2 do // A single BKZ-β tour
w ← a shortest vector in L (

B[κ:min (κ`β,d))

)
;

Lift w to a full vector v P L (
B[0:min (κ`β,d))

)
s.t. πκ(v) “ w;

Insert v in B at position κ and use LLL to resolve linear
dependencies;

The number of tours is polynomially bounded, and in practice not much
improvement is attained after say a few dozen tours. The cost of BKZ is thus
mainly dominated by the exponential (in β) cost of finding a shortest vector
in a β-dimensional lattice. Progressive BKZ reduces this cost in practice, where
instead of running many tours of BKZ-β, one runs only a few tours for increasing
β′ “ 2, 3, . . . , β.

For our experiments we also added a hook to BKZ, using secret key infor-
mation, to detect if a vector v is part of the dense sublattice LGF and to abort
early if this is the case.

While the Geometric Series Assumption gives a good first order estimate
of the basis profile after BKZ-reduction, it is known to be inaccurate in small
dimensions or when the dimension is only a small multiple of the blocksize.
Additionally it does not account for the slower convergence when running pro-
gressive BKZ with only a few tours. To resolve this problem [CN11] introduced
a BKZ simulator based on the Gaussian Heuristic, that was later refined in
[YD17,BSW18]. These allow for accurate and efficient predictions of the profile
shape for random lattices, even for progressive BKZ with a limited number of
tours.

Behaviour on q-ary lattices. While by now the behaviour of BKZ on random
lattices is reasonably understood, this is less the case for q-ary lattices (for certain
parameters) such as the NTRU lattice LH ,q.

Definition 2.7 (q-ary lattices). A lattice L of dimension d is said to be q-ary
if for some q ą 0 we have

qZd Ă L Ă Z
d.
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Note that the first n basis vectors of LH ,q are orthogonal q-vectors (q, 0, . . . , 0),
(0, q, 0, . . . , 0), . . ., and so the initial basis profile starts with ‖b̊0‖ “ · · · “
‖b̊n´1‖ “ q. Additionally after projecting away from these q-vectors, the
remaining basis vectors are again orthogonal with length 1, and thus we have
‖b̊n‖ “ · · · “ ∥

∥b̊d´1

∥
∥ “ 1. Note that in the BKZ algorithm the length of b0 can

not increase, and is thus always at most q. Also b1 can not increase in length if
b0 remains unchanged, and so on. For dual-BKZ or the self-dual LLL the profile
lengths can not drop below 1 anywhere by the same reasoning. Still LLL and
BKZ guarantee that the profile slope in the middle is not too steep. So after
LLL reduction the profile must be flat at the start and end, and have a sloped
part in the middle, we call this a Z-shape [AD21]. Because BKZ is not self-dual
we do not have any guarantee that the last profile elements do not drop below
1, however we could for example run BKZ only on an appropriate middle con-
text L[n´m:n`m) to force this behaviour. With this description one would expect
the middle part to follow the GSA, leading to an alternative heuristic for q-ary
lattices.

Heuristic 2.8 (ZGSA). Let B be a basis of a 2n-dimensional q-ary lattice L
with n q-vectors. After BKZ-β reduction the profile has the following shape:

‖b̊i‖ “
⎧
⎪⎨

⎪⎩

q if i ď n ´ m,
√

q · α
2n´1´2i

2
β , if n ´ m ă i ă n ` m ´ 1,

1, if i ě n ` m ´ 1,

where αβ “ gh(β)2{(β´1), and m “ 1
2 ` ln(q)

2 ln(αβ)
.

Again this gives us a good first order estimate. Asymptotically setting β “ B · n
and q “ nQ, we obtain ln(αβ) “ ln(n)

B·n ` O
(
n´1

)
, and m “ 1

2QB · n ` O
(

n
ln(n)

)
.

2.4 Estimates

The main question of our work is to better understand how BKZ recovers the
dense sublattice LGF from an NTRU lattice LH ,q. Several works exist that
give estimates on the blocksize β for which BKZ successfully recovers the secret
key (g,f), or more generally a vector from the dense sublattice. We discuss
the state-of-the-art estimates, one known as the 2016 Estimate [ADPS16] with
further refinements [DDGR20,PV21], and one by Kirchner and Fouque [KF17].

While the 2016 Estimate already gives a clear explanation how BKZ recovers
a suitable vector, the Kirchner and Fouque estimate is only based on an impos-
sibility result. To be more precise about what we mean with recovery we define
the following two events.

Definition 2.9 (BKZ Events). For a BKZ run on an NTRU lattice L with
dense sublattice LGF we define two events:

1. Secret Key Recovery (SKR): The first time one the secret keys (g|f) is
inserted.
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2. Dense Sublattice Discovery (DSD): The first time a dense lattice vector
v P LGF strictly longer than the secret key(s) is inserted.

We further specify SKRκ and DSDκ when the insertion takes place at position
κ in the basis.

2016 Estimate [ADPS16] for SKR. The 2016 Estimate is aimed at the more
general problem of detecting an unusually short vector in a lattice. To obtain an
estimate for the NTRU problem, and more specifically the SKR event, we apply
it to the unusually short vector (g|f) P LH ,q.

Claim 2.10 (SKR – 2016 Estimate). Let L be a lattice of dimension d and
let v P L be a unusually short vector ‖v‖ ! gh(L). Then under the Geometric
Series Assumption BKZ recovers v if

√
β{d · ‖v‖ ă √

αβ
2β´d´1 · vol(L)1{d,

where αβ “ gh(β)2{(β´1).

The left hand side of the inequality is an estimate for ‖πd´β(v)‖, while the right
hand size is the expected norm of b̊d´β under the GSA. When the inequality is
satisfied we expect that the shortest vector in L[d´β:d) is in fact (a projection
of) the unusually short vector, and thus it is inserted by BKZ at position d ´ β.

For q-ary lattices we can easily change the estimate to make use of the ZGSA
instead, although for successful blocksizes b̊d´β will not lie on the flat tail-part,
and thus this will not change anything. Additionally for q-ary lattices it can
be beneficial to apply the estimate not to the full lattice but on some projected
sublattice L[i:d) for i ď n; the left hand side of the equation is expected to remain
unchanged, while the right hand side might decrease as vol(L) loses a factor qi.
Note that we do not necessarily have to explicitly let BKZ act on this projected
sublattice, as BKZ already does this naturally.

Asymptotics. Consider the NTRU lattice LH ,q and suppose that q “ Θ(nQ),
‖v‖ “ ‖(g,f)‖ “ Θ(nS) and β “ (B ` o(1))n. Applying the 2016 Esti-
mate the right hand side of the inequality is minimised when only keeping
k “ min

(
(
√
2BQ ´ 1)n, n

)
of the q-vectors, so by applying the estimate to the

projected sublattice LH ,q
[n´k:2n). For S ě 1 we have k “ n, and solving the equa-

tion gives B “ 2
Q`2´2S . For S ă 1 we have k “ (

√
2BQ ´ 1)n, and solving gives

B “ 2Q
(Q`1´S)2 . Note in particular that in terms of q we require a blocksize of

β “ Θ̃ (n{ ln(q)).

Refinements. The 2016 Estimate gives a clear explanation on how and where the
secret vector is recovered. This also allows to further refine the estimate and give
concrete predictions. For example by using a BKZ-simulator instead of the GSA,
and by accounting for the probability that after the projection ‖πd´β(v)‖ has
been found, it is successfully lifted to the full vector v. Also instead of working
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with the expected length of the projection, we can directly model the probability
distribution under the assumption that v is distributed as a Gaussian vector.
Such refinements were applied in [DDGR20,PV21], and the resulting concrete
predictions match with experiments to recover an unusually short vector. In this
work, we use the (Z)GSA for the basis shape, but adjusting the slope to account
for the speed of convergence using experimentally determined values. However,
we do use the advanced probabilistic model for the detection and lifting of the
short vector.

For NTRU there is not just a single unusually short vector, but there are
n “ d{2 of them, which makes it more likely that at least one of them is recov-
ered. Because the refined concrete estimator already works with a probability
distribution, we can easily take multiple vectors into account. The resulting pre-
dictions for the SKR event match the experiments reasonably well for smallish
q as can be seen in Fig. 1. For large q, the so-called overstretched regime, the
estimate is however too pessimistic.

Kirchner–Fouque Estimate [KF17] for DSD. In 2016 Albrecht, Bai and
Ducas [ABD16] showed that for very large values of q one can mount an alge-
braic subfield attack on the cyclotomic NTRU problem with sub-exponential or
even polynomial complexity. This allowed them to break several homomorphic
encryption schemes that relied on NTRU in the overstretched regime.

However soon after, Kirchner–Fouque [KF17] showed that this elaborate alge-
braic attack was unnecessary: (dual-)BKZ already behaves much better in this
regime than the 2016 Estimate predicts, leading to the same asymptotic improve-
ments. The key idea behind their analysis is that in the overstretched regime the
NTRU lattice LH ,q contains an exceptionally dense sublattice LGF of low vol-
ume. This gives a constraint on the basis profile via the following lemma by
Pataki and Tural.

Lemma 2.11 (Pataki and Tural [PT08]). Let L be a d-dimensional lattice
with basis b0, . . . ,bd´1. For any k-dimensional sublattice L′ Ă L we have

vol(L′) ě min
J

∏

jPJ

∥
∥b̊j

∥
∥ ,

where J ranges over the k-size subsets of {0, . . . , d ´ 1}.
Applying Lemma 2.11 to the n-dimensional sublattice LGF Ă LH ,q, and assum-
ing a non-increasing profile, we obtain an upper bound on the volume of LH ,q

[n:2n).
Assuming the ZGSA the latter volume increases when running BKZ-β for
increasing blocksizes, eventually contradicting the upper bound. This allows us
to detect if a q-ary lattice is in fact an NTRU lattice, but additionally Kirchner–
Fouque argue that BKZ must somehow have detected the dense sublattice after
this point. Based on this impossibility argument they introduced the following
estimate.

Claim 2.12 (DSD – Kirchner–Fouque Estimate). Let LH ,q be an NTRU
lattice of dimension 2n, with dense sublattice LGF Ă LH ,q. Under the Z-shape
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Geometric Series Assumption BKZ-β triggers the DSD event if

vol(LGF ) ă q
m´1

2 · α
´ 1

2 (m´1)2

β ,

where αβ “ gh(β)2{(β´1), and m “ 1
2 ` ln(q)

2 ln(αβ)
.

To apply this estimate we can bound vol(LGF ) using the Hadamard inequality
by ‖(g|f)‖n. As a first approximation this is reasonably tight because the secret
basis BGF is close to orthogonal.

Asymptotics. Consider the NTRU lattice LH ,q and suppose that q “ Θ(nQ),
‖(g,f)‖ “ Θ(nS) and β “ (B`o(1))n. We apply the Kirchner–Fouque Estimate
using that m « BQ

2 n and αβ « (Bn)1{(Bn). The left hand side of the inequality

is bounded by nnS`o(n) and the right hand side equals n
BQ2

8 n`o(n); solving gives
B ě 8S

Q2 . Note that in terms of q we require a blocksize of β “ Θ̃
(
n{ ln2(q)),

improving upon the 2016 Estimate by a factor ln(q). So for large enough q the
Kirchner–Fouque Estimate predicts a lower successful blocksize than the 2016
Estimate. We call the value of q for which BKZ starts to behave better than
predicted by the 2016 Estimate the fatigue point. For the common situation
that S “ 1

2 , e.g. when each secret coefficient has standard deviation σ “ Θ(1),
the Kirchner–Fouque Estimate predicts that the fatigue point lies at some q ď
n2.783`o(1).

3 A New Estimate

3.1 Preliminary Experiments

Both the 2016 Estimate and the Kirchner–Fouque Estimate analyse an event
that leads to successful recovery of a vector of the dense NTRU sublattice. This
only gives an upper bound on the hardness; a different event leading to the
recovery might happen at a lower blocksize. Additionally the Kirchner–Fouque
Estimate is only based on an impossibility result and gives no explanation as to
how BKZ actually recovers a vector from the dense sublattice. In order to derive
a tight estimate we first run experiments to track down at which point a dense
sublattice vector is actually found during the BKZ tours, i.e. when the DSDκ

event is triggered and at what position. Then we model this event in order to
hopefully derive a tight estimate.

We run progressive BKZ on NTRU lattices LH ,q for fixed parameters n “
127, σ2 “ 2

3 , and several moduli q. For each BKZ insertion at position κ we check
if the inserted vector belongs to the dense sublattice LGF , and thereby if the
SKRκ or DSDκ event takes place, after which we stop.

The results are shown in Fig. 1. We take a closer look at the observed SKRκ

and DSDκ events and where they are triggered. We can group our observations
in three typical circumstances.
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– SKR-2016. The SKRκ event is mostly triggered for small values of q, and this
mostly happens at the position κ “ 2n ´ β, so in the last block [2n ´ β : 2n),
or slightly earlier. This coincides exactly with the SKR2n´β event as predicted
by the 2016 Estimate [ADPS16,AGVW17].

– DSD-PT. The DSDκ event is mostly triggered at positions κ “ n ` k ´ β
for 0 ă k ! n. The inserted dense vector v is often significantly longer than
the secret key but still shorter than the q-vectors. On closer inspection the
projected length ‖πn`k´β(v)‖ is close to the expected length

√
β

n`k ‖v‖ for
all instances, more specifically the length of v is well balanced over the Gram-
Schmidt directions b̊0, . . . , b̊n`k´1. We name these events after the Pataki–
Tural Lemma (DSD-PT).

– DSD-LL. For a few instances the DSDκ event is triggered at large positions
κ, up to 2n´β. The inserted dense vector v is again significantly longer than
the secret key, but it has an unexpectedly short projection πκ(v) on the BKZ
block [κ : κ ` β). We call these events lucky-lifts (DSD-LL).

The DSD-LL event could potentially be explained by the relatively large amount
of shortish vectors in the close to orthogonal dense sublattice LGF compared to
what one would expect based on the Gaussian Heuristic. These many vectors
might compensate for the low probability event that: (1) such a long vector has
such a short projection, and (2) the projected vector is correctly lifted by Babai’s
nearest plane algorithm (thus a lucky lift). The DSD-LL event remains rare for
all parameters we used in our experiments, and the successful blocksizes do not
seem to deviate from the DSD-PT events. Although we think this circumstance
deserves further analysis we therefore base our estimate on the more common
DSD-PT event.

For the DSD-PT event the projected length ‖πn`k´β(v)‖ is close to√
β

n`k ‖v‖, and thus the inserted dense vector v must in fact be (close to) a

shortest vector of the intersected sublattice LH ,q
[0:n`k) X LGF . If not, the short-

est vector would typically have an even smaller projection and would thus be
inserted instead. For ease of analysis we therefore assume that v is a shortest
vector of LH ,q

[0:n`k) X LGF . In short our new estimate can be described as follows.

Claim 3.1 (DSD-PT estimate). A tour of BKZ-β triggers the DSD event if

πn`k´β(v) ă ∥
∥b̊n`k´β

∥
∥ ,

where v is a shortest vector of LH ,q
[0:) X LGF for some 0 ă k ď n.

3.2 Asymptotic Analysis

We denote the intersected sublattice by LGF
X[0:r) :“ LH ,q

[0:r)XLGF . To directly apply
Claim 3.1 we are interested in the length of v, and thus the value of λ1

(LGF
X[0:n`k)

)
.

We break down the analysis into several steps. In order to obtain a bound on
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the first minimum we first compute a bound on the volume of the intersection
LGF

X[0:n`k) in terms of the basis profile and the volume of LGF . Together with the
GSA and a simple bound for vol(LGF ) we can then apply Minkowski’s bound on
the first minimum. By optimising κ “ n ` k ´ β we obtain our new asymptotic
estimate.

Intersection. To understand the behaviour of the volume of the intersected
lattice we first need a small technical Lemma.

Lemma 3.2 ([DDGR20]). Given a lattice L with volume vol(L), and a prim-
itive vector v with respect to L˚. Let vK denote the subspace orthogonal to v.
Then L X vK is a lattice with volume vol(L X vK) “ ‖v‖ · vol(L).
The following Lemma generalises the Pataki–Tural Lemma on which the estimate
of Kirchner–Fouque is based. More specifically the Pataki–Tural Lemma only
considers the case where the intersection is always trivial (s “ 0).

Lemma 3.3 (Generalisation of [PT08]). Let L be a d-dimensional lattice
with basis b0, . . . ,bd´1, and consider the sublattice L[0:s). For any n-dimensional
sublattice L′ Ă L we have

vol(L[0:s) X L′) ď vol(L′) ·
⎛

⎝min
J

∏

jPJ

∥
∥b̊j

∥
∥

⎞

⎠

´1

,

where k :“ dim(L[0:s) X L′) and J ranges over the (n ´ k)-size subsets of
{s, . . . , d ´ 1}.
Proof. We write L′

X[0:r) :“ L[0:r) X L′. For j “ k, . . . , n we define sj P {s, . . . , d}
as the maximal index such that dim

(
L′

X[0:sj)

)
“ j, i.e. we obtain the following

strict chain of sublattices:

L′
X[0:s) “ L′

X[0:sk)
Ĺ L′

X[0:sk`1)
Ĺ · · · Ĺ L′

X[0:sn) “ L′.

Fix j P {k, . . . , n ´ 1}. Because the basis vectors b0, . . . ,bd´1 are linearly inde-
pendent we have that L′

X[0:s(j`1))
“ L′

X[0:sj`1). This allows us to focus on the
volume decrease from index sj ` 1 to sj , for which we know that

L′
X[0:sj)

“ L′
X[0:sj`1) X (b̊sj

)K,

where (b̊sj
)K denotes the subspace orthogonal to b̊sj

. The corresponding dual

basis of b0, . . . ,bsj
contains a dual vector d P L˚

[0:sj`1) of length
∥
∥b̊sj

∥
∥´1 with

span(d) “ span(b̊sj
). Let π be the orthogonal projection onto span

(L′
X[0:sj`1)

)
,

then π(d) P (L′
X[0:sj`1)

)˚. Let m P Zě1 be such that π(d){m is primitive w.r.t.
(L′

X[0:sj`1)

)˚, then by Lemma 3.2 we obtain:

vol
(
L′

X[0:sj)

)
“ vol

(
L′

X[0:sj`1)

)
· ‖π(d){m‖ ď vol

(
L′

X[0:sj`1)

)
·
∥
∥
∥b̊sj

∥
∥
∥

´1

.

We conclude the proof by chaining the above inequality for j “ k, . . . , n ´ 1. ��
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Before recovering a dense lattice vector we heuristically assume that there is no
special relation between the current lattice basis and the dense sublattice. More
specific we can consider that the span of b0, . . . ,bn´1 and that of LGF behave
like random n-dimensional subspaces, and thus they have a trivial intersection
with high probability in the 2n-dimensional space. As a direct result we have
that dim

(
LGF

X[0:n`k)

)
“ k for k “ 0, . . . , n. Applying this to Lemma 3.3 we obtain

the following corollary.

Corollary 3.4. Let LH ,q be an NTRU lattice with dense sublattice LGF of
dimension n, if dim

(
LGF

X[0:n`k)

)
“ k for some k ě 0, then

vol
(
LGF

X[0:n`k)

)
ď vol

(LGF
) ·

⎛

⎝
d´1∏

j“n`k

∥
∥b̊j

∥
∥

⎞

⎠

´1

.

Note that Corollary 3.4 already shows that the new estimate can not be worse
than the Kirchner–Fouque Estimate. Namely if the Kirchner–Fouque Estimate
is triggered, then for intersection dimension k “ 1 the right hand side is smaller
than ‖b̊n‖. Assuming a non-decreasing profile we then have λ1

(LGF
X[0:n`1)

) “
vol

(LGF
X[0:n`1)

) ď ‖b̊n‖ ď ∥
∥b̊n`1´β

∥
∥, which implies that BKZ-β would find a

dense sublattice vector in this block (or earlier).

Volume Dense Sublattice. To use Corollary 3.4 we also need to bound the
volume of the dense sublattice LGF . Because the secret basis is close to orthog-
onal the Hadamard Inequality vol(LGF ) ď ‖(g|f)‖n is sufficient as a first order
approximation.

Conclusion. To obtain a heuristic asymptotic estimate we will assume that
before finding a dense lattice vector the basis follows the ZGSA shape.

Claim 3.5. The BKZ algorithm with blocksize β “ Bn applied to an NTRU
instance with parameters q “ Θ(nQ), ‖(g|f)‖ “ O(nS) triggers the DSD event
if

B “ 8S
Q2 ` 1

` o(1).

Justification. By the Hadamard Inequality we have ln(vol(LGF )) ď Sn ln(n) `
O(n). Let k :“ Kn ą 0. Heuristically we expect that dim(LH ,q

[0:n`k) X LGF ) “ k,
and thus by Corollary 3.4 and by assuming the ZGSA we obtain a bound on the
volume of the intersected sublattice:

ln(vol(LH ,q
[0:n`k) X LGF )) ď Sn ln(n) ´ 1

2

n`m´1∑

i“n`k

(

Q ` 2n ´ 1 ´ 2i
Bn

)

ln(n) ` O(n)

“ Sn ln(n) ´ (BQ ´ 2K)2

8B n ln (n) ` O(n)
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By Minkowski’s bound we bound the first minimum using the above volume

ln(λ1(LH ,q
[0:n`k) X LGF )) ď 1

2
ln(Kn) ` ln(vol(LH ,q

[0:n`k) X LGF ))

Kn
` O(1)

ď
(

´ (BQ ´ 2K)2

8BK ` S
K ` 1

2

)

ln (n) ` O(1).

After projecting onto the block [n ` k ´ β : n ` k) the above short vector does
not increase in length.7 BKZ detects the projected dense lattice vector in this
block if the length is less than

∥
∥b̊n`k´β

∥
∥ “ (

1
2Q ` B´K

B
)
ln(n) ` O(1). Solving

for B shows that this is the case when

B ě 2
√
(2S ´ K)2 ` K2Q2 ` 2(2S ´ K)

Q2
.

When K “ 4S
Q2`1 the right hand side is minimised and we obtain that BKZ

detects the projected dense lattice vector when B ě 8S
Q2`1 , which concludes

the claim. This routine computation can be verified symbolically via our sage
notebook claim3_5.ipynb. 	

Our new estimate gives an asymptotic improvement over the Kirchner–
Fouque Estimate ( 8S

Q2 ). Asymptotically the optimal position is at κ “ n`k´β «
n ´ 1

2β. Interestingly, if we do not optimize k and only consider k “ O(1) we
obtain the same asymptotic estimate as Kirchner–Fouque, which again empha-
sizes that we generalised their analysis.

For the fatigue point we compare the relative blocksize of 8S
Q2`1 to that of

the 2016 Estimate given by 2Q
(Q`1´S)2 for S ă 1 and by 2

Q`2´2S for S ě 1. For
ternary secrets (S “ 1

2 ) this narrows down the fatigue point from q ď n2.783`o(1)

to q “ n2.484`o(1) compared to the Kirchner–Fouque Estimate. This is still far
above the (sub)linear parameters used for NTRU encryption schemes, and thus
asymptotically we can close the pending question if these parameters fall in the
weaker overstretched regime or not. In practice however we do observe fatigue
points that are significantly lower than the naive value of q “ n2.484, which
motivates a concrete analysis with concrete predictions (Fig. 2).

4 Concrete Analysis

In this section we consider a concrete analysis of our new DSD-PT estimate,
based on simple heuristics, to better predict the behaviour in practice, and
to show that our analysis matches experiments and is thus likely to be tight.
The first order asymptotics shown in Sect. 3.2 will remain unchanged, but the
differences are significant for practical parameters. Again we split the analysis

7 One may also be concerned that the short vector would collapse to 0 after projection
onto the block [n ` k ´ β : n ` k), but this becomes increasingly unlikely as the
dimension β of the block grows.
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SKR – 2016 Estimate
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Fig. 2. Comparison of asymptotic estimates and new fatigue point for n → 8 when
the secret key coefficients have standard deviation σ “ Θ(1).

into several steps, but now derive heuristic expectations instead of loose upper
bounds.

We assume that lattice vectors we encounter follow the Gaussian heuristic,
and thus in particular that vectors are spherically distributed after normalisa-
tion. When projecting such vectors to a lower dimension they become shorter.
The following Lemma shows how much shorter we expect them to become.

Lemma 4.1. Let x P Sd´1 follow a spherical distribution, and let πV : Rd → V
be a projection to some k-dimensional subspace V Ă R

d, then

E[ln(‖πV (x)‖)] “ 1
2
(ψ(k{2) ´ ψ(d{2)).

Proof. Let X0, . . . , Xd´1 be standard normal random variables, then the vector

x “ (x0, . . . , xd´1), with xj “ Xj{
√∑d´1

i“0 X2
i , is spherically distributed. With-

out loss of generality we can assume that πV projects onto the first k-coordinates.
Then we conclude by Lemma 2.1 that

E[ln(‖πV (x)‖)] “ 1
2
E

[

ln

(∑k´1
i“0 X2

i
∑d´1

i“0 X2
i

)]

“ 1
2
E

[

ln

(
k´1∑

i“0

X2
i

)]

´ 1
2
E

[

ln

(
d´1∑

i“0

X2
i

)]

“ 1
2
(ψ(k{2) ´ ψ(d{2)).

��

4.1 Intersection

We start by giving a concrete average-case estimate for the intersection volumes.
Assuming that projections behave as random we obtain the following concrete
estimate.
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Claim 4.2. Let L be a 2n-dimensional NTRU lattice with dense sublattice LGF ,
before the DSD event is triggered we have for k “ 1, . . . , n that dim

(
LGF

X[0:n`k)

)
“

k, and

E[ln vol(LGF
X[0:n`k))] “ ln vol(LGF ) ´

⎛

⎝
2n´1∑

j“n`k

ln
∥
∥b̊j

∥
∥

⎞

⎠

`
n∑

l“k`1

ψ

(
l

2

)

´ ψ

(
n ` l

2

)

` ζ ′(l)
ζ(l)

,

where ζ(l) :“ ∑8
m“1

1
ml is the Riemann zeta function and ζ ′(l) :“ ∑8

m“1
ln(m)

ml

its derivative.

Justification. We follow the proof of Lemma 3.3. It is tight except for the length
decrease from ‖d‖ to the projected and primitive vector ‖π(d)‖ {m. Note that
when obtaining ln vol

(
LGF

X[0:n`l´1)

)
from ln vol

(
LGF

X[0:n`l)

)
for some l “ k `

1, . . . , n, the dual vector d lives in a (n ` l)-dimensional space and is projected
to an l-dimensional space. Heuristically we assume that the normalisation of d is
spherically distributed (or that π projects to a random l-dimensional subspace).
By Lemma 4.1 the log-expected decrease in length from this projection then
equals

E [ln(π(‖d‖)) ´ ln(‖d‖)] “ ψ

(
l

2

)

´ ψ

(
n ` l

2

)

.

To conclude we also have to include the primitivity of π(d) and thus the log-
expectation of m ě 1 such that π(d){m is primitive. For any basis d0, . . . ,dl´1

and π(d) “ ∑l´1
i“0 xidi, we have m “ gcd(x0, . . . , xl´1). Heuristically we assume

that the absolute coefficients |x0|, . . . , |xl´1| are random integers in the interval
{1, . . . , B} and we let B → 8. For l ě 2 we have (see e.g. [DE+04])

PxP{1,...,B}l [gcd(x0, . . . , xl´1) “ m] “ 1
ζ(l)

· 1
ml

` O(ln(B){(Bml´1)),

where the Riemann zeta function ζ(l) “ ∑8
m“1

1
ml is just the normalisation

factor. From this we conclude that

lim
B→8 ExP{1,...,B}l [ln gcd(x0, . . . , xl´1)] “ lim

B→8
1

ζ(l)

B∑

m“1

[
ln(m)

ml
` O

(
ln(m) ln(B)

Bml´1

)]

“ ´ζ′(l)
ζ(l)

for l ě k ` 1 ě 2. 	
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Fig. 3. Experimental values of ln vol
(LGF

X[0:n`k)

)
versus Claim 4.2 for circulant and

matrix NTRU respectively. For each variant we used 256 LLL reduced NTRU lattices
with parameters q “ 257, n “ 79, σ2 “ 2

3
and computed the intersection for each k.

Validation. To validate Claim 4.2 we computed the actual intersection volumes
vol

(
LGF

X[0:n`k)

)
for LLL reduced NTRU instances. We observed here, and also

in further experiments, that the dimension assumption dim
(
LGF

X[0:n`k)

)
“ k

holds before we get close to triggering the DSD event. Figure 3 shows that our
prediction perfectly matches the experiments for matrix NTRU. For circulant
NTRU we see both that the expectation is slightly off and that the variance
is much higher. The higher variance can be explained from the fact that the
projections are very much dependent due to the circulant structure; in fact a
closer inspection shows that for k close to n the differences with the prediction
are highly correlated. We were not able to explain the error in the predicted
expectation, but it seems to be caused by the circulant structure in combination
with the Z-shape: the error decreased and eventually disappeared for large values
of q and σ, for which the Z-shape disappeared (and before the DSD event was
triggered). A maximal log-error of 2.5 is reached at k “ 1. Note that a log-error
of ε on vol

(LGF
X[0:n`k)

)
translate into a factor of eε{k on the predicted length for

the shortest vector. Except for very small k, this error appears benign.

4.2 Dense Sublattice

In this section we give a concrete estimate for the expected volume of the dense
NTRU sublatice LGF . Directly from the construction we obtain a basis [G|F ]
of LGF , with F invertible. We consider two cases, that of regular NTRU where
F and G are circulant matrices, and that of matrix NTRU, where all entries
are independently sampled. For both constructions the entries are sampled from
independent discrete Gaussians over Z, with some standard deviation σ ą 0.
As the only heuristic we assume that the individual entries in fact follow a
continuous Gaussian instead of the discrete one.
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Matrix NTRU. We start with matrix NTRU, where we heuristically assume
that all 2n ˆ n coefficients of the basis [G|F ] are sampled according to indepen-
dent continuous Gaussians with standard deviation σ. Under this heuristic we
can derive an exact expression for the expected log-volume of the dense sublat-
tice.

Lemma 4.3. Let [G|F ] be a basis of the lattice LGF where all sampled entries
are i.i.d. continuous Gaussians with standard deviation σ ą 0, then

E[ln(vol(LGF ))] “ 1
2
n

(
ln(2σ2) ` ψ(n)

) `
n´1∑

i“0

[

ψ

(
2n ´ i

2

)

´ ψ(n)
]

.

Proof. By Lemma 2.1 the log-expectation of the norm of each basis element
equals (ln(2σ2)`ψ(n)){2. Note that the i-th Gram-Schmidt vector b̊i is obtained
after projecting the i-th basis vector orthogonally away from an i-dimensional
subspace, and thus onto a 2n ´ i dimensional subspace. However after normal-
isation the basis vectors follow a spherical distribution and thus by Lemma 4.1
we have

E[ln ‖b̊i‖] “ (ln(2σ2) ` ψ(n)){2 ` ψ

(
2n ´ i

2

)

´ ψ(n).

We conclude by noting that E[ln(vol(LGF ))] “ ∑n´1
i“0 E[ln ‖b̊i‖]. ��

Fig. 4. Experimental values of ln(vol(LGF )) versus Lemma 4.3 for matrix NTRU with
discrete Gaussians and variance σ2 “ 2

3
. For each parameter n we generated 512

instances.

Circulant NTRU. For circulant NTRU both G and F in the basis [G|F ] are
circulant matrices. Again we replace discrete with continuous Gaussians. The
eigenvalues and eigenvectors of a circulant matrix are well known and we use
this to obtain an exact expression for the expected volume of the dense sublattice.
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Lemma 4.4. Let [G|F ] be a basis of the lattice LGF where G,F are circulant
and all sampled entries are i.i.d. continuous Gaussians with standard deviation
σ ą 0, then

E[ln(vol(LGF ))] “ 1
2
n

(
ln(2nσ2) ` ψ(1)

) ` 1
2
(n ´ 1)(1 ´ ln(2)).

Proof. For nˆn circulant matrices G,F the eigenvectors are identical and given
by vj :“ (1, ωj , ω2j , ω(n´1)j) for j “ 0, . . . , n ´ 1, where ω :“ e2πi{n P C is a
primitive n-th root of unity. Suppose that the circulant matrix G is generated
by the vector c “ (c0, . . . , cn´1), then the corresponding eigenvalues are given by
the DFT coefficients of c, namely λj :“ c0 ` cn´1ω

j ` . . . ` c1ω
(n´1)j . We have

that λ0 “ ∑n´1
j“0 cj , and thus λ0 follows a Gaussian distribution with variance

nσ2, and in particular λ2
0 ∼ χ2

1,nσ2 . Additionally for j “ 1, . . . , n´1 we can write
λj “ X ` i · Y P C where X,Y P R are both linear combinations of the ci’s and
thus (X,Y ) follows a jointly Gaussion distribution. A simple computation shows
that X and Y both have variance nσ2{2 and that they are uncorrelated, which for
Gaussians implies that they are independent [PS89, p. 212]. So |λj |2 “ X2`Y 2 ∼
χ2
2,nσ2{2. Note that all circulant matrices have the same eigenvectors and thus

the squared singular values of the concatenation of two circulant matrices are
the sum of the squared absolute eigenvalues. So [G|F ] has one squared singular
value s20 distributed as χ2

1,nσ2 ` χ2
1,nσ2 “ χ2

2,nσ2 , and n ´ 1 squared singular
values s21, . . . , s

2
n´1 distributed as χ2

2,nσ2{2 ` χ2
2,nσ2{2 “ χ2

4,nσ2{2. By Lemma 2.1
they have a log-expectation of

E[ln s20] “ ln(2nσ2) ` ψ(1), and E[ln s2j ] “ ln(nσ2) ` ψ(2)

for j “ 1, . . . , n ´ 1. We conclude by noting that E[ln(vol(LGF ))] “
1
2

∑n´1
i“0 ln(s2i ). ��

Fig. 5. Experimental values of ln(vol(LGF )) versus Lemma 4.4 for circulant NTRU
with discrete Gaussians and variance σ2 “ 2

3
. For each parameter n we generated 512

instances.
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Validation. To validate our concrete estimate for vol(LGF ) we generated the
NTRU sublattice for several dimensions and computed its volume. We sample
the secret coefficients following a discrete Gaussian with variance σ2 “ 2

3 and
ran experiments for both matrix NTRU and circulant NTRU. In Figs. 4 and 5
we see that the predictions from Lemmas 4.3 and 4.4 perfectly fit the observed
volumes in all dimensions. We do note that the variance is quite significant for
the circulant case, but it can be fully explained by the computed eigenvalue
distributions in the proof of Lemma 4.4.

4.3 Further Refinements

We discuss some further refinements, some of which were already successfully
applied to the 2016 Estimate [AGVW17,DDGR20,PV21].

Gaussian Heuristic. For our asymptotic analysis we used Minkowski’s bound
to estimate the length λ1

(
LGF

X[0:n`k)

)
in terms of the volume vol

(
LGF

X[0:n`k)

)
. A

natural way to obtain a concrete estimate for the expected minimal length is by
assuming that the intersection LGF

X[0:n`k) follows the Gaussian Heuristic and thus
for our prediction we assume that

λ1

(
LGF

X[0:n`k)

)
“ gh(LGF

X[0:n`k)) « √
k{(2πe) · vol

(
LGF

X[0:n`k)

)1{k
.

We should however be careful with this assumption, as in fact it is false for k “ n.
E.g. the above predicts that λ1(LGF ) « √

n{(2πe) ·
√
2nσ2, while we know

that λ1(LGF ) “ ‖(g,f)‖ « √
2nσ2, a factor Θ(

√
n) shorter than predicted.

The reason for this is that the dense sublattice is up to rotation and scaling
very similar to the orthogonal lattice Z

n, precisely the lattice for which it is
well known that the Gaussian Heuristic is false. For small k ! n we do observe
that the intersected lattice LGF

X[0:s) follows the Gaussian Heuristic; the orthogonal
structure seems to be broken by the intersection. However we do not have a clear
idea how large k can become before the orthogonal structure returns and the
minimal length stops following the prediction from the Gaussian Heuristic. We
think this behaviour deserves some further investigation, e.g. if the transition is
very sudden or not, and we leave it as an open problem. This near-orthogonality
of LGF

X[0:s) may be critical to model the DSD-LL events.

Probabilities. So far we have only considered expectations of volumes and projec-
tions. While this is enough to give a rough concrete estimate we want to be more
precise. Success probabilities can accumulate up over multiple BKZ blocks and
(progressive) tours, possibly leading to success at much lower blocksizes than
the rough estimate. We continue using the expected values for the volume of
the dense sublattice and the intersection volumes to obtain the expected length
λ1

(LGF
X[0:s)

)
of the dense sublattice vector via the Gaussian Heuristic. However

we then model the short dense sublattice vector v P LGF
X[0:s) as an s-dimensional

Gaussian vector with the same expected length; allowing us to compute the
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exact probability that
∥
∥πs´β(v)

∥
∥ ď ∥

∥b̊s´β‖ using the CDF of the chi-square
distribution with β degrees of freedom.

Up to now we have ignored the probability that after πs´β(v) is inserted, it
is also correctly lifted to the full vector v by later BKZ tours. While this almost
always happens for higher blocksizes, it is not so likely for lower blocksizes, and
ignoring this leads to overly optimistic predictions. For BKZ-β to successfully lift
or eventually pull the vector v to the front it should also satisfy ‖πi(v)‖ ď ‖b̊i‖
for all i “ s ´ 2β ` 1, s ´ 3β ` 2, . . .. These conditions are not independent
which makes them hard to compute exactly. We simplify the computation by
only considering the dependence for consecutive positions i, i ´ β ` 1 as done
in [DDGR20]. We iteratively run our estimator for progressive β “ 2, 3, . . . and
take account of all probabilities assuming that all tours behave completely inde-
pendently. Our new concrete estimate will be the expected successful blocksize.
Additionally this allows us to combine both the (probabilistic) SKR 2016 Esti-
mate and our new DSD-PT estimate in a single estimator. With some more
administration we can also predict the distribution of the successful location κ,
and predict the probability that the SKR event happens before the DSD event.

BKZ Shape for Low Blocksizes. While the formulas for the (Z)GSA slope αβ

and the expected first minimum gh(β) convert to the experimental values for
large blocksizes of say β ě 50, they are not as accurate for small β. As expected
the convergence is worse for progressive BKZ when we only use a few tours
of each blocksize. We ran some experiment on random low dimensional q-ary
lattices to obtain practical estimates for gh(β) with β ď 50. Earlier works about
the 2016 Estimate resorted to BKZ simulators to predict the BKZ shape, which
account for the number of tours and also the special shape of the head and tail
that do not perfectly follow the GSA shape. Together with the earlier mentioned
refinements this resulted in very precise predictions [DDGR20,PV21]. However
how BKZ acts on a Z-shaped basis is much less understood [AD21] and as of
yet there are no accurate BKZ simulators. Understanding the behaviour and
creating an accurate simulator would be very interesting, but is out of the scope
of this work. We continue using the ZGSA, but we resort to experimental values
for αβ obtained by running BKZ on random q-ary lattices for large q. To remain
consistent we also do not use a simulator for the GSA shape, and accept the
small discrepancy between the predictions and practical experiments.

5 Experimental Verification

In this section we experamentally confirm our predicitions. Further detailed
experimental data and discussion is given in the eprint version8.

5.1 Successful Blocksize

We start with comparing our concrete predictions to the preliminary experiment
from Sect. 3.1. We ran progressive BKZ with 8 tours on matrix NTRU instances
8 Section 5.2 in https://eprint.iacr.org/2021/999.

https://eprint.iacr.org/2021/999
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Fig. 6. Experiment versus prediction for progressive BKZ with 8 tours on matrix NTRU
instances with parameters n “ 127, σ2 “ 2

3
for several moduli q. We did 10 runs per

modulus q.

with parameters n “ 127, σ2 “ 2
3 for several moduli q. In Fig. 6 we show the

blocksizes at which the SKR or DSD event is first detected, and compare them
to our concrete estimator. We ran the estimator three times for each modulus q:
only accounting for SKR, only accounting for DSD-PT, and accounting for both.
Note that the combined estimate can be strictly lower than both the first two
because the probabilities to succeed accumulate over both events. We calibrated
the values of αβ by running the same BKZ routine on (2 ·127)-dimensional q-ary
lattices with q « 220.

We observe that the experiments match the estimates reasonably well, with
an average blocksize error of less than 2 for the DSD events and less than 3 for
the SKR events. We shortly discuss potential sources of the small errors error.

– We do not actually run the classical BKZ algorithm, but the BKZ 2.0 algo-
rithm as it is more feasible to run for large blocksizes. One part of the latter
algorithm is that in each BKZ block [κ : κ ` β) the last β ´ 1 vectors are
randomised before finding a short projected vector. This temporarily breaks
the GSA shape and results a small ‘bump’ in the profile that is pushed to the
right during a tour. On average we measured at the SKR events a log-increase
of 0.048 on the value of ‖b̊κ‖ compared to the GSA (while the rest of the basis
matches very closely). Although anecdotal, adjusting our estimator with this
offset of 0.048 resulted in very close predictions for the SKR events.

– For small blocksizes β ď 30 we see that our DSD-PT estimate is slightly pes-
simistic compared to the experiments. However the successful profile slope αβ

(computed from the profile at the moment of detection) does closely match
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the predicted slope αβpred
, pointing to a wrong calibration of the slope param-

eter for very low blocksizes. Note that the non-flat part of the Z-shape in our
experiments has size less than the 2 · 127 dimensional lattice used for cali-
bration, which plausibly explain why the slope converges more quickly than
expected.

5.2 Fatigue Point

Our concrete estimator follows the experiments reasonably well and thus we can
use it to estimate the concrete fatigue point for dimensions that are not feasible in
practice. To verify our estimate of the fatigue point we also did some experiments
in dimensions that are still feasible. For this we ran a soft binary search, only
decreasing the interval length by 3{4 so as not view a probabilistic result as a
definitive answer. More specifically, starting with a range of [qmin, qmax] we ran
an experiment for a prime q « (qmin ` qmax){2. If it succeeds with an SKR event
we update qmin to (qmin ` q){2 ` 1, if it succeeds with a DSD event we update
qmax to (qmax ` q){2 ´ 1. We repeat this until the interval does not contain any
prime and we return (qmin ` qmax){2 as a rough estimate of the fatigue point.
We averaged this over 20 experiments for each parameter n. We chose for matrix
NTRU because of the lower variance in the hardness of these instances.

We compared this to our prediction. Because the estimator accounts for prob-
abilities of events, we can predict for which value of q about 50% of the instances
succeeds with a DSD event. Because it would be unreasonable to calibrate the

Fig. 7. Concrete fatigue point versus asymptotics using progressive BKZ with 8 tours
on matrix NTRU instances with variance σ2 “ 2

3
. The 0.5 percentile line shows for

which q we estimate that the DSD event is triggered before the SKR event for about
50% of the instances.
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Fig. 8. Experiment versus prediction for progressive BKZ with 8 tours on matrix NTRU
instances with parameters n “ 113, σ2 “ 2

3
for several moduli q. We did 100 runs per

modulus q and the plot shows the ratio of these runs succeeding with a DSD event
(before an SKR event).

low blocksize slope values αβ for each dimension we reused those of the 2 · 127
dimensional q-ary lattice from an earlier experiment. This might make the esti-
mates a bit less precise for n ! 127, and n � 127 if the successful blocksize is
small around the fatigue point.

The results are shown in Fig. 7 and plotted against Cn2.484 for several con-
stants C. Remarkably the experiments and concrete predictions closely follow the
asymptotics already for reasonably small values of n. A loglog-linear regression
of the 50% DSD-PT estimate over all primes 199, . . . , 499 gives 0.0034 · n2.506.
Restricting the exponent to 2.484 gives 0.0038 · n2.484 with a log-standard devi-
ation of only 0.006.

The experimental average appears slightly higher than the estimator predic-
tion for 50% DSD - 50% SKR. The main reason for this seems to be that the
estimator is slightly pessimistic for detecting the SKR event, as already observed
and explained in Sect. 5.1. Another small detail is that the binary search is
slightly biased to higher values of q because at each iteration we pick the next
prime after (qmin ` qmax){2.

5.3 Zoom on the Fatigue Point: A Smooth Probabilistic Transition

We take a closer look at the transition from the non-overstretched to the over-
stretched regime. For this we ran several experiments on matrix NTRU instances
with parameters n “ 113, σ2 “ 2

3 for several moduli q, with 100 runs each. We
compare the DSD success ratio with our probabilistic concrete estimate. The
results are shown in Fig. 8. Just as in Fig. 7 we see a shift between the experi-
ment and prediction, which can again be explained by our SKR estimator being
too pessimistic. Note however that while the discrepancy looks significant in this
zoomed plot, it only emphasises a small error of about 2 block sizes between the
experiments and our predictions. Ignoring this shift the shape of the predicted
transition matches the experiments very well.
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