
Constant-Size Lattice-Based Group
Signature with Forward Security in the

Standard Model

Sébastien Canard1, Adela Georgescu2,3(B), Guillaume Kaim1,2,
Adeline Roux-Langlois2, and Jacques Traoré1

1 Orange Labs, Applied Crypto Group, Caen, France
2 Univ Rennes, CNRS, IRISA, Rennes, France

adela.georgescu@irisa.fr
3 Department of Computer Science, University of Bucharest, Bucharest, Romania

Abstract. One important property of group signatures is forward-
security, which prevents an attacker in possession of a group signing key
to forge signatures produced in the past. In case of exposure of one group
member’s signing key, group signatures lacking forward-security need to
invalidate all group public and secret keys (by re-initializing the whole
system) but also invalidate all previously issued group signatures. Most
of the existing forward-secure group signatures (FS-GS) are built from
number-theoretic security assumptions which are vulnerable to quan-
tum computers. The only post-quantum secure FS-GS scheme is built
from lattices by Ling et al. (PQCrypto 19) in the random oracle model,
following the classical framework of encrypt-then-prove, thus using non-
interactive zero-knowledge (NIZK) proofs. In this work, we achieve the
first FS-GS from lattices in the standard model. Our starting point is
the group signature of Katsumada and Yamada (Eurocrypt 19) which
replaces NIZK by attribute-based signatures (ABS), thus removing the
need for random oracles. We first modify the underlying ABS of Tsabary
(TCC 17) to equip it with forward-security property. We then prove that
by plugging it back in the group signature framework of Katsumada
and Yamada (Eurocrypt 19), we can design a FS-GS scheme secure in
the standard model with public key and signature size constant in the
number of users. Our constant size is achieved by relying on complexity
leveraging, which further implies relying on the subexponential hardness
of the Short Integers Solution (SIS) assumption.

1 Introduction

Group signatures were introduced as a new type of signatures by Chaum and van
Heyst [CvH91] in 1991 and they were designed to allow only members of a group
to sign messages while the identity of the signer remains hidden for the verifier
(anonymity). The latter can only ensure that a member belonging to the group
has signed the message. Moreover this property guarantees the unlinkability as
well, preventing anyone to detect that two group signatures have been generated
c© Springer Nature Switzerland AG 2020
K. Nguyen et al. (Eds.): ProvSec 2020, LNCS 12505, pp. 24–44, 2020.
https://doi.org/10.1007/978-3-030-62576-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62576-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-62576-4_2

Constant-Size Lattice-Based Group Signature 25

by the same group member. Nevertheless, if necessary, the signature can be
opened by an entity called group manager who holds some secret information
and reveals the identity of the signer (traceability). These features make group
signatures very useful for real life applications including e-commerce systems,
anonymous online communications and trusted hardware attestations.

From their beginning until now, a great variety of constructions for group
signatures have been proposed, addressing different needs: in the random ora-
cle model [CL04,BBS04] or standard model [BW06,Gro07], supporting static
groups [BMW03], dynamic groups [BSZ05] or partially dynamic groups and con-
structions based on different theoretical assumptions such as RSA [ACJT00], or
pairings [BBS04] for standard assumptions.

As for post-quantum constructions, there is a vast literature concerning group
signatures based on lattices, some of them being designed to support most
of the important properties listed above. Among them there are group signa-
tures in the static model [GKV10,CNR12,LLLS13,NZZ15,LNW15,LLNW16],
[LNWX18,BCN18,dPLS18], in the dynamic model where users have the flexi-
bility to join and leave the group [LNWX17], achieving partially dynamicity by
means of verifier-local revokability [LLNW14] (where new users can not join the
group but they can leave it being revoked), or using other tools to achieve par-
tial dynamicity [LLM+16,LMN16]. Concerning the random oracle model (ROM)
and the standard model, all of the existing lattice-based group signature schemes
are in the ROM except the construction by Katsumata and Yamada [KY19]. We
can further notice that the recent construction of non-interactive zero-knowledge
proof of knowledge (or NIZKPoK or NIZK) for all NP from [PS19] combined
with [BMW03] can be adapted in a group signature scheme in the standard
model in a straightforward manner (but very inefficiently as we explain in the
next subsection).

Forward-security [Son01,NHF09,LY10] is an important additional security
property sometimes considered in group signature constructions. Concerning lat-
tices, to the best of our knowledge there is one such construction in the ROM
model [LNWX19]. This property cuts the time into periods t and prevents attack-
ers from forging group signatures pertaining to past time periods t′ < t, even if
a secret group signing key is revealed at the current time period. As explained
in Song [Son01], in the context of group signatures, exposure of secret signing
keys is more damaging since an adversary being in the possession of a member’s
group signing key can produce signatures on behalf of the whole group, but still
remaining anonymous. As a consequence, all the public and secret keys of the
group need to be regenerated and all previously generated group signatures have
to be rendered invalid. We note that the solution to these problems is adding
a forward-secure mechanism to group signatures as was previously done first
for key exchange protocols [Gün89,DvOW92] and then for digital signatures
[BM99,IR01], symmetric-key encryption [BY03] and public key encryption sys-
tems [CHK03]. This property aims to protect past use of private keys even if an
adversary breaks-in at the current moment of time. When entering a new time
period t, a new secret key related to t is computed from the previous secret key

26 S. Canard et al.

related to t − 1 through a one-way key evolution algorithm, the latter one being
deleted promptly afterwards.

1.1 Our Contribution

Our main achievement in this paper is a lattice-based forward-secure group sig-
nature scheme without NIZK in the standard model with public key and sig-
nature size constant (independent) on the number of users. We note that this
is the first of its kind in the standard model as the only existing construction
[LNWX19] for group signatures from lattices achieving forward-security is in the
random oracle model. Our group signature corresponds to the transformation of
the lattice-based group signature from [KY19] using the idea from [LNWX19]
to obtain forward-security.

The main building block of our transformation is a lattice-based forward-
secure attribute-based signature scheme (FS-ABS) that we introduce later in
this paper as a novelty. We mention that there is a previous general construction
of FS-ABS due to [YLH+12] which combines the general primitive of credential
bundles (which can be instantiated with forward-secure digital signatures) and
non-interactive witness-indistinguishable (NIWI) proofs. Using this framework
one can achieve lattice-based FS-ABS as long as one can build forward-secure
digital signature and NIWI from lattices, but, to the best of our knowledge, there
is no construction in the lattice-settings for any of them. Therefore, we believe
that our construction of lattice-based FS-ABS is of self-interest.

We mention that our group signature scheme satisfies CCA-selfless-
anonymity (inherited from the base group signature scheme of [KY19]), a relax-
ation of the CCA-full-anonymity, since the adversary is not in possession of all
the secret keys: he is missing the secret keys of the two members, whose iden-
tities compose the challenge. As for the traceability property, we show that our
scheme achieves forward-secure traceability.

As already explained in [KY19], group signatures from lattices in the stan-
dard model can be achieved also by using the recent proposal for NIZK for all
NP from LWE [PS19] (published shortly after [KY19]) instead of the ABS. The
difference is that the ABS that we employ in our group signature scheme relies
only on the hardness of SIS, avoiding the potentially stronger LWE assump-
tion on which the NIZK mentioned above relies, leading to a potentially heavier
group signature construction. Another drawback of a potential instantiation of
group signatures using [PS19] is that the latter one relies on fully homomorphic
encryption for evaluating circuits making it very costly in time efficiency.

1.2 Overview of the Building Blocks for Our Construction

In order to have all the elements needed to give a technical overview of our
scheme, we start by describing three existing constructions: the group signa-
ture scheme of [KY19], the ABS proposed by Tsabary [Tsa17], and finally, the
forward-secure mechanism of the group signature construction of [LNWX19].

Constant-Size Lattice-Based Group Signature 27

Group Signature Scheme without NIZK. The starting point of our work is
the recent lattice-based group signature scheme without NIZK in the standard
model [KY19]. Previous to this construction, all works on group signatures were
relying on the Sign-Encrypt-Prove framework defined by Bellare, Micciancio and
Warinschi [BMW03]. In this framework, to sign a message M , a user encrypts
both his certificate received from the group manager and a digital signature
on M . Finally, he proves in non-interactive zero-knowledge that every element
is well formed. Until recently (2019), constructing NIZK from lattices for any
NP language was a long-standing open problem and by that time Katsumata
and Yamada [KY19] proposed a group signature scheme that by-passed the uti-
lization of NIZK by replacing it with indexed attribute-based signature scheme
(ABS). Their idea is based on the fact that for group signatures the needed NIZK
is in the common reference string (CRS) model and, in the context of group sig-
natures, it resembles to designated-prover NIZK (DP-NIZK) where there is a
proving key kP that needs to be kept secret (and thus is not known to the veri-
fier, assuring zero-knowledge) and a verification key kV which is public. Anyway,
simply replacing NIZK in the CRS model with DP-NIZK is not enough since it
trivially breaks anonymity. The breakthrough idea of Katsumata and Yamada
was to view ABS as DP-NIZK. In attribute-based signatures, a signer with an
attribute x is provided a secret key skx from the authority and can anony-
mously sign a message associated with a policy C using his secret key, if and
only if, his attribute satisfies the policy C. In particular, the signature hides the
attribute (anonymity) and users can not collude to pull their attributes together
if none of the attributes satisfies the policy associated to the message (unforge-
ability). Now, an ABS can be seen as a DP-NIZK by the following association:
the attribute x is seen as a witness w and the ABS signing key skx can be set
as the proving key kP of the DP-NIZK. Thus proving that w is a valid witness
to a statement s i.e. (s, w) ∈ R for the NP relation R resorts to, firstly prepare
a circuit Cs(w) = R(s, w) that has the statement s hard-wired into it, secondly
sign a message associated with the policy Cs using the proving key kP = skx and
finally output the signature as the NIZK proof π. Anonymity and unforgeability
of the ABS assure the zero-knowledge property and soundness respectively.

Having shown a way of substituting the NIZK with ABS, it remains to indi-
cate how to use ABS to construct group signature. We briefly explain, in the
following, the general framework from [KY19]. The group manager issues for
user i a key Ki of a secret key encryption (SKE) scheme and an ABS signing
key ski||Ki

where i||Ki is seen as an attribute. To sign a message M , the group
member i encrypts his identity under Ki obtaining cti = SKE.Enc(Ki, i) and cre-
ates an attribute-based signature for some policy Ccti which serves as a NIZK
proof of the fact that cti encrypts the identity. The circuit Ccti has the statement
cti hardwired such that Ccti(i||Ki) := (i = SKE.Dec(Ki, cti)). The traceability
property of the group signature holds from unforgeability of ABS and anonymity
holds from anonymity of the ABS and semantic security of the SKE.

As for the instantiation of the ABS from lattices, [KY19] gives two possible
solutions: the first one uses the ABS proposed by Tsabary [Tsa17] proven secure

28 S. Canard et al.

under the SIS assumption and the second one is an indexed ABS designed by
them, relying also on the SIS assumption. The need for the second construction
is explained by the problems encountered when trying to plug the first construc-
tion into a group signature. Tsabary’s scheme achieves selective unforgeability
which is not enough for security purposes of group signatures. Adaptiveness is the
required property and can be easily achieved via complexity leveraging with the
drawback that this approach requires a subexponential security loss. We remark
that in [KY19] they emphasize that they don’t really need adaptiveness but
rather something complementary to selectiveness called co-selective unforgeabil-
ity. Unfortunately, we can not achieve this property directly, without complexity
leveraging (see Sect. 3.3 for more details). The two different ABS constructions
give two different group signature schemes with the following properties:

(i) Tsabary’s ABS gives rise to a group signature scheme with public key and
signature size constant (independent) in the number of users and whose
security relies on the hardness of LWE with polynomial approximation factor
and subexponential hardness of SIS with polynomial approximation factor.

(ii) The second ABS gives rise to a group signature scheme with public key
and signature size linear in the number of users whose security relies on the
hardness of LWE and SIS with polynomial approximation factors.

Attributed Based Signature from Constrained Signature of Tsabary.
The main building block of our group signature is an Attribute Based Signature
scheme. In the following we briefly explain the ABS developped in Tsabary’s
paper. First of all, the construction in Tsabary’s paper is not really an attribute-
based signature but rather a key-policy constrained signature or simply con-
strained signature. We note that the other flavour of constrained signatures, as
defined in [Tsa17], called message-policy constrained signature is equivalent to
attribute-based signatures. In constrained signatures, a signing key skf is asso-
ciated with a policy f : {0, 1}∗ → {0, 1}, called the constraint, and a key skf can
sign a message x ∈ {0, 1}∗ only if the message satisfies the policy i.e. f(x) = 0.
In attribute-based signatures each key is associated with an attribute x ∈ {0, 1}∗

and a key skx can sign a policy f only if the attribute satisfies the policy i.e.
f(x) = 0. A constrained signature can be easily transformed into an attribute-
based signature using universal circuits (which we denote Ux) as briefly explained
in [KY19] (but not done there), transformation that we apply in Sect. 3 and that
we sketch below.

The ABS scheme (as well as the original constrained signature of [Tsa17])
is built from lattice trapdoors. The verification key vk consists of a uniformly
sampled matrix

−→
A = [A1‖...‖A�] ∈ Z

n×(m×�)
q (with � the input size of the

circuit C) and a close to uniform matrix A ∈ Z
n×p
q while the master signing

key msk is a trapdoor for A denoted A−1
γ0

. The signing key skxi
is associated to

an user i (we prefer the simplified version of this notation even though it would
be clearer to use skUxi

as notation) and to an universal circuit Uxi
(which has

the attribute hard-wired and takes as input the policy (circuit) and a message).
The secret key skxi

is a trapdoor [A‖Axi
]−1
γ where Axi

=
−→
A · HUxi

∈ Z
n×m
q is

Constant-Size Lattice-Based Group Signature 29

computed from
−→
A and Uxi

using the function EvalF. This function, associated
with a function EvalFX, allows to compute HUxi

= EvalF(Uxi
,
−→
A), and HUxi

,x =

EvalFX(Uxi
,x,

−→
A) both in Z

(�m)×m and of bounded norm such that (
−→
A−x⊗G)·

HUxi
,x =

−→
A ·HUxi

−Uxi
(x)G mod q, where G is the gadget matrix. Then, the

manager can easily generate the secret key skxi
using it’s own trapdoor A−1

γ0
. A

valid signature for a message M , a circuit C and an attribute xi is a short vector σ

such that [A‖−→A−xi⊗G]·σ = 0 mod q. We note that for every tuple (C,M, xi),
a trapdoor [A‖−→A−xi ⊗G]−1

γ′ can be derived from [A‖−→A−Uxi
(C,M)G]−1

γ′ when
Uxi

(C,M) = C(xi) = 0.
We remark that, at this stage, the unforgeability of the ABS can be eas-

ily broken, as explained in [KY19] because the message is not bounded to the
signature (both signature and verification just ignore the message) and a valid
signature for a pair of policy and message (C,M) is also valid for (C,M ′) for
M �= M ′. Therefore, in the security game, we can not allow signature queries
and following the idea of [KY19], we use the fact that a scheme that is unforge-
able only when the adversary can not make signature queries can be generically
transformed into a scheme that is unforgeable even when the adversary is allowed
to make signature queries. In short, the idea in [KY19] is to answer the signing
queries using the secret key of a dummy user which does not exist in the real
system. We will need to partition the set of all possible message-policy pairs into
a challenge set and a controlled set (using admissible hash functions) with the
hope that the adversary asks queries that fall into the controlled set to which
the challenger can answer with the help of the dummy key. We also hope that
the attacker outputs a forgery in the challenge set to allow the simulator to solve
a hard problem.

Forward Secure Group Signature of [LNWX19]. Recall that for achieving
forward-secure group signature, one needs a one-way key evolving mechanism
for deriving secret keys for every period of time. Let us now briefly explain this
mechanism following the idea of [LNWX19]. Let T = 2d be the total number
of time periods, the time periods are represented in a binary tree, where each
time period is a leaf of the tree. Each user secret key for a time period t is then
associated with a sub-tree of depth d which uniquely defines the time period
t. Let z be a binary string (corresponding to a time period) of lenth dz. The
set Nodes(t←T−1) contains nodes for which bases (trapdoors) are derived at a
current period of time t and which allow to compute subsequent keys in the
key update algorithm using the bonsai tree technique [CHKP10]. Each user
will have associated a matrix corresponding to period time z ∈ Nodes(t←T−1):
Axi,z = [A‖Axi

‖Tz[1]
1 ‖ · · · ‖Tz[dz]

dz
] where the last dz matrices corresponding to

the bits of dz are public. Therefore, the group signing key of user i at time t is
{Si||z, z ∈ Nodes(t←T−1)} which satisfies Axi,z ·Si||z = 0 mod q. The user is then
able to compute all possible Si||t by employing Si||z if z is an ancestor of t where
t is the binary representation of a period of time. The basis delegation technique
allows users to compute trapdoor matrices for all the descendent nodes in the
set Nodes(t←T−1) and therefore to compute all the subsequent signing keys.

30 S. Canard et al.

1.3 Our Construction

We are now able to better explain our contribution. We start from the con-
strained signature of Tsabary, we transform it in an ABS (according to [KY19]
suggestion) as previously explained, we equip it with forward-security (following
the mechanism of [LNWX19]), then plug it into the group signature of [KY19].
Thus we achieve the first forward-secure group signature from lattices without
NIZK in the standard model having public key and signature size independent of
the number of users for which we managed to prove forward-secure traceability
and CCA-selfless anonymity. The drawback is that the security assumption on
which the GS scheme relies is SIS with subexponential hardness.

Our main building block is then a forward secure Attribute Based Signature
which is built using the idea from [LNWX19] having as starting point Tsabary’s
constrained signature. As explained in [LNWX19], the advantage of this method
is that it incurs only logarithmic dependency on T . Therefore our construction
achieves signature size and public key size constant in N and logarithmic in T .
We note that [LNWX19] applied it directly for building forward-secure group
signature (FS-GS) while we need to apply it first on our ABS to get forward-
secure attribute-based signatures (FS-ABS). Indeed, in an encrypt-then-prove
paradigm for group signatures, the transformation of [LNWX19] into a forward
secure group signature is independent of the encryption scheme and of the NIZK
scheme used to prove the membership. This is because the group secret key of a
user does not appear as input in the NIZK proof but is embedded in a ciphertext
on which the proof is performed. Instead, the paradigm on which we build our
construction uses an ABS to prove that the user belongs to the group, and the
ABS secret key is a direct component of the group secret key of a user. This
means that if we want to update the group secret key of a user, we need to
update the ABS secret key as well.

From this observation and the fact that the ABS built by Tsabary [Tsa17]
is based on lattice trapdoors which fit perfectly with bonsai trees, we can then
adapt the forward security mechanism of [LNWX19] to the ABS derived from
[Tsa17], and use the resulting ABS to get forward-secure group signature scheme.
We note that if we try to apply the same technique for the second ABS from
[KY19] (also built from lattice trapdoors) we can not get forward-security. The
problem is that the design of ABS forces us to keep the initial secret key derived
by the master authority for every user in order to be able to compute all the
other subsequent keys for the following periods of time. This means that an
adversary who gains access to a secret key for a certain period of time, would be
able to compute the secret keys for all periods of time (including previous ones).

The main difficulty encountered when trying to add forward security to the
ABS derived from [Tsa17] is then the way to deal with the trapdoors for each
of the time periods. This includes the trapdoors considered in the ABS con-
struction as well as in the simulation. Moreover this modification induces a new
time parameter t, that has to be handled in the unforgeability proof. Indeed,
the construction of [Tsa17] has been designed to only consider a fixed matrix
A and a vector of matrices

−→
A linked to the attribute to generate and verify

Constant-Size Lattice-Based Group Signature 31

signatures. But now we add log t additional matrices in order to integrate the
time parameter, in a similar way to [LNWX19]. This transformation implies that
the secret keys have to be modified according to the time period considered. It
means that a trapdoor update mechanism needs to be built from the trapdoor
construction of Tsabary, using tools introduced in the bonsai tree mechanism
[CHKP10], and the time component has to be dealt with in the different queries
from the simulation-based proof.

Finally, as we apply forward-secure property to an attribute-based con-
struction in our case, we also have to handle an additional component which
is the attribute. A naive adaptation from the transformation of [LNWX19]
(on a group signature) to our construction (an attribute based signature) would
not be secure. Indeed, we have to deal with two types of trapdoor: the trap-
door inherent to the ABS construction derived from [Tsa17], and the trapdoors
given by the matrices linked to the time parameter. In the security proof of the
ABS scheme, we need to simulate these two types of trapdoors according to each
other, and according to the time period considered, in order to be able to answer
all the queries of an attacker. At the same time, we expect all these trapdoors
to vanish when the forgery of the attacker is outputted, in order to be able to
conclude the simulation and then to argue about the security reduction getting
a solution to a hard problem.

Related Work. The only previous work on forward-secure group signature
schemes from lattices is the work of [LNWX19] in the random oracle model using
NIZK achieving signature size Õ(λ(log N + log T)) and group public key size
Õ(λ2(log N + log T)). Our scheme is constant in the number of group members
and logarithmic in the number of time periods i.e. Õ(λlog T) and group public
key size Õ(λ2log T). Their scheme satisfies full-anonymity and forward-secure
traceability under SIS and LWE hardness.

Open Problems. One open problem would be to achieve a group signature
scheme with the same properties without relying on complexity leveraging (that
we need to employ in the underlying ABS). Another open problem would be to
upgrade the anonymity property from selfless anonymity to full anonymity.

2 Preliminaries

2.1 Lattices and Trapdoors

In this paper we use several values defined as follows: λ is the security parameter
and n, m and q ≥ 2 are integers such that n = poly(λ) and m ≥ n� log q	. The
discrete Gaussian distribution DZm,τ over Z

m with parameter τ is the distribu-
tion where the probability of all x is proportional to e−π‖x‖/τ2

. The norm of a
matrix A = [a1, . . . ,am] ∈ Z

n×m
q , is denoted ‖A‖ = maxj ‖aj‖, j ∈ [m], and it

is the maximum of the Euclidean norm of its vectors.

Lattices. For a matrix A ∈ Z
n×m
q and u ∈ Z

n
q that admits a solution to the

equation A ·x = u mod q, define the m-dimensional lattice: Λ⊥(A) = {x ∈ Z
m :

A · x = 0 mod q} ⊆ Z
m, and the coset Λ⊥

u (A) = {x ∈ Z
m : A · x = u mod q}.

32 S. Canard et al.

We briefly remind the SIS assumption and its hardness.

Definition 1 (SISn,q,B,m). Given a uniformly chosen matrix A ∈ Z
n×m
q , find

nonzero integer vector s ∈ Z
m such that ‖s‖∞ ≤ B and A · s = 0 mod q.

SISn,q,B,m is hard if for any adversary A, the probability to solve SIS is negligible,
i.e. it is bounded by negl(λ). SISn,q,B,m is sub-exponentially hard if the probability
to solve SIS is bounded by 2−O(nε) · negl(λ) for some constant 0 < ε < 1.

Trapdoors. For all v ∈ Z
n
q , A−1

γ0
(v) is the random variable with discrete gaus-

sian distribution DZm,γ0 conditioned on A · A−1
γ0

(v) = v mod q. A γ0-trapdoor
for A allows a procedure that can sample from A−1

γ0
(v) in time poly(n,m, log q)

for any v ∈ Z
n
q . By overloading notation we denote a γ0-trapdoor for A by A−1

γ0
.

We define the gadget matrix G based on the vector g ∈ Z
k
q whose entries are

the power of two gt := [1 2 4 · · · 2k−1] and k = �log q	. The matrix G is
the diagonal concatenation of g n times, i.e. G = g ⊗ In ∈ Z

n×nk
q .

Lemma 1 (Trapdoor generation [Ajt96,MP12]). There exists an efficient
procedure, that we call TrapGen(1n, 1m, q), with an efficiently computable value
m0 = O(n log q) such that for all m � m0 outputs a pair (A,A−1

γ0
), where

A ∈ Z
n×m
q is at negligible distance from uniform and A−1

γ0
is a γ0-trapdoor for

A with γ0 = O(
√

n log q log n).

Lemma 2 (Leftover Hash Lemma [HILL99]). Let m,n, q � 1 be integers

such that m � 4n log q and q prime. Let A $←− Z
m×n
q , r $←− {0, 1}m, then (A,Ar)

is at negligible statistical distance from uniform distribution on Z
m×n
q × Z

n
q .

2.2 Delegation Functions

During different time periods, a signer will need to delegate some lattice trapdoor
from a previous period to a next one. We make use of the following lemmas.

Lemma 3 (Trapdoor extension [ABB10,MP12]). Let ∈ Z
n×m
q be a matrix

with trapdoor M−1
γ and N ∈ Z

n×p
q a matrix such that M = NS mod q where

S ∈ Z
p×m
q with s1(S) its largest singular value. Then we can use (M−1

γ ,S) to
sample from N−1

γ′ for any γ′ ≥ γ · s1(S).

Lemma 4 ([CHKP10, Lemma 3.2]). There is a deterministic polynomial-time
algorithm ExtBasis with the following properties: given an arbitrary A ∈ Z

n×m
q

whose columns generate the entire group Z
n
q , an arbitrary basis S ∈ Z

m×m of
Λ⊥(A), and an arbitrary Ā ∈ Z

n×m̄
q , ExtBasis(S,A′ = A‖Ā) outputs a basis

S′ of Λ⊥(A′) ⊆ Z
m+m̄ such that ‖S̃′‖ = ‖S̃‖. Moreover the same holds even for

any permutation of the columns of A′.

There exists a function RandBasis developed by [CHKP10], which verifies
the following lemma:

Constant-Size Lattice-Based Group Signature 33

Lemma 5 ([CHKP10, Lemma 3.3]). Let S be a basis of a m-dimensional inte-
ger lattice Λ and a parameter s ≥ ‖S̃‖·ω(

√
log n). The algorithm RandBasis(S, s)

outputs a new basis S′ of Λ such that, with overwhelming probability, S′ ver-
ifies ‖S′‖ � s · √

m. Moreover, for any two basis S0,S1 of the same lattice
and any s � max{‖S̃0‖, ‖S̃1‖} · ω(

√
log n), the outputs of RandBasis(S0, s) and

RandBasis(S1, s) are within negl(n) statistical distance.

We further need an important property of lattice trapdoors [ABB10,MP12]:

Lemma 6. For A ∈ Z
n×p
q and R ∈ Z

p×m
q with m = n�log q	, one can compute

[A‖AR + G]−1
γ for γ = O(

√
mp ‖R‖∞).

2.3 Evaluation Functions

In order to generate or check the validity of a signature, we need to execute
some evaluation of a function with a set of lattices as input. The output of this
evaluation is 1 if the function evaluated on an attribute x is not valid and 0 if
the evaluation is correct. We use the notations and definition of the evaluation
functions developed by Tsabary [Tsa17]. Moreover we denote [x1G| · · · |x�G] by
x ⊗ G with x = (x1, · · · , x�) ∈ {0, 1}�.

Theorem 1 ([Tsa17, Theorem 2.7]). There exist efficient deterministic algo-
rithms EvalF and EvalFX such that for all n, q, � ∈ N, m = n�log q	, and for any
sequence of matrices

−→
A = (A1, · · · ,Al) ∈ (Zn×m

q)�, for any depth d boolean
circuit f : {0, 1}� → {0, 1} and for every x = (x1, · · · , x�) ∈ {0, 1}�, the outputs
Hf = EvalF(f,

−→
A), and Hf,x = EvalFX(f,x,

−→
A) are in Z

(�m)×m and it holds that
‖Hf‖∞, ‖Hf,x‖∞ � (2m)d and (

−→
A − x ⊗ G) · Hf,x =

−→
A · Hf − f(x)G mod q.

2.4 Building Blocks for Our Construction

As in [KY19], we employ secret key encryption (SKE) and one-time signa-
ture (OTS), both from lattices, in order to build our group signature scheme. We
use the SKE scheme based on LWE from [KY19], which is a secret key variant
of [Reg05] and the OTS scheme from [Moh10]

Admissible hash functions represent a family of hash functions introduced
in [BB04], which allows to separate the input space into two sets, the challenge
set and the controlled set. In practice, in a simulation-based game, a simulator
owning a dummy key can answer to queries in the controlled set but not in the
challenge set, and the adversary is expected to make his forgery in the challenge
set, allowing the simulator to solve a hard problem.

We fit in the definition of admissible hash functions given in [KY19].

3 Forward-Secure Indexed Attribute-Based Signature
Scheme from Lattices

As already explained in the introduction, we replace the ABS scheme in the
general construction of [KY19] with a forward-secure indexed ABS. We start by

34 S. Canard et al.

giving the definition and the security requirements of a forward-secure indexed
attribute based signature. We note that the ABS scheme supports multiple users
since it is designed as a building block for group signature scheme.

The starting point of our scheme is the constrained signature of [Tsa17]. We
first adapt it into an indexed attribute-based signature, by including an index
i into the attribute x, following the idea of [KY19]. Moreover we extend this
construction to a forward-secure attribute-based signature scheme, by applying
a transformation similar to [LNWX19]. The idea of this transformation is that
we consider a pair of matrices Tb

j , b ∈ {0, 1} for every bit j of the time period
t considered. Then by concatenating these matrices Tb

j to the public key of
[Tsa17], we can include a time period t into the verification key and the signa-
tures. The technical difficulty that arises when using this transformation into
the Tsabary’s construction is simulating the secret keys for each period of time
and for each user, without possessing the master secret key. This can be done
by using “dummy” secret keys which vanish when the signature is made for an
identity and a time period chosen selectively by the adversary at the beginning
of the game, allowing the simulator to solve a hard problem (which is the SIS
problem). We then get a new forward-secure attribute-based signature scheme
which is independent of the number of users N , and only logarithmic on the
total number of periods T .

3.1 Framework and Security Properties

We denote {Cλ}λ∈N the set of circuits with domain {0, 1}k(λ) and range {0, 1}.
We bound the size of every circuit in {Cλ} by kc = poly(λ). We also denote
the space of messages as {Mλ}λ∈N, for which we bound the size elements by
km = poly(λ). Usually we simplify notation and just denote these spaces C and
M. We then define the forward-secure indexed attribute-based signature scheme
for the circuit class C:

Definition 2. A forward-secure indexed attribute-based signature (FSI-ABS)
scheme consists of the following algorithms:

ABS.Setup(1λ, 1N , 1T) The setup algorithm takes as input λ the security param-
eter, N the size of the index space and T the number of time periods, given
in unary form, and it outputs a master public key mpk and a master secret
key msk.

ABS.KeyGen(msk, i, xi) The key generation algorithm takes as input the master
secret key msk, an index i ∈ [N] and the attribute xi ∈ {0, 1}k. It outputs
skxi,0, the initial secret key associated to xi.

ABS.KeyUpdate(mpk, i, skxi,t, t + 1) The key update algorithm takes as input the
master secret key msk, an index of an user i as well as its secret key for the
time t, skxi,t. It updates this key skxi,t for the next time period t + 1 and
outputs skxi,t+1.

ABS.Sign(mpk, skxi,t, C,M, t) The signing algorithm takes as input the master
public key mpk, a secret key skxi,t for the current period of time t, a circuit

Constant-Size Lattice-Based Group Signature 35

C ∈ Cλ, a message M ∈ Mλ and a time period t and it outputs an attribute-
based signature σ if C(xi) = 0.

ABS.Verify(mpk, C,M, σ, t) The verification algorithm takes as input the master
public key mpk, the circuit C, the message M , the attribute-based signature σ
and the time period t. This algorithm outputs Valid if the signature σ is valid
for the time period t and Invalid otherwise.

For a FSI-ABS scheme, we require correctness and two security properties:
perfect-privacy and forward-secure policy-selective unforgeability. Perfect privacy
captures the idea that the attribute used to sign a message must remain anony-
mous. The unforgeability property says that even if users collude they can not
forge a signature on a message associated with a policy if none of the attributes
satisfies the policy. We note that we can not achieve selective unforgeability
directly, but we start from no-signing-query and apply a transformation using
admissible hash functions to obtain selective unforgeability. We explain this in
more detail at the end of this section.

3.2 Construction of FSI-ABS Scheme from Lattices

We adapt the constrained signature developed by Tsabary [Tsa17] to a forward-
secure attribute-based signature scheme. As explained by Katsumata and
Yamada [KY19], the signature scheme of Tsabary is not an attribute-based sig-
nature but a constrained signature. It means that in the constrained signature,
a user does not sign a circuit but an attribute. Then the role of the attribute
and the circuit are exchanged compared to an actual attribute-based signature
scheme. However, as explained in [KY19], we can turn a constrained signature
into an attribute-based signature: we consider a constraint space composed of all
d-depth bounded circuit Fd = {f : {0, 1}� → {0, 1}}, with � = poly(λ), then a
constraint f can be seen as a universal circuit U(·, ·, x) (that we denote Ux(·, ·)),
which takes as input the circuit-message pair (C,M) (seen as a string of size �).

Our contribution is to build a forward-secure attribute-based signature
scheme meaning that the lifetime of the scheme is divided into T = 2d discrete
periods. To represent the time periods we use a binary tree (Fig. 1), then each
time period t is associated with a leaf Bin(t). Following [BSSW06], for j ∈ [d+1],
we define a time period’s “second sibling at depth j”. Intuitively, it corresponds
to the right neighbour at depth j of each node on the path from the root to the
leaf Bin(t).

Sibling(j, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(1) if j = 1 and Bin(t)[j] = 0
(Bin(t)[1], ...,Bin(t)[j − 1], 1) if 1 < j ≤ d and Bin(t)[j] = 0
⊥ if 1 � j ≤ d and Bin(t)[j] = 1
Bin(t) if j = d + 1

⎫
⎪⎪⎬

⎪⎪⎭

.

We also define node set Nodes(t→T−1) to be {Sibling(1, t), ...,Sibling(d+1, t)}.
The goal of this set is to uniquely define the path to each leaf of the tree.

36 S. Canard et al.

Time periods

Fig. 1. A binary tree with time periods T = 23. In order to fill the set Nodes(t→T−1)

we begin with the leaf Bin(t) that we add in the set Nodes(t→T−1), together with its
sibling (which is its right neighbour), if it exists. Then recursively, we go up in the
tree to the parent of the node considered (coloured in red), and we add its sibling
(coloured in orange) to the set Nodes(t→T−1) (still if it exists). We keep going this way,
until we reach the root of the binary tree. We stop then and output the corresponding
list Nodes(t→T−1). On the path from node ε to the leaf node (001) we then have
Nodes(1→7) = {(1), (01), ⊥, (001)}. (Color figure online)

We consider also a function called bitstr which takes as input a message-
circuit pair (C,M) and which outputs its input seen as a string of bits. Then
bitstr : {0, 1}kc × {0, 1}km �→ {0, 1}�, such that

bitstr(C,M) = {C1, · · · , Ckc
,M1, · · · ,Mkm

}.

Selection of Parameters. Given the security parameter λ, the parameters
m0, p, γ0 and τs are chosen according to TrapGen algorithm, T = 2d is cho-
sen as a power of 2, for d ∈ N, and is the number of time periods considered, and
� is the size of input of the circuit. We choose parameters τu and B by referring
to Theorem 1. Finally sj is dictated also by Lemma 3. Then we set:

– m = 4n�log q	, m0 = O(n log q) � 4n log q,
– p = max{m0, (n + 1)�log q	 + 2λ},
– γ0 = O(

√
n�log q	log n),

– τs = max{√p · � · 2dm1.5+d, γ0},
– τu = τs · √

� · 2dm0.5+d,
– B = τu

√
(1 + d) · p + � · m,

– sj = O(
√

nd log q)j+1 · ω(
√

log n)j+1 for j ∈ [d].

ABS.Setup(1λ, 1N , 1T) On input the security parameter 1λ, 1N where N is
the number of indexes i ∈ [N] and 1T where T is the number of time periods
T = 2d for some d ∈ N, it sets the parameters n,m, p, q, γ0 to be polynomial
in λ. Then, it generates:

• uniform matrix
−→
A = [A1‖...‖A�]

$←− Z
n×�m
q ,

• (A,A−1
γ0

) ← TrapGen(1n, 1p, q), with A ∈ Z
n×p
q and A−1

γ0
its trapdoor,

Constant-Size Lattice-Based Group Signature 37

• 2d matrices Tb
j

$←− Z
n×p
q for all j ∈ [d] and b ∈ {0, 1}.

The algorithm outputs: mpk = (A,
−→
A, {Tb

j}j∈[d],b∈{0,1}) and msk = (A−1
γ0

).
ABS.KeyGen(msk, i, xi) On input the master secret key msk, the index i ∈ [N]

and the attribute xi ∈ {0, 1}k, it computes Uxi
, HUxi

= EvalF(Uxi
,
−→
A) ∈

Z
�m×m
q as defined in Theorem 1 and Axi

=
−→
A · HUxi

∈ Z
n×m
q . Then, it uses

A−1
γ0

to compute Rxi
= [A‖Axi

]−1. Then it determines the set Nodes(0→T−1)

and for z ∈ Nodes(0→T−1):
• if z =⊥, set skxi

[z] =⊥,
• else it denotes dz as the bit-length of z, with dz � d, and computes

the matrix: Axi,z = [A‖Axi
‖TBin(z)[1]

1 ‖ · · · ‖TBin(z)[dz]
dz

] ∈ Z
n×((dz+1)p+m)
q ,

then it computes: Rxi,z ← RandBasis(ExtBasis(Rxi
,Axi,z), sdz

), and set
skxi

[z] = Rxi,z,
Finally we get: skxi,0 = {skxi

[z], z ∈ Nodes(0→T−1)}.
ABS.KeyUpdate(mpk, i, skxi,t, t + 1) First parse the set skxi,t = {skxi

[z], z ∈
Nodes(t→T−1)} and determine the set Nodes(t+1→T−1).
For z′ ∈ Nodes(t+1→T−1):

• if z′ =⊥, set skxi
[z′] =⊥.

• Otherwise, there exists exactly one z ∈ Nodes(t→T−1) which is a prefix of
z′ i.e. z′ = z‖y. There are two possibilities here:
1. if z′ = z then skxi

[z′] = skxi
[z],

2. if z′ = z‖y for some non-empty y, then z is an ancestor of z′, and
from skxi

[z] = Rxi,z it can delegate a basis
Rxi,z′ ← RandBasis(ExtBasis(Rxi,z,Axi,z′), sdz′), and set
skxi

[z′] = Rxi,z′ .
Finally output skxi,t+1 = {skxi

[z′], z′ ∈ Nodes(t+1→T−1)}.
ABS.Sign(mpk, skxi,t, C,M, t) First compute x = bitstr(C,M). If Uxi

(x) =
C(xi) �= 0 output ⊥. Otherwise, first compute HUxi

,x = EvalFX(Uxi
,x,

−→
A) ∈

Z
�m×m
q , as defined in Theorem 1, such that (

−→
A − x ⊗ G) · HUxi

,x =
−→
A · HUxi

− Uxi
(x)G = Axi

as Uxi
(x) = 0.

Compute
−→
Bt = [A‖−→A−x⊗G‖TBin(t)[1]

1 ‖ · · · ‖TBin(t)[d]
d] ∈ Z

n×((d+1)p+�m)
q , and

Si =

⎡

⎢
⎢
⎢
⎢
⎣

Ip

HUxi
,x

Ip

· · ·
Ip

⎤

⎥
⎥
⎥
⎥
⎦

∈ Z
((d+1)p+�m)×((d+1)p+m)
q .

We then have
−→
Bt · Si = [A‖Axi

‖TBin(t)[1]
1 ‖ · · · ‖TBin(t)[d]

d] = Axi,t. Since skxi,t

contains a trapdoor for Axi,t, we can apply the trapdoor extension from
Lemma 3 to obtain B−1

τu
= [

−→
Bt]−1 = [A‖−→A−x⊗G‖TBin(t)[1]

1 ‖ · · · ‖TBin(t)[d]
d]−1

τu
,

where A = Axi,t, B =
−→
Bt and S = Si using skxi,t = [Axi,t]

−1
τs

.

Then the signer has a trapdoor for
−→
Bt and he can compute σx,t

$←− −→
Bt

−1(0).
ABS.Verify(mpk, C,M, σx,t, t). First, compute x = bitstr(C,M) and then

check that:

38 S. Canard et al.

• [A‖−→A − x ⊗ G‖TBin(t)[1]
1 ‖ · · · ‖TBin(t)[d]

d] · σx,t = 0,
• ‖σx,t‖∞ � B.

If the verification passes, then output Valid, if not, output Invalid.

3.3 Security Proofs

Lemma 7. Our ABS scheme is perfectly private.1

Lemma 8. Our ABS satisfies forward-secure no-signing-query unforgeability
assuming SISn,q,B′,m′ is hard, with B′ = (�(m+d)+1)B and m′ = (d+1)p+�·m.

What we prove in this theorem is a weak property of unforgeability, where
an attacker is prohibited to make signing queries. Indeed, we do not include the
message to be signed in the different steps of the signature process and note
that if the attacker would be able to perform some signature query on a circuit
message pair (C,M) and get σ, he could just output the valid signature σ but
on a pair (C,M ′) with M ′ �= M and win the unforgeability game.

However, in the context in which we intend to use the attribute-based signa-
ture, namely the group signature, this property of unforgeability is not enough.
We note that they face the same problem in [KY19] and introduce a reduction
from a (co-)selective unforgeable ABS to a no-signing-query ABS, using as a tool
the admissible hash function. Adapting in the same way as their construction,
we get a stronger unforgeability property, namely selective unforgeability.

With the above lemma and the no-signing to selective transformation of
[KY19], we prove that the attribute-based signature derived from the constrained
signature of Tsabary [Tsa17] is forward-secure policy-selective unforgeable where
the adversary chooses its target circuit-message pair (C∗,M∗) for the forgery at
the beginning of the game. But still this security notion is not enough for our
group signature scheme, we need adaptive security and we can only achieve it
by utilizing complexity leveraging as suggested in [KY19]. We have to randomly
guess (C∗,M∗) in the reduction from selective to adaptive security. Let us eval-
uate the reduction loss (as done in [KY19]): the length of the message M∗ is
bounded by poly(λ) and a circuit C∗ can be described by ovk and ct which can
be seen as binary strings with length poly(λ, log N) inducing a reduction loss
of 2−poly(λ,log N). To account for the loss in advantage we need to enlarge the
dimension n of the scheme to be poly(λ, log N)1/ε where ε is some constant in
(0, 1) requiring subexponential hardness of the SIS problem. As mentioned in
the introduction, co-selective unforgeability (where the adversary has to make
all the key queries at the beginning of the game but he can choose the target
policy adaptively) would be enough for our scheme but we can not achieve it
directly since in the unforgeability game we need to target policy associated to
the forgery to be chosen at the beginning of the game so that we can build the
public matrix for which we solve the SIS problem.

Lemma 9. Our ABS satisfies FS adaptive unforgeability under the subexponen-
tial hardness of SIS.
1 All the proofs can be found on the full version.

Constant-Size Lattice-Based Group Signature 39

4 Forward-Secure Group Signature Scheme

In this section we present the construction of our forward-secure group signature
(FS-GS) scheme from lattices.

We use the model of forward-secure group signature scheme formalized in
[NHF09] and [LNWX19] and we give the definition below.

Definition 3. A forward-secure group signature scheme consists of the following
algorithms:

GS.KeyGen(1λ, 1N , 1T) is a randomized algorithm taking as input a security
parameter λ, number of users N and number of time periods T . Its output
consists of a group public key gpk, an opening key gok and a set of initial
user secret keys {gski,0}i∈[N].

GS.KeyUpdate(gpk, gski,t, i, t + 1) is a randomized algorithm that takes as input
the group public key gpk, the secret key gski,t of user i at time t, a user i and
a time period t + 1 and outputs gski,t+1, the secret signing key of user i at
time t + 1.

GS.Sign(gpk, gski,t, i,M, t) takes as input the group public key gpk, the ith user
secret key gski,t at time t, the index i of the user, a message M ∈ {0, 1}∗ and
the current time interval t and outputs a group signature Σ.

GS.Verify(gpk,M,Σ, t) takes as input the group public key gpk, a message M ,
a signature Σ and the time period t. It outputs either Valid or Invalid. Valid
indicates that Σ is a valid signature on M at time period t w.r.t gpk.

GS.Open(gpk, gok,M,Σ, t) takes as input the group public key gpk, the opening
key gok, a message M , a signature Σ and time interval t and outputs an
identity or Invalid if it fails to identify the signer.

We require two security properties: forward-secure traceability and CCA-selfless
anonymity.

4.1 Forward-Secure Group Signature from Lattices

We now describe our lattice-based FS-GS scheme which employs the FSI-ABS
scheme given in the previous section and which satisfies CCA-selfless anonymity
and traceability. As the ABS used is forward-secure, we show that the group
signature is also forward-secure, so we consider that the lifetime of the scheme is
divided into T time periods. When entering a new period of time, a new secret
key is computed from the current one and afterwards the current key is deleted
promptly.

GS.KeyGen(1λ, 1N , 1T) On input security parameter λ, the number of group
members N and the total number of time periods T = 2d, the algorithms
works as follows: First sample pp ← SKE.Setup(1λ) and (mpk,msk) ←
ABS.Setup(1λ, 1N , 1T), then, for i ∈ [N], sample Ki ← SKE.Gen(pp) and
compute skxi,0 as ski||Ki,0 ← ABS.KeyGen(msk, i, i||Ki)i∈[N].
Output gpk = (pp,mpk), gok = {Ki}i∈[N], gski,0 = (i,Ki, ski||Ki,0).

40 S. Canard et al.

GS.KeyUpdate(gpk, gski,t, i, t + 1) It calls the key update algorithm of the
ABS and returns gski,t+1 = (i,Ki,ABS.KeyUpdate(mpk, i, skt,i, t + 1)).

GS.Sign(gpk, gski,t, i,M, t) In order to sign a message, the user samples
(ovk, osk) ← OTS.KeyGen(1λ) and computes the encryption of his identity
under the key Ki as ct ← SKE.Enc(Ki, i||ovk). Then, he computes

σ ← ABS.Sign(mpk, ski||Ki
, C[ovk, ct],M, t),

where the circuit C[ovk, ct] is defined as follows:

C[ovk, ct](i||Ki)

Hardwired constants: a verification key ovk of OTS and
ciphertext ct of SKE

– Retrieve i ∈ [N] and Ki from the input. If this is impossible, return 1.
– Compute SKE.Dec(Ki, ct) = i′||ovk′. If i′ = i and ovk′ = ovk output 0.

Otherwise, output 1.
Finally run τ ← OTS.Sign(osk,M‖σ).
The signature consists of Σ = (ct, ovk, σ, τ).

GS.Verify(gpk,M,Σ, t). On input gpk, a message M , a group signature Σ on
M and a period time t, check that ABS.Verify(mpk, C[ovk, ct],M, σ, t) = Valid
and OTS.Verify(ovk, τ,M‖σ) = Valid; if one of these verification condition
does not hold, return Invalid. Otherwise return Valid.

GS.Open(gpk, gok,M,Σ, t). First run GS.Verify(gpk,M,Σ, t) and return
Invalid if the verification result does not hold. Otherwise, parse Σ →
(ct, ovk, σ, τ). Since the manager does not know the identity of the user who
produced the signature, he has to find it by trial and error, i.e. he computes
di ← SKE.Dec(Ki, ct) for i ∈ [N] and outputs the smallest index i such that
di �= Invalid. If there is no such i, return Invalid.

4.2 Security

Correctness. The correctness of the FS-GS scheme follows directly from the
correctness of OTS, ABS and SKE.

Theorem 2 (Traceability). If ABS is forward-secure (adaptively) unforgeable
and SKE has key-robustness then the group signature scheme constructed above
has the forward-secure traceability property.

The following theorem addresses the CCA-selfless anonymity of the above GS
scheme. We omit the proof and mention that it is a straightforward adaptation
of the CCA-selfless anonymity proof from [KY19, Th. 5].

Theorem 3 (CCA-selfless anonymity). If ABS is perfectly private and adap-
tive unforgeable, OTS is strongly unforgeable and SKE is IND-CCA secure and
key-robust, then GS constructed as above is CCA-selfless anonymous.

Constant-Size Lattice-Based Group Signature 41

Acknowledgements. This work is supported by the European Union PROMETHEUS
project (Horizon 2020 Research and Innovation Program, grant 780701) and by the
french Programme “Investissement d’Avenir” under the national project RISQ P141580-
2660001/DOS0044216.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimen-
sion and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14623-7 6

[ACJT00] Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 16

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108. ACM (1996)

[BB04] Boneh, D., Boyen, X.: Secure identity based encryption without ran-
dom oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 27

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

[BCN18] Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from
lattices. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol.
10892, pp. 163–182. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-93387-0 9

[BM99] Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 28

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures:
formal definitions, simplified requirements, and a construction based on
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39200-9 38

[BSSW06] Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures
with untrusted update. In: ACM Conference on Computer and Communi-
cations Security, pp. 191–200. ACM (2006)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30574-3 11

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 26

[BY03] Bellare, M., Yee, B.: Forward-security in private-key cryptography. In:
Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X 1

https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/978-3-319-93387-0_9
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/3-540-36563-X_1

42 S. Canard et al.

[CHK03] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryp-
tion scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 16

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 27

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8 4

[CNR12] Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens
from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32928-9 4

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 22

[dPLS18] del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures
and zero-knowledge proofs of automorphism stability. In: ACM Conference
on Computer and Communications Security, pp. 574–591. ACM (2018)

[DvOW92] Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authen-
ticated key exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)

[GKV10] Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme
from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 23

[Gro07] Groth, J.: Fully anonymous group signatures without random ora-
cles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
164–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
76900-2 10

[Gün89] Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[IR01] Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and
verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

[KY19] Katsumata, S., Yamada, S.: Group signatures without NIZK: from lattices
in the standard model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 312–344. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17659-4 11

[LLLS13] Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group
signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-42045-0 3

https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-030-17659-4_11
https://doi.org/10.1007/978-3-030-17659-4_11
https://doi.org/10.1007/978-3-642-42045-0_3

Constant-Size Lattice-Based Group Signature 43

[LLM+16] Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature
schemes with efficient protocols and dynamic group signatures from lattice
assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 13

[LLNW14] Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54631-0 20

[LLNW16] Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments
for lattice-based accumulators: logarithmic-size ring signatures and group
signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 1

[LMN16] Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature
scheme with message-dependent opening. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 8

[LNW15] Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler,
tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46447-2 19

[LNWX17] Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures:
achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi,
H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 15

[LNWX18] Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures
from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10770, pp. 58–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 3

[LNWX19] Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures
from lattices. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS,
vol. 11505, pp. 44–64. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 3

[LY10] Libert, B., Yung, M.: Dynamic fully forward-secure group signatures. In:
AsiaCCS, pp. 70–81. ACM (2010)

[Moh10] Mohassel, P.: One-time signatures and chameleon hash functions. In:
Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544,
pp. 302–319. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19574-7 21

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

[NHF09] Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures
from pairings. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 171–186. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03298-1 12

https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/978-3-030-25510-7_3
https://doi.org/10.1007/978-3-030-25510-7_3
https://doi.org/10.1007/978-3-642-19574-7_21
https://doi.org/10.1007/978-3-642-19574-7_21
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-03298-1_12
https://doi.org/10.1007/978-3-642-03298-1_12

44 S. Canard et al.

[NZZ15] Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures
from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
401–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46447-2 18

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 4

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC, pp. 84–93. ACM (2005)

[Son01] Song, D.X.: Practical forward secure group signature schemes. In: ACM
Conference on Computer and Communications Security, pp. 225–234. ACM
(2001)

[Tsa17] Tsabary, R.: An equivalence between attribute-based signatures and homo-
morphic signatures, and new constructions for both. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70503-3 16

[YLH+12] Yuen, T.H., Liu, J.K., Huang, X., Au, M.H., Susilo, W., Zhou, J.: Forward
secure attribute-based signatures. In: Chim, T.W., Yuen, T.H. (eds.) ICICS
2012. LNCS, vol. 7618, pp. 167–177. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34129-8 15

https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-642-34129-8_15
https://doi.org/10.1007/978-3-642-34129-8_15

	Constant-Size Lattice-Based Group Signature with Forward Security in the Standard Model
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of the Building Blocks for Our Construction
	1.3 Our Construction

	2 Preliminaries
	2.1 Lattices and Trapdoors
	2.2 Delegation Functions
	2.3 Evaluation Functions
	2.4 Building Blocks for Our Construction

	3 Forward-Secure Indexed Attribute-Based Signature Scheme from Lattices
	3.1 Framework and Security Properties
	3.2 Construction of FSI-ABS Scheme from Lattices
	3.3 Security Proofs

	4 Forward-Secure Group Signature Scheme
	4.1 Forward-Secure Group Signature from Lattices
	4.2 Security

	References

