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Sébastien Canard1, Adel Hamdi1,2(B), and Fabien Laguillaumie2

1 Orange Labs, Applied Crypto Group, Caen, France
adel.hamdi@orange.com
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Abstract. Functional encryption (FE) gives the power to retain control
of sensitive information and is particularly suitable in several practical
real-world use cases. Using this primitive, anyone having a specific func-
tional decryption key (derived from some master secret key) could only
obtain the evaluation of an authorized function f over a message m,
given its encryption. For many scenarios, the data owner is always dif-
ferent from the functionality owner, such that a classical implementation
of functional encryption naturally implies an interactive key generation
protocol between an entity owning the function f and another one man-
aging the master secret key. We focus on this particular phase and con-
sider the case where the function needs to be secret.

In this paper, we introduce the new notion of blind functional encryp-
tion in which, during an interactive key generation protocol, the master
secret key owner does not learn anything about the function f . Our new
notion can be seen as a generalisation of the existing concepts of blind
IBE/ABE. After a deep study of this new property and its relation with
other security notions, we show how to obtain a generic blind FE from
any non-blind FE, using homomorphic encryption and zero-knowledge
proofs of knowledge. We finally illustrate such construction by giving an
efficient instantiation in the case of the inner product functionality.

1 Introduction

With the growth of online activities, multiple data (confidential emails, employ-
ment contracts, bank transactions, etc.) are transmitted and stored over differ-
ent external platforms. A ruthless competition between several actors is ongoing
in order to offer particular services, based on those data, thus answering posi-
tively to an increasing demand. For example, one could subscribe to a malware
detection service (or a spam filter) that aims to identify bad patterns over some
incoming messages and, at best, to reject them. In a different use case, a company
or an institution specialized in machine learning algorithms could find interest to
obtain some specific data from a data owner to improve its algorithms: individ-
uals with specific characteristics related to e.g., healthcare, or companies with
some specific kind of data for e.g., threats detection related to Intranet/Internet
browsing. At the same time, several concerns about the security and privacy
of manipulated data bring new challenges to those organizations in this con-
text. Encryption mechanism is one enabler to achieve the compliance and data
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security/privacy that is required in today’s security interest. However, conciliate
data confidentiality and functionality could be a hard task by using basic all-
or-nothing approach of traditional encryption schemes, where no computation
are possible, except by decrypting the data itself, then decreasing the obtained
security. From a higher perspective, we consider a scenario with an entity that
try to get in clear a function over some encrypted data.

In recent years, Fully Homomorphic Encryption (FHE) [20] and Functional
Encryption (FE) [8] arise as a general and very promising framework that gives
the flexibility and the possibility to retain control of leaked information. Where
FHE permits to delegate some computation over sensitive data to third parties,
FE gives the power from an encryption of a message m and functional decryption
key skf for a certain function f , to obtain in clear the evaluation f(m) and no
additional information.

Motivation. In a FE scheme, the function decryption key skf is derived from
a master secret key msk and the function f . The master key owner is then
very powerful and (even if mainly separate) is most of the time close to the data
owner. It follows that in most use cases, the functional key generation protocol is
interactive between the owner managing the master secret key msk and the owner
of the algorithm knowing the function. While the natural approach to obtain skf

is to send f to the master secret key’s owner, we give amongst other concerns
interest to a situation when the evaluation function f could be sensitive. In the
malware detection example, it corresponds to the market compliance defined in
e.g. [13] which shows the sensitivity of the rules given by the security editor.
In the data analytics scenario, the underlying machine learning algorithm to
better detect a specific disease or a malware is sometimes linked to some very
specific and rare know-how. Hence, it could be relevant and crucial to blind the
underlying structure to the master secret key owner.

Our Contributions. More precisely, we provide in this paper the following
three main contributions.

Contribution 1: General Definition of Blind Interactive FE. For real-life appli-
cations, the functional key extraction is interactive. The authority AUT that
controls the msk must get the function f in some way. This lead us to consider
in this work an interactive functional key generation phase. The definition of
IFE is then adapted and similar to the one of FE (i.e we maintain Setup,Enc,Dec
and the correctness condition), except that we replace the KeyGen algorithm by
an IKeyGen two-party protocol between AUT and U . The result of the inter-
action is a functional key skf for U and some output defined by the view of
AUT . In addition, we provide some adapted security definition from FE to the
IFE case. In particular, the message-privacy (MP) property asks that no addi-
tional information about m is produced by the system except of f(m), while
the function-privacy (FP) asks that the functional key does not leak additional
information about f . We show how to adapt these existing security definitions
from FE to the IFE case. Then, our new notion of blindness is inspired by the
notions of blind signatures [26] or blind identity-based encryption (IBE) [11,24].
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Intuitively, it means that a curious AUT � cannot link a functional key to an
interaction it had with an honest user U . Even if it looks related to the FP
security, we show in the sequel that our notion of blindness is different (and
complementary) from FP in the general case.

Contribution 2: Generic Construction of Blind IFE from any FE. A possible app-
roach to derive generically an interactive FE would be to use a secure two-party
computation of the IKeyGen protocol. We insist that such an approach does not
achieve the blindness property we are interested in. Indeed, although the author-
ity does not learn the user’s input with 2PC, it could make the functional keys
output by two users in the blindness security game depend on the function in
different ways. This is possible by using for example two different master keys.
Here is an overview of the construction (see Sect. 3): Our approach starts from
an existing FE scheme for a class of function F and upgrades it to a blind IFE
scheme from the same class F , by only modifying the KeyGen algorithm. U starts
by encrypting an encoded version of some function f with a Fully Homomorphic
scheme FHE under her own key and sends the ciphertext Cf to AUT . With msk,
the party AUT homomorphically evaluates the circuit KeyGen(msk, ·) using the
FHE.Eval algorithm on Cf , then sends back a ciphertext Cskf

of the correspond-
ing functional key skf . U can now decrypt with her (FHE) secret key the received
ciphertext and recover skf . Thereby, the FHE blinds to AUT both the function f
and the key skf . However, this basic protocol is insecure since each entity could
cheat on its input, hence we provide some modifications using Zero-Knowledge
Proofs of Knowledge (ZKPoK) mechanisms to ensure correct behaviour and to
prevent from getting some unauthorized functions. With this considerations, we
are able to obtain a feasibility result on the construction of blind IFE scheme.

Contribution 3: Specific Construction for IPFE. Many applications, such as data
mining or statistical computation need as subroutines inner product evaluation.
That is why several [2,5,17] IPFE constructions have recently been proposed.
Most of known schemes extract functional keys of the same shape: (y, 〈s, y〉)
where s, y ∈ Z

�
p for a (large) prime p, where 〈x, y〉 :=

∑�
i=1 xi · yi is the inner

product of x ∈ R� and y ∈ R� for some ring R. Our contribution is to give an
efficient two party protocol computing these functional keys with the blindness
property, and which can be used in the constructions whose functional key is
an inner product. Hereafter, we modify the construction from [22] by using the
Castagnos-Laguillaumie (CL) linear homomorphic encryption from [16] since we
need inner product computed in Zp. We can then directly embed this protocol
into secure DDH-based schemes like those of [2,5] or in the CL-based protocol
from [17]. We develop in Sect. 4 an IKeyGen protocol that implements the KeyGen
algorithm in order to build a blind IPFE scheme.

Related Work and Discussion. The notion of interactive key generation is
considered in the case of Accountable-Authority Identity-Based Encryption (IBE)
in [23]. The first consideration of blindness for IBE appears in the work of Green
and Hohenberger in [24] followed by of Camenisch et al. [11] where it was used
as a building block for respectively a simulatable oblivious transfer and a public
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key encryption with oblivious keyword search. In [28], an adaptation is proposed
for the case of the Attribute-Based Encryption (ABE) primitive. More recently,
[19] consider a variant of blind IBE to resolve the key escrow problem. As far as
we know, no such study has been done for the more general case of functional
encryption. Controlled functional encryption [27] is also a variant of FE with
an interactive behaviour. While similar to our general approach of hiding the
function to the authority, the model is different from ours.1

Private function evaluation (PFE) [1] is closely related to our problem. In
PFE, a party P1 holds an input x while another party P2 holds a circuit Cg

describing a function g; the goal is for one (or both) to learn the result g(x).
Our blind IFE could be seen as a PFE with the additional property of blind-
ness, which is not automatically guaranteed by a generic PFE. Eventually, the
security requirements could be defined in terms of simulatability which infor-
mally enable to design an ideal functionality that captures previous properties
(message-privacy, function-privacy or blindness) and consider interdependent
executions with other protocols while preserving the main security characteris-
tics. However, we took the classical approach to provide a natural generalization
of the blindness property, as well as the classical security notions for FE (mes-
sage/function privacy) in the presence of an interactive key generation protocol.
This has the benefits to only adapt existing definition by adding some interactive
oracles, and avoid eventually some subtle negative results, as in the context of
simulation-based blind signature [3]. In addition, our solution encompasses the
existing definitions for IBE/ABE cases [11,24,25,28] presented in the literature.

2 Blind Interactive Functional Encryption

Based on the known definitions of FE [8], we formally define our new notion
of blind interactive functional encryption. Our goal is twofold. We first want to
capture the situation of a user holding a function f and asking an authority for
a corresponding functional key skf during an interactive protocol. We then con-
sider the case where the user wants to protect the function f from the authority.
In the sequel, we introduce the notion of interactive FE with the new security
notion of blindness. In addition, we discuss some related security properties.

2.1 Syntactic Definitions for Interactive FE

We set for the rest of the paper two specific parties: an authority denoted by
AUT and a user denoted by U . For a λ ∈ N, fix an arbitrary set of functions F
represented by a poly-sized family of circuits {Fλ}λ∈N and a message space M ,
where each m ∈ M ⊆ {0, 1}∗ is represented by a string input of any f ∈ F . A
public key interactive functional encryption is defined as follows.
1 There are two parties in our model where the master secret key owner is the only

party to provide functional keys. In [27], it is only possible to produce functional keys
that depends on the ciphertext and is only used once, while we consider multiple
users, functional keys and ciphertexts.
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Definition 1 (Public key IFE). Let λ ∈ N. An interactive functional encryp-
tion scheme for F consists of a tuple IFE = (Setup,KeyGen,Enc,Dec) where,

– Setup(1λ) is a PPT algorithm that takes as input a security parameter 1λ and
outputs a master secret key msk and a master public key mpk.

– IKeyGen(AUT (msk),U(mpk, f)) is a 2-party interactive protocol between an
authority AUT with input the master secret key msk and a user U with inputs
a master public key mpk and a function f ∈ F . The output of this protocol
is, on the authority’s side Output(AUT ) and on the user’s side, skf .

– Enc(mpk,m) is a PPT algorithm which takes as input the master public key
mpk and a message m ∈ M , and returns a ciphertext c.

– Dec(mpk, skf , c) is a PPT algorithm which takes as input a master public key
mpk, a functional key skf and a ciphertext c and outputs a string z.

For correctness, for all f ∈ F and m ∈ M , given (mpk,msk) ← Setup(1λ),
skf resulting from IKeyGen protocol between (honest) AUT and U and c ←
Enc(mpk,m), we require Pr

[
Dec(mpk, skf , c) = f(m)

]
≥ 1 − negl(λ).

The above definition can easily be adapted to the private-key setting. Notice
that functional encryption denoted by FE = (Setup,KeyGen,Enc,Dec) falls as
a particular case, i.e. there is a non-interactive KeyGen algorithm executed by
the owner of msk (AUT in our context) which outputs a functional key skf . In
addition, our generic conversion will start from a FE scheme with a determined
KeyGen algorithm. Since it takes (the description of) f and msk as inputs, it will
be necessary to specify the size of the circuit that computes the function f in
addition to the size and depth of the circuit computing KeyGen.

A Trivial Example. In the following, we present a simple IFE that one can
obtain from any FE. Given FE = (Setup,KeyGen,Enc,Dec) following Defini-
tion 1, it is easy to define a trivial interactive IFE scheme as Trivial.IFE :=
(Setup,Trivial.IKeyGen,Enc,Dec) where Trivial.IKeyGen protocol is defined in Fig.
1. Here, the user simply asks the msk owner’s (i.e AUT ) to generate the func-
tional key skf . In particular, this protocol corresponds to the most common
implementation for real-life use-cases of FE as discussed in the introduction.

While it is simple, it is interesting to notice that in Trivial.IFE, the user does
not learn any information about msk. In particular, the intuition is to conjecture
that the resulted IFE scheme will inherit the message-privacy of the FE scheme.
We prove this fact in Proposition 2, but this observation also gives the intuition
of the notion of the leak-freeness property that we will define in Sect. 2.3. On the
other hand, blindness is not guaranteed by construction since AUT learns f .

Validity of skf . One issue of this trivial example is that the authority may have
sent to the user a fake key skf . Thus, the latter should have a way to verify its
validity. One solution was given for interactive blind IBE [11,24]. They propose
to encrypt a polynomial number of random messages with id, then try to decrypt
using the obtained identity-related key. A first idea can be to proceed similarly,
which works quite well in the public key setting and in the case of (indexed)



188 S. Canard et al.

AUT (msk,mpk) U(mpk, f)
f←−−−−−−−−−−−

skf ← KeyGen(msk, f)
skf−−−−−−−−−−−→

Output (f, skf ) Output skf

Fig. 1. Trivial.IKeyGen

functions of the form of fk(m, y) := m ⇐⇒ R(k, y) = 1 where R is a publicly
known relation. However, in the general case, this method may obviously not
convince a user of the validity of the skf , and is definitely not possible in the
private key setting. We then propose to make use of a Zero-Knowledge Proof
of Knowledge ZKPoK, generated by the authority to prove that it has correctly
computed skf , as π ← ZKPoK{msk : skf = KeyGen(msk, f)}. We stress that
considering the validity of skf is an additional requirement and we can have this
property using another approach. However, when dealing with blindness, having
ZKPoK could help in order to force AUT to assure that skf is well formed.

2.2 High-Level View of Security Properties

An interactive FE must first verify a message-privacy property. This will be
discussed in Sect. 2.3. Then, we consider our new notion of blindness and discuss
other properties. We first analyse what the authority could learn.

Output of the Authority. The fact that we want to hide the function to the
authority is at first related to the authority’s view of the interactive protocol.
Indeed, intuitively, the best case (hiding f and skf ) would be an authority which
does not learn anything more that what it already knew before the interaction.
Recall that the authority, by definition, can deduce Output(AUT ) from its own
view ViewAUT (msk, f) := (msk, r;m1, . . . ,mt), where r some random elements,
and mj the jth message that it received from some interaction.

1. Considering f in the output. To ensure a notion of blindness of the key
generation algorithm, the authority cannot obtain from the received mes-
sages mj , or more generally, from ViewAUT (msk, f), any information about
the user’s choice of the function. A standard solution, as in the context of blind
signature [26], is to ask the authority to link a functional key skf generated
during an interaction to the corresponding function f . Informally, the adver-
sary runs two random sequential executions of the protocol with two users
and is asked to link the produced functional keys to each user. We will call
this notion blindness which is, to the best of our knowledge new in the general
context of functional encryption. We treat this security notion in Sect. 2.4.
In particular, having f , or some information about f during one execution
(i.e is one of the mj), as for the construction of Trivial.IFE (see Example 2.1),
gives a way to find the user’s choice, thereby breaking blindness.
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2. Considering skf in the output. The functional key skf is used to decrypt
ciphertexts cm of some messages m in order to obtain values f(m). For the
authority, which is in possession of msk, it is possible to encrypt any message
m of its choice. If skf can be deduced from ViewAUT , then the authority
can learn arbitrary information about f (every f(m) of its choice). This last
observation remains true even if we start from a function-private FE where
skf have some hiding property and does not leak any information about the
function f . We deduce that having skf in the authority’s view breaks the
blindness requirement of the last paragraph since it easy to distinguish two
sequential interactions. Because of this access to an unlimited evaluation of
the function f , we remarked that the same problem arises in the context of
function-private (FP) public key functional encryption [7,10] where hiding
information about f in skf gives the same restrictions. We give a formal
treatment of function-privacy for IFE in the full version.

Finally, we provide in Sect. 2.5 a discussion about possible relations between FP
and blindness where we prove that there are in fact two separate notions.

2.3 Message-Privacy for Interactive FE

Adaptation from FE. The basic security consideration for functional encryp-
tion is related to the standard notion of semantic security in presence of dif-
ferent functional keys [8]. As it is usually done, we consider the adaptive form
of message-privacy with multiple messages and multiple functional keys. Our
notion of message privacy is a direct adaptation of this classical notion when
we have to consider interactive oracles. We refer to Definition 8 in the appendix
for the formal definition. Next, consider the IFE with the Trivial.IKeyGen from
Example 2.1. The user sends f and the authority generates skf using msk. The
following proposition is immediate and the proof is given in the full version.

Proposition 2. The Trivial.IFE of Example 2.1 is message-private if the under-
lying FE is message-private.

There are two different ways to prove that an interactive FE is message-private.
Obviously, the direct way which shows that a protocol fulfils the Definition 8.
Another possibility relies on the notion of leak-freeness that we will present next.

Leak-Freeness. Recall that in Trivial.IFE of Example 2.1, the curious user does
not learn any information about the master secret key msk that could help her
to break the MP security game of the FE scheme. Regarding blindness, we note
however that the user has to hide to the authority its inputs, but could cause the
protocol to leak additional information about msk. In particular, when building
a message-private IFE, one could hope to only get the information that could be
obtained from a natural Trivial.IFE. Informally, we have to compare the different
information that could be obtained from the proposed interactive key generation
and the trivial implementation of FE, i.e the Trivial.IFE.
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Let FE = (Setup,KeyGen,Enc,Dec) be a message-private scheme. Inspired by
the work done for IBE [11,24], we generalize the notion of leak-freeness for func-
tional encryption. Such notion aims at providing a condition to preserve from
learning any additional informations, due to the interactive key generation, that
could break the message-privacy. Informally, it makes possible to prove that an
IFE.IKeyGen protocol executed with an honest authority does not leak more infor-
mation than the Trivial.IKeyGen from Example 2.1, with the same honest author-
ity. The main intuition is that such notion can then be used to prove that the
resulting interactive functional encryption IFE = (Setup, IKeyGen,Enc,Dec) is
also message-private. The formal definition of leak-freeness is given in Appendix
B. The motivation of this notion is given by the following proposition.

Proposition 3. Let FE = (Setup,Enc,KeyGen,Dec) be a message-private secure
FE scheme. Let IFE := (Setup,Enc, IKeyGen,Dec). If IFE.IKeyGen is leak-free with
respect to KeyGen, then IFE is message-private.

Due the lack of space, the proof of this proposition is not provided here but it
could be seen as a generalization of the result in the IBE case presented in [24].
This proposition is used to prove the security of our generic construction.

2.4 Blindness for Interactive FE

In this section we formally define our new blindness property. Intuitively, fol-
lowing the usual definition for blind signatures [26], blindness means that the
authority cannot link a functional key to an interaction it had with an honest
user. This is clearly related to the information that the authority has at the end
of the key generation protocol, namely Output(AUT ).

It is possible to define a unique notion of blindness independently for both
the private and public key settings. This situation is simulated by an adversary
who can choose maliciously the parameters but follows the protocol. His aim
is to decide which of two chosen functions f0, f1 has been used to generate the
functional keys skf0 and skf1 in two sequential executions with an honest user
U . We call this notion blindness and corresponds to a variant of the selective-
failure blindness security considered in [11,24] for IBE, which adds the following
property: the authority cannot cause the protocol to fail in a manner dependent
on the user’s choice. This additional security requirement was used in order to
build oblivious transfer [24] or searchable encryption [11]. Here we consider basic
definitions and leave extensions for further applications.

We introduce the interactive oracle IKeyGen(·,O(mpk, f)) in which the adver-
sary plays the role of the authority and only obtains his own output. In the game
below, we write AIKeyGen(1)(·,O(f0))/IKeyGen

(1)(·,O(f1)), which mean that A can query
each oracle only once (hence the notation IKeyGen(1)) and that the two oracles
can be invoked in an arbitrary order.

Definition 4 (Blindness). Let b ∈ {0, 1}. An IFE is blind, if every adversary
A has a negligible advantage |Pr[b′ = b] − 1/2| in the following experiment
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1. (mpk, f0, f1, stfind) ← ASetup(·)(find, 1λ).
2. stissue ← AIKeyGen(1)(·,O(mpk,fb))/IKeyGen

(1)(·,O(mpk,f1−b))(issue, stfind), the step
produces at the end of the executions local outputs (possibly undefined ⊥) skfb

and skf1−b
respectively.

3. If skf0 = ⊥ or skf1 = ⊥, set (skf0 , skf1) = (⊥,⊥).
4. b′ ← A(guess, skf0 , skf1 , stissue).

This definition can easily be adapted to the private key setting.

Remark. It is important to note, as in the context of blind signatures, that
any information about skf that can be deduced during the interaction from the
Output(AUT ) leads our definition to fail. Indeed, for example if A gets skf in the
end of the interaction, it will obviously win the game by just interacting with one
of the two oracles. In fact, any left-or-right definition would fail, since during the
interaction there is always a way to distinguish between two keys/interactions.
This difficulty comes for the inherent capabilities of the FE scheme. From the
encryption of a certain message m such that f0(m) �= f1(m) and an interaction
giving skfb

at the end of one of the two interactions, it is always possible to
decrypt and get fb(m). Since f0 and f1 are chosen by A, it seems clear that
the blindness implies in particular that the malicious authority does not get
information about skf and f during (or in the end of) the interaction.

2.5 On the Relationship Between Function-Privacy and Blindness

Function-Privacy for (I)FE. Several other security properties have been con-
sidered for FE in the literature and we will not review all of them. However, we
could generalize the known [4,7,10] notion of function-privacy which informally
states that a functional key skf does not give any additional information about
the underlying function f , except from what is given by the evaluations over
some data being encrypted. We give in the full version a generalization of it in
the context of IFE where informally, interactive oracles are added in order to con-
sider potential leakage during the interaction. Since our aim is to present a blind
IFE scheme, we only briefly highlight the differences between theses notions.

Depending on the public or private key setting and the presence or not of skf

in the authority’s output, we obtain several (dis)connections between function-
privacy and blindness security properties. Informally, this is due to the nature
of the considered options. Indeed, the FP security asks any adversary which
does not have necessarily an access to an encryption oracle, to obtain unwanted
information about the function f from skf and eventually the interaction. The
blindness security game concerns an authority with the capability of encrypting
arbitrary messages using the master key msk. We now give our main theorem
which, in a nutshell, says that these two properties are distinct, and then com-
plementary. In the full version of this paper, we provide a detailed proof of this
theorem by providing, for each of the resulted six cases a separating construction.

Theorem 5 Blindness and Function-Privacy properties are mutually separated
for both private-key and public-key IFE.
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– IFE.Setup(1λ): Output (mpk,msk) ← FE.Setup(1λ).
– IFE.IKeyGen(AUT (msk), U(mpk, f)) is described in Fig. 3
– IFE.Enc = FE.Enc
– IFE.Dec = FE.Dec

Fig. 2. Our generic blind IFE

AUT (msk,mpk) U(mpk, f)
Select random R

(pk, sk) ← FHE.Setup(1λ)
ctf ← FHE.Enc(pk, f ;R)

pk, ctf←−−−−−−−−−−−−−−−−−−−
πU ← ZKPoK(sk, f, R) : {f ∈ F

∧ (sk, pk) = FHE.Setup(1λ)

∧ ctf = FHE.Enc(pk, f ;R)}
←−−−−−−−−−−−−−−−−−−→

If Verify(πU ) = 0 aborts
Select random R′, R′′

ctskf
← FHE.Eval(pk,KGmsk,R′ , ctf ;R′′)

with KGmsk,R′ := FE.KeyGen(·,msk;R′)
ctskf−−−−−−−−−−−−−−−−−−−→

πAUT ← ZKPoK(msk, R
′
, R

′′) : {
ctskf

= FHE.Eval(pk,KGmsk,R′ , ctf ;R
′′)}

←−−−−−−−−−−−−−−−−−−→
If Verify(πAUT ) = 0 aborts
Output skf ← FHE.Dec(sk, ctskf

)

Fig. 3. Our interactive key generation IFE.IKeyGen

3 Generic Construction of Blind IFE from Fully
Homomorphic Encryption

We provide in this section a generic construction of a message-private blind
interactive functional encryption from any FE, where AUT does not obtain any
information at the end of the interactive key generation. In addition, our concern
is to not modify the Setup,Enc,Dec algorithms but only the KeyGen algorithm.

3.1 Our Generic Construction

Let λ > 0 be a security parameter and consider a family of functions F =
{Fn,λ}n=n(λ) whose input size n(λ) is polynomial in λ. Suppose that all functions
f ∈ F can be encoded as a p(λ)-bit string (for a polynomial p). Consider a
functional encryption scheme FE = (Setup,Enc,KeyGen,Dec) for this family F .
We suppose that FE.KeyGen is a randomized algorithm that is described by a
circuit of logarithmic depth d(λ). Consider FHE = (Setup,Enc,Dec,Eval) to be a
CPA-secure Fully Homomorphic Encryption scheme, where the input encryption
algorithm is a bit string with size at least p(λ) and supports evaluation of circuits
of depth at least d(λ). Our interactive blind functional encryption for the class
of function F is described in Fig. 2 and 3. Note that encryption and decryption
are exactly those of the original FE.

Correctness. By correctness of the FHE scheme, the user U obtains after decryp-
tion skf = KGmsk,R′(f) := FE.KeyGen(msk, f ;R′) for certain random R′.
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3.2 Security of Our Construction

Roughly speaking, the CPA-secure FHE will insure blindness since two inter-
action transcripts are indistinguishable and the ZKPoK will guarantee that no
additional information is leaked from the interaction. Additionally, we will need a
notion of weak-function indistinguishablity which informally says that any adver-
sary (even if it knows the secret key of the FHE) cannot produce any FHE cipher-
text cty, for input y, two functions h0, h1 with h0(y) = h1(y) such that it could
distinguish between FHE.Eval(pk, h0, cty) and FHE.Eval(pk, h1, cty) (we refer to
[6] and the full version of this paper for a precise definition).

Theorem 6. Consider a message private FE in addition to a weak-function
indistinguishable CPA-secure FHE scheme. If the proofs πU and πAUT are
ZKPoK, then the IFE described in Fig. 2 is message-private and blind.

Due to space limitation, we only sketch the main ideas of the MP security proof
and provide a complete proof of blindness.

Sketched Proof of MP. Similarly to the proof [24] for the IBE case, we first
prove that the IFE.KeyGen protocol is leak-free (see Sect. 3 and Definition B)
with respect to FE.KeyGen and by Proposition 3, it implies the IFE is message-
private. More precisely, we describe a simulator (which does not have msk) that
makes use of the extractability of zero-knowledge proofs of knowledge to obtain
the function f . Then, having access to some oracle Trivial.IKeyGen providing skf ,
it could simulate a valid interactive IFE.IKeyGen protocol with any adversary by
using (i) the homomorphic property of the FHE to generate the ciphertexts and
(by evaluating the constant circuit equal to skf ) (ii) its rewinding capability
together with the zero-knowledge property of ZKPoK to simulate the proofs.
Remark that in the simulation of the ciphertexts, the adversary cannot notice
the difference thanks to the weak-function indistinguishability notion. Finally, we
deduce that the IFE.IKeyGen is leak-free w.r.t FE.KeyGen and the result follows.

Proof of Blindness. In the proof of blindness, we have to show that the (sequen-
tially generated) messages exchanged between a malicious authority AUT and
two honest users are completely independent from the functions. We prove it
via a sequence of hybrid games. By using the extractability of ZKPoK, we first
obtain msk from the interaction with the adversary. This allows us to replace the
generation of the functional secret key by the non-interactive version, in a non-
detectable way. We finally reduce our problem to the one of the CPA-security
of the FHE scheme. In the final game, the malicious authority obtains messages
that are independent from the functions of its choice, which imply blindness.

Suppose we have an adversary A attacking the blindness game. Recall that
it chooses the public parameters (mpk,msk) and two functions f0 and f1, then
runs two sequential interactions with honest user U(mpk, fb) and U(mpk, f1−b)
respectively where b is a random bit. At the end of the interactions, A receives
the two functional keys (skf0 , skf1) (or (⊥,⊥)) corresponding to (f0, f1). The
goal for A is to find the bit b with non-negligible probability. We note b̄ := 1− b.
We prove the blindness property via a sequence of games.
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Game 0
1. (mpk, f0, f1) ← ASetup(·)(1λ)
2. (pkb, skb) ← FHE.Setup(1λ) (pkb̄, skb̄) ← FHE.Setup(1λ)
3. ctfb ← FHE.Enc(pkb, fb; Rb) ctfb̄

← FHE.Enc(pkb̄, fb̄; Rb̄)
4. wb ← (skb, fb, Rb) wb̄ ← (skb̄, fb̄, Rb̄)
5. mb := (pkb, ctfb) mb̄ := (pkb̄, ctfb̄

)
6. πb ← ZKPoK(O(wb), A(mb)) πb̄ ← ZKPoK(O(wb̄), A(mb̄))
7. (ct′

b, ct
′̄
b) ← A((πb, mb), (πb̄, mb̄))

8. π′
b ← ZKPoK(A(w′

b), O(ct′
b)) π′̄

b ← ZKPoK(A(w′̄
b), O(ct′̄

b))
9. If Verify(πb) = 1 If Verify(πb̄) = 1
10. skfb ← FHE.Dec(ct′

b, skb) else skfb ←⊥ skfb̄
← FHE.Dec(ct′̄

b, skb̄) else skfb̄
←⊥

11. b′ ← A(skf0 , skf1)
12. returns 1 iff b′ = b

Fig. 4. Blindness experiment.

Game 0. This is the original game as in Definition 4. We give more details about
each interaction in Fig. 4. We will describe the interaction of the adversary with
each oracle user Ub and Ub̄. Lines 1, 7, 11–12 describe the behaviour of A during
the blindness game and the remaining lines the user’s behaviour.

Game 1. We modify Game 0 in the following way. In this game, because there
are two possible ZKPoK (see line 8), we know that there exists an extractor
Extb (resp. Extb̄) that can extract the witnesses from π′

b (resp. π′
b̄
) and obtain

w∗
b = (msk∗

b , R
′
b, R

′′
b ) for each bit b ∈ {0, 1}. We add the following quantities for

each user in line 8: w∗
b := (msk∗

b , R
′
b, R

′′
b ) and w∗

b̄
:= (msk∗

b̄ , R
′
b̄
, R

′′
b̄
). The match-

ing condition prevents the adversary to use two different master secret keys.
Thanks to the extractability condition, the rewinding techniques of the ZKPoK,
it is possible to efficiently extract the corresponding witness, and for the adver-
sary, the success probability remains the same (except with negl. probability).
Assuming that the π′ are proofs of knowledge, Game 0 is then indistinguishable
from Game 1.

Game 2. We modify the Game 1 in the following way. If the master secret keys
do not match, i.e msk∗

b = msk∗
b̄ , the user oracles in the two interactions abort

and we set (skf0 , skf1) = (⊥,⊥). Otherwise, we set msk := msk∗
b and instead of

decrypting ct′b (or ct′
b̄
), as in line 10, we exploit the extracted value msk, R

′
b and

the FE.KeyGen(msk, ·; ·) algorithm on input (fb, R
′
b) (resp. (fb̄, R

′
b̄
)) to obtain

valid functional key(s). We replace line 10. by the new line (depending on b)
skfb

← FE.KeyGen(msk, fb;R′
b) and skfb̄

← FE.KeyGen(msk, fb̄;R′
b̄
). If the proof

does not fail the oracles return (locally) skfb
(and skfb̄

). Otherwise, it returns
(skf0 , skf1) = (⊥,⊥). Finally, we give as in line 11. (skf0 , skf1) to A. Thanks to
the correctness of FHE and FE, Game 1 is indistinguishable from Game 2.

Game 3. We change the behaviour of user U1 and encrypt a randomly chosen
function g1 ∈ F with size description equal to f1 with a modified proof of π1

in the first message and π′
1 in the second one. In more details, there exists a

zero-knowledge simulator Sim1 for π1 that can simulate the proof of knowledge
without knowing the underlying witness. We replace the term in line 3. for
U1 with ctg1,1 ← FHE.Enc(pk1, g1;R1), where R1 is a random element. Next,
we simulate the corresponding term in line 6. with π∗

1 ← Sim1(π1). In addition,
there exists a simulator Sim′

1 for π′
1 such that the line 8 becomes π∗∗

1 ← Sim′
1(π

′
1).
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Now suppose that there is a distinguisher between Game 2 and Game 3 with
non-negligible advantage, then we show how to build an adversary B that breaks
the CPA security of the FHE scheme. B has the following behaviour. B generates
a public pk0 using FHE.Setup(1λ). It receives from the challenger of the CPA
secure FHE scheme another public key pk1. It runs A in order to get f0, f1,mpk
and uses them for the CPA security game by choosing the messages (g1, f1). It
forms ct0 := FHE.Enc(pk0, f0;R0) (an encryption under his own key). Next, it
receives an encryption ct�1 of one of the two functions {g1, f1} under pk1 from the
challenger. It can now use A in the following way by interacting as a legitimate
user. It simulates the first messages of U0 (line 5) with (m0 := (pk0, ctf0)) and
U1 with (m1 := (pk1, ct�1)). Up to this point, it could use the zero knowledge
property and simulate the corresponding proofs π∗

1 and π∗∗
1 . Finally, B returns

the same output of A (the same bit).
Now, taking a step back to the CPA security game, if ct�1 is an encryption of

f1, then this situation corresponds to Game 2 experiment. If ct�1 is an encryption
of g1 then it corresponds to Game 3 by construction. Unless the proofs are not
zero-knowledge, the advantage of B winning the CPA security game of the FHE
scheme is the same as the advantage of A in distinguishing between Game 2 and
Game 3. We deduce that Game 2 is indistinguishable from Game 3, assuming
that the FHE scheme is CPA-secure and the proofs π, π′ are zero-knowledge.
Game 4. We change the behaviour of U0 as in the previous Game 3 by encrypting
a randomly chosen function g0 ∈ F with size description equal to f0 with a
modified proof π0 in the first message and π′

0 in the second one. In more details,
there exists a zero-knowledge simulator Sim0 for π0 that can simulate the proofs
without knowing the underlying witness. We replace the corresponding term in
line 3 for U0 with ctg0,0 ← FHE.Enc(pk0, g0;R0), where R0 is a random element.
Next, we simulate the corresponding term in line 6. with π∗

0 ← Sim0(π0) In
addition, there exists a simulator Sim′

0 for π′
0 such that the line 8 becomes

π∗∗
0 ← Sim′

0(π
′
0). We can then proceed as for the transition between Game 2 and

Game 3 to prove that Game 3 is indistinguishable from Game 4, assuming that
the FHE scheme is CPA-secure and the proofs π, π′ are zero-knowledge.

Putting all previous results together, we finally conclude that Game 0 is
indistinguishable from Game 4. In Game 4, the view of A is independent of b: the
functional keys skfb

, skfb̄
do not depend on the values sent by A by construction.

Thus, the probability of guessing the bit b is exactly 1/2. Hence, we conclude
that this scheme satisfies the blindness property. �

4 Efficient Blind Interactive Inner Product FE

We want to stress here that for specific functionalities, our approach can lead to
efficient constructions. We propose in this section a blind functional encryption
for inner product, which is inspired by our generic construction. For such a
functionality, we only need a linearly homomorphic encryption scheme, and for
efficiency reasons, we chose to use CL scheme [16]. For most of the known IPFE
scheme [2,5], the functional key reduce to the computation of an inner product.
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The Setup algorithm consists of a description of a cyclic group G of prime order
p > 2λ with generator g ← G. For each i ∈ {1, . . . , �}, it samples si ← Zp and

compute hi = gsi . Finally, define msk := (si)�
i=1 and mpk :=

(
G, g, {hi}�

i=1

)
.

Note that the prime p is set for the CL scheme according to the IPFE. This is
possible thanks to the flexibility of the CL key generation which is presented in
Appendix C, and we refer to this appendix for notations.

Description of Our Scheme. The interactive key generation IKeyGen(AUT
(s ∈ Z

�
p),U(mpk, y ∈ Z

�
p)), consisting of the two-party private inner product

computation is as follows, which is an adaptation of [22].

– The user U generates a pair of keys pk = gx
p and sk = x for the CL scheme over

the message space Zp. Then, it encrypts each coordinate yi for i ∈ {0, . . . , �}
as ci = (c1,i, c2,i) = (gri

p , fyihri), sends pk, cy to AUT and performs a ZKPoK
πU such that {h = gx

p ∧ c1,i = gri
p ∧ c2,i = fyihri fori ∈ {1, . . . , �}}.

– If the proof fails, AUT aborts. Otherwise, it homomorphically computes
csky

:= (c1,sky
, c2,sky

) ←−
((∏�

i=1 csi
1,i

)
gr′

p ,
(∏�

i=1 csi
2,i

)
hr′

)
for some ran-

dom r′ that it sends to U . Then, it performs a proof πAUT that: {{gsi =
hi}�

i=1 ∧ csky
=

((∏�
i=1 csi

1,i

)
gr′

,
(∏�

i=1 csi
2,i

)
hr′

)
}.

– If πAUT fails U aborts. It decrypts csky
and gets sky := (y, 〈s, y〉) ∈ Z

�
p × Zp.

Our blindness notion is new in the context of FE, so it is difficult to find a
point of comparison with existing classical 2PC protocols for computing inner-
product, since they were not designed for this context. However, we could com-
pare with other linearly homomorphic schemes. The additive variant of ElGamal
would imply to compute a final discrete log, which is not possible for large p. The
ZKPoK are proofs for classical discrete logarithm-based expressions. The main
subtleties concern the CL part since it uses a group of unknown order, which can
be obtained from class group of ideals of orders of imaginary quadratic fields.
As in [14], the solution is to use repeated GPS proofs [21] with binary challenges
to get special soundness. More efficient techniques have been recently proposed
in [15]. For the proofs that concern the group G coming from the IPFE setup,
a standard Schnorr proof is sufficient. Using Paillier encryption instead of CL
prevents the necessity to repeat a GPS proof with binary challenge. It however
necessitates to add (i) a proof that the Paillier modulus n has truly been com-
puted as the multiplication of two primes p and q [12], (ii) a proof of knowledge
of a plaintext y and its randomness r composing the given Paillier ciphertext
c = (1 + n)yrn (mod n2), which can be done using techniques given in [18] and
(iii) a proof that y < p in a group of composite order [9]. We argue that this
implies a heavier global proof than what we propose using CL encryption.

Security and Efficiency Analysis of Our Inner Product IFE. The fol-
lowing result is a corollary of Theorem 6.

Theorem 7. The scheme described above is message-private and blind if CL
scheme is CPA-secure and the πU , πAUT are zero-knowledge proofs of knowledge.
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A precise efficiency analysis of GPS-like proof in the context of CL encryption has
been performed in [14]. It is implemented within class groups of some imaginary
quadratic fields. The cost of such a proof is dominated by the computation of
exponentiations in the class group. [14, Fig. 9] gives some measurements: on their
architecture, an exponentiation takes 55ms for a 128 bit security. For the proof
described in Eq. 4 with � = 1, there are essentially 4 exponentiations in the class
group. This protocol has to be repeated say 40 times to get a soundness error of
2−40, which means that such a proof costs less than 10 seconds (with � = 1). The
overall cost is then linear in �, which means that our interactive blind IFE has a
reasonable practical cost of � times tens of seconds. This is even more reasonable
that this extraction is done only each time that a functional key is necessary,
which happens occasionally.

Acknowledgement. The authors would like to thank Damien Stehlé for his sugges-
tions during the redaction of this paper. All three authors were supported by the Euro-
pean Union H2020 Research and Innovation Program Grant 780701 (PROMETHEUS).
The two first authors were also supported by the European Union H2020 Research and
Innovation Program Grant 786767 (PAPAYA).

A Message-Privacy for IFE

Oracles. In traditional FE, the adversary has access to a KeyGen(msk, ·) ora-
cle which extracts a functional key when the adversary requests it for a chosen
input function f . We here adapt the definition of message-privacy to our inter-
active setting. The main difference relies in the fact that some information could
leak during the interactive key generation. We introduce an interactive oracle
IKeyGen(O(msk), ·): when calling this oracle, the adversary, on input f ∈ F , par-
ticipates in an interactive protocol with the oracle playing the role of an honest
authority. The adversary finally gets the output functional key skf . For any bit
b ∈ {0, 1}, we define Encb(mpk, ·, ·) to be an oracle which takes as inputs x0 and
x1 and returns Enc(mpk, xb). The next definition extends known definitions [8]
to the interactive setting and could be well adapted for private-key FE.

Definition 8 (Message-privacy). Let IFE = (Setup, IKeyGen,Enc,Dec) over
a message space M and a function space F . We say that IFE is message-
private (MP) if for any PPT adversary A, there exists a negligible function
negl(λ) such that the quantity, called the advantage of A, AdvA,MP-IFE(1λ) :=∣
∣
∣Pr

[
Exp

(0),mp
A (λ) = 1

]
− Pr

[
Exp

(1),mp
A (λ) = 1

]∣
∣
∣ ≤ negl(λ), where Exp

(b),mp
A (λ) is

1. (mpk,msk) ← Setup(1λ) 2. b′ ← AIKeyGen(O(msk),·),Encb(mpk,·,·)(1λ,mpk)
3. output b′ = b

We required that for all f ∈ F and (m0,m1) coming from A’s calls to the
oracles KeyGen and Encb respectively, it holds that f(m0) = f(m1).
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B Leak-Freeness

We provide a generalization of the Leak-Freeness property of [24].

Definition 9 (Leak-Freeness). An IKeyGen protocol corresponding to KeyGen
algorithm of any FE scheme is leak-free w.r.t. KeyGen if, for all efficient adver-
saries A, there exists an efficient simulator S such that for all value λ, no dis-
tinguisher D can determine whether it is playing GameReal or GameIdeal where

– GameReal: Run Setup(1λ). As many times as D wants, A chooses a function
f and executes the IKeyGen(AUT , ·) protocol input f with an honest authority
AUT . A returns the resulting view to D which returns a bit.

– GameIdeal: Run Setup(1λ). As many times as D wants, S chooses a function
f and asks Trivial.IKeyGen(msk, ·) to obtain a functional key skf on input f .
S returns then the resulting view to D which returns a bit.

The quantity AdvD,leak−free(1λ) := |Pr[DGameReal(1λ) = 1]−Pr[DGameIdeal(1λ) = 1]|
is the advantage of D and IKeyGen is leak-free w.r.t KeyGen if it is negligible.

We discuss in the following some remarks about the definition.

– A secure two-party protocol realizing the KeyGen functionality of a classical
FE ensures the message-privacy since it preserves each party for learning
the other party’s input. The main difference in our consideration is that we
require the use of a known FE scheme with some specific KeyGen algorithm in
addition to the existence of a simulator (which interacts with a specific oracle
Trivial.IKeyGen). This simulator is then asked to produce a consistent view
to any distinguisher. As mentioned in previous sections, a two-party protocol
wouldn’t offer the blindness property for free. In Example 2.1, Trivial.IKeyGen
is by definition leak-free w.r.t KeyGen but not blind.

– The adversary in GameIdeal does not appear in the definition. As pointed in
[24], the leak-freeness definition implies that the function (for the key being
extracted) is extractable from the IKeyGen protocol (with all but negligible
probability), since for every adversary it must exist a simulator S that should
be able to interact with A, in order to learn which functions to submit to the
Trivial.IKeyGen(msk, ·) oracle.

– When considering the validity of skf (in Sect. 2.1), a ZKPoK is used in order
to verify if a functional key skf is well-formed. This is independent from the
definition of the leak-freeness property, since the authority is always honest
in this context (simulated by an oracle).

C The Castagnos-Laguillaumie Scheme

CL Encryption Scheme. The Setup phase in the CL scheme consists of the
description of a DDH group with an easy DL subgroup (p, s̃, g, f, gp, G, F,Gp)
where the set (G, ·) is a cyclic group of order ps, for an unknown integer s, p is
a prime number such that gcd(p, s) = 1. The only known information on s is an
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upper bound s̃ of s. The set Gp = {yp, y ∈ G} is the subgroup of (unknown) order
s of G, and F is the subgroup of order p of G, so that G = F ×Gp. The elements
f, gp and g = f · gp are respective generators of F , Gp and G. The discrete
logarithm problem is easy in F , which means that there exists deterministic
polynomial time algorithm a Solve that solves the discrete logarithm problem
in F . The message space of CL is Zp and its indistinguishability under chosen
plaintext attacks relies on the hard subgroup membership assumption that says
that is hard to distinguish the elements of Gp in G. An instantiation of this
group is obtained using the class group of a non maximal order of an imaginary
quadratic field (we refer the reader to [16,17] for a more precise description).
Roughly, CL scheme consists of a secret key sk is an integer x ← {0, . . . , s̃p − 1}
and the public key is pk = gx

p . The encryption procedure returns a ciphertext
cm = (c1, c2) where c1 ← gr

p and c2 ← fmhr for a random r. The decryption
algorithm computes M ← c2/cx

1 and returns m using the Solve algorithm on M .
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