
FHE-Based Bootstrapping
of Designated-Prover NIZK

Zvika Brakerski1, Sanjam Garg2, and Rotem Tsabary1(B)

1 Weizmann Institute of Science, Rehovot, Israel
rotem.tsabary@weizmann.ac.il

2 University of California, Berkeley, Berkeley, USA

Abstract. We present a novel tree-based technique that can convert
any designated-prover NIZK proof system (DP-NIZK) which maintains
zero-knowledge only for single statement, into one that allows to prove an
unlimited number of statements in ZK, while maintaining all parameters
succinct. Our transformation requires leveled fully-homomorphic encryp-
tion. We note that single-statement DP-NIZK can be constructed from
any one-way function. We also observe a two-way derivation between
DP-NIZK and attribute-based signatures (ABS), and as a result derive
now constructions of ABS and homomorphic signatures (HS).

Our construction improves upon the prior construction of lattice-
based DP-NIZK by Kim and Wu (Crypto 2018) since we only require
leveled FHE as opposed to HS (which also translates to improved LWE
parameters when instantiated). Alternatively, the recent construction of
NIZK without preprocessing from either circular-secure FHE (Canetti
et al. STOC 2019) or polynomial Learning with Errors (Peikert and
Shiehian, Crypto 2019) could be used to obtain a similar final state-
ment. Nevertheless, we note that our statement is formally incomparable
to these works (since leveled FHE is not known to imply circular secure
FHE or the hardness of LWE). We view this as evidence for the poten-
tial in our technique, which we hope can find additional applications in
future works.

1 Introduction

In non-interactive zero-knowledge proof systems for NP (NIZK) [BFM88], a
prover can provide a non-interactive proof of the validity of an NP statement

Z. Brakerski and R. Tsabary—Supported by the Binational Science Foundation (Grant
No. 2016726), and by the European Union Horizon 2020 Research and Innovation
Program via ERC Project REACT (Grant 756482) and via Project PROMETHEUS
(Grant 780701).
S. Garg—Supported in part from AFOSR Award FA9550-19-1-0200, NSF CNS Award
1936826, DARPA SIEVE Award, and research grants by the Sloan Foundation, Visa
Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the funding agencies.

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12550, pp. 657–683, 2020.
https://doi.org/10.1007/978-3-030-64375-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64375-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-64375-1_23

658 Z. Brakerski et al.

(efficiently, using a witness), that convinces a verifier, without revealing any
information about the witness or anything other than the validity of the state-
ment. This is not possible to achieve in the plain model, and therefore usually
some common setup is considered, in particular it is often assumed that an hon-
estly generated common reference string (CRS) is accessible to both the prover
and the verifier [FLS90]. In this work we consider proof systems with statistical
soundness and computational zero-knowledge.

NIZK with Preprocessing. In some cases it suffices to consider a relaxed notion,
NIZK with preprocessing [SMP87], where the trusted party that generates the
CRS also produces additional secret information either for the prover or for the
verifier or for both. As pointed out by Kim and Wu [KW18], multi-theorem
preprocessing NIZK could replace plain NIZK in a number of applications, e.g.
for achieving MPC with low round complexity.

In the case of secret information for the prover, known as designated-prover
NIZK or DP-NIZK, the prover’s key should be kept secret in order to maintain
zero-knowledge. In the mirror case of designated-verifier NIZK (DV-NIZK), the
verifier’s secret is for the purposes of securing the soundness. In both cases, the
preprocessing might make the CRS non-reusable. That is, if the same secret
key of the prover (resp. verifier) is used in the proofs of multiple statements
then ZK (resp. soundness) might not hold for all of these statements. Therefore,
we make the distinction between single-theorem and multi-theorem NIZK in
the preprocessing model. We note that throughout this introduction, writing
DP/DV-NIZK refers by default to the multi-theorem version.

The seminal work of [FLS90] shows, among other things, how to trans-
form any single-statement NIZK proof system into a multi-statement NIZK.
[KNYY19] recently showed that a similar bootstrapping strategy works also in
the designated-verifier model. As pointed out by [KW18], the transformation
fails to work in the designated-prover model since it critically relies on the fact
that the prover algorithm is publicly computable. In this work we focus on multi-
statement DP-NIZK.

1.1 Our Results

We present a new technique for bootstrapping DP-NIZK from single-theorem to
multi-theorem, using leveled fully homomorphic encryption (FHE) as a build-
ing block. We recall that leveled FHE schemes are ones that allow to evaluate
depth d circuits, for any (polynomially bounded) d specified at key generation
time. We start by noticing that single-theorem DP-NIZK can be constructed
straightforwardly from any one-way function using garbled circuits and commit-
ment schemes (we did not find this simple construction in the literature). We
then apply a succinctness transformation similar to that proposed by Gentry
et al. [Gen09,GGI+15] to shrink the CRS size and make it independent of the
complexity of the statement that needs to be proven. This transformation uses
(leveled) FHE. Finally, as our main contribution, we present a tree based con-
struction which transforms single-theorem succinct DP-NIZK into multi-theorem

FHE-Based Bootstrapping of Designated-Prover NIZK 659

(succinct) DP-NIZK, essentially by committing to an implicit tree of CRS val-
ues, each of which is used to prove the validity of its children. We provide more
information and a technical overview in Sect. 1.3 below.

In addition, in this work, we observe a two-way implication between DP-
NIZK and the notion of attribute-based signatures (ABS) [MPR11,BF14,BZ14,
BGI13], assuming one-way functions exist. Combining this new observation with
the known connection between ABS and HS [Tsa17], we get a construction
of homomorphic signatures from leveled FHE. We note the parameters of the
obtained HS scheme are fairly unfavorable, in particular the length of the signa-
ture grows with the size of the evaluated function. However, this schemes has the
so-called context-hiding property. Such HS schemes suffice for some applications
(not surprisingly, the [KW18] construction of DP-NIZK is an example of such
as application). See Sect. 1.4 below.

1.2 Our Parameters and Assumptions Compared to Prior Work

Comparison with DP-NIZK Constructions from LWE. [KW18] presented a
construction of DP-NIZK using homomorphic signatures for NC1 as building
block. Such HS schemes were constructed under the learning with errors (LWE)
assumption [Reg05] by Gorbunov, Vaikuntanathan and Wee [GVW15]. Compar-
ing our result with their work, we point out that our techniques are very different.
Succinctness and bootstrapping that play a central role in our construction, do
not appear to be a component of the [KW18] construction. In terms of assump-
tions, we require leveled FHE and they require homomorphic signatures. The
two assumptions are formally incomparable, but when instantiating concretely
with LWE, our construction is favorable in terms of the required assumption.
Leveled FHE can be constructed based on the hardness of LWE, with a fixed
polynomial modulus-to-noise ratio, and with parameters that grow moderately
with d [BV14]. The modulus-to-noise ratio (when measured as a function of the
dimension of the LWE problem) effectively determines the hardness of the LWE
instance at hand. The smaller the ratio is, the harder the problem becomes,
and the better approximation to worst-case lattice problems one will be able
to achieve if the assumption is broken. In terms of parameter growth, the only
parameter effected by d is the public key, which grows linearly with d. In contrast
to FHE, it is not known how to bootstrap homomorphic signatures. Bootstrap-
ping allows the modulus-to-noise ratio to be fixed, regardless of the evaluation
depth. Therefore, since [KW18] requires the use of HS rather than FHE, they
require modulus to noise ratio of poly(s), where s is the size of the verification
circuit for the NP relation for which proofs are provided. This is worse than the
parameters presented in this work.

We should also compare our construction to the recent constructions of
NIZK without preprocessing by Canetti et al. [CCH+19] and by Peikert and
Shiehian [PS19]. The former constructs NIZK from any circular secure FHE
scheme. That is, one that can securely encrypt its own secret key. This is not
known to be implied by LWE, but it is an assumption that is fairly common

660 Z. Brakerski et al.

in the FHE literature. The latter constructs NIZK from LWE with fixed poly-
nomial modulus-to-noise ratio. Their construction uses LWE-based leveled FHE
as building block, but then uses specific properties of the LWE-based scheme
so their construction is not generic. Formally, none of these constructions are
implied by generic leveled FHE, which suggests that our techniques have a novel
aspect that hopefully can serve as stepping stone for future contributions.

Other DP-NIZK Constructions. Katsumata et al. [KNYY19] showed how to con-
struct DP-NIZK (with computational soundness) based on a (new) assumption
on groups with bilinear maps, however a later work by these authors [KNYY20]
subsumed that result and showed how to remove the preprocessing and remain
with essentially the same properties.

1.3 Technical Overview

As we outlined above, our construction has three components:

1. A single-theorem DP-NIZK construction from any one-way function via gar-
bled circuits and commitments.

2. A succinctness transformation from single-theorem DP-NIZK to succinct
single-theorem DP-NIZK. This is similar to the succinctness transformations
in [Gen09,GGI+15].

3. Tree-based bootstrapping from succinct single-theorem NIZK to (succinct)
multi-theorem DP-NIZK.

In what follows, we describe each of these components in more detail. We
consider an NP language L and we let V be the verifier for an NP relation of
L. That is, V is a polynomial time algorithm s.t. V (x,w) = 1 if and only if w is
a valid witness for x ∈ L. We slightly overload the notation and also use V to
denote the circuit that implements the algorithm V on instances x of length n,
where n is clear from the context.

Single-Theorem DP-NIZK from OWF. We create a DP-NIZK scheme for
instances of size n with respect to the language L. The DP-NIZK setup gen-
erates a common reference string crs and prover secret key kP as follows. We
start by generating a garbled circuit G of the circuit V . We then commit to each
of the labels of the garbled circuit, let ci,b be a commitment to the label �i,b. The
garbled circuit G and the committed labels are placed in crs, and the openings
of all commitments are provided as the secret kP . In order to prove that x ∈ L
for some instance x, a prover P with witness w simply opens the commitments
to the labels corresponding to (x,w). The verifier executes the garbled circuit
and verifies that the output is indeed 1. One minor subtlety is that the verifier
needs to be convinced that the prover indeed opened to the correct x, but needs
to know nothing about w. This is achieved by providing the labels corresponding
to x in the “correct” order, i.e. ci,0 followed by ci,1, but for the w labels ci,0 and
ci,1 will be randomly permuted.

FHE-Based Bootstrapping of Designated-Prover NIZK 661

Remark 1. As was pointed out to us by TCC 2020 reviewers, there is an alter-
native way to obtain single-theorem DP-NIZK from OWF by instantiating the
hidden-bit model [FLS90]. The hidden bit-model requires that the CRS consti-
tutes a commitment to a sequence of bits drawn (by a trusted party) from a
certain distribution, which can be opened by the prover. This can be instanti-
ated for designated prover straightforwardly by having in the CRS commitments
to the hidden bits, and giving the openings of the commitments to the prover.

This alternative has the advantage of not requiring use of garbled circuits,
but it has the drawback of being designated for a specific NP complete lan-
guage such as hamiltoniciy, or variants of SAT [KP95]. Although in a different
context, [Dam92] also considers the goal of constructing proofs directly for arbi-
trary circuits. In contrast, the garbled circuit approach can apply directly to any
witness relation and does not require an NP reduction to be used.

Succinctness Transformation. The idea here is to use (leveled) FHE as follows. In
the setup process, generate crs0, kP

0 for a non-compact scheme, and also generate
a key pair for the FHE scheme (hpk, hsk). Place hpk, crs0 and a commitment c
for hsk in the new CRS and hsk, kP

0 and the opening for the commitment c in
the new kP . Now, to prove that x ∈ L using w, encrypt w using the FHE, let ctw
be the encryption. Then consider the ciphertext ct which is the homomorphic
evaluation of V (x, ·) on the ciphertext ctw. The prover will use kP

0 to prove
that when decrypting ct with the hsk committed to by the commitment c, the
outcome is 1. The verifier will calculate ct locally using homomorphic evaluation,
and then will verify the proof using crs0. This guarantees that soundness holds,
up to subtleties like ensuring that any ciphertext ctw, even dishonestly generated,
corresponds to some encrypted value. We note that soundness for DP-NIZK is
easier to show than for NIZK without preprocessing as in [Gen09,GGI+15] since
the homomorphic encryption keys, and commitments thereof, are guaranteed to
be honestly generated.

In terms of succinctness, we only use the underlying scheme to prove state-
ments about the decryption circuit of the FHE scheme, which is independent of
the statement length n, and therefore we would hope that the complexity of V
does not play a role in the parameters of the new scheme. This is not entirely
correct since in leveled FHE, the length of hpk can depend on the depth of V.
However, we note that hpk is reusable, and we can generate many instances
of the proof system with the same hpk. Thus, the parameters contain a part
which may not be succinct but is reusable, and another part that is succinct but
possibly not reusable. This will suffice for our purposes as we see below.

Tree-Based Bootstrapping. The basic idea is to implicitly generate exponentially
many (in the security parameter) single-theorem (crs, kP) values, so that the
prover can use a fresh value for each new theorem. Of course the verifier will
need a way to retrieve the correct crs and verify that it is indeed one of those
implicit crs values and not some value maliciously chosen by a dishonest prover.
To resolve this issue, we generate additional instances of the single-theorem

662 Z. Brakerski et al.

DP-NIZK and use them to prove that the crs values were generated honestly
according to some predetrmined (pseudo)randomness that is given via a PRF.

In more detail, we consider a depth-λ binary tree, where each node is asso-
ciated with an independent instance of the single-theorem DP-NIZK, and all
of those instances are implicitly determined by a PRF seed that generates the
randomness for the DP-NIZK setup algorithm. Every intermediate node is used
in order to prove the (single) statement that the CRS of its two children were
generated honestly according to the PRF seed, and the CRS of the tree-root is
given as part of the CRS of the multi-theorem DP-NIZK. To prove a statement,
the prover randomly chooses one of the tree leaves and uses the corresponding
CRS to generate the proof for the statement. It then provides, in addition, all
of the proofs on the path from the tree root to this leaf, as an evidence that this
leaf indeed appears in the predetermined tree.

Note that the setup algorithm of any node is encoded into the NP relation
that is proved by its parent node, and a non-efficient setup might cause a blow-
up that is exponential with the tree depth. This is where we crucially use the
decomposability of the setup algorithm that was discussed when we described
the succinctness transformation. In the tree construction, we will generate the
reusable-but-not-succinct part of the single-statement CRS once for all of the
nodes in a given level of the tree, and then each node will be associated with a
new instance of the succinct-but-not-reusable part of the single-statement CRS.

The zero-knowledge comes from the zero-knowledge of the single-statement
DP-NIZK (as long as the prover does not choose the same leaf more than once)
and from the pseudorandomness of the PRF seed. In fact, we have to generate a
fresh PRF seed for every level of the tree, and to use the pseudorandomness of
the seed of the ith level to claim that the single-statement DP-NIZK instances of
the ith level are zero-knowledge. We then can claim that the zero-knowledge of
the ith level instances guarantees that the PRF seed of the i+1th level remains
secret since it is only used as a witness, and the proof proceed via 2λ similar
hybrids.

If we only cared about zero-knowledge, we could let the prover sample the
PRF seeds on its own (or even to use real randomness instead of PRF outputs).
But such scheme would not be sound, since the prover can possibly sample a
bad CRS of the single-statement DP-NIZK for which soundness does not hold.
To resolve this issue, during setup we sample a random string r along with the
PRF seeds for all of the tree levels, and publish r and commitments to the seeds.
The prover is then forced to use as “randomness” for the single-statement DP-
NIZK setup the PRF outputs XORed with the truly random string r, where
we enforce this as part of the NP relation that is verified. That is, we require
that the witnesses of all of the proofs along the tree will include the proper
decommitments to the PRF seeds. With this approach the PRF seeds remain
hidden from the verifier due to the hiding of the commitments, so we don’t
compromise zero-knowledge, and in addition the truly random string r restricts
the prover to use as “randomness” for the single-statement DP-NIZK setup only
strings which the marginal distribution of each of them independently is uniform.
We therefore need the underlying single-statement DP-NIZK to be sound for any

FHE-Based Bootstrapping of Designated-Prover NIZK 663

set of 2λ CRS values that were sampled with “randomness” that is randomized
via the same uniform string r. To obtain this, we use the fact that the underlying
single-statement DP-NIZK is statistically sound and therefore its soundness can
be amplified via parallel repetition λ times.

1.4 DP-NIZK, Attribute-Based Signatures and Homomorphic
Signatures

An attribute-based signatures scheme (ABS, [MPR11,BGI13,BF14,BZ14]) is a
digital signature scheme that supports multiple keys with varying permissions,
where signatures do not reveal information about the permissions of the signing
key that was used. A homomorphic signature (HS, [CJL09,BFKW09,GKKR10,
BF11a,BF11b,GVW15]) is a digital signature that supports homomorphic eval-
uations over the signed message, where evaluated signatures should not reveal
information about the message associated with the pre-evaluated signature other
than the result of the function that was computed homomomorphically.

The relation between ABS, HS and NIZK was studied in various works.
[MPR11,BF14,SAH16,SKAH18] show reductions of the form “OWF+NIZK →
ABS”, [KW18] show that “HS → DPNIZK” and [Tsa17] shows that “ABS ↔
HS” for certain types of ABS and HS. Our new DPNIZK construction can be
translated to new ABS and HS constructions as follows.

Attribute-Based Signatures from OWF and DP-NIZK. While we believe that
some of the aforementioned constructions [MPR11,BF14,SAH16,SKAH18] of
ABS from OWF+NIZK can possibly be initialized from OWF+DPNIZK (and
in turn also imply HS from OWF+DPNIZK via [Tsa17]), to the best of our
knowledge a statement of the flavor “OWF+DPNIZK → ABS” does not explic-
itly appear in previous literature, so we briefly describe such a reduction now.

The ABS public key and master secret key are an instance of a standard
signature scheme. To generate an ABS key for a policy f , generate and instance
of DPNIZK and a commitment scheme. Commit to f and use the master secret
key to sign (with a standard signature) the DPNIZK CRS and the commitment
to f . To sign a message x with a constrained key, provide a DPNIZK proof
respective to the instance that appears in the key, proving that “there exists a
valid decommitment for some f such that f(x) = 1”. The commitments scheme
and standard signature schemes can be instantiated from one-way functions.

Attribute-Based Signatures from FHE. Applying the transformation which is
described above to our DPNIZK construction results in an ABS scheme with
the following characteristics:

– Efficiency. The size of public parameters and the master key is some poly(λ)
and in particular independent of the message and policy space, while keys
and signatures grow with the policy size.

– Unforgeability. The unforgeability is based on the statistical soundness of
DPNIZK, the (possibly statistical) binding of the commitment scheme and

664 Z. Brakerski et al.

the unforgeability of the standard signature scheme. Since any ABS is in
particular a standard signature scheme, this is the best possible unforgeability.

– Policy Privacy. The privacy is based on the hiding of the commitment and
on the zero-knowledge of DPNIZK, which in turn relies on the security of the
underlying FHE.

Homomorphic Signatures from FHE. We apply the “ABS → HS” transformation
of [Tsa17] and derive a single-hop HS scheme with the following characteristics:

– Efficiency. The size of public parameters and the master key is some poly(λ)
and in particular independent of the message and policy space. However,
both post-evaluation and pre-evaluation signatures grow with the function
to be computed. That is, when one signs a message they also commit to the
maximal size of functions to be homomorphically-computed over it.

– Unforgeability. Can be based on any OWF.
– Context-Hiding. Relies on the security of the FHE.

DP-NIZK from Attribute-Based Signatures. As mentioned above, the work of
[Tsa17,KW18] implies a derivation of the form “ABS → DPNIZK”. To simplify
and complete the picture, we now briefly describe a direct and simple transfor-
mation. In the setup of the DP-NIZK scheme, sample a symmetric key sk and
initialize the ABS scheme. If V (·, ·) is the verification circuit of the NP relation,
then consider the circuit V ′(·, ·) = V (·,Decsk(·)) and generate an ABS key for
the policy V ′. The secret prover key consists of sk and the ABS key for V ′. To
prove a statement x with a witness w, consider w′ the encryption of w under
key sk and provide an ABS signature for the message (x,w′).

2 Preliminaries

2.1 Notations

For n ∈ N we let [n] denote the ordered set {1, . . . , n}. For a bit-string m ∈
{0, 1}n we let Ud

m denote the universal circuit that takes as input a description
of a circuit f : {0, 1}n → {0, 1} of depth at most d, and outputs f(m). for a
bit-string m ∈ {0, 1}n we let mi denote the ith bit of m.

2.2 Pseudorandom Function (PRF)

Definition 1. A Pseudorandom Function (PRF) is a pair of polynomial-time
algorithms (Setup,Eval) where Setup is randomized and Eval is deterministic,
such that for any ppt adversary A it holds that

∣
∣
∣Pr

[

AEvalk(·)(1λ) = 1
]

− Pr
[

AO(·)(1λ) = 1
]∣
∣
∣ = negl(λ)

where the probability is over k ← Setup(1λ) and the coins of A, and O(·) is a
random function.

FHE-Based Bootstrapping of Designated-Prover NIZK 665

2.3 Collision Resistant Hash Function (CRH)

Definition 2. An efficient function family ensemble H = {Hn,λ : {0, 1}n →
{0, 1}λ}n,λ∈N is a secure collision-resistant hash (CRH) function family if for
any ppt algorithm A and any n, for large enough λ it holds that

Pr
[

x �= y, H(x) = H(y) : H ← Hn,λ, (x, y) ← A(1λ+n,H)
]

= negl(λ).

2.4 Statistically Binding Equivocable Commitments

Definition 3. A commitment scheme (Gen,Commit,Ver) is a tuple of ppt algo-
rithms as follows.

– Gen(1λ, 1n) → crs takes as input a security parameter λ and message length
n, and outputs a common reference string crs.

– Commit(crs,m) → (c, d) takes as input a common reference string crs and a
message m ∈ {0, 1}n, and outputs a commitment c and decommitment d.

– Ver(crs, c,m, d) → {accept, reject} takes as input a common reference string
crs, a commitment c, a message m and a decommitment d, and either accepts
or rejects.

Correctness. A commitment scheme is correct if for every m ∈ {0, 1}n it holds
that

Ver(crs, c,m, d) = accept

where crs ← Gen(1λ, 1n) and (c, d) ← Commit(crs,m).

Statistical Binding. A commitment scheme is statistically binding if for any
sufficiently large λ and any n the following holds

Prcrs←Gen(1λ,1n)

⎡

⎣∃(r,m0,m1, d) :
c := Commit(crs,m0 ; r)
Ver(crs, c,m1, d) = accept

m0 �= m1

⎤

⎦ = negl(λ).

Hiding. A commitment scheme is hiding if for any sufficiently large λ and any
n, for any ppt adversary A and any pair of messages m0,m1 ∈ {0, 1}n it holds
that

|Pr [A(crs, c0) = 1] − Pr [A(crs, c1) = 1]| = negl(λ)

where crs ← Gen(1λ, 1n), (cb, db) ← Commit(crs,mb) for b ∈ {0, 1} and the
probability is over the coins of Gen, Commit and A.

Equivocability. A commitment scheme is equivocable if there exists a ppt sim-
ulator S = (SA,SB) such that for any sufficiently large λ and any n, for any
ppt distinguisher Ψ , any pair of messages m0,m1 ∈ {0, 1}n and any b ∈ {0, 1}
it holds that

|Pr [Ψ(crs, cb, db) = 1] − Pr [Ψ(crs′, c′, d′
b) = 1]| = negl(λ)

where crs ← Gen(1λ, 1n), (cb, db) ← Commit(crs,mb) for b ∈ {0, 1},
(crs′, c′, tdc′) ← SA(1λ, 1n) and d′

b ← SB(crs′, c′, tdc′ ,mb) for b ∈ {0, 1}, and
the probability is over the coins of Gen, Commit, S and Ψ .

666 Z. Brakerski et al.

2.5 Garbled Circuits

Definition 4. A garbling scheme for circuits is a tuple of ppt algorithms
(Garble,Eval) with the following syntax.

– Garble(1λ, C) → (C̃, {labi,b}i∈[n],b∈{0,1}) is a probabilistic algorithm that takes
as input a security parameter λ and a boolean circuit C : {0, 1}n → {0, 1},
and outputs a garbled circuit C̃ and 2n labels {labi,b}i∈[n],b∈{0,1}, where each
of the labels is of size λ = poly(λ) for some fixed polynomial poly.

– Eval(C̃, {labi}i∈[n]) → b is a deterministic algorithm that takes as input a
garbled circuit C̃ and n labels {labi}i∈[n], and outputs a bit b ∈ {0, 1}.

Correctness. The scheme is correct if for every circuit C : {0, 1}n → {0, 1},
every input x ∈ {0, 1}n and every

(

C̃, {labi,b}i∈[n],b∈{0,1}
)

← Garble(1λ, C), it
holds that

Eval
(

C̃, {labi,xi
}i∈[n]

)

= C(x).

Security. The scheme is secure if there exists a ppt simulator S such that for
every circuit C : {0, 1}n → {0, 1} and every input x ∈ {0, 1}n it holds that

(

C̃, {labi,xi
}i∈[n]

)

≡λ S
(

1λ, 1|C|, C(x)
)

,

where
(

C̃, {labi,b}i∈[n],b∈{0,1}
)

← Garble(1λ, C) and ≡λ denotes computational
indistinguishability with respect to the security parameter λ.

2.6 Homomorphic Encryption

Definition 5. A leveled fully homomorphicencryption scheme FHE is a tuple
of ppt algorithms (Keygen,Enc,Eval,Dec) with the following syntax.

– Keygen(1λ, 1d) → (pk, sk) is a probabilistic algorithm that takes as input a
security parameter λ and depth d, and outputs a public key pk and secret key
sk.

– Enc(pk,m) → ct is a probabilistic algorithm that takes as input a public key
pk and a message m ∈ {0, 1}∗, and outputs a ciphertext ct.

– Eval(ct, C) → ct′ is a deterministic algorithm that takes as input a cipher-
text ct and a boolean circuit C : {0, 1}∗ → {0, 1}, and outputs an evaluated
ciphertext ct′.

– Dec(sk, ct′) is a deterministic algorithm that takes as input a secret key sk
and an evaluated ciphertext ct′, and outputs a bit b ∈ {0, 1}.

FHE-Based Bootstrapping of Designated-Prover NIZK 667

Correctness. The scheme is correct if for every n, d ∈ N, every message m ∈
{0, 1}n and every circuit C : {0, 1}n → {0, 1} of depth at most d, it hold that

Pr[(pk, sk) ← Keygen(1λ, 1d),
ct ← Enc(pk,m),
ct′ ← Eval(ct, C),
Dec(sk, ct′) �= C(m)] = negl(λ),

where the probability is over the coins of Keygen and Enc.

Security. The scheme is secure if for any ppt adversary A, any n ∈ N and any
pair of messages m0,m1 ∈ {0, 1}n, it holds that

|Pr [A (Enc(pk,m0)) = 1] − Pr [A (Enc(pk,m1)) = 1]| = negl(λ)

where pk ← Keygen(1λ, 1d) and the probability is over the coins of Keygen, Enc
and A.

Compactness. The scheme is compact if there exists a polynomial p = p(·) such
that for all security parameters λ and all n, d ∈ N, m ∈ {0, 1}n and C : {0, 1}n →
{0, 1} of depth at most d, for all (pk, sk) ← Keygen(1λ, 1d), the output length of
Eval(m̃, C) is at most p bits long where m̃ ← Enc (pk,m), and the size of sk is
at most p bits.

For our application we need an FHE scheme where the correctness also holds
for maliciously chosen ciphertexts. Formally,

Definition 6 (FHE with correctness for all ciphertexts). An FHE shceme
has correctness for all ciphertexts if for all n, d ∈ N, for every string ct ∈ {0, 1}p

and every circuit C : {0, 1}n → {0, 1} of depth at most d, it holds that

Pr[(pk, sk) ← Keygen(1λ, 1d),
ct′C ← Eval(ct, C),
ct′I ← Eval(ct, I),
Dec(sk, ct′C) �= C (Dec(sk, ct′I))] = negl(λ),

where I is the identity circuit and the probability is over the coins of Keygen.

We now show that any FHE scheme with standard correctness implies a
scheme with correctness for all ciphertexts (which preserves the compactness
property).

Lemma 1. Let FHE = (Keygen,Enc,Eval,Dec) be an FHE scheme with stan-
dard correctness and let PKE = (Keygen,Enc,Dec) be a public-key encryption
scheme. hen there exists an FHE scheme FHE′ = (Keygen′,Enc′,Eval′,Dec′)
with correctness for all ciphertexts.

668 Z. Brakerski et al.

Proof. Define FHE′ = (Keygen′,Enc′,Eval′,Dec′) as follows:

– Keygen′(1λ, 1d): Sample (hpk, hsk) ← FHE.Keygen(1λ, 1d′
) and (pk, sk) ←

PKE.Keygen(1λ), then compute s̃k ← FHE.Enc(hpk, sk) and output
(pk′, sk′) := ((hpk, pk, s̃k), hsk) where d′ = poly(d, λ) is the maximal depth
of C ′ as defined in Eval′ below.

– Enc′(pk′,m): Compute and output ct′ := m′ ← PKE.Enc(pk,m).
– Eval′(ct′, C): Define the circuit Cct′(◦) := C(PKE.Dec◦(ct′)). Compute and

output ct′′ := FHE.Eval(s̃k, Cct′).
– Dec′(sk′, ct′): Output FHE.Dec(hsk, ct′).

Fix n, d ∈ N, a string ct′ ∈ {0, 1}p and a circuit C : {0, 1}n → {0, 1} of depth
at most d. Consider (pk′, sk′) ← Keygen′(1λ, 1d), ct′′I ← Eval′(ct′, I) and ct′′C ←
Eval′(ct′, C), then it holds that

ct′′C = FHE.Eval(s̃k, Cct′)

ct′′I = FHE.Eval(s̃k, Ict′)

and therefore

Dec′(sk′, ct′′C) = FHE.Dec(hsk, ct′′C)

= FHE.Dec(hsk,FHE.Eval(s̃k, Cct′))
= Cct′(sk)
= C(PKE.Decsk(ct′))

and

C
(

Dec′(sk′, ct′′I)
)

= C (FHE.Dec(hsk, ct′′I))

= C
(

FHE.Dec(hsk,FHE.Eval(s̃k, Ict′))
)

= C (Ict′(sk))
= C (PKE.Decsk(ct′)) .

3 Definitions of Designated-Prover NIZK

Definition 7 (DP-NIZK Proofs). A designated-prover non-interactive zero-
knowledge (DP-NIZK) proof ΠDPNIZK for an ensemble of NP languages C ⊆
{C : {0, 1}∗ × {0, 1}∗ → {0, 1}} (where C is a verification circuit and LC =
{x : ∃w C(x,w) = 1} is the NP language determined by C) is defined by a
tuple of ppt algorithms with the following syntax.

– Setup(1λ, params) → (crs, kP) takes as input the security parameter λ and
possibly some parameters params of C (e.g. the maximal circuit depth), and
outputs a common reference string crs and a proving key kP .

– Provecrs(C, kP , x, w) → π takes as input a common reference string crs, a
circuit C ∈ C, a proving key kP , a statement x and a witness w. It outputs a
proof π.

FHE-Based Bootstrapping of Designated-Prover NIZK 669

– Verifycrs(C, x, π) → {0, 1} takes as input a common reference string crs, a
circuit C ∈ C, a statement x and a proof π, and either accepts (with output
1) or rejects (with output 0) the proof.

Moreover, ΠDPNIZK should satisfy the following properties:

(Perfect) Completeness. For all sufficiently large λ, for all circuits C ∈ C, for
all pairs (x,w) for which C(x,w) = 1 and for all (crs, kP) ← Setup(1λ, params),
it holds that

Pr [Verifycrs (C, x,Provecrs(C, kP , x, w)) = 1] = 1.

(Statistical) Soundness. For all sufficiently large λ and for all C ∈ C it holds
that

Prcrs←Setup(1λ,params) [∃(x, π) : x /∈ LC ∧ Verifycrs(C, x, π) = 1] = negl(λ).

(Programmable CRS) Zero-Knowledge. For all ppt adversaries A there exists a
ppt simulator S = (S1,S2) such that

∣
∣
∣Pr

[

AProvecrs(·,kP ,·,·) (crs) = 1
]

− Pr
[

AO(·,crs′,τ,·,·) (crs′) = 1
]∣
∣
∣ = negl(λ),

where (crs, kP) ← Setup(1λ, params), (crs′, τ) ← S1(1λ, params) and

O(C, crs′, τ, x, w) =
{S2(C, crs′, τ, x) C(x,w) = 1

⊥ o.w.
,

and the probability is over the coins of A,S,Setup,Prove. We also consider the a
relaxed notion of single-statement zero knowledge, in which the (programmable
CRS) zero-knowledge condition holds only for adversaries A that make at most
a single query to the oracle.

We sometimes require the following additional property.

Efficient Setup. A DP-NIZK proof system is efficient if for all λ there exists a
p = poly(λ) such that for all params, the complexity of Setup(1λ, params) is p
(and in particular does not depend on params).

3.1 Single-Statement Global-Setup DP-NIZK Proofs

Definition 8 (Single-Statement Global-Setup DP-NIZK Proofs). A
single-statement global-setup DP-NIZK proof Π1DPNIZK for an ensemble of NP
languages C ⊆ {C : {0, 1}∗ × {0, 1}∗ → {0, 1}} (where C is a verification circuit
and LC = {x : ∃w C(x,w) = 1} is the NP language determined by C) is
defined by a tuple of ppt algorithms with the following syntax.

– GlobalSetup(1λ, params) → (crs,msk) takes as input the security parameter λ
and possibly some parameters params of C (e.g. the maximal circuit depth),
and outputs a common reference string crs and a master secret key msk.

670 Z. Brakerski et al.

– Setupcrs(msk) → (pk, kP) takes as input a common reference string crs and a
master secret key msk, and outputs a public key pk and a proving key kP .

– Provecrs(C, (pk, kP), x, w) → π takes as input a common reference string crs, a
circuit C ∈ C, a public key pk, a proving key kP , a statement x and a witness
w. It outputs a proof π.

– Verifycrs(C, pk, x, π) → {0, 1} takes as input a common reference string crs,
a circuit C ∈ C, a public key pk, a statement x and a proof π, and either
accepts (with output 1) or rejects (with output 0) the proof.

Moreover, Π1DPNIZK should satisfy the following properties:

(Perfect) Completeness. For all sufficiently large λ, for all C ∈ C and for all
pairs (x,w) for which C(x,w) = 1, it holds that

(crs,msk) ← GlobalSetup(1λ, params);
(pk, kP) ← Setupcrs(msk);
π ← Provecrs(C, (pk, kP), x, w);
Verifycrs (C, pk, x, π) = 1.

(Statistical) Soundness. For all sufficiently large λ, for all C ∈ C and for all
(crs,msk) ← GlobalSetup(1λ) it holds that

Prpk←Setupcrs(msk)

[

∃(x, π) : x /∈ LC

Verifycrs(C, pk, x, π) = 1

]

= negl(λ).

(Statistical) ε-Soundness. We also define a generalized notion of soundness
as follows. For all sufficiently large λ, for all C ∈ C for all (crs,msk) ←
GlobalSetup(1λ) it holds that

Prpk←Setupcrs(msk)

[

∃(x, π) :
x /∈ LC

Verifycrs(C, pk, x, π) = 1

]

= ε(λ).

(Programmable CRS) Single-Statement Zero-Knowledge. For all ppt adver-
saries A there exists a ppt simulator S = (S1,S2) such that

∣
∣
∣Pr

[

A{pki}←Setupcrs(msk) , Provecrs(·,pki,ki
P ,·,·) (crs) = 1

]

− Pr
[

A{pki}←O1 , O2(·,pki,·,·) (crs) = 1
] ∣
∣
∣ = negl(λ),

where
O1 = (pki, τ i) ← S1(crs); Output pki;

and

O2(C, pki, x, w) =
{S2(crs, C, pki, τ i, x) C ∈ C ∧ C(x,w) = 1

⊥ o.w.
,

the probability is over the coins of A,S,Setup,Prove and crs ←
GlobalSetup(1λ, params), and for every i the adversary A makes at most a single
query of the form Provecrs(·, pki, ki

P , ·, ·).

FHE-Based Bootstrapping of Designated-Prover NIZK 671

Efficiency. For all λ there exists a p = poly(λ) such that for all params and all
(crs,msk) ← GlobalSetup(1λ, params), the complexity of Setupcrs(msk) is p (and
in particular does not depend on params).

Remark 2. A global-setup DP-NIZK can be viewed as a generalization of stan-
dard DP-NIZK in the following manner. When the algorithm GlobalSetup is
trivial (i.e. when it outputs crs = msk = 1λ), then the tuple of algorithms
(Setup,Prove,Verify) qualify as a DP-NIZK proof system with efficient setup
and single-statement zero-knowledge.

Remark 3. Every 1DPNIZK with standard statistical soundness can be amplified
to 1DPNIZK with statistical ε-soundness for any ε = 1

2poly(λ) via parallel compo-
sition of Setup,Prove,Verify for log

(
1
ε

)

= poly(λ) times. The single-statement
zero-knowledge simulator of the amplified proof system is derived via parallel
composition of the simulator of the underlying 1DPNIZK proof system.

4 Our Construction

4.1 Single-Statement Global-Setup DP-NIZK from FHE

Theorem 1. Assuming the existence of the following building blocks, for every
d ∈ N there exists a single-statement global-setup DP-NIZK proof system as in
Definition 8 for the ensemble Cd of NP relations that are verifiable by circuits
C of depth at most d.

1. A leveled fully-homomorphic scheme FHE = (Keygen,Enc,Eval,Dec) with
correctness for all ciphertexts as in Definitions 5 and 6. For every λ let
p = poly(λ) denote the size of FHE evaluated-ciphertexts and secret-keys
as described in the “compactness” section of Definition 5.

2. A garbing scheme GC = (Garble,Eval) as in Definition 4 where each label is
of size λ = poly(λ) bits.

3. A statistically-binding equivocable commitment scheme SBCS = (Gen,
Commit,Ver) as in Definition 3.

In the rest of this section we prove Theorem 1. We let params = d be the depth
bound of circuits in Cd.

Construction 9 (Single-Statement Global-Setup DP-NIZK).

– GlobalSetup(1λ, 1d):
1. Compute (hpk, hsk) ← FHE.Keygen(1λ, 1d).
2. Output crs := hpk and msk := hsk.

– Setupcrs(msk):
1. Parse msk = hsk and let Dhsk : {0, 1}p → {0, 1} be the boolean circuit that

has hsk hard-wired in it, takes as input an FHE evaluated-ciphertext ct,
and decrypts ct with hsk. Compute

(

D̃hsk, {labi,b}i∈[p],b∈{0,1}
)

← GC.Garble
(

1λ,Dhsk

)

.

672 Z. Brakerski et al.

2. For i ∈ [p] and b ∈ {0, 1} compute crsi,b ← SBCS.Setup(1λ, 1λ) and
(ci,b, di,b) ← SBCS.Commit(crsi,b, labi,b).

3. Output

pk :=
(
D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}

)
, kP := {labi,b, di,b}i∈[p],b∈{0,1} .

– Provecrs(C, (pk, kP), x, w):
1. If C /∈ Cd or C(x,w) �= 1 then output ⊥.
2. Encrypt ctw ← FHE.Enchpk(w).
3. Let C ′

x be the circuit Cx(◦) := C(x, ◦) and compute homomorphically

ctb ← FHE.Evalhpk(ctw, Cx).

4. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb. Output

π :=
(

ctw, {labi,˜bi
, di,˜bi

}i∈[p]

)

.

– Verifycrs(C, pk, x, π):
1. Parse crs = hpk, pk =

(

D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}
)

and π = (ctw,

{labi, di}i∈[p]

)

.
2. Compute ctb ← FHE.Evalhpk(ctw, Cx) (where Cx is as defined above).
3. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb. Verify

the label decommitments: for i ∈ [p] compute

SBCS.Ver
(

crsi,˜bi
, ci,˜bi

, labi, di

)

,

if any of those verifications fail then output 0 (reject).
4. Compute and output GC.Eval

(

D̃sk, {labi}i∈[p]

)

.

Proof of Completeness. Fix λ, d, C, x, w where C ∈ Cd and C(x,w) = 1. Consider

(crs,msk) ← GlobalSetup(1λ, 1d),

(pk, kP) ← Setupcrs(msk),

π ← Provecrs(C, (pk, kP), x, w).

Parse crs = hpk, pk =
(

D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}
)

and π = (ctw,

{labi, di}i∈[p]

)

.
Consider the execution of Verifycrs (C, pk, x, π). Since FHE.Eval is determin-

istic, the value ctb that is computed in Prove and in Verify is identical. Therefore
the correctness of SBCS implies that all of the decommitment verifications in
step (3) of Verify pass. Moreover, due to the correctness of FHE it holds that

FHE.Dechsk(ctb) = FHE.Dechsk (FHE.Evalhpk(ctw, Cx))
= FHE.Dechsk (FHE.Evalhpk(FHE.Enchpk(w), Cx))
= Cx(w) = C(x,w) = 1,

and the correctness of GC implies that the output in step (4) of Verify is
FHE.Dechsk(ctb) = 1. �

FHE-Based Bootstrapping of Designated-Prover NIZK 673

Proof of Soundness. Fix λ, d ∈ N, C ∈ Cd and (crs,msk) ← GlobalSetup(1λ, 1d),
and consider the random variable pk ← Setupcrs(msk). Assume that there exist
(x, π) such that x /∈ LC and Verifycrs(C, pk, x, π) = 1.

Parse crs = hpk, pk =
(

D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}
)

and π = (ctw,

{lab′
i, d′

i}i∈[p]

)

, and recall that the values in the pk were computed as follows
(

D̃hsk, {labi,b}i∈[p],b∈{0,1}
)

← GC.Garble
(

1λ,Dhsk

)

and
∀i ∈ [p] : (ci,b, di,b) ← SBCS.Commit(crsi,b, labi,b).

Let ctb ← FHE.Evalhpk(ctw, Cx) be the value that is computed during Verify and
for i ∈ [p] let b̃i denote the ith bit of ctb.

Assume towards contradiction that for all i ∈ [p] it holds that lab′
i = labi,˜bi

,
then by the correctness of GC and FHE, and since Verify outputs 1, it holds that

1 = GC.Eval
(

D̃hsk, {lab′
i}i∈[p]

)

= GC.Eval
(

D̃hsk, {labi,˜bi
}i∈[p]

)

= FHE.Dechsk(ctb)
= FHE.Dechsk (FHE.Evalhpk(ctw, Cx))
= Cx (FHE.Dechsk(FHE.Evalhpk(ctw, I)))
= C (x,FHE.Dechsk(FHE.Evalhpk(ctw, I))) ,

and therefore the string w := FHE.Dechsk(FHE.Evalhpk(ctw, I)) satisfies
C(x,w) = 1, with contradiction to the assumption that x /∈ LC .

Therefore, it must be the case that there exists some j ∈ [p] for which lab′
j �=

labj,˜bj
. Since all of the verifications in step (3) of Verify pass successfully, it in

particular holds that

SBCS.Ver
(

crsj,˜bj
, cj,˜bj

, lab′
j , d

′
j

)

= 1.

Therefore, denoting crs∗ := crsj,˜bj
, m∗

0 := labj,˜bj
, m∗

1 := lab′
j and d∗ := d′

j , and
letting r∗ be the randomness used during pk ← Setupcrs(msk) when computing
cj,˜bj

← SBCS.Commit(crsj,˜bj
, labj,˜bj

; r∗), it holds that

Prpk←Setupcrs(msk)

[

∃(x, π) : x /∈ LC

Verifycrs(C, pk, x, π) = 1

]

≤

Prcrs∗←SBCS.Setup(1λ,1λ)

⎡

⎣∃(r∗,m∗
0,m

∗
1, d

∗) :
c∗ ← SBCS.Commit(crs∗,m∗

0 ; r∗)
m∗

0 �= m∗
1

SBCS.Verify (crs∗, c∗,m∗
1, d

∗) = 1

⎤

⎦

= negl(λ)

where the last equation is due to the binding of SBCS. �

674 Z. Brakerski et al.

Proof of Single-Statement Zero-Knowledge. Let SBCS.S = (SBCS.SA,SBCS.SB)
be the equivocability simulator of SBCS and let GC.S be the simulator of the gar-
bling scheme. Define the single-statement zero-knowledge simulator S = (S1,S2)
as follows:

– S1(crs):
1. Set hsk := 0p , where p is the upper-bound on the size of FHE secret-keys

and evaluated ciphertexts, as in Definition 5.
2. Let Dhsk : {0, 1}p → {0, 1} be the boolean circuit that has hsk hard-wired

in it, takes as input an FHE evaluated-ciphertext ct, and decrypts ct with
hsk. Compute

(

D̃hsk, {labi}i∈[p]

)

← SGC

(

1λ, 1|Dhsk|, 1
)

.

3. For i ∈ [p] and b ∈ {0, 1} compute
(

crsi,b, ci,b, td
c
i,b

) ← SBCS.SA(1λ, 1λ).
4. Set

pk :=
(

D̃hsk, {ci,b}i∈[p],b∈{0,1}
)

, τ :=
({labi}i∈[p], {tdc

i,b}i∈[p],b∈{0,1}
)

.

– S2(crs, C, pk, τ, x):
1. Parse crs = hpk, pk =

(

D̃hsk, {ci,b}i∈[p],b∈{0,1}
)

and τ =
({labi}i∈[p],

{tdc
i,b}i∈[p],b∈{0,1}

)

.
2. Encrypt ctw ← FHE.Enchpk(0k), where k is the bit-length of witnesses as

determined by C.
3. Compute homomorphically ctb ← FHE.Evalhpk(ctw, Cx), where Cx is the

circuit Cx(◦) := C(x, ◦).
4. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb and

compute
di ← SBCS.SB

(

crsi,˜bi
, ci,˜bi

, tdc
i,˜bi

, labi

)

5. Output
π :=

(

ctw, {labi, di}i∈[p]

)

.

We now prove indistinguishability via a sequence of hybrids:

Hybrid H0. The real Setup,Prove algorithms.

Hybrid H1. We change the way that the values {crsi,b, ci,b}i∈[p],b∈{0,1} and
{di,˜bi

}i∈[p] are computed in Setup and Prove respectively:

1. In Setup, for i ∈ [p] and b ∈ {0, 1} compute
(

crsi,b, ci,b, td
c
i,b

) ←
SBCS.SA(1λ, 1λ).

2. In Prove, for i ∈ [p] compute

di ← SBCS.SB
(

crsi,˜bi
, ci,˜bi

, tdc
i,˜bi

, labi,˜bi

)

.

Hybrids H1 and H0 are computationally indistinguishable due to the equivoca-
bility of SBCS.

FHE-Based Bootstrapping of Designated-Prover NIZK 675

Hybrid H2. Note that in Hybrid H1 the values {labi,˜bi
}i∈[p] are only used during

Prove, and the other p GC labels are never used. In this hybrid we change the
way that the values D̃hsk and {labi,˜bi

}i∈[p] are computed in Setup and Prove
respectively:

1. In Setup, compute
(

D̃hsk, {labi}i∈[p]

)

← SGC

(

1λ, 1|Dhsk|, 1
)

.

2. In Prove, for i ∈ [p] set labi,˜bi
:= labi and proceed as in the previous hybrid.

Hybrids H2 and H1 are computationally indistinguishable due to the security of
GC.

Hybrid H3. Note that in Hybrid H2 the value hsk is only used when computing
the FHE ciphertext ctw in Prove. In this hybrids we change the way that ctw is
computed: Encrypt ctw ← FHE.Enchpk(0k), where k is the bit-length of witnesses
as determined by C. Hybrids H3 and H2 are computationally indistinguishable
due to the security of FHE.

Note that this hybrid is identical to the simulators S1,S2. �

Efficiency. Fix λ and note that by the compactness of FHE, there exists some
p = poly(λ) such that for all params = d and (hpk, hsk) ← FHE.Keygen(1λ, 1d),
the size of FHE evaluated-ciphertexts and hsk is at most p. Denote (crs,msk) =
(hpk, hsk) and note that the running time of Setupcrs(msk) is bounded by
some p′ = poly(p, λ) = poly(λ), i.e. for all params = d and all (crs,msk) ←
GlobalSetup(1λ, 1d), the complexity of Setupcrs(msk) is at most p′.

4.2 DP-NIZK from Single-Statement Global-Setup DP-NIZK

Theorem 2. Assuming the existence of the following building blocks, for every
d ∈ N there exists a DPNIZK proof system as in Definition 7 for the ensemble Cd

of NP relations that are verifiable by circuits C of depth at most d.

1. A pseudo-random function PRF = (Setup,Eval) where w.l.o.g. for every k ←
PRF.Setup(1λ) it holds that k ∈ {0, 1}λ.

2. A single-statement global-setup DPNIZK proof system 1DPNIZK =
(GlobalSetup,Setup,Prove,Verify) for {Cd}d, where w.l.o.g. for every
(crs,msk) ← 1DPNIZK.GlobalSetup(1λ, 1d) it holds that the randomness used
by 1DPNIZK.Setupcrs(msk) is of size � = poly(λ), the size of msk is some
p = poly(λ) and the scheme satisfies (2λ−�, λ)-soundness.

3. A statistically-binding commitment scheme SBCS = (Gen,Commit,Ver) as in
Definition refdef:comm.

In the rest of this section we prove Theorem 2.

676 Z. Brakerski et al.

Construction 10 (DP-NIZK from 1-DP-NIZK).

– Setup(1λ, 1d):
1. For i = 0, . . . , λ compute (crs′i,msk′

i) ← 1DPNIZK.GlobalSetup(1λ, 1d′
i)

where d′
i is defined in the paragraph bellow.

2. Sample r
$← {0, 1}� and for i ∈ [λ] sample ki ← PRF.Setup(1λ).

3. Compute crs∗ ← SBCS.Gen(1λ, 1p+λ) and for i ∈ [λ] sample (c∗
i , d

∗
i) ←

SBCS.Commit(crs∗, (msk′
i, ki)).

4. Sample
(

pk∅, k∅
P

)

← 1DPNIZK.Setupcrs′0(msk′
0).

5. Output crs := ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r) and kP :=
({msk′

i}i=0,...,λ, {ki, d
∗
i }i∈[λ], k

∅
P

)

.
– Provecrs(C, kP , x, w):

1. Parse crs = ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r) and kP =
({msk′

i}i=0,...,λ, {ki, d
∗
i }i∈[λ], k

∅
P

)

.
2. Sample m

$← {0, 1}λ and for i ∈ [λ] let mi denote length-i prefix of m
(i.e. mi = m1m2 . . . mi). In particular denote m0 = ∅ and mλ = m.

3. For i = 0, . . . , λ − 1 do:
(a) For b ∈ {0, 1} compute

rmi‖b := r ⊕ PRF.Evalki+1(m
i‖b)

and sample a 1-DPNIZK instance respective to (crs′i+1,msk′
i+1) with

rmi‖b as randomness:
(

pkmi‖b, k
mi‖b
P

)

:= 1DPNIZK.Setupcrs′i+1
(msk′

i+1 ; rmi‖b).

(b) Let C ′
i be the relation that takes as a statement a pair (◦0, ◦1) and as

a witness a 3-tuple (•0, •1, •2), and outputs 1 iff

SBCS.Ver
(

crs∗, c∗
i+1, (•0, •1), •2

)

= accept ∧
∀b ∈ {0, 1}, ◦b = 1DPNIZK.Setupcrs′i+1

(•0 ; r ⊕ PRF.Eval•1(m
i‖b)

)

.

Compute

πmi ← 1DPNIZK.Provecrs′i

(

C ′
i, (pk

mi

, kmi

P),

(pkmi‖0, pkmi‖1), (msk′
i+1, ki+1, d

∗
i+1)

)

.

4. Compute

πm ← 1DPNIZK.Provecrs′λ (C, (pkm, km
P), x, w) .

5. Output π :=
(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.

FHE-Based Bootstrapping of Designated-Prover NIZK 677

– Verifycrs(C, x, π):
1. Parse crs = ({crs′i}i=0,...,λ, crs∗, {c∗

i }i∈[λ], pk
∅, r) and π =

(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.
2. For i = 0, . . . , λ − 1 compute

1DPNIZK.Verifycrs′i

(

C ′
i, pk

mi

, (pkmi‖0, pkmi‖1), πmi
)

and if it rejects (outputs 0) then reject (output 0).
3. Compute and output

1DPNIZK.Verifycrs′λ (C, pkm, x, πm) .

Choice of Parameters. Note that by the efficiency of 1DPNIZK there is
some fixed polynomial p = p(λ) such that for all λ, d and (crs′,msk′) ←
1DPNIZK.GlobalSetup(1λ, 1d) the complexity of 1DPNIZK.Setupcrs′(msk′) is p.
Therefore, there is some fixed polynomial p′ = poly(λ, p) = poly(λ) such that
for all λ, d and (crs, kP) ← Setup(1λ, 1d), the complexity of {C ′

i}i (the circuits
defined in step (b) of Provecrs(·, kP , ·, ·)) is at most p′. It follows that there is also
some d′′ = poly(λ) such that for all λ, d and (crs, kP) ← Setup(1λ, 1d), the depth
of {C ′

i}i is at most d
′′
. For i < λ we set d′

i := d
′′

and for i = λ we set d′
λ := d.

Proof of Completeness. Fix λ, d, C, x, w where C is of depth at most d and
C(x,w) = 1. Consider (crs, kP) ← Setup(1λ, 1d) and π ← Provecrs(C, kP , x, w).
Parse

crs = ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r),

π =
(

{pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.

Consider the execution of Verifycrs (C, x, π). For i = 0, . . . , λ − 1 it holds that

C ′
i

(

(pkmi‖0, pkmi‖1), (msk′
i+1, ki+1, d

∗
i+1)

)

= 1

and therefore 1DPNIZK.Verifycrs′i

(

C ′
i, (pk

mi‖0, pkmi‖1), πmi
)

= 1.
Moreover, since C(x,w) = 1, it holds that 1DPNIZK.Verifycrs′λ

(C, x, πm) = 1. �
Proof of (Statistical) Soundness.
Notation. For any fixed pair (crs′,msk′) ← 1DPNIZK.Global.Setup(1λ, params) we
divide the space {0, 1}� into “good randomness” and “bad’ randomness”, where
a string s′ ∈ {0, 1}� is “bad randomness” respective to (crs′,msk′) if it breaks its
soundness, i.e. if

∃(C, x, π) : x /∈ LC ∧ 1DPNIZK.Verifycrs′(C, pk′, x, π) = 1

where pk′ ← 1DPNIZK.Setupcrs′(msk′ ; s′), and otherwise s′ is “good random-
ness”.

The following lemma follows immediately from the ε-soundness of 1DPNIZK
if ε(λ) = 2−λ · negl(λ):

678 Z. Brakerski et al.

Lemma 2 For every pair (crs′,msk′) ← 1DPNIZK.Global.Setup(1λ, 1d) and
every set S ⊂ {0, 1}� of size at most 2λ,

Pr
r

$←{0,1}�
[∃s ∈ S, s ⊕ r is bad randomness respective to (crs′,msk′)] = negl(λ).

We now proceed with the proof of soundness. Fix λ, d and a circuit C ∈ Cd.
Consider the random variable crs ← Setup(1λ, 1d) and the corresponding circuits
{C ′

i}i=0,...,λ−1 as described in step (b) of Provecrs. Parse

crs = ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r)

and recall that crs′i was computed as
(

crs′i,msk′
i

) ← 1DPNIZK.GlobalSetup

(1λ, 1d′
i) and r

$← {0, 1}�. Moreover, the values {c∗
i }i∈[λ] were compute as

(c∗
i , d

∗
i) ← SBCS.Commit(crs∗, (msk′

i, ki))

where crs∗ ← SBCS.Gen(1λ, 1p+λ) and ki ← PRF.Setup(1λ).
For all i ∈ [λ] consider the set of strings Si := {PRF.Evalki

(mi)}mi∈{0,1}i .
Then due to Lemma 2, it holds that

Pr
r

$←{0,1}�
[∃s ∈ Si, s ⊕ r is bad randomness respective to (crs′i,msk′

i)] = negl(λ).

(1)

Assume that there exist (x, π) such that x /∈ LC and Verifycrs(C, x, π) = 1. Parse

π =
(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.

– Assume that there exists some j ∈ [λ] such that the value pkmj−1
(as appears

in π) was computed “honestly” and the value pkmj

(as appears in π) wasn’t
computed “honestly”, i.e. assume that

pkmj−1
=

{

1DPNIZK.Setupcrs′j−1
(msk′

j−1 ; r ⊕ PRF.Evalkj−1(m
j−1)) j − 1 > 0

1DPNIZK.Setupcrs′0(msk′
0 ; s

$← {0, 1}�) j − 1 = 0

and
pkmj �= 1DPNIZK.Setupcrs′j (msk′

j ; r ⊕ PRF.Evalkj
(mj)).

Due to soundness of 1DPNIZK respective to (crs′j−1,msk′
j−1) and

pkmj−1
(which holds with all but negl. prob due to Eq. (1)), and

since we assume that Verifycrs(C, x, π) = 1 and in particular that
1DPNIZK.Verifycrs′j−1

(

C ′
j−1, pk

mj−1
, (pkmj−1‖0, pkmj−1‖1), πmj−1

)

= 1, with
all but negl. prob, there exists a a string ŵj−1 such that

C ′
j−1

(

(pkmj−1‖0, pkmj−1‖1), ŵj−1

)

= 1. (2)

FHE-Based Bootstrapping of Designated-Prover NIZK 679

Parse ŵj−1 = (m̂skj , k̂j , d̂
∗
j), then Eq. (2) in particular means that

pkmj

= 1DPNIZK.Setupcrs′j (m̂skj ; r ⊕ PRF.Evalk̂j
(mj)).

Since we assume that pkmj

wasn’t generated honestly, i.e. that

pkmj �= 1DPNIZK.Setupcrs′j (msk′
j ; r ⊕ PRF.Evalkj

(mj)),

it follows that (m̂skj , k̂j) �= (msk′
j , kj). However, Eq. (2) also implies that

SBCS.Ver
(

crs∗, c∗
j , (m̂skj , k̂j), d̂∗

j

)

= accept,

and therefore the decommitment d̂∗
j breaks the soundness of SBCS respec-

tive to (crs∗, c∗
j) and the pair of messages (msk′

j , kj) and (m̂skj , k̂j). Since the
soundness of SBCS respective to (crs∗, c∗

j) holds with all but negligible prob-

ability, it follows that the probability that pkmj−1
was computed “honestly”

and pkmj

wasn’t computed “honestly” is negligible.

Since for j − 1 = 0 the value pkmj−1
is always generated honestly during Setup,

an inductive argument implies that with all but negligible probability all of the
values pk∅, pkm1

, . . . , pkmλ−1
, pkm ∈ π were generated honestly.

Lastly, the soundness of 1DPNIZK respective to (crs′λ,msk′
λ) and pkm implies

that with all but negligible probability there is no (x,C, πm) such that

x /∈ LC ∧ 1DPNIZK.Verifycrs′λ (C, pkm, x, πm) = 1.

�

Proof of (Programmable CRS) Zero-Knowledge. Let 1DPNIZK.S = (S1,S2) be
the single-statement zero-knowledge simulator of 1DPNIZK and define the zero-
knowledge simulator S = (S1,S2) as follows:

– S1(1λ):
1. For i = 0, . . . , λ compute (crs′i,msk′

i) ← 1DPNIZK.GlobalSetup(1λ, 1d′
i).

2. Sample r
$← {0, 1}�.

3. Compute crs∗ ← SBCS.Gen(1λ, 1p+λ) and for i ∈ [λ] sample (c∗
i , d

∗
i) ←

SBCS.Commit(crs∗, 0p+λ).
4. Compute (pk∅, τ∅) ← 1DPNIZK.S1(crs′0).
5. Output crs := ({crs′i}i=0,...,λ, crs∗, {c∗

i }i∈[λ], pk
∅, r) and τ := τ∅.

– S2(C, crs, τ, x):
1. Parse crs = ({crs′i}i=0,...,λ, crs∗, {c∗

i }i∈[λ], pk
∅, r) and τ = τ∅.

2. Compute m
$← {0, 1}λ and for i ∈ [λ] let mi denote length-i prefix of m

(i.e. mi = m1m2 . . . mi). In particular denote m0 = ∅ and mλ = m.
3. For i = 0, . . . , λ − 1 do:

680 Z. Brakerski et al.

(a) For b ∈ {0, 1} compute

(pkmi‖b, τmi‖b) ← 1DPNIZK.S1(crs′i+1).

(b) Compute

πmi ← 1DPNIZK.S2

(

crs′i, C
′
i, pk

mi

, τmi

, (pkmi‖0, pkmi‖1)
)

.

4. Compute
πm ← 1DPNIZK.S2 (crs′λ, C, pkm, τm, x) .

5. Output π :=
(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.

We now prove indistinguishability via a sequence of 2 + 3λ hybrids:

Hybrid H0. The real Setup,Prove algorithms.
For i = 0, . . . , λ − 1 we define the hybrids {Hi,j}j∈[3] and consider the

sequence

H0, (H0,1,H0,2,H0,3), (H1,1,H1,2,H1,3), . . . , (Hλ−1,1,Hλ−1,2,Hλ−1,3),Hλ.

Hybrid Hi,1. Note that in the previous hybrid, 1DPNIZK public-keys respective
to crs′i are sampled with real randomness, and msk′

i is not used elsewhere. We
therefore can simulate them and proofs respective to them. Formally, we change
the way that values of the form pkmi−1‖b and πmi

are generated:

– If i = 0, change the way that pk∅ is generated during Setup:

(pk∅, τ∅) ← 1DPNIZK.S1(crs′0).

If i > 0, change the way that pkmi−1‖b is generated during the (i − 1)th
iteration of Step (3) of Prove:

(pkmi−1‖b, τmi−1‖b) ← 1DPNIZK.S1(crs′i).

– Change the way that πmi

is generated during the ith iteration of Step (3) of
Prove:

πmi ← 1DPNIZK.S2

(

crs′i, C
′
i, pk

mi

, τmi

, (pkmi‖0, pkmi‖1)
)

.

Hybrids Hi−1,3 and Hi,1 are indistinguishable due to the single-statement zero-
knowledge of 1DPNIZK respective to crs′i.

Hybrid Hi,2. Note that in the previous hybrid, the value d∗
i+1 is never used. In

this hybrid we change the way that the commitment c∗
i+1 is computed:

(c∗
i+1, d

∗
i+1) ← SBCS.Commit(crs∗, 0p+λ).

Hybrids Hi,1 and Hi,2 are indistinguishable due to the hiding of SBCS.

FHE-Based Bootstrapping of Designated-Prover NIZK 681

Hybrid Hi,3. Note that in the previous hybrid, the value ki+1 is only used when
computing

rmi‖b := r ⊕ PRF.Evalki+1(m
i‖b)

during Prove. In this hybrid we sample instead rmi‖b $← {0, 1}�. Hybrids Hi,2

and Hi,3 are indistinguishable due to the pseudorandomness of PRF.

Hybrid Hλ. Note that in the previous hybrid (Hλ−1,3), 1DPNIZK public-keys
respective to crs′λ are sampled with real randomness, and msk′

λ is not used else-
where.

Moreover, the values m which are used by the prover when answering proof
queries are sampled uniformly at random from {0, 1}λ. Since the adversary is
allowed to make at most a polynomial number of queries, with all but negligible
probability the prover does not sample the same m for two different proof queries.
In that case, for every pkm that is sampled respective to crs′λ, the prover generates
at most a single proof.

We therefore can simulate those proofs with the single-statement zero-
knowledge simulator of 1DPNIZK. Formally, we change the way that values of
the form pkm and πm are generated:

– Change the way that pkm is generated during the (λ − 1)th iteration of Step
(3) of Prove:

(pkm, τm) ← 1DPNIZK.S1(crs′λ).

– Change the way that πm is generated during Step (4) of Prove:

πm ← 1DPNIZK.S2 (crs′λ, C, pkm, τm, x) .

Hybrids Hλ−1,3 and Hλ are indistinguishable due to the single-statement zero-
knowledge of 1DPNIZK respective to crs′λ. This hybrid is identical to the simu-
lator, which completes the proof. �

References

[BF11a] Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial func-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
149–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
20465-4 10

[BF11b] Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary
fields and new tools for lattice-based signatures. In: Catalano, D., Fazio,
N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8 1

[BF14] Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk [Kra14],
pp. 520–537

[BFKW09] Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: sig-
nature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 5

https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5

682 Z. Brakerski et al.

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: Simon, J. (ed.) Proceedings of the
20th Annual ACM Symposium on Theory of Computing, 2–4 May 1988,
Chicago, Illinois, USA, pp. 103–112. ACM (1988)

[BGI13] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk [Kra14], pp. 501–519. IACR ePrint (2013).
http://eprint.iacr.org/2013/401

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: Naor, M. (ed.) Innovations in Theoretical Computer Science, ITCS
2014, Princeton, NJ, USA, 12–14 January 2014, pp. 1–12. ACM (2014)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44371-2 27

[CCH+19] Canetti, R., et al.: from practice to theory. In: Charikar, M., Cohen, E.
(eds.) Proceedings of the 51st Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp.
1082–1090. ACM (2019)

[CJL09] Charles, D.X., Jain, K., Lauter, K.E.: Signatures for network coding. IJI-
CoT 1(1), 3–14 (2009)

[Dam92] Damg̊ard, I.: Non-interactive circuit based proofs and non-interactive per-
fect zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EURO-
CRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-47555-9 28

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In: 31st
Annual Symposium on Foundations of Computer Science, St. Louis, Mis-
souri, USA, 22–24 October 1990, vol. I, pp. 308–317. IEEE Computer Soci-
ety (1990)

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford
University (2009). crypto.stanford.edu/craig

[GGI+15] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using
fully homomorphic hybrid encryption to minimize non-interactive zero-
knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)

[GKKR10] Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over
the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 142–160. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13013-7 9

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.)
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp.
469–477. ACM (2015)

[KNYY19] Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated ver-
ifier/prover and preprocessing NIZKs from Diffie-Hellman assumptions.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477,
pp. 622–651. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 22

http://eprint.iacr.org/2013/401
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/3-540-47555-9_28
http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-030-17656-3_22

FHE-Based Bootstrapping of Designated-Prover NIZK 683

[KNYY20] Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Compact NIZKs
from standard assumptions on bilinear maps. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 379–409. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3 13

[KP95] Kilian, J., Petrank, E.: An efficient non-interactive zero-knowledge proof
system for NP with general assumptions. Electron. Colloq. Comput. Com-
plex. 2(38) (1995)

[Kra14] Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54631-0

[KW18] Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 733–765. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 25

[MPR11] Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 24

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 4

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM
(2005). Full version in [?]

[SAH16] Sakai, Y., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for
circuits from bilinear map. In: Cheng, C.-M., Chung, K.-M., Persiano, G.,
Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 283–300. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7 11

[SKAH18] Sakai, Y., Katsumata, S., Attrapadung, N., Hanaoka, G.: Attribute-based
signatures for unbounded languages from standard assumptions. In: Peyrin,
T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 493–522.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 17

[SMP87] De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge
proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
52–72. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-
2 5

[Tsa17] Tsabary, R.: An equivalence between attribute-based signatures and homo-
morphic signatures, and new constructions for both. IACR Cryptology
ePrint Archive 2017:723 (2017)

https://doi.org/10.1007/978-3-030-45727-3_13
https://doi.org/10.1007/978-3-642-54631-0
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-662-49384-7_11
https://doi.org/10.1007/978-3-030-03329-3_17
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/3-540-48184-2_5

	FHE-Based Bootstrapping of Designated-Prover NIZK
	1 Introduction
	1.1 Our Results
	1.2 Our Parameters and Assumptions Compared to Prior Work
	1.3 Technical Overview
	1.4 DP-NIZK, Attribute-Based Signatures and Homomorphic Signatures

	2 Preliminaries
	2.1 Notations
	2.2 Pseudorandom Function (PRF)
	2.3 Collision Resistant Hash Function (CRH)
	2.4 Statistically Binding Equivocable Commitments
	2.5 Garbled Circuits
	2.6 Homomorphic Encryption

	3 Definitions of Designated-Prover NIZK
	3.1 Single-Statement Global-Setup DP-NIZK Proofs

	4 Our Construction
	4.1 Single-Statement Global-Setup DP-NIZK from FHE
	4.2 DP-NIZK from Single-Statement Global-Setup DP-NIZK

	References

