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Abstract. We construct a two-message oblivious transfer (OT) proto-
col without setup that guarantees statistical privacy for the sender even
against malicious receivers. Receiver privacy is game based and relies on
the hardness of learning with errors (LWE). This flavor of OT has been
a central building block for minimizing the round complexity of witness
indistinguishable and zero knowledge proof systems, non-malleable com-
mitment schemes and multi-party computation protocols, as well as for
achieving circuit privacy for homomorphic encryption in the malicious
setting. Prior to this work, all candidates in the literature from stan-
dard assumptions relied on number theoretic assumptions and were thus
insecure in the post-quantum setting. This work provides the first (pre-
sumed) post-quantum secure candidate and thus allows to instantiate
the aforementioned applications in a post-quantum secure manner.

Technically, we rely on the transference principle: Either a lattice or
its dual must have short vectors. Short vectors, in turn, can be trans-
lated to information loss in encryption. Thus encrypting one message
with respect to the lattice and one with respect to its dual guarantees
that at least one of them will be statistically hidden.

1 Introduction

Oblivious transfer (OT), introduced by Rabin [32], is one of the most fundamen-
tal cryptographic tasks. A sender (S) holds two values μ0, μ1 and a receiver (R)
holds a bit β. The functionality should allow the receiver to learn μβ and noth-
ing else, the sender should learn nothing. OT has been a fundamental building
block for many cryptographic applications, in particular ones related to secure
multi-party computation (MPC), starting with [15,35].

A central measure for the complexity of a protocol or a proof system is its
round complexity. One could imagine a protocol implementing the OT function-
ality with only two messages: a first message from the receiver to the sender, and
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a second message from the sender to the receiver. Indeed, in the semi-honest set-
ting, where parties are assumed to follow the protocol, this can be achieved based
on a variety of concrete cryptographic assumptions (Decisional Diffie-Hellman,
Quadratic Residuosity, Decisional Composite Residuosity, Learning with Errors,
to name a few), as well as based on generic assumptions such as trapdoor per-
mutations, additively homomorphic encryption and public key encryption with
oblivious public key generation (e.g. [7,13]).

In the malicious setting, where an adversarial party might deviate from the
designated protocol, the ultimate simulation based security notion cannot be
achieved in a two message protocol (without assuming setup such as a common
random string or a random oracle) [16]. The standard security notion in this
setting, which originated from the works of Naor and Pinkas [27] and Aiello
et al. [1], and was further studied in [3,18,21], provides a meaningful relaxation
of the standard (simulation-based) security notion. This definition requires that
the receiver’s only message is computationally indistinguishable between the
cases of β = 0 and β = 11, and that regardless of the receiver’s first message, the
sender’s message statistically hides at least one of μ0, μ1. Alternative equivalent
formulations are simulation using a computationally unbounded (or exponential
time) simulator, or the existence of a computationally unbounded (or exponential
time) extractor, that can extract a β value from any receiver message.

With the aforementioned connection to secure MPC, it is not surprising that
this notion of malicious statistical sender-private OT (SSP-OT) found numerous
applications. In particular in recent years as the round complexity of MPC and
related objects is taken to the necessary minimum. Badrinarayanan et al. [3],
Jain et al. [19] and Kalai et al. [22] used it to construct two-message witness
indistinguishable proof systems, and even restricted forms of zero-knowledge
proof systems.

Badrinarayanan et al. [4] used similar techniques to present malicious MPC
with minimal round complexity (4-rounds). In particular, their building blocks
are SSP-OT and a 3-round semi-malicious MPC protocol (a comparable result
was achieved by Halevi et al. [17] using different techniques, in particular requir-
ing NIZK/ZAP). Khurana and Sahai [24] used SSP-OT to construct two-message
non-malleable commitment schemes (with respect to the commitment), and
Khurana [23] used it (together with ZAPs) to achieve 3-round non-malleable
commitments from polynomial assumptions. Badrinarayanan et al. [5] relied on
SSP-OT to construct 3-round concurrent MPC.

Ostrovsky, Paskin-Cherniavsky and Paskin-Cherniavsky [28] used SSP-OT to
show that any fully homomorphic encryption scheme (FHE) can be converted to
one that is statistically circuit private even against maliciously generated public
keys and ciphertexts.

Our Results and Applications. Prior to this work it was only known how
to construct SSP-OT from number theoretic assumptions such as DDH [1,27],
QR and DCR [18]. If setup is allowed, specifically a common random string,
1 Notice that it is impossible to achieve statistical indistinguishability in this setting,

at least against non-uniform malicious receivers.
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then an LWE-based construction by Peikert, Vaikuntanathan and Waters [31]
achieves strong simulation security (even in the UC model). However, the afore-
mentioned applications require a construction without setup and could therefore
not be instantiated in a post-quantum secure manner. In this work, we construct
SSP-OT from the learning with errors (LWE) assumption [33], with polyno-
mial noise-ratio, which translates to the hardness of polynomially approximating
short-vector problems (such as SIVP or GapSVP) to within a polynomial factor.
Currently, no polynomial time quantum algorithm is known for these problems,
and thus they serve as a major candidate for constructing post-quantum secure
cryptography.

Relying on our construction, it is possible for the first time, to instantiate the
works of [3,5,19,22,24] from LWE, i.e. in a post-quantum secure manner, and
obtain proof systems with witness-indistinguishable or (limited) zero-knowledge
properties, as well as non-malleable commitment schemes and concurrent MPC
protocols. It is also possible to construct a round-optimal malicious MPC from
LWE by applying the result of [4] using our SSP-OT and the LWE-based 3-
round semi-malicious MPC of Brakerski et al. [8]. Lastly, our result allows to
achieve malicious circuit private FHE from LWE by instantiating the [28] result
with our LWE-based SSP-OT and relying on the numerous existing LWE-based
FHE schemes. We stress that none of these applications had prior post-quantum
secure candidates.

1.1 Technical Overview

Our construction relies on some fundamental properties of lattices. For our pur-
poses we will only consider the so called q-ary lattices that can be described
as follows. Given a matrix A ∈ Z

n×m
q for some modulus q and m ≥ n, we can

define Λq(A) = {y ∈ Z
m : y = sA (mod q)} which is the lattice defined by

the row-span of A, and Λ⊥
q (A) = {x ∈ Z

m : Ax = 0 (mod q)} which is the
lattice defined by the kernel of A. Note that both lattices have rank m over
the integers, i.e. they contain a set of m linearly independent vectors over the
integers (but not modulo q), since they contain q ·Zm. There is a duality relation
between these two lattices, both induced by the matrix A, and this relation will
be instrumental for our methods.

An important fact about lattices is that a good basis implies decoding. Specif-
ically, if Λ⊥

q (A) contains m linearly independent vectors (over the integers) of
length at most �, then it is possible to decode vectors of the form sA+e (mod q),
if ‖e‖ is sufficiently smaller than q/�. Namely, to recover s, e. Such a short basis
is sometimes called a trapdoor for A.2

Consider sampling s uniformly in Z
n
q and e from a Gaussian s.t. ‖e‖ is slightly

below the decoding capability q/�. Then if Λ⊥
q (A) indeed has an �-basis then s, e

can be recovered from sA+ e (mod q). However, a critical observation for us is

2 While the form sA+e (mod q) bears resemblance to an instance of the LWE problem
(to be discussed below), the matrix A in our setting might be chosen by a malicious
party and therefore cannot be assumed to be close to uniform.
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that this encoding becomes lossy if the lattice Λq(A) contains a vector of norm
�q/�. That is, in this case it is information theoretically impossible to recover
the original s. This is because the component of sA that is in the direction of
the short vector is masked by the noise e (which is Gaussian and thus has a
component in every direction). This property was also used by Goldreich and
Goldwasser [14] to show that some lattice problems are in coAM.

To utilize this structure for our purposes, we specify the OT receiver message
to be a matrix A. Then the OT sender generates sA + e (mod q) and encodes
one of its inputs, say μ1 using entropy from the vector s (e.g. using a randomness
extractor). We get that this value is recoverable if A has �-basis and information-
theoretically hidden if Λq(A) has a short vector. If the receiver’s choice bit is 1,
all it needs to do is generate A that has an �-trapdoor, for which there are many
well known methods to generate such A’s that are statistically indistinguishable
from uniform (starting from [2] with numerous followups). In order to complete
the OT functionality we need to find a way to encode μ0 in a way that is lossy if
Λq(A) has no short vector. This will guarantee that regardless of the (possibly
malicious) choice of matrix A, either μ0 or μ1 are information theoretically
hidden.

Let us examine the case where all vectors in Λq(A) are of length �t for some
parameter t. Then the duality relations expressed in Banaszczyk’s transference
theorems [6] guarantees that Λ⊥

q (A) has a basis of length �q/t. In such case we
can use the smoothing principle to conclude that if x is a discrete Gaussian with
parameter q/t then Ax (mod q) is statistically close to uniform. We can thus
instruct the sender to compute Ax+d (mod q) for some vector d, and encode μ1

using entropy extracted from d. This guarantees lossiness if Λq(A) has no short
vectors as required. Furthermore, it is possible to generate a pseudorandom A
(under the LWE assumption) and specify d such that d is recoverable (this A
corresponds to the public key in Regev’s original encryption scheme [33]).

All that is left is to set the relation between �, t, q so as to make sure that if
one mode of the OT is decodable then the other is lossy. One may be suspicious
whether there is a valid setting of parameters, but in fact there is quite some
slackness in the choice of parameters. We can start by setting �, t to be some
fixed polynomial in n that is sufficient to guarantee correct recovery in the
respective cases. This can be done regardless of the value of q. We will set the
parameter q to ensure that if μ1 is recoverable then μ0 is not, which is sufficient to
guarantee statistical sender privacy against malicious receiver. Specifically, if μ1

is recoverable then Λq(A) does not have vectors of length q/(k�), where k is some
polynomial in n (that does not depend on q), and thus Λ⊥

q (A) has a k� basis.
We therefore require that q/t � k�, or equivalently q � k�t, which guarantees
that μ0 is not recoverable in this case. Since k, �, t are fixed polynomials in
n, it is sufficient to choose q to be a sufficiently larger polynomial than the
product k�t to guarantee security. Receiver privacy is guaranteed since A is
either statistically indistinguishable from uniform if the choice bit β is 1, or
computationally indistinguishable from uniform if β = 0.
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Disadvantages of the Basic Solution, and Our Actual Improved
Scheme. The proposal above can indeed be used to implement an SSP-OT.
However, when actual parameters are assigned, it becomes apparent that the
argument about the lossiness of s given sA + e (mod q) when Λq(A) has some
short vector does not produce sufficient randomness to allow extraction. This
can be resolved by repetition (many s values with the same A). However, the
lossiness argument for d guarantees much more and in fact allows to extract
random bits from d deterministically. The consequence is an unnecessarily inef-
ficient scheme. In particular, the information rate is inverse polynomial in the
security parameter of the scheme.

The scheme we actually introduce and analyze is therefore a balanced version
of the above outline, where we “pay” in weakening the lossiness in d in exchange
for strengthening the lossiness for s, which leads to a scheme with information
rate ˜Ω(1) (achieving constant information rate while preserving statistical secu-
rity remains an intriguing question). Towards this end, we introduce refinements
of known lattice tools that may be of independent interest.

The idea is to improve the lossiness in s by considering the case where Λq(A)
has multiple short vectors, instead of just one. Intuitively, this will introduce
entropy into additional components of s, thus increasing the lossiness. We for-
malize this by considering the Gaussian measure of Λq(A). A high Gaussian
measure translates (at least intuitively) to the existence of a multitude of short
vectors, formally it characterizes the potency of e to hide information about s.
The formal argument goes through the optimal Voronoi cell decoder, see Sect. 3
for formal statement and additional details.

Of course the lossiness in s needs to be complemented by lossiness in d if the
Gaussian measure of Λq(A) is small, which translates to having few independent
short vectors in Λq(A). We show that in this case we can derive partial smoothing
where for a Gaussian x, the value Ax (mod q) is no longer uniform, but rather
is uniform over some subspace modulo q. If the dimension of this subspace is
large enough, we can get lossiness for the vector d and complete the security
proof. Partial smoothing and implications are discussed in Sect. 4.

To apply these principles we need to slightly modify the definition of the
vector d and the matrix A in the case of β = 0. Now A will no longer correspond
to the public key of the Regev scheme but rather, interestingly, to the public
key of the batched scheme introduced in [31] (which is also concerned with
constructing OT, but allowing setup). The complete construction and analysis
can be found in Sect. 5.

2 Preliminaries

2.1 Statistical Sender-Private Two-Message Oblivious Transfer

We now define the object of main interest in this work, namely SSP-OT. We only
define the two-message perfect-correctness variant since this is what we achieve
in this work. A two-message oblivious transfer protocol consists of a tuple ppt
algorithms (OTR,OTS,OTD) with the following syntax.
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– OTR(1λ, β) takes the security parameter λ and a selection bit β and outputs
a message ot1 and secret state st.

– OTS(1λ, (μ0, μ1), ot1) takes the security parameter λ, two inputs (μ0, μ1) ∈
{0, 1}len (where len is a parameter of the scheme) and a message ot1. It outputs
a message ot2.

– OTD(1λ, β, st, ot2) takes the security parameter, the bit β, secret state st and
message ot2 and outputs μ′ ∈ {0, 1}len.
Correctness and security are defined as follows.

Definition 2.1. A tuple (OTR,OTS,OTD) is a SSP-OT scheme if the following
hold.

– Correctness. For all λ, β, μ0, μ1, letting (ot1, st) = OTR(1λ, β), ot2 =
OTS(1λ, (μ0, μ1), ot1), μ′ = OTD(1λ, β, st, ot2), it holds that μ′ = μβ with
probability 1.

– Receiver Privacy. Consider the distribution Dβ(λ) defined by running
(ot1, st) = OTR(1λ, β) and outputting ot1. Then D0,D1 are computationally
indistinguishable.

– Statistical Sender Privacy. There exists an extractor OTExt (possi-
bly computationally unbounded) s.t. for any sequence of messages ot1 =
ot1(λ) and inputs (μ0, μ1) = (μ0(λ), μ1(λ)), the distribution ensembles
OTS(1λ, (μ0, μ1), ot1) and OTS(1λ, (μβ′ , μβ′), ot1), where β′ = OTExt(ot1),
are statistically indistinguishable.

2.2 Linear Algebra, Min-Entropy and Extractors

Random Matrices: The probability that a uniformly random matrix A $←
Z

n×m
2 (with m ≥ n) has full rank is given by

Pr
A

[rank(A) < n] = 1 −
n−1
∏

i=0

(1 − 2i−m) ≤
n−1
∑

i=0

2i−m ≤ 2n−m,

where the first inequality follows from the union-bound.

Average Conditional Min-Entropy. Let X be a random-variable supported
on a finite set X and let Z be a (possibly correlated) random variable supported
on a finite set Z. The average-conditional min-entropy H̃∞(X|Z) of X given Z
is defined as

H̃∞(X|Z) = − log
(

Ez

[

max
x∈X

Pr[X = x|Z = z]
])

.

We will use the following easy-to-establish fact about uniform distributions on
binary vector-spaces: If U,V ⊆ Z

n
2 are sub-vectorspaces of Zn

2 , and if u $← U and
v $← V, then it holds that

H̃∞(u|u + v) = dim(U ∩ V).
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Extractors. A function Ext : {0, 1}d × X → {0, 1}� is called a seeded strong
average-case (k, ε)-extractor, if it holds for all random variables X with support
X and Z defined on some finite support that if H̃∞(X|Z) ≥ k, then it holds
that

(s,Ext(s,X), Z) ≈ε (s, U, Z),

where s $← {0, 1}d and U
$← {0, 1}�. Such extractors can be constructed from uni-

versal hash functions [11,12]. In fact, any extractor is an average-case extractor
for slightly worse parameters by the averaging principle3.

2.3 Lattices

We recall the standard facts about lattices. A lattice Λ ⊆ R
m is the set of

all integer-linear combinations of a set of linearly independent basis-vectors,
i.e. for every lattice Λ there exists a full-rank matrix B ∈ R

k×m such that
Λ = Λ(B) = {z ·B | z ∈ Z

k}. We call k the rank of Λ and B a basis of Λ. More
generally, for a set S ⊆ Λ we denote by Λ(S) the smallest sub-lattice of Λ which
contains S. Moreover, we will write rank(S) to denote rank((Λ(S)).

The dual-lattice Λ∗ = Λ∗(Λ) of a lattice Λ is defined by Λ∗(Λ) = {x ∈
R

n | ∀y ∈ Λ : 〈x,y〉 ∈ Z}. Note that it holds that (Λ∗)∗ = Λ. The determinant
of a lattice Λ is defined by detΛ =

√

det(B · B�) where B is any basis of Λ.
It holds that detΛ∗ = 1/det Λ. If Λ = Λ(B) and the norm of each row of B is
at most �, then an argument using Gram-Schmidt orthogonalization establishes
detB ≤ �k.

For a basis B ∈ R
k×m of Λ, we define the parallel-epiped of B by P(B) =

{x · B | x ∈ [−1/2, 1/2)k}. In abuse of notation we write P(Λ) to denote P(B)
for some canonic basis B of Λ (such as e.g. a Hermite basis). For lattices Λ ⊆ Λ0,
we will use P(Λ) ∩ Λ0 as a system of (unique) representatives for the quotient
group Λ0/Λ.

We say that a lattice is q-ary if (qZ)m ⊆ Λ ⊆ Z
m. In particular, for every

q-ary lattice Λ there exists a matrix A ∈ Z
k×m
q such that Λ = Λq(A) = {y ∈

Z
m | ∃x ∈ Z

k
q : y = x · A( mod q)}. We also define the lattice Λ⊥

q (A) = {y ∈
Z

m
q | A · y = 0( mod q)}. It holds that (Λq(A))∗ = 1

q Λ⊥
q (A).

Gaussians. The Gaussian function ρσ : Rm → R is defined by

ρσ(x) = e−π· ‖x‖2

σ2 .

For a lattice Λ ⊆ R
m and a parameter σ > 0, we define the discrete Gaussian

distribution DΛ,σ on Λ as the distribution with probability-mass function Pr[x =
x′] = ρσ(x′)/ρσ(Λ) for all x′ ∈ Λ. Let in the following B = {x ∈ R

m | ‖x‖ ≤ 1}
be the closed ball of radius 1 in R

m. A standard concentration inequality for
discrete gaussians on general lattices is provided by Banaszczyk’s Theorem.

3 I.e. a simple application of Markov’s inequality.
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Theorem 2.2 ([6]). For any lattice Λ ∈ R
m, parameter σ > 0 and u ≥ 1/

√
2π

it holds that

ρσ(Λ\uσ
√

mB) ≤ 2−cu·m · ρσ(Λ),

where cu = − log(
√

2πeu · e−πu2
).

Setting Λ = Z
m and u = 1 in Theorem 2.2 we obtain the following corollary.

Corollary 2.3. Let σ > 0 and x $← DZm,σ. Then it holds that ‖x‖ ≤ σ · √
m,

except with probability 2−m.

Uniform Matrix Distributions with Decoding Trapdoor. For our con-
struction we will need an efficiently samplable ensemble of matrices which is
statistically close to uniform and is equipped with an efficient bounded-distance-
decoder. Such an ensemble was first constructed by Ajtai [2] for q-ary lattices
with prime q. We use a more efficient ensemble due to Micciancio and Peikert
[25] which works for arbitrary modulus.

Lemma 2.4 ([25]). Let κ(n) = ω(
√

log(n)) be any function that grows
faster than

√

log(n) and τ be a sufficiently large constant. There exists
a pair of algorithms (SampleWithTrapdoor,Decode) such that if (A, td) ←
SampleWithTrapdoor(q, n), then A is of size n × m with m = m(q, n) =
O(n · log(q)) and A is 2−nclose to uniform. For any s ∈ Z

m
q and η ∈ Z

m
q with

‖η‖ < q√
m·κ(n) the algorithm Decode on input td and s · A + η will output s.

2.4 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [33]. In this
work we exclusively use the decisional version. The LWEn,m,q,χ problem, for
n,m, q ∈ N and for a distribution χ supported over Z is to distinguish between
the distributions (A, sA+ e (mod q)) and (A,u), where A is uniform in Z

n×m
q ,

s is a uniform row vector in Z
n
q , e is a uniform row vector drawn from χm,

and u is a uniform vector in Z
m
q . Often we consider the hardness of solving

LWE for any m = poly(n log q). This problem is denoted LWEn,q,χ. The matrix
version of this problem asks to distinguish (A,S · A + E) from (A,U), where
S $← Z

k×n
q , E $← χk×m and U ← Z

k×m
q . The hardness of the matrix version

for any k = poly(n) can be established from LWEn,m,q,χ via a routine hybrid-
argument.

As shown in [30,33], the LWEn,q,χ problem with χ being the discrete Gaus-
sian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z

where the probability of x is proportional to e−π(|x|/σ)2 , see more details below),
is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of γ = ˜O(n/α) in worst case dimension n lattices.
This is proven using a quantum reduction. Classical reductions (to a slightly
different problem) exist as well [9,29] but with somewhat worse parameters.
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The best known (classical or quantum) algorithms for these problems run in
time 2 ˜O(n/ log γ), and in particular they are conjectured to be intractable for
γ = poly(n).

3 Lossy Modes for q-Ary Lattices

The following lemmata borrow techniques of the proofs of two lemmata by Chung
et al. [10] (Lemmas 3.3 and 3.4), but are not directly implied by these lemmata.
In this section and Sect. 4, it will be instructive to think of Λ0 as Z

n, which will
be the case in our application in Sect. 5.

Lemma 3.1. Let Λ ⊆ Λ0 ⊆ R
m be full rank lattices and let T ⊆ Λ0 be a system

of coset representatives of Λ0/Λ, i.e. we can write every x ∈ Λ0 as x = t+ z for
unique t ∈ T and z ∈ Λ. Then it holds for any parameter σ > 0 that

ρσ(T )
ρσ(Λ0)

≤ 1
ρσ(Λ)

.

Proof. As the T + y cover Λ0 it holds that

ρσ(Λ0) =
∑

y∈Λ

1
2
(ρσ(T + y) + ρσ(T − y))

=
∑

y∈Λ

∑

t∈T

1
2
(ρσ(t + y) + ρσ(t − y))

=
∑

y∈Λ

∑

t∈T

ρσ(y) · ρσ(t) · 1
2
(e−2π〈t,y〉/σ2

+ e2π〈t,y〉/σ2
)

︸ ︷︷ ︸

≥1

≥
∑

y∈Λ

ρσ(y)
∑

t∈T

ρσ(t)

= ρσ(Λ) · ρσ(T ),

where the first equality follows from the fact that
∑

y∈Λ ρσ(T + y) =
∑

y∈Λ ρσ(T − y) = ρσ(Λ0). The claim follows immediately.

Lemma 3.2. Fix a matrix A ∈ Z
n×m
q with m = O(n log(q)) and a parameter

0 < σ < q
2
√

m
. Let s $← Z

n
q and e $← DZm,σ. Then it holds that H̃∞(s|sA +

e mod q) ≥ − log
(

1
ρσ(Λq(A)) + 2−m

)

.
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Proof. Given arbitrary A and y, we would like to find an s∗ that maximizes the
probability Pr[s = s∗|y = sA + e]. By Bayes’ rule, it holds that

Pr[s = s∗|y = sA + e] = Pr[y = sA + e|s = s∗] · Pr[s = s∗]
Pr[y = sA + e]

= Pr[e = y − s∗A] · Pr[s = s∗]
∑

s′ Pr[y = sA + e|s = s′] Pr[s = s′]

= Pr[e = y − s∗A] · q−n

∑

s′ Pr[e = y − s′A]q−n

=
Pr[e = y − s∗A]

∑

s′ Pr[e = y − s′A]
.

As the denominator
∑

s′ Pr[e = y − s′A] is independent of s∗, it suffices to
maximize the numerator Pr[e = y − s∗A] with respect to s∗. As Pr[e = y −
s∗A] = ρσ(y−s∗A)

ρσ(Zm) is monotonically decreasing in ‖y − s∗A‖, this probability is
maximal for the s∗ that minimizes ‖y − s∗A‖.

Let V ⊆ Z
n be the discretized Voronoi-cell of Λq(A), that is V consists of

all the points in Z
m that are (strictly) closer to 0 than to any other point in Λ

and, for any point x ∈ Z
m that is equi-distant to several lattice-points z1, . . . , z�

(where z1 = 0), assume that there is some tie-breaking rule x �→ i(x), such that
x−zi(x) ∈ V , but for all j ∈ [�]\{i(x)} it holds that x−zj /∈ V . By construction,
V is a system of coset representatives of Zm/Λq(A).

Moreover, for the maximum-likelihood s∗ it holds that Pr[s = s∗|y = sA +
e] = Pr[e mod q ∈ V ]. By Corollary 2.3 it holds that ‖e‖ ≤ σ · √

m < q/2,
except with probability 2−m. Moreover, conditioned on ‖e‖ < q/2 the events
e mod q ∈ V and e ∈ V are equivalent. We can therefore bound Pr[e mod q ∈
V ] ≤ Pr[e ∈ V ]+2−m. By Lemma 3.1 we obtain Pr[e ∈ V ] ≤ ρσ(V )

ρσ(Zm) ≤ 1
ρσ(Λq(A))

and therefore Pr[e mod q ∈ V ] ≤ 1
ρσ(Λq(A)) + 2−m

We conclude that maxs∗∈Zn
q

Pr[s = s∗|y = sA + e] = Pr[e mod q ∈ V ] ≤
1

ρσ(Λq(A)) + 2−m. Thus, it holds that

H̃∞(s|sA + e) = − log(Ey

[

max
s∗ Pr

s,e
[s = s∗|y = sA + e]

]

)

= − log(Ey[Pr[e mod q ∈ V ]])
= − log(Pr[e mod q ∈ V ])

≥ − log
(

1
ρσ(Λq(A))

+ 2−m

)

4 Partial Smoothing

In this section we will state a variant of the smoothing lemma of Micciancio
and Regev [26]. Consider a discrete gaussian DΛ0,σ on a lattice Λ0. As in the
setting of the smoothing Lemma of [26], we want to analyze what happens to the
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distribution of this Gaussian when we reduce it modulo a sublattice Λ ⊆ Λ0. The
new lemma states that if the mass of the Fourier-transform of the probability-
mass function of DΛ0,σ mod Λ is concentrated on short vectors of the dual
lattice Λ∗, then DΛ0,σ mod Λ will be uniform on a certain sublattice Λ1 with
Λ0 ⊆ Λ1 ⊆ Λ.

Lemma 4.1. Let σ > 0 and let Λ ⊆ Λ0 ⊆ R
n be full-rank lattices where

det(Λ0) = 1. Furthermore, let γ > 0. Define Λ1 = {z ∈ Λ0 | ∀y ∈ Λ∗ ∩ γB :
〈y, z〉 ∈ Z}. Given that ρ1/σ(Λ∗\γB) ≤ ε, it holds that

x mod Λ ≈ε (x + u) mod Λ,

where x $← DΛ0,σ and u $← P(Λ) ∩ Λ1.

Notice that for the case of Λ∗ ∩γB = {0} we recover the standard smoothing
lemma of [26]. The proof of Lemma 4.1 uses standard Fourier-analytic techniques
akin to [26] and is deferred to AppendixA. We will make use of the following
consequence of Lemma 4.1.

Corollary 4.2. Let q > 0 be an integer and let γ > 0. Let A ∈ Z
m×n
q and let

σ > 0 and ε > 0 be such that ρq/σ(Λq(A)\γB) ≤ ε. Let D ∈ Z
k×m
q be a full-rank

(and therefore minimal) matrix with Λ⊥
q (D) = {x ∈ Z

m | ∀y ∈ Λq(A) ∩ γB :

〈x,y〉 = 0 (mod q)}. Let x $← DZm,σ and u $← Λ⊥
q (D) mod q. Then it holds

that

Ax mod q ≈ε A · (x + u) mod q.

Proof. Setting Λ0 = Z
n, Λ = Λ⊥

q (A) and γ′ = γ/q, it holds that Λ∗ = 1
q Λq(A)

and

ε ≥ ρq/σ(Λq(A)\γB) = ρ1/σ

(

1
q
Λq(A)\γ

q
B

)

= ρ1/σ(Λ∗\γ′B).

Therefore, we can set

Λ1 = {x ∈ Z
m | ∀y ∈ Λ∗ ∩ γ′B : 〈x,y〉 ∈ Z}

= {x ∈ Z
m | ∀y ∈ Λq(A) ∩ γB : 〈x,y〉 = 0( mod q)}

= Λ⊥
q (D).

Now it holds by Lemma 4.1 as u $← Λ⊥
q (D) that x mod Λ⊥

q (A) ≈ε (x +
u) mod Λ⊥

q (A). Write y1 = x mod Λ⊥
q (A) as y1 = x + z1 mod q for a

suitable z1 ∈ Λ⊥
q (A). Likewise, we can write y2 = x + u mod Λ⊥

q (A) as
y2 = x + u + z2 mod q for a suitable z2. Thus it holds that

Ax = A(x + z1) ≈ε A(x + u + z2) = A(x + u) ( mod q).

We will also use the following lower bound on the gaussian measure of lattices
that have many short linearly independent vectors. The proof of Lemma4.3 is
technically similar to the proof of the transference theorem in [6].
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Lemma 4.3. Let Λ ∈ R
m, σ > 0 and γ > 0 be such that Λ ∩ γB contains at

least k linearly independent vectors. Then it holds that ρσ(Λ) ≥ (σ/γ)k.

Proof. Let Λ′ ⊆ be the sublattice generated by the vectors in Λ ∩ γB. Let k be
the dimension of the span of Λ′. As Λ′ ⊆ Λ, it holds that ρσ(Λ) ≥ ρσ(Λ′). As
Λ′ has a basis of length at most γ, we we have that det(Λ′) ≤ γk and conclude
det((Λ′)∗) = 1/det(Λ′) ≥ 1

γk . By the Poisson-summation formula, we get that

ρσ(Λ′) = σk · det((Λ′)∗) · ρ1/σ((Λ′)∗)

≥ (σ/γ)k,

as ρ1/σ((Λ′)∗) ≥ 1. Thus we conclude that ρσ(Λ) ≥ (σ/γ)k.

5 Our Oblivious Transfer Protocol

We are now ready to provide our statistically sender private oblivious transfer
protocol. In the following, let q, n, � = poly(λ) and assume that q is of the
form q = 2p for an odd p. Let (SampleWithTrapdoor,Decode) be the pair of
algorithms provided in Lemma2.4 and let m = m(q, n) be such that the matrices
A generated by SampleWithTrapdoor(q, 2n) are elements of Z

2n×m. Let Ext0 :
{0, 1}d×{0, 1}n → {0, 1}� and Ext1 : {0, 1}d×Z

2n
q → {0, 1}� be seeded extractors,

both with seed-length d and � bits of output. Finally, let σ0, σ1 > 0 be parameters
for discrete Gaussians and χ be an LWE error-distribution.

The protocol OT = (OTR,OTS,OTD) is given as follows.

– OTR(1λ, β ∈ {0, 1}):
• If β = 0, choose a matrix A1

$← Z
n×m
q , a matrix S ← Z

n×n
q , E $← χn×m.

Set A2 ← S ·A1 +E and A ← [

A1
A2

]

. Repeat this step until A mod 2 has
full rank.
Output ot1 ← A and st ← S.

• If β = 1, sample (A, td) $← SampleWithTrapdoor(q, 2n). Repeat this step
until A mod 2 has full rank. Output ot1 ← A and st ← td.

– OTS(1λ, (μ0, μ1) ∈ ({0, 1}�)2, ot1 = A):
• Check if A mod 2 has full rank, if not output ⊥.
• Parse A =

[

A1
A2

]

. Sample and reject a discrete Gaussian x $← DZm,σ0

until ‖x‖ < σ0
√

m. Choose a uniformly random r ← {0, 1}n and choose
a random seed s0

$← {0, 1}d for the extractor Ext0. Compute y1 ← A1x
and y2 ← A2x + q

2 · r. Set c0 ← (y1,y2, s0,Ext0(s0, r) ⊕ μ0).
• Sample and reject η

$← DZm,σ1 until ‖η‖ < σ1
√

m. Choose a uniformly
random t $← Z

2n
q and a seed s1

$← {0, 1}d for the extractor Ext1. Compute
y ← t · A + η set c1 ← (y, s1,Ext1(s1, t) ⊕ μ1).

• Output ot2 ← (c0, c1).
– OTD(β, st, ot2 = (c0, c))

• If β = 0: Parse st = S and c0 = (y1,y2, s0, τ). Compute r′ ←
�y2 − S · y1�q/2 and output μ′

0 ← Ext0(s0, r′) ⊕ τ .
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• If β = 1: Parse st = td and c1 = (y, s1, τ). Compute t′ ← Decode(td,y)
and output μ′

1 ← Ext1(s1, t′) ⊕ τ .

We will first show correctness of our protocol.

Lemma 5.1 (Correctness). Assume that the distribution χ is a B-bounded.
Provided that σ0 ≤ q

4B·m and σ1 ≤ q
m·κ(n) (where κ(n) = ω(

√

log(n)) as in
Lemma 2.4), the protocol OT is perfectly correct.

Proof. First note that as m ≥ n · log(q), it holds for a uniformly random
A $← Z

2n×m
q that A mod 2 has full rank, except with negligible probability

2n−m (as detailed in Sect. 2.2). Moreover for x ← DZm,σ0 and η
$← DZm,σ1 it

holds by Corollary 2.3 that ‖x‖ < σ0
√

m and ‖η‖ < σ1
√

m, except with negli-
gible probability. Thus, rejection in OTR and OTS happens only with negligible
probability.

In the case of β = 0, it holds that

y2 − S · y1 = (SA1 + E)x +
q

2
r − SA1x

= E · x +
q

2
· r.

By the Cauchy-Schwarz inequality it holds for each row ei of E that |〈ei,x〉| ≤
‖ei‖ · ‖x‖. As the entries of ei are chosen according to χ, we can bound ‖ei‖ by
‖ei‖ ≤ B · √m. As ‖x‖ < σ0 · √

m, we have that

|〈ei,x〉| ≤ B · σ0 · m <
q

4

as σ0 ≤ q
4B·m . We conclude that r′ = �y2 − S · y1�q/2 is identical to the vector

r used during encryption. Consequently, it holds that μ′
0 = Ext0(s0, r′) ⊕ τ =

Ext0(s0, r′) ⊕ Ext0(s0, r) ⊕ μ0 = μ0.
For the case of β = 1, as ‖η‖ < σ1

√
m ≤ q√

m·κ(n) it holds by Lemma 2.4 that
Decode(td,y1) outputs the correct t′ = t. We conclude that μ′

1 = Ext1(s1, t′) ⊕
τ = Ext1(s1, t′) ⊕ Ext1(s1, t) ⊕ μ = μ1.

We now show that OT has computational receiver privacy under the deci-
sional matrix LWE assumption.

Lemma 5.2 (Computational Receiver Security). Given that the decisional
LWEn,q,χ-assumption holds, the protocol OT = (OTR,OTS,OTD) has receiver
privacy.

Proof. Let (A, st0) ← OTR(1λ, 0) and (A′, st1) ← OTR(1λ, 1). Assume towards
contradiction that there exists a PPT-distinguisher D which distinguishes A
and A′ with non-negligible advantage ε. We can immediately use D to dis-
tinguish decisional matrix LWE. Decomposing A =

[

A1
A2

]

, it holds that A1

is uniformly random and A2 = S · A1 + E, i.e. (A1,A2) is a sample of the
matrix LWE distribution. On the other hand, due to the uniformity property
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of SampleWithTrapdoor (provided in Lemma2.4) it holds that A′ ≈s A∗ for a
uniformly random A∗ $← Z

2n×m
q . Consequently

AdvLWE(D) = | Pr[D(A) = 1] − Pr[D(A∗) = 1]|
≥ | Pr[D(A) = 1] − Pr[D(A′) = 1]| − | Pr[D(A∗) = 1] − Pr[D(A′) = 1]|
≥ ε − negl,

which contradicts the hardness of decisional matrix LWE.

We will now show that OT is statistically sender-private.

Theorem 5.3. (Statistical Sender Security). Let q = 2p for an odd p. Given
that σ0 ·σ1 ≥ 4

√
m ·q, σ1 < q

2
√

m
and both Ext0 and Ext1 are strong average-case

(n/2,negl)-extractors, then the above scheme enjoys statistical sender security.

Proof. Fix a maliciously generated ot1-message ot1 = A. Let in the following
γ :=

√
m · q

σ0
. Consider the following two cases.

1. ρq/σ0(Λq(A)) > 2n/2+1 or rank(Λq(A) ∩ γB)) > n/2.
2. ρq/σ0(Λq(A)) ≤ 2n/2+2 and rank(Λq(A) ∩ γB) ≤ n/2.

First notices that the two cases are slightly overlapping, but for any choice
of A one of the two cases must be true.

The unbounded message extractor OTExt takes input A and decides if item 1
or item 2 holds. If item 1 holds it outputs 0, otherwise 1. Note that rank(Λq(A)∩
γB) can be computed exactly. On the other hand, it is sufficient approximate
ρq/σ0(Λq(A)) to a certain precision to determine which case holds.

We will now show that in case 1 the sender-message μ1 is statistically hidden,
whereas in case 2 the sender-message μ0 is statistically hidden.

Case 1. We will start with the (easier) first case. We will show that either
statement implies ρσ1(Λq(A)) ≥ 2n/2+1. If it holds that ρq/σ0(Λq(A)) > 2n/2+1,
we can directly conclude that

ρσ1(Λq(A)) ≥ ρ4
√

m· q
σ0

(Λq(A)) ≥ ρ q
σ0

(Λq(A)) > 2n/2+1.

If the second statement rank(Λq(A) ∩ γB)) > n/2 holds, Lemma 4.3 implies

ρσ1(Λq(A)) ≥ (σ1/γ)n/2+1 ≥ 2n+2 ≥ 2n/2+1,

as σ1 ≥ 4γ.
Now let c1 = (y, s1, τ), where y ← t · A + η. Note that we can switch to a

hybrid in which the distribution of η is DZm,σ1 instead of the truncated version
while only incurring a negligible statistical error.

As ρσ1(Λq(A)) ≥ 2n/2+1 and σ1 < q
2
√

m
, Lemma 3.2 implies that

H̃∞(t|y) ≥ − log(1/ρσ1(Λq(A)) + 2−m) ≥ − log(2−n/2−1 + 2−m) ≥ n/2
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Thus, as Ext1 is a strong (n/2,negl)-extractor, we get that Ext1(s1, t) is statisti-
cally close to uniform given y. Consequently, τ = Ext1(s1, t) ⊕ μ1 is statistically
close to uniform given s1 and y, which concludes the first case.

Case 2. We will now turn to the second case, i.e. it holds that ρq/σ0(Λq(A)) ≤
2n/2+2 and rank(Λq(A) ∩ γB)) ≤ n/2. Theorem 2.2 yields that

ρq/σ0(Λq(A)\γB) = ρq/σ0

(

Λq(A)\
√

m · q

σ0
B

)

≤ 2−C·m · ρq/σ0(Λq(A))

≤ 2−C·m · 2n/2+2 = 2n/2+2−C·m

where C > 0 is a constant. This expression is negligible as m ≥ n · log(q). Con-
sequently, the precondition ρq/σ0(Λq(A)\γB) ≤ negl of Corollary 4.2 is fulfilled.

Now let D ∈ Z
k×m
q be a full-rank matrix with Λ⊥

q (D) = {z ∈ Z
m | ∀v ∈

Λq(A) ∩ γB : 〈z,v〉 = 0( mod q)). Thus it holds that Λq(A) ∩ γB ⊂ Λq(D) and
there is no matrix with fewer than k rows with this property. As rank(Λq(A) ∩
γB) ≤ n/2, it holds that k ≤ n/2.

Decompose the matrix A into A =
[

A1
A2

]

with A1 ∈ Z
n×m
q and A2 ∈ Z

n×m
q .

Let c0 = (y1,y2, s0, τ), where y1 = A1x and y2 = A2x + q
2r with x $← DZm,σ0

and r $← {0, 1}n. As ρq/σ0(Λq(A)\γB) ≤ ε, Corollary 4.2 implies that

(y1,y2) = (A1x,A2x +
q

2
r) ≈ε (A1(x + u),A2(x + u) +

q

2
r) =: (y′

1,y
′
2)

where u $← Λ⊥
q (D). We can therefore switch to a hybrid experiment in which we

replace x with x+u while only incurring negligible statistical distance. We will
now show that H̃∞(r|y′

1,y
′
2) ≥ n/2.

As q = 2p and p is odd, it holds by the Chinese remainder theorem that

y′
1 ≡ (A1(x + u) mod 2,A1(x + u) mod p)

y′
2 ≡ (A2(x + u) + r mod 2,A1(x + u) mod p)

Note that u mod 2 and u mod p are independent. As the mod p part does
not depend on r, we only need to consider the mod 2 part. Let in the following
variables with a hat denote this variable is reduced modulo 2, e.g. x̂ = x mod 2.
It holds that û is chosen uniformly from ker(D̂) = {w ∈ Z

m
2 | D̂ · w = 0}.

The dimension of ker(D̂) is at least m − k ≥ m − n/2. Let B̂ ∈ Z
m×m
2 be

a basis of ker(D̂). As Â has full rank and therefore rank(ker(Â)) = m − 2n,
it holds that rank(Â · B̂) ≥ 3

2n. Therefore Â · û is uniformly random in an 3
2n

dimensional subspace. But this means that (ŷ′
1, ŷ

′
2) = (Â1x̂+Â1û, Â2x̂+Â2û+

r) loses at least n/2 bits of information about r (c.f. Sect. 2.2). Consequently,
it holds that H̃∞(r|y′

1,y
′
2) ≥ n/2. Therefore, as Ext0 is a strong (n/2,negl)-

extractor, we get that Ext0(s0, r) is statistically close to uniform given y′
1,y

′
2.

Finally, τ = Ext0(s0, r) ⊕ μ0 is statistically close to uniform given s0 and y′
1,y

′
2,

which concludes the second case.
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5.1 Setting the Parameters

We will now show that the parameters of the scheme can be chosen such that
correctness, statistical sender privacy and computational receiver privacy hold.

– By Lemma 5.1, OT is correct if σ0 ≤ q
4B·m and σ1 ≤ q

m·κ(n) (where κ(n) =

ω(
√

log(n))).
– By Theorem 5.3, OT is statistically sender private if σ0 · σ1 ≥ 4

√
m · q and

σ1 < q
2
√

m
.

These requirements can be met if

q2

4κ(n)Bm2
≥ 4

√
m · q,

which is equivalent to

q ≥ 16κ(n) · B · m2.5. (1)

If χ is a discrete Gaussian on Z with parameter αq, i.e. χ = DZ,αq, then, given
that αq ≥ ηε(Z) = ω(

√

log(n)) it holds that χ is αq bounded, i.e. B ≤ αq (with
overwhelming probability). This means that

α ≤ 1
16 · κ(n)m2.5

= Õ(n−2.5)

implies inequality (1). Thus, we get a worst-case approximation factor Õ(n/α) =
Õ(n3.5) for SIVP (compared to Õ(n1.5) for primal Regev encryption). With this
choice of α, we can choose q = Õ(n3), σ0 = Õ(n2.5) and σ1 = Õ(n).

Acknowledgement. We would like to thank the anonymous TCC 2018 reviewers for
insightful comments that helped to improve the presentation of the paper.

A Appendix

In this Section we will provide the proof for Lemma4.1. We will first provide
some additional preliminaries.

A.1 Additional Preliminaries

Fourier Transforms. We now recall a few basic facts about Fourier-transforms
on lattices. Let f : R

m → C and Λ be a lattice, if it exists, we will write
f(Λ) :=

∑

x∈Λ f(x). For a nice enough4 function f : Rm → C, we define the
continuous Fourier-transform f̂ : Rm → C by f̂(ω) =

∫

x∈Rm f(x) · e−2πi·〈ω ,x〉dx.

4 Where nice enough means that
∫
x∈Rm |f(x)|dx is finite.
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The Poisson summation formula states that f(Λ) = det(Λ∗)·f̂(Λ∗). The Fourier-
transform of the Gaussian function ρσ(x) is σm · ρ1/σ(ω). Consequently, we get
by the Poisson summation formula that

ρσ(Λ) = σm · det(Λ∗) · ρ1/σ(Λ∗).

Fix a full-rank lattice Λ0 ⊆ R
m and assume henceforth that Λ ⊆ Λ0. We say

a function f : Λ0 → C is Λ-periodic if it holds for all x ∈ Λ0 and all z ∈ Λ that
f(x + z) = f(x). Now let f : Λ0 → C be a Λ-periodic function. We define the
discrete Fourier transform f̂ : Λ∗ → C of f by

f̂(ω) =
∑

x∈P(Λ)∩Λ0

f(x) · e−2πi〈x,ω〉.

Here, P(Λ)∩Λ0 can be replaced by any system of representatives for the quotient
group Λ0/Λ. Using Fourier-inversion, we can express f as

f(x) =
det Λ0

det Λ
·

∑

ω∈P(Λ∗
0)∩Λ∗

f̂(ω) · e2πi〈ω ,x〉.

Note that f̂ is Λ∗
0 periodic.

Let x and y be random variables defined on Λ0/Λ. Let the probability-mass
function of the distribution of x be given by a Λ-periodic function X : Λ0 → R,
and let the probability-mass function of y be given by a Λ-periodic function
Y : Λ0 → R. Finally, let Z : Λ0 → R be the probability mass function of x + y.
The convolution theorem states that it holds that

Ẑ(ω) = X̂(ω) · Ŷ (ω),

for all ω ∈ Λ∗.
If x is distributed according to a discrete Gaussian DΛ0,σ and Λ ⊆ Λ0, then

x mod Λ has the probability-mass function of a periodic gaussian given by

ψσ(x′) = Pr[x = x′] =
1

ρσ(Λ0)
·
∑

z∈Λ

ρσ(x′ + z)

and it holds that

̂ψσ(ω) =
1

det(Λ∗
0) · ρ1/σ(Λ∗

0)
·

∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ)

for ω ∈ Λ∗.
We define the Dirac-function δ : Λ0 → R as δ(0) = 1 and δ(x) = 0 for x �= 0.

If Λ ⊆ Λ1 ⊂ Λ0 and u is distributed uniformly random on P(Λ) ∩ Λ1, then u
has the probability-mass function

U(x) =
det Λ1

det Λ

∑

y∈Λ1

δ(x + y)

and the Fourier-transform

Û(ω) =
∑

ξ∈Λ∗
1

δ(ω + ξ).
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A.2 Proof of the Partial Smoothing Lemma

Lemma A.1. Let σ > 0 and let Λ ⊆ Λ0 ⊆ R
n be full-rank lattices where

det(Λ0) = 1. Furthermore, let γ > 0. Define Λ1 = {z ∈ Λ0 | ∀y ∈ Λ∗ ∩ γB :
〈y, z〉 ∈ Z}. Given that ρ1/σ(Λ∗\γB) ≤ ε, it holds that

y mod Λ ≈ε (y + u) mod Λ,

where y $← DΛ0,σ and u $← P(Λ) ∩ Λ1.

Proof. First notice that Λ ⊆ Λ1 ⊆ Λ0 and Λ∗ ∩ γB ⊆ Λ∗
1. The probability-mass

function of y is given by

Y (x) =
1

ρσ(Λ0)

∑

z∈Λ

ρσ(x + z)

for x ∈ P(Λ) ∩ Λ0. The Fourier-transform of Y is

Ŷ (ω) =
1

det(Λ∗
0) · ρ1/σ(Λ∗

0)
·

∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ) =
1

ρ1/σ(Λ∗
0)

·
∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ)

for ω ∈ P(Λ∗
0) ∩ Λ∗.

The probability-mass function of u is

U(x) =
det Λ1

det Λ

∑

y∈Λ1

δ(x + y)

for x ∈ P(Λ) ∩ Λ0.
Note that U(x) is Λ-periodic as Λ ⊆ Λ1. We can therefore compute the

Fourier-transform of U and obtain

Û(ω) =
∑

ξ∈Λ∗
1

δ(ω + ξ),

i.e. Û(ω) is constant 1 on P(Λ∗
0) ∩ Λ�

1 and 0 everywhere else.
By the convolution theorem, the Fourier-transform of the probability mass

function of r = y + u mod Λ is

R(ω) = Ŷ (ω) · Û(ω)

for ω ∈ P(Λ∗
0) ∩ Λ∗.
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Consequently, we can bound the statistical distance between y and r by

2 · Δ(y, r) =
∑

x∈P(Λ)∩Λ0

|Y (x) − R(x)|

≤ det Λ

det Λ0
· max
x∈P(Λ)∩Λ0

|Y (x) − R(x)|

=
det Λ

det Λ0
· max
x∈P(Λ)∩Λ0

∣

∣

∣

∣

∣

∣

det Λ0

det Λ
·

∑

ω∈P(Λ∗
0)∩Λ∗

Ŷ (ω)(1 − Û(ω))e2πi〈ω ,x〉

∣

∣

∣

∣

∣

∣

= max
x∈P(Λ)∩Λ0

|
∑

ω∈P(Λ∗
0)∩Λ∗\Λ∗

1

Ŷ (ω)e2πi〈ω ,x〉|

= max
x∈P(Λ)∩Λ0

|
∑

ω∈P(Λ∗
0)∩Λ∗\Λ∗

1

1
ρ1/σ(Λ∗

0)

∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ)e2πi〈ω ,x〉|

≤ max
x∈P(Λ)∩Λ0

|
∑

ω∈Λ∗\Λ∗
1

ρ1/σ(ω)e2πi〈ω ,x〉|

≤ max
x∈P(Λ)∩Λ0

∑

ω∈Λ∗\Λ∗
1

|ρ1/σ(ω)e2πi〈ω ,x〉|

=
∑

ω∈Λ∗\Λ∗
1

ρ1/σ(ω) = ρ1/σ(Λ∗\Λ∗
1) ≤ ρ1/σ(Λ∗\γB) ≤ ε

The second inequality holds as 1
ρ1/σ(Λ

∗
0)

≤ 1 and the third inequality is an appli-
cation of the triangle inequality.
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