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Abstract. Secure integer comparison has been one of the first problems
introduced in cryptography, both for its simplicity to describe and for
its applications. The first formulation of the problem was to enable two
parties to compare their inputs without revealing the exact value of those
inputs, also called the Millionaires’ problem [45]. The recent rise of fully
homomorphic encryption has given a new formulation to this problem.
In this new setting, one party blindly computes an encryption of the
boolean (a < b) given only ciphertexts encrypting a and b.

In this paper, we present new solutions for the problem of secure
integer comparison in both of these settings. The underlying idea for
both schemes is to avoid decomposing the integers in binary in order
to improve the performances. On the one hand, our fully homomorphic
based solution is inspired by [9], and makes use of the fast bootstrapping
techniques developed by [12,14,23] to obtain scalability for large integers
while preserving high efficiency. On the other hand, our solution to the
original Millionaires’ problem is inspired by the protocol of [10], based
on partially homomorphic encryption. We tweak their protocol in order
to minimize the number of interactions required, while preserving the
advantage of comparing non-binary integers.

Both our techniques provide efficient solutions to the problem of secure
integer comparison for large (even a-priori unbounded in our first sce-
nario) integers with minimum interactions.

1 Introduction

Evaluation of algorithms over encrypted data is a major topic in cryptography
which has known very important results over the past decade (e.g. [27]). Generic
solutions supporting any operation exist but they usually require to represent
the algorithm as a boolean circuit and incur very large complexity. Conversely,
solutions specifically designed for a particular algorithm are more efficient, but
require a large amount of work that must be started over each time the algorithm
is updated.

In this context, an interesting middle-way is the one consisting in designing
efficient protocols for simple tasks (but still more complex than basic operations)
that are frequently used as subroutines by other algorithms. Indeed, in this case,
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the resulting protocol will be more efficient than the one generated by applying
generic solutions and, at the same time, the widespread use of this subroutine
will ensure that the efforts invested in the design of this protocol will benefit to
a very large number of algorithms.

Perhaps the most prominent example of this approach (for both historical
and practical reasons) is the one of secure integer comparison, where two parties
knowing respectively secret integers m1 and m2 want to compare them without
leaking any information beyond the result (m1 ≤ m2).

Introduced in 1982 by Yao [45] who presented it as the problem encountered
by two millionaires wanting to secretly compare their respective wealth (hence
its name of Millionaires’ problem), this problem is of utter importance in many
areas, especially since the rise of machine learning. Indeed, several classifiers
require to sort (and therefore to compare) elements and thus need appropriate
protocols when the latter are encrypted, as illustrated in [8]. More generally, the
fact that most algorithms run integers comparison as subroutines emphasizes
the need for counterparts handling encrypted data.

In his seminal paper [45], Yao proposed a first protocol for secure compar-
ison based on garbled circuits, a by-now standard tool in cryptography which
has become a subject on its own. However, this kind of techniques, despite sev-
eral improvements (e.g. [5,6,16,32]), implies rather important communication
complexity, which can be problematic in contexts where communications are
slow.

In [2,24], the authors follow a different strategy, based on the Legendre sym-
bol, which leads to very elegant protocols. Unfortunately, the latter can only
handle integers of limited size, and it does not seem possible to extend them to
support large inputs.

Another approach for secure comparison is the one based on homomorphic
encryption, starting from Fischlin’s work [25]. The ability to perform oper-
ations on encrypted data can remove some interactions but at the cost of
greater computational complexity. Here again, several improvements followed
[7,20,21,26,30,34,42] but they involve bitwise encryption of the integers, lead-
ing to a complexity of at least log2(M) operations where M is a bound on the
integers to compare.

Comparing the solutions based on garbled circuits with the ones based on
homomorphic encryption is not always relevant as they are very different con-
structions. Garbled circuits mostly rely on symmetric primitives and thus usually
offer good performance. Homomorphic encryption is a more complex tool but
seems to be a promising solution to go beyond the log2(M) barrier. Indeed, two
homomorphic-based constructions [9,10] overcoming this limation have recently
been introduced for different settings.

The first one (CEK), proposed by Carlton, Essex and Kapulkin [10], corre-
sponds exactly to the Millionaires’ problem scenario where two parties want to
compare their respective secret values m1 and m2. It is based on an homomorphic
threshold encryption system allowing to directly compare small integers, leading
to less computations, but at the cost of more interactions compared to the DGK
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protocol [20]. Indeed, in their protocol, the party A knowing the decryption keys
received either an encryption of 0 (if m1 ≥ m2) or of some value related to m1

and m2 (if m1 < m2). This forces the other party B to blind the plaintext with
some random value s leading to the following problem: in any case A decrypts
randomness. To bypass this problem, both parties run a plaintext equality test
(PET) at the end of the protocol to decide whether the randomness is s (in
which case m1 ≥ m2) or not. This PET implies at least one additional pass
and the use of another homomorphic encryption scheme. In some way, the result
of Carlton et al. can thus be seen as a new tradeoff between computation and
communication complexity.

In the second setting, one party is given two ciphertexts for values m1 and
m2 and has to produce a ciphertext for the boolean (m1 > m2), whereas the
other party is the only one having the secret key that allows decryption of these
ciphertexts. One way to solve this problem has been to reduce it to the Mil-
lionaires’ problem, as done in [41,42]. More interestingly, this problem can even
be solved non-interactively, by using fully homomorphic encryption. However,
the current state-of-the-art in FHE doesn’t provide a fully satisfactory solution
to the homomorphic evaluation of the comparison. The two main techniques
are either based on somewhat homomorphic encryption, which is not suitable
because the comparison cannot a priori be represented by a low degree poly-
nomial, so the noise growth would be unmanageable, or have to deal with the
bit decomposition of the messages (e.g. [11,19]). In [44], the authors proposed
a solution based on Wilson’s theorem to avoid binary decomposition. However,
it requires to perform (2M)2 homomorphic multiplications to compare integers
smaller than M , which rapidly becomes prohibitive as M increases.

At Crypto 18, Bourse et al. [9] proposed a modified FHE system enabling to
efficiently evaluate the sign function. This can be used to compare two encrypted
values by subtracting and evaluating the sign. However, this scheme only sup-
ports a bounded message space, and the sizes of the bootstrapping key and
ciphertexts grow exponentially in the size of the messages (or superlinear in the
value of bound on the messages). This result is enough to work on very small
sized input, or on computation that are inherently fault-tolerant, as they show
with neural network evaluations, but is hardly usable in practice for less specific
applications. Moreover, this requires the bound on the messages to be chosen at
setup time, because the parameters of the scheme depend on it.

1.1 Our Contribution

In this work we propose two protocols that respectively improve [9] and [10] and
thus the state-of-the-art of secure integer comparison.

In a first part, we describe a new FHE-based solution in the setting where
B wants to blindly compare two encrypted integers. Starting from [9], we show
how (1) to modify it in order to output 0 whenever the two inputs are equal,
and (2) to scale the output by any chosen factor. The first part requires a careful
modification of the testVector from [9] because the function to be computed
must verify some anticyclic properties, and ternary sign doesn’t satisfy those.
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Hence, we had to add a slot never used into the message space. The second part
might seem trivial for FHE because scaling can be performed by multiplying
the output ciphertext by the chosen factor. However, this would yield too much
noise. We then here again need to modify the testVector to take into account
the scaling factor before returning the output ciphertext.

Then, relying on those two properties, we construct recursively an algorithm
to compare unbounded integers, by decomposing them in some basis that can be
handled by our modified scheme for bounded integers. The resulting scheme com-
bines the generality of bitwise encryption comparisons, because we can compare
unbounded integers using a fixed bootstrapping key that can be generated with-
out knowledge of the integers to compare, together with the improved efficiency,
both in computation time and in ciphertext expansion factor, of the schemes
that support non-binary message spaces.

In a second part, we propose a new protocol to address the Millionaires’
problem that combines (almost) all the best features of the DGK and CEK
protocols. Starting from the latter, we introduce several modifications to avoid
the costly PET that constitutes the last step of CEK. More specifically, we
manage to replace the whole PET by a simple hash value sent by the party B
in the second pass. This digest will indeed be enough for A to decide whether
the decrypted plaintext is the blind factor or not. However, this idea cannot
be directly applied to the CEK protocol because a simple exhaustive search
on the message space enables A to recover B’s value whenever m2 > m1. We
therefore consider different RSA parameters to introduce new random elements
in the protocol to thwart (with overwhelming probability) exhaustive searches.
The point is that all these modifications do not significantly hamper the main
feature of CEK, namely the ability to compare several bits at once, which means
that our protocol still compares favourably to DGK (and its predecessors).

Concretely, compared to DGK, our protocol also requires two passes but
divides both the computation and the communication cost by a factor up to
4. Compared to CEK, the speedup factor is harder to assess because it heavily
depends on the security parameter (see Sect. 4.2) but we manage anyway to
divide by up to two the number of passes. This comes at the cost of a security
proof in the random oracle model (ROM) but this model is widely used in
cryptography, especially to design practical constructions.

We stress that these improvements must not be measured just for one run
of our protocols but must rather be put in perspective with the massive use of
comparisons in algorithms. For example, the classifiers considered in [8] require
to find the greater value of a list a1, . . . , ak of encrypted elements and so to run
k secure comparison protocols. In such a case, the impact of our protocols will
be multiplied by at least k.

1.2 Organization

Our paper addresses two different versions of the Millionaires’ problem and is
thus divided in two parts that can be read independently. In Sect. 2, we describe
a solution based on fully homomorphic encryption that outputs an encrypted
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boolean (m1 > m2) given two ciphertexts encrypting respectively m1 and m2.
In Sect. 3, we consider the original scenario of the Millionaires’ problem and
provide a solution that enables two parties to secretly compare their respective
entries.

2 Homomorphic Comparison of Integers

In this section, we build a new technique to homomorphically compare two
integers. We first start by recalling all necessaries preliminaries about lattice-
based cryptography and fully homomorphic encryption that we will use. Then,
we start our construction by extending the work of [9] to allow ternary sign
computation, and add as an input a scaling factor that will multiply the output.
Finally, we show how to compare two unbounded integers by calling recursively
our comparison procedure for small integers.

2.1 Preliminaries

As in [14], we present the learning with errors problem and assumptions using
the torus T = R/Z (i.e., the real modulo 1), and binary vectors as the secret
keys. The same results hold for the formulation over Zq for any q instead of T.
However, to the best of our knowledge, binary secret keys are required for the
techniques allowing a fast bootstrapping.

Learning With Errors (LWE). This problem was introduced by Regev [38] as
a candidate problem that is hard to solve, even for quantum computers. Let n
be a positive integer, and χ a probability distribution over R. For any vector1

s ∈ {0, 1}n, we define the LWE distribution LWEn,s,χ as (a, b), where a $← T
n,

e
$← χ, and b = 〈s,a〉 + e.
The LWE assumption states that for s $← {0, 1}n, it is hard to distinguish

between LWEn,s,χ and the uniform distribution over T
n.

Ring Learning With Errors (RLWE). We also extend the ring variant [35]
of LWE to the special case where RN = RN [X]/ZN [X], with RN [X] =
R[X]/(XN +1) (respectively, ZN [X] = Z[X]/(XN +1)), i.e., the ZN [X] module
of polynomials of degree up to N − 1 with coefficients in T, with the operations
done modulo XN + 1 and modulo 1. Let N be a power of two, and χ be a dis-
tribution over RN [X] for the noise. For any polynomial s of degree up to N − 1
with binary coefficients, we define the RLWE distribution RLWEN,s,χ as (a, b),
where a

$← RN , e
$← χ, and b = s · a + e.

The RLWE assumption states that for a uniformly random polynomial s of
degree up to N − 1 with binary coefficients, it is hard to distinguish between
RLWEN,s,χ and the uniform distribution over R2

N .
1 This is not exactly the original LWE definition since we here consider binary coeffi-

cients for the secret key, as in [9,12,13]. Nevertheless, we will still refer to it as LWE
for sake of simplicity.
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LWE Encryption Scheme. As in [9] and in some previous works [1,3,31,37], we
use a variant of Regev’s secret key encryption scheme which supports a non-
binary message space. It can easily be transformed into a public key encryption
scheme using standard techniques. Let B be an integer. The message space will
be {−B + 1, . . . , B − 1}. We define the encryption scheme as follows:

Setup(1λ): on input a security parameter λ, fix n = n(λ), samples and returns
s $← {0, 1}n;

Encrypt(s,m): on input secret key s and message m, samples (a, b) $←
LWEn,s,χ, and returns ct = (ct0, ct1) = (a, b + m

2B );
Decrypt(s, ct): computes x the representative of ct1−〈ct0, s〉 mod 1 in [− 1

2 , 1
2 [,

and returns �2B · x	.
We note that using 2B − 1 as denominator would be enough to support the

message space {−B + 1, . . . , B − 1}. However, we require one extra unused slot
in the message space for technical reasons during the sign computation.

Some of our protocols involve LWE encryption schemes of different dimen-
sions. In such a case, we will refer to some ciphertexts as n-LWE ciphertexts,
where n is the dimension, to avoid confusion with the other ciphertexts.

This encryption scheme generalizes to RLWE in a straightforward manner.

Bootstrapping Procedure. Our construction relies on three functions BlindRo-
tate, Extract and KeySwitch that are defined in [9,12]. A proper definition of
these functions requires to introduce many technical details along with the ring
variant of the GSW encryption scheme [28]. However, such a definition is not
necessary for the understanding of our work. For sake of clarity, we then only
provide an informal definition that is sufficient for our paper.

BlindRotate: on input an LWE encryption ct encrypted with key s, and a
bootstrapping key bk, returns an RLWE encryption of X b̄−〈ā,s〉, where b̄ =
�2N · ct1	 and ā = �2N · ct0	;

Extract: on input an RLWE encryption of a polynomial p(X), returns an LWE
encryption of p(0);

KeySwitch: on input an LWE encryption c of m under a certain key s and a
keyswitching key ksk (which consists of LWE encryptions of the bits si of s
under secret key s′), returns an LWE encryption of m under secret key s′.

The key switching algorithm is not required for the construction to work,
but it brings a lot of improvement in efficiency by reducing the dimension of the
LWE ciphertext.

2.2 Strategy Overview

Before presenting our construction in more details, we give a high level overview
of the underlying idea.

Let us assume that we are given an algorithm to compute the sign of integers
in {−B + 1, . . . , B − 1}. It can be used to compare two numbers x and y in
[0, B − 1] as follows:
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z0,0 z0,1 . . . z0,γ−1 z1,0 z1,1 . . . z1,γ−1 zδ−1,0 zδ−1,1 . . . zδ−1,γ−1. . .

∑
i sign(z0,i)2i ∑

i sign(z1,i)2i ∑
i sign(zδ−1,i)2i. . .

∑
j sign(

∑
i sign(zj,i)2i)2j

sign(
∑

i,j zj,iB
γj+i)

1
2

2γ−1 1
2

2γ−1 1
2

2γ−1

1
2

2δ−1

Fig. 1. Strategy to compare unbounded integers x and y given a procedure to compute
the sign of integers in {−B + 1, . . . , B − 1}. Here, zi,j = xi,j − yi,j are the differences
of the digits of x and y in base B and δ = �k/γ�. Arrows indicate computation of the
ternary sign, scaled by the factor labelling it, and nodes consist of the sums of their
incoming arrows.

1. take the difference z = x − y;
2. compute the sign of z.

If z is positive, it means x was greater than y, and vice versa.
Now let us say we are given bigger integers x and y such that we cannot use

our sign function directly. What we can do is to decompose x and y in basis B,
in order to obtain numbers in [0, B−1]. Let (xi)i∈[0,k] and (yi)i∈[0,k] be the digits
of x and y in base B, for some integer k. For each i in [0, k], we can compute the
sign of zi = xi − yi. However, we need a trick to combine those results to obtain
the comparison of x and y, which is the sign of z =

∑
i∈[0,k] ziB

i.
In order to continue, our main observation is that the sign of z is the same

as the sign of
∑

i∈[0,k] sign(zi)2i. Thus, we can pack the values zi by groups of
γ = �log2(B)
 values, scale each of them by a factor 2i, depending on their
position, and carry on computing the signs in a tree-like fashion as illustrated
on Fig. 1.

Intuitively, the sign of each node will be the same as the sign of the rightmost
non-zero node pointing to it, assuming the digits are ordered from the least
significant on the left to the most significant on the right. Hence, by induction,
the final value will be the sign of the rightmost non-zero zi, i.e., −1 if x < y, 0
if x = y, and 1 if x > y.2

This construction requires two new features that are not present in [9]:

– it requires the sign to be ternary, i.e. sign(0) = 0;
– the output has to be scaled by a factor 2i given as input.

2 The binary sign can be obtained by applying the techniques of [9] instead of our
ternary sign in the last step.
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zk−1 zk−2 zk−3 . . . z0

B
2
s0 + zk−2

B
2
s1 + zk−3 . . . B

2
sk−2 + z0 sk−1

B/2 B/2 B/2 B/2

Fig. 2. Alternative strategy to compare unbounded integers x and y given a procedure
to compute the sign of integers in {−B + 1, . . . , B − 1}. Here, zi = xi − yi are the
differences of the digits of x and y in base B

2
and k = �log B

2
(x)�. The element si

denotes the ternary sign of
∑

j∈{0,...,i} zk−1−j

(
B
2

)k−1−j
, the (i + 1) most significant

digits of z. Horizontal arrows indicate computation of the ternary sign, scaled by the
factor labelling it, and nodes consist of the sums of their incoming arrows.

The former is required in order to propagate the comparison of least signifi-
cant digits whenever the most significant digits are equal. The latter cannot
be accomplished by scaling the output ciphertext, because this would yield too
much noise, thus preventing correct decryption of the resulting ciphertext. We
will then explain how to take this scaling factor into account before returning
the ciphertext, which leads to better noise management.

We also suggest another way to bootstrap such a technique to unbounded
integers that has better noise management, at the cost of slightly larger cipher-
texts, and sequential computations. We give an illustration of this on Fig. 2.

The idea is now to only have one addition in order to minimize the noise
growth and optimize the parameters. We thus decompose the integers in basis
B
2 and start from the most significant digits. At each step, we compute the
ternary sign, and scale it by B

2 before adding it to the next digits. That way, the
sign of our accumulator is always the sign of the difference, up to that point.

In the following, we first build an algorithm to compute the sign with the
two additional features required, and then we present a recursive algorithm for
each of our strategies.

Remark 1. At first sight, a simpler solution to compare x and y could be to
select a bound B greater than these two integers, to generate keys compati-
ble with this message space and then to directly run the protocol from [9] on
z = x − y. However, there are two problems with this solution. First, the com-
plexity of [9] is exponential in the size of the messages so selecting large B is
not a good strategy (see Sect. 2.5 for more details). Second, this solution leads
to the following dilemma. Either we select a bound B large enough to handle
any integers x and y or we select, for each comparison, the smallest possible
value for B. The former option makes the previous complexity issue even worse.
The second option makes key management quite cumbersome because it implies
several keys, one for each possible range of values of x and y.
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Algorithm 1. HomomorphicCompareB,0

Input: two LWE ciphertexts c1, c2 encrypting messages m1, m2 ∈ [0, B − 1], a
bootstrapping key bk and a scaling factor k
Output: an N -LWE encryption of k · sign(m1 − m2)

1: P (X) := −k · ∑
i∈{� N

2B
�,...,�N− N

2B
�} Xi

2: c := c1 − c2 (the task is now to find the sign of the plaintext in c)
3: c̃ := BlindRotate(c, bk)
4: x := Extract (P (X) · c̃)
5: return x

2.3 Homomorphic Comparison of Small Integers

In this subsection, we show how to compare small integers, which will be the
base case for our induction. While the techniques from [9] could be used directly
to compare small integers, they do not fit our strategies for larger integers. We
therefore modify their scheme in order to output 0 whenever the plaintexts are
equal. This will be required in order to compare unbounded integers using this
simple construction as a building block.

Our homomorphic comparison for small values HomomorphicCompareB,0 is
defined in Algorithm 1. For simplicity, we chose to define it without keyswitch-
ing to reduce the number of parameters, but it can easily be introduced as an
optimization before returning the result. The scaling factor for the output is not
important for the comparison of small integers, but will be needed to efficiently
compute the comparison of larger integers in the next section. Correctness of
this protocol is proved below.

Correctness. If c1 encrypted m1 and c2 encrypted m2, x encrypts k if m1 > m2,
−k if m1 < m2, and 0 if m1 = m2 with overwhelming probability, for well chosen
parameters. Indeed, c encrypts m1−m2, c̃ encrypts Xm̄1−m̄2+e, where m̄i = mi ·
N
B , and e is the error resulting from c1, c2, and the scalings and roundings during
BlindRotate. Then, P (X) · c̃ encrypts −k · ∑i∈{� N

2B �,...,	N− N
2B 
} Xi · Xm̄1−m̄2+e,

the constant term of which is

k if � N

2B
	 ≤ m̄1 − m̄2 + e ≤ �N − N

2B



−k if − �N − N

2B

 ≤ m̄1 − m̄2 + e ≤ −� N

2B
	

0 otherwise

Now let us assume that m1 > m2 and that the parameters are chosen such
that |e| < N

2B , we have:

1 ≤ m1 − m2 ≤ B − 1

⇔ N

B
≤ N(m1 − m2)

B
≤ N · (B − 1)

B



400 F. Bourse et al.

⇔ N

B
+ e ≤ m̄1 − m̄2 + e ≤ N · (B − 1)

B
+ e

⇒ � N

2B
	 ≤ m̄1 − m̄2 + e <

N · (B − 1)
B

+
N

2B

where the first inequality comes from the fact that |e| < N
2B and that m̄1−m̄2+e

is an integer. Now, if we write:

N · (B − 1)
B

+
N

2B
= N − N

2B

we get

� N

2B
	 ≤ m̄1 − m̄2 + e ≤ �N − N

2B



which ensures that x encrypts k if m1 − m2 ≥ 1.
Conversely, if m1 < m2, we get

−N

B
+ e ≥ m̄1 − m̄2 + e ≥ −N · (B − 1)

B
+ e

which implies that

−� N

2B
	 ≥ m̄1 − m̄2 + e ≥ −�N − N

2B



and so that x encrypts −k.

2.4 Homomorphic Comparison of Unbounded Integers

In Sect. 2.2, we have described two strategies for comparing unbounded integers.
The first one will be referred to as tree-based, whereas the latter one will be
referred to as sequential. Informally, the tree-based approach is suitable for par-
allel computing whereas the sequential one offers better parameters but requires
sequential computations (hence its name).

Tree-Based Strategy. Let us denote γ = �log2(B)
. Assuming that B ≥ 4 (i.e.,
γ ≥ 2), we can define a family of algorithms that can homomorphically compute
the comparison of unbounded integers (that is, for any size of messages, there
exists an algorithm in the family that can handle it) by decomposing the number
in basis B, and do the comparison recursively in a bottom-up tree fashion, where
each node has up to γ children. For each of them, we use the small integer
homomorphic comparison with scaling factor 2i, with i the position of the child,
starting from 0 for the least significant. By adding the resulting values and then
running again the small integer comparison protocol, we get the sign of the most
significant non-zero child, as illustrated in Fig. 1.
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Algorithm 2. HomomorphicCompareB,�+1 for message space [0, Bγ�+1 − 1]

Input: two ciphertexts c1, c2 encrypting messages m1, m2 ∈ [0, Bγ�+1 − 1], a boot-
strapping key bk and a scaling factor k
Output: an N -LWE encryption of k · sign(m1 − m2)

1: for i = 0 . . . γ − 1 do
2: ci := HomomorphicCompareB,�(c1,i, c2,i, bk, 2i)
3: end for
4: P (X) := −k · ∑

i∈{� N
2B

�,...,�N− N
2B

�} Xi

5: c :=
∑

i∈[0,γ−1] ci (the task is now to find the sign of the plaintext in c)

6: c̃ := BlindRotate(c, bk)
7: x := Extract (P (X) · c̃)
8: return x

Before defining our algorithm to compare larger integers homomorphically,
we need to specify how we encrypt those. Our encryption scheme is also defined
by induction:

EncB: we use LWE.Encrypt as defined in Sect. 2.1;
EncBγ�+1 : on input m =

∑
i∈[0,γ−1] mi(Bγ�

)i, returns (EncBγ� (mi))i∈[0,γ−1].

A ciphertext c encrypting a message m ∈ [0, Bγ�+1
] thus contains γ cipher-

texts ci encrypting messages mi ∈ [0, Bγ�

]. We are now ready to describe our
family of algorithms to homomorphically compare large integers in Algorithm 2.
By induction, this defines algorithms for homomorphic comparison with message
spaces [0, Bγ� − 1], for any positive integer �.

Correctness. By induction hypothesis, ci encrypts 2i · sign(m1,i − m2,i). Then
c encrypts

∑
i∈[0,γ−1] 2

i · sign(m1,i − m2,i), the sign of which is the sign of the
last non-zero m1,i −m2,i, which is the sign of m1−m2. Then, assuming the error
does not grow too much, we can use the same analysis as previously to conclude
that we correctly evaluate to k · sign(m1 − m2). The noise now comes from the
sum of γ ciphertexts instead of 2.

Sequential Strategy. In order to minimize the noise growth during the com-
putation, we apply the technique described in Sect. 2.2. First, we encrypt the
messages by decomposing them in basis B

2 as follows:

Enc(B
2 )� : on input m =

∑
i∈[0,�−1] mi(B

2 )i, returns (LWE.Encrypt(mi))i∈[0,�−1].

As previously, we describe our alternative technique as a family of algo-
rithms HomomorphicCompareB,� in Algorithm 3, for homomorphic comparison
with message spaces [0, (B

2 )� − 1], for any positive integer �.
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Algorithm 3. HomomorphicCompareB,� for message space [0, (B
2 )� − 1]

Input: two ciphertexts c1, c2 encrypting messages m1, m2 ∈ [0, (B
2
)� − 1], a boot-

strapping key bk and a scaling factor k
Output: an N -LWE encryption of k · sign(m1 − m2)

1: acc = 0
2: for i = � − 1, . . . , 1 do
3: acc := HomomorphicCompareB,0(acc + c1,i, c2,i, bk, B

2
)

4: end for
5: return HomomorphicCompareB,0(acc + c1,0, c2,0, bk, k)

Correctness. After the i-th iteration of the loop, the accumulator acc contains
the sign of m

(i)
1 −m

(i)
2 scaled by B

2 , where m
(i)
b =

∑
j∈{0,...,i} mb,�−1−j

(
B
2

)�−1−j

for b ∈ {0, 1}. Indeed, observe that for all i ∈ {1, . . . , � − 1},
(
m

(i)
1 − m

(i)
2

)
has

the same sign as

B

2
· sign

(
m

(i−1)
1 − m

(i−1)
2

)
+ m1,�−1−i − m2,�−1−i,

because |m1,�−1−i − m2,�−1−i| < B
2 . The correctness then follows from the one

of HomomorphicCompareB,0.

2.5 Efficiency

In order to test the efficiency of our technique, we implemented our protocol and
ran it on a Core i7-3630QM laptop, on which a bootstrapping from the TFHE
library takes about 33 ms. For such a processor supporting parallel computations,
the tree-based approach significantly outperforms the sequential one. We will
then only consider this strategy in the following. We nevertheless note that our
sequential strategy offers better noise management and thus better parameters,
making it more efficient if evaluated on a single core.

The fact that our protocol allows to process log2(B) bits at once might lead
to select large B. Unfortunately, the size of B impacts the parameters of our
system and thus its efficiency. A careful noise analysis is therefore necessary to
select optimal values for B.

Let σ2
bs be the variance of the noise at the end of the bootstrapping, as defined

in [15], theorem 6.3:

σ2
bs = n(k + 1)�Nβ2σ2

bk + n(1 + kN)ε2 + n2−2(t+1) + tnσ2
ks

We use the same notation as in [15]. σ2
bk (resp. σ2

ks) is the variance of the
error of the bootstrapping key (resp. the key-switching key). k, �, N , β and ε
are parameters of the encryption schemes involved in BlindRotate whereas t
and n are parameters of KeySwitch.

We have to correctly handle a message space of 2B slots even after adding
γ = �log2(B)
 ciphertexts. We also have to take into account the noise resulting
from rounding to multiples of 1

2N .



Improved Secure Integer Comparison via Homomorphic Encryption 403

Table 1. Timings obtained with three different sets of parameters for comparing 32
bits integers. For all of them, we have k = 1.

B N n σks σbk β t Bootstr. 32bits comp.

1 core 8f cores Max parall.

Set 1 4 2048 500 2−20 2−50 2048 17 72 ms 2232 ms 648 ms 360ms

Set 2 4 4096 400 2−14 2−70 4096 13 126 ms 3902 ms 1137 ms 620ms

Set 3 6 4096 750 2−18 2−70 4096 17 240 ms 3840 ms 1200 ms 960ms

We thus get the following probability of correctness

erf

((
1

4B
− n + 1

4N

)
1

σbs

√
2 log2(B)

)

,

where erf is the Gauss error function.
This probability shows that increasing B requires to increase N , which is

not a good strategy since the complexity of the bootstrapping is superlinear in
N . For a given set of parameters (selected to ensure some level of security), one
then simply has to choose the largest possible value for B. Interestingly, this
means that, compared to binary decomposition, the efficiency of our protocol
will increase with the security level.

We note that the flexibility in the choice of B (we can choose any value
B ≥ 4) allows a better noise management than in [9]. This means that our
technique can probably be adapted to improve parameters of [9] for evaluation
of neural networks where the message space is large.

We have tested our implementation for different sets of parameters. The
results are presented in Table 1.

These three sets of parameters respectively yield a security [4] of 90/109/
211 bits for the key switching key, and 230/378/378 bits for the bootstrap-
ping key. The probability of error for a bootstrapping is respectively less than
2−50/2−47/2−89. Table 1 shows that our first set of parameters, with B = 4 and
N = 2048, provides the best performances.

We note that the improvements from [9,46] halve the rounding cost by slightly
unfolding the loop in BlindRotate. This allows us to basically double the message
space at a very small cost. With the same noise analysis technique, we suggest
to modify our first set of parameters as follows:

(N,n, σks, σbk, β, t, k, ε) = (1024, 500, 2−20, 2−38, 2048, 17, 1, 2−25)

This set of parameters yields a security of ≈90 bits for the key switching key, and
≈107 bits for the bootstrapping key. The probability of error for a bootstrapping
is less than 2−50. The running time for these parameters should be roughly 33 ms,
given the experiments conducted in [9,46], which yields comparison of 32 bits
integers in 1023 ms on a single core, 297 ms on 8 cores, and 165 ms with maximum
parallelization.
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For elements of comparison, using a binary decomposition requires 128 gates
[32] for greater than comparison of 32 bits integers (what we are achieving is
stronger, because we test equality as well), which would yield 4224 ms on the
same laptop.

3 A Protocol for the Millionaires’ Problem

In this section, we improve on the CEK protocol by avoiding one round induced
by the plaintext equality test. This allows us to reduce the interaction to the
minimum, while preserving efficiency. We first describe the more efficient pro-
tocol for small integers, before showing how it can easily be extended to larger
integers by following the techniques in [10]. Even the protocol for larger messages
only deals with bounded messages, however that bound grows really fast with
the size of the RSA modulus chosen.

3.1 Preliminaries

The security of our protocol will rely on the Small RSA Subgroup Decision
Assumption, defined in [10], inspired by [29]. Informally, it states that it is hard
to distinguish a random element in a subgroup of Z∗

N from a random element.
Let us introduce the following notation for our RSA quintuples (u, p0, d,N, g):

– u is an integer such that the Discrete Logarithm Problem is infeasible in a
subgroup of Z∗

N whose order is a prime of bit-length u;
– p0 is a prime;
– d is an integer greater than 1;
– N is an integer of the form N = pq, whose factorisation is infeasible, where

p = 2 · pd
0 · ps · pt + 1 and q = 2 · pd

0 · qs · qt + 1, with ps and qs primes of
bit-length u, and pt and qt primes whose bit-length is not u;

– g is an element of order pd
0 in Z

∗
N ;

– QRN is the set of quadratic residues mod N .

Definition 2. We say that the small RSA subgroup decision assumption holds
if given an RSA quintuple (u, p0, d,N, g), the distributions x and xpd

0 ·pt·qt are
computationally indistinguishable, for x

$← QRN a uniformly random quadratic
residue mod N .

In other words, the small RSA subgroup assumption states that it is hard to
distinguish an element of order ps · qs from a random quadratic residue in Z

∗
N .

Since pinpointing the optimal parameters for security and efficiency is not trivial
in this setting, we discuss in more details our choices of parameters in Sect. 4.1.

3.2 Protocol for Small Integers

We describe in this section our protocol for secure integer comparison but first
start by providing the intuition behind it.
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Intuition. As in [10], our protocol makes use of the threshold properties of
prime power subgroups of Z∗

N . We will then assume that there exist a prime p0
and an integer d > 0 such that pd

0 divides φ(N). Let g be an element of order pd
0

in Z
∗
N and G be the cyclic subgroup generated by g.

In [10], the core idea is that the element C = gp
d+m1−m2
0 can be used to

compare the integers m1 and m2. Indeed, this element is equal to 1 if and only
if m1 ≥ m2. However, to prevent any leakage of information on its secret integer
m2, the second party B has to blind C using a random element gs ∈ G leading
to the following problem for the first party A : in all cases (namely m1 ≥ m2 or
m1 < m2) it receives a random element gs′

. To compare m1 and m2, Carlton
et al. therefore propose (1) to recover s′ from gs′

(i.e. to compute a discrete
logarithm) and (2) to run a plaintext equality test (PET) between A and B
to compare s′ and s. It implies at least another pass and involves additional
primitives (e.g. homomorphic encryption in [10]).

The goal of our protocol is to remove these last steps and so to reduce the
number of passes while avoiding the computational overhead of PET protocols.

Let 0 < a ≤ d be a public integer such that pa
0 ≥ 2λ where λ is the security

parameter3. Of course, this requirement implies larger subgroups G but, as we
will explain, this is not a significant problem for us since we will no longer need
to compute discrete logarithms in G. Let H be a subgroup of order coprime with
p0, generated by some element h.

To compare m1,m2 ≤ d/a, the party A computes C = gp
a·m1
0 · hr1 , for some

random scalars r1, and sends it to B. The latter then selects three random
scalars: u ∈ [0, pa

0 − 1], v ∈ [0, pd
0 − 1] and r2 ∈ [0, b − 1] where b is some bound

on the order of H. It then computes and sends to A two elements:

D ← Cu·pd−a·m2
0 · gv · hr2 and D′ ← H(gv)

where H is some hash function. One can note that D = gu·pd+a(m1−m2)
0 +v · h∗ for

some random element h∗ ∈ H. By using its knowledge of the factorization of N ,
A can easily remove h∗ and recover C ′ = gu·pd+a(m1−m2)

0 +v. There are then two
different cases:

1. If m1 ≥ m2, then C ′ = gv which can easily be detected by A since H(C ′) = D′

in such a case.
2. Else, H(C ′) differs from D′ with overwhelming probability, leading A to con-

clude that m1 < m2.

From the security point of view, one can note that B always received values
masked by a random element h of H. It is thus unable to learn information on m1

unless it can solve the small RSA subgroup problem. In the case where m1 ≥ m2

the pair (D,D′) received by A is independent of m2 so this entity cannot learn
any information on this value. In the case where m1 < m2, the element C ′ is
a random element of G (since v is random) but A has an information on the

3 We will provide more details on the parameters in Sect. 4.1.
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Party A (pp, sp, m1 ∈ [0, d/a]) Party B (pp, m2 ∈ [0, d/a])
r1

$ [1, b − 1]

C = gp
a·m1
0 hr1 C

u
$ [1, pa

0 − 1], v
$ [1, pd

0 − 1],
r2

$ [1, b − 1]

D Cu·pd−a·m2
0 · gv · hr2

(D, D′)
D′ H(gv)

C′ Dc

If D′ = H(C′), return (m1 ≥ m2)
Else, return (m1 < m2).

Fig. 3. A two-pass protocol for secure comparison of small integers.

blinding factor gv since it knows D′ = H(gv). Since a hash function is assumed
to be one-way, A cannot recover gv directly from D but can try to guess it
either directly (with probability 1/pd

0) or by guessing the cofactor gu·pd+a(m1−m2)
0 .

However, the latter element is of order a least pa
0 > 2λ which makes a correct

guess very unlikely when u is random.

Our Construction. Our protocol is described in Fig. 3 and makes use of the
following parameters:

– N = p · q is a product of two primes p and q
– p0, ps and qs are prime numbers such that ps|p − 1, qs|q − 1 and pd

0 divides
both p − 1 and q − 1 for some integer d > 0

– 0 < a ≤ d is an integer smaller than d
– g ∈ Z

∗
N is an element of order pd

0 in both Z
∗
p and Z

∗
q while h ∈ Z

∗
N is an

element of order ps · qs.
– b is an upper bound on ps · qs

– c is an integer such that c = ps · qs · [(ps · qs)−1]pd
0
, where [x]pd

0
denotes x mod

pd
0.

– H : Z∗
N → {0, 1}∗ is a cryptographic hash function.

The public parameters pp are defined as {N, a, p0, d, g, h, b} whereas the secret
parameters sp, only known to A, are {p, q, c}.

Correctness. As explained above, the element C ′ computed by A is exactly
gu·pd+a(m1−m2)

0 +v. If m1 ≥ m2, then C ′ = gv and D′ = H(C ′). Else, m1 −m2 < 0
and pa

0 divides the order of gp
d+a(m1−m2)
0 . Since u ∈ [1, pa

0 −1], gu·pd+a(m1−m2)
0 �= 1

and C ′ �= gv. Therefore, D = H(C ′) would imply a collision of the hash function
H, which is very unlikely.

3.3 Security of the Protocol for Small Integers

We prove the security for both A and B against honest-but-curious adversaries
in the random oracle model. This means that A (respectively B) will not learn
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any information about m2 (resp. m1), except whether it is bigger or smaller than
m1 (resp. m2).

Privacy of A. We first show that B learns nothing about m1 in this protocol.
More formally, we have the following security theorem.

Theorem 3. Under the Small RSA Subgroup Decision Assumption, B’s view
is computationally indistinguishable from a uniformly random element in QRN

for any message m1.

Proof. We show that we can use an adversary that has probability ε of distin-
guishing B’s view from a uniformly random element in Z

∗
N to break the Small

RSA Subgroup Decision Assumption with the same probability.
Let us define a first game where the reduction R publishes a valid set of

parameters {N, a, p0, d, g, h, b} (here valid means in particular that h is of order
ps · qs) and plays the role of A as defined in Fig. 3.

In a second game, R proceeds as in the previous game except that it generates
a random element z

$← Z
∗
N and sets h = z2. In such a case, the element C received

by B is a uniformly random element in QRN for any message m1.
Now let us assume that an adversary A is able to distinguish these two games

with probability ε. On input an RSA quintuple (u, p0, d,N, g) and an instance x
to the small RSA subgroup decision problem, R defines the public parameters as
{N, a, p0, d, g, h, b}, where a and b are selected as usual, but where h = x. If x is
of order ps · qs, then this is exactly our first game. Else, x is a uniformly random
quadratic residue and A is playing our second game. Therefore, A will succeed
in breaking the Small RSA Subgroup Decision Assumption with probability ε,
which implies that ε is negligible.

Privacy of B . We now show that A only learns the output of the protocol
(m1 ≥ m2) and nothing else about m2.

Theorem 4. There exists an efficient simulator S, such that S(1λ, (m1 ≥ m2))
is statistically indistinguishable from A’s view for any messages m1 and m2 in
the random oracle model.

Proof. The simulator S works as follows:

– If m1 < m2 pick random elements v, v′ $← [1, pd
0 − 1], r $← [1, b − 1] and return(

gv · hr,H(gv′
)
)
.

– Else pick random elements v
$← [1, pd

0 − 1], r
$← [1, b − 1] and return (gv · hr,

H(gv)).

In the first case, we show that the statistical distance between the view of A and
the output of S is negligible: The two distribution only differ when the adver-
sary queries the random oracle with input gv−u·pd+a(m1−m2)

0 and realizes that
it’s different from H(gv′

). However, this can never happen with non-negligible
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Party A (pp, sp, m1 =
∑�

i=0 m1,i · bi) Party B (pp, m2 =
∑�

i=0 m2,i · bi)
For i ∈ [0, �]: r1,i

$ [1, b − 1]

Ci = g−m
(i)
1 gp

a(m1,i)
0 hr1,i

{Ci}�
i=0

For i ∈ [0, �]:
ui

$ [1, pa
0 − 1], vi

$ [1, pd
0 − 1],

r2,i
$ [1, b − 1], D′

i H(gvi)

Di (Ci · gm
(i)
2 )ui·pd−a(m2,i+1)

0 · gvi · hr2,i

π({(Di, D
′
i)}�

i=0)

For i ∈ [0, �]:
C′

i Dc
i

If ∃i s.t. D′
i = H(C′

i),
return (m1 > m2)

Else, return (m1 ≤ m2).

Fig. 4. A two-pass protocol for secure integer comparison. π is a random permutation
of the symmetric group S�+1.

probability because gu·pd+a(m1+m2)
0 is uniform in a subgroup of order at least pa

0 ,
which is exponential in the security parameter for the parameters we suggest in
Sect. 4.1.

In the second case, the distribution is exactly the same as in the protocol.

3.4 A Protocol for Large Integers

As we explain in Sect. 4.1, the constraints that apply on the different parameters
imply that the protocol of Fig. 3 can only be used to compare small messages.
However, our protocol can be extended to compare larger integers by adapting
a technique used in previous works (e.g. [10,20]). Let m1 =

∑�
i=0 m1,i · bi and

m2 =
∑�

i=0 m2,i ·bi be the rewriting of the messages m1 and m2 in base b = �d/a

(i.e. mj,i ∈ [0, b − 1] for i ∈ [0, �] and � = �logb(M)	, where M < pa

0 is a bound
on the messages m1 and m2). For i ∈ [0, �], we define m

(i)
j =

∑�
k=i+1 mj,kbk.

Our protocol is described in Fig. 4 and uses the same parameters as in Sect. 3.2.

Remark 5. The bound M < pa
0 is not a strong constraint for most applications

since pa
0 > 2λ (see Sect. 4.1 below). This protocol is therefore sufficient to com-

pare integers of reasonable size but, if need be, it can easily be extended for even
larger integers. Indeed, instead of including gm

(i)
1 in Ci, the party A can encrypt

it separately as Ei = g−m
(1)
i hr′

1,i and sends it along with Ci. The party B will
now compute Di as (Cp

d−a(m2+1)
0 Ei · gm

(i)
2 )ui · gvi · hr2,i leading to a much larger

bound of B < pd
0 ∼ N1/4.

Correctness. We prove that m1 > m2 ⇔ ∃i ∈ [0, �] such that D′
i = H(C ′

i).
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First note that if m1 > m2, then ∃i ∈ [0, �] such that (1) m
(i)
1 = m

(i)
2 and (2)

m1,i > m2,i, or equivalently (m1,i − m2,i) ≥ 1. For such an index i, we have:

C ′
i = gui[(m

(i)
2 −m

(i)
1 )p

d−a(m2,i+1)
0 +p

d+a(m1,i−m2,i−1)
0 ]+vi = gvi

which means that D′
i = H(C ′

i). Now, let us assume that ∃i ∈ [0, �] such that
D′

i = H(C ′
i). Due to the collision resistance of H, this means (with overwhelming

probability) that gvi = C ′
i and so that:

ui[(m
(i)
2 − m

(i)
1 )pd−a(m2,i+1)

0 + p
d+a(m1,i−m2,i−1)
0 ] = 0 mod pd

0

One can note that the powers of p0 between the square brackets are either
multiples of pd

0 or of the form pt
0 with t ≤ d − a. Since 0 < ui < pa

0 , this implies
that:

[(m(i)
2 − m

(i)
1 )pd−a(m2,i+1)

0 + p
d+a(m1,i−m2,i−1)
0 ] = 0 mod pd

0

⇔ p
d−a(m2,i+1)
0 [(m(i)

2 − m
(i)
1 ) + p

a·m1,i

0 ] = 0 mod pd
0

⇔ (m(i)
2 − m

(i)
1 ) + p

a·m1,i

0 = 0 mod p
a(m2,i+1)
0 (I)

For all i ∈ [0, �], we have m
(i)
2 − m

(i)
1 ≤ M − (b − 1) ≤ M − 1 < pa

0 − 1. We
can therefore distinguish two cases.

– Case 1: m2,i ≥ m1,i. From (m(i)
2 − m

(i)
1 ) + p

a·m1,i

0 < pa
0 − 1 + p

a·m2,i

0 ≤
p

a·m2,i +1
0 and the Equation (I), we can deduce that (m(i)

2 −m
(i)
1 ) + p

a·m1,i

0 ≤ 0
and in particular that m

(i)
1 > m

(i)
2 . The latter inequality means that m1 > m2,

which concludes our proof.
– Case 2: m2,i < m1,i. The Equation (I) then becomes:

(m(i)
2 − m

(i)
1 ) = 0 mod p

a(m2,i +1)
0 .

However, we know that −pa
0 < m

(i)
2 −m

(i)
1 < pa

0 , so the previous equation can
only hold if m

(i)
2 = m

(i)
1 . Here again, this means that m1 > m2.

Therefore, m1 > m2 ⇔ ∃i ∈ [0, �] such that D′
i = H(C ′

i), which proves the
correctness of our protocol.

4 Security of the Protocol for Large Integers

The proof of security for this protocol is very similar to the previous one, and
the claims are similar: A’s data will be computationally secure, while B’s data
will be statistically secure. One key observation is that each pair (Di,D

′
i) proves

or disproves the statement m
(i)
1 = m

(i)
2 ∧ m1,i > m2,i. At most one of them can

be satisfied, and one is satisfied if and only if m1 > m2.

Privacy of A. We first show that B learns nothing about m1 in this protocol.
More formally, we have the following security theorem.
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Theorem 6. Under the Small RSA Subgroup Decision Assumption, B’s view is
computationally indistinguishable from a uniformly random element in QRN

�+1

for any message m1.

Proof. As in the previous case, we can show this indistinguishability by replacing
the element h by a small RSA subgroup decision challenge. If the element has
order ps · qs, then the view of B is identical to the real protocol. Otherwise,
B only receives a uniformly random element in QRN

�+1. Thus, any adversary
breaking the privacy of A can be used to solve the Small RSA Subgroup Decision
problem.

Privacy of B . We now show that A only learns the output of the protocol
(m1 > m2) and nothing else about m2.

Theorem 7. There exists an efficient simulator S, such that S(1λ, (m1 > m2))
is statistically indistinguishable from A’s view for any messages m1 and m2 in
the random oracle model.

Proof. The simulator S works as follows:

– If m1 ≤ m2, for each i ∈ [0, �] pick random elements vi, v
′
i

$← [1, pd
0 −

1], ri
$← [1, b − 1] and sets

(
Di = gvi · hri ,D′

i = H(gv′
i)

)
. Then it returns

{(Di,D
′
i)}�

i=0;
– Else pick a random index j ∈ [0, �], random elements vj

$← [1, pd
0 − 1], rj

$←
[1, b − 1] and sets

(
Dj = gvj · hrj ,D′

j = H(gvj )
)
. Then, for each i ∈ [0, �],

i �= j, pick random elements vi, v
′
i

$← [1, pd
0 − 1], ri

$← [1, b − 1] and sets(
Di = gvi · hri ,D′

i = H(gv′
i)

)
. Finally, returns {(Di,D

′
i)}�

i=0

As previously, in the first case, we show that the statistical distance between the
view of B and the output of S is negligible: The two distribution can only differ
when the adversary queries the random oracle with input gṽk,i for some indices
i, k ∈ [0, �], where

ṽk,i = vk − ui · (m(i)
2 − m

(i)
1 ) · p

d−a(m2,i+1)
0 + ui · p

d−a(m1,i−m2,i+1)
0 .

However, as we have shown for correctness,

(m(i)
2 − m

(i)
1 ) · p

d−a(m2,i+1)
0 + p

d−a(m1,i−m2,i+1)
0 �= 0 mod pd

0,

unless m
(i)
2 = m

(i)
1 and mi,1 > mi,2. Thus, the ṽk,i are uniformly random in

an exponentially big subgroup for parameters suggested in Sect. 4.1 (of order at
least pa

0). Since the adversary runs in polynomial time, the probability that he
queries the random oracle on one of these input is negligible.

In the second case, the distribution is exactly the same as in the protocol for
the index j that satisfies m

(j)
2 = m

(j)
1 and mj,1 > mj,2. For all the other indices,

we use the same argument as in the first case: the two distributions can only
differ when the adversary queries the random oracle with input gṽk,i for some
indices i, k ∈ [0, �], k �= j.
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4.1 Parameters

One must be careful when using RSA modulus whose prime factors have unusual
decomposition, as shown in [17,18,36,39]. We discuss in this section the bounds
on the different parameters to ensure the security of our protocols and their
impact on efficiency.

There are several attacks that we must take into account due to the special
form of our RSA modulus. One of them is the Coron et al. attack [18] that gives
us a bound on the order of h: log2(ps) = log2(qs) ≥ 2λ.

The condition pd
0|p − 1 and pd

0|q − 1 makes our protocol vulnerable to the
McKee’s and Pinch’s attack [36] and thus imposes the upper bound N1/4/2λ on
the value of pd

0, where λ is the security parameter. We must therefore have:

d · log(p0) ≤ 1
4
log(N) − λlog(2).

This gives us a bound on the messages m that can be compared in a single
execution of our protocol:

m ≤ d/a ≤ log(N)/4 − λlog(2)
log(p0) · a

Ideally, we would like to choose p0 = 2 and a = 1 to get the largest bound.
However, we must additionally ensure that the random scalar u cannot be
guessed with non-negligible probability. This means that:

a · log(p0) ≥ λlog(2)

Combining these two constraints leads to the following bound on the mes-
sages:

m ≤ log(N)/4 − λlog(2)
log(p0) · a

≤ log(N)/4 − λlog(2)
λlog(2)

One can note that this bound on m is independent of p0 and a. This means
that there is a great flexibility in the choice of these parameters provided that
the requirement a · log(p0) ≥ λlog(2) is fulfilled.

Interestingly, the fact that N grows more quickly than the security parameter
λ [33,40] implies that this bound depends on the security parameter. In partic-
ular, compared to previous protocols (e.g. [20,42,43]) that work with bit-wise
encrypted values, the speedup factor will be larger for λ = 256 than for λ = 128.

4.2 Efficiency

As we mention in the introduction, there is a wide range of solutions to the
Millionaire’s problem from garbled circuits to homomorphic encryption. And
even among solutions based on homomorphic encryption, one can find different
tradeoffs such as the two-passes protocol proposed by Damg̊ard et al. [20] and
the protocol proposed by Carlton et al. [10] that allows to process several bits
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Table 2. Efficiency comparison between related works and our protocol. Et refers
to the cost of an exponentiation whose exponent is smaller than t. dlog

G
refers to

the cost of computing a discrete logarithm in the group G. Enc⊕, Dec⊕ and Rand⊕
respectively refer to the cost of encrypting, decrypting and re-randomizing with the
additively homomorphic encryption scheme Π used for the PET. Finally, C⊕ refers to
a ciphertext generated using Π and H to a digest generated by H.

Schemes DGK [20] CEK [10] Our work

Computational
Cost (A)

log2(M)[1 Eb + 1 Ebpd
0
] logb′(M)[1 Eb +

1 Ebpd
0
+1 dlog

G
+

1 Rand⊕]

logb(M)[1 Eb + 1 Ebpd
0
]

Computational
Cost (B)

log2(M)[1 Eb] logb′(M)[1 Eb +
2 Epd

0
+ 1 Enc⊕ +

1 Dec⊕]

logb(M)[1 Eb + 2 Epd
0
]

Communication
Cost

log2(M)[2 Z
∗
N ] logb′(M)[2 Z

∗
N +

2 C⊕]
logb(M)[2 Z

∗
N + 1 H]

Passes 2 3−4a

a Carlton et al. explain how to combine the last pass of their protocol with the first
one of the PET, leading to a protocol with 3 passes instead of 4. However, in such
a case, the entity (A) that initiated the protocol does not know the result of the
comparison (only B knows it), contrarily to our protocol or to the DGK one.

at once but at the cost of an extra plaintext equality check (PET) involving
additional passes. We therefore choose to compare our protocol with both solu-
tions by providing in Table 2 an assessment of the different respective costs. In
particular, we stress that the cost of additional passes, and more generally the
communication cost, should not be underestimated. It can indeed be very high
for some devices such as smartcards, and even exceeds computational cost in
some cases (see e.g. [22]).

For the sake of clarity, we do not consider additions, multiplications and hash
evaluations whose costs are negligible compared to the other operations. We also
assume, for all protocols, that the elements only depending on the messages m1

or m2 and on the system parameters (e.g. gp
a·m1,i
0 ) have been pre-computed.

For proper comparison, we need to specify the values of the factors logb′(M)
and logb(M) respectively used in the evaluation of the complexity of the CEK
protocol and ours. This is not a trivial task as the constraints placed on our
parameters prevent us from using conventional RSA moduli. This is done in
Sect. 4.1 where we show that:

b = � log(N)/4 − λlog(2)
λlog(2)




A similar analysis for the CEK protocol shows that:

b′ = � log(N)/4 − λlog(2)
log(p0)
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Our protocol can easily be compared to the DGK one since they both involve
2 passes and do not need PET. Actually, one can note that our protocol is roughly
log(b)
log(2) more efficient than the DGK one. For a security parameter λ of respectively
128, 192 and 256, we have b = 5, b = 9 and b = 14 (see [40]), which means that
the speedup factor is always greater than 2 and will increase with the security
level.

Conversely, comparing our solution with the CEK one is more complex, as
they are very different protocols. Ours only requires 2 passes and does not require
a PET, thus avoiding additional interactions and the costs associated with an
homomorphic encryption system. Regarding computational costs, a single exe-
cution of our comparison protocol is more efficient than the CEK one, but this
is offset by the fact that CEK requires to run less individual comparison tests
because logb′(M) < logb(M). However, we note that the ratio logb(M)

logb′ (M) decreases
towards 1 as λ increases due to the existence of subexponential factorization
algorithms (see [33,40] and references therein), meaning that the number of
comparison tests for both solutions will tend to be similar in the future.

5 Conclusion

More than three decades after its introduction by Yao, the Millionaires’ problem
has proved very important in cryptography, and more generally in most use-
cases involving secure computation (e.g. machine learning on private data). It
has drawn attention from many researchers that have provided a wide range
of solutions, based on different primitives or addressing different versions of
the original problem. However, despite all this work, secure integer comparison
remains a complex issue, all the existing solutions entailing either a large amount
of computations or a large amount of communication.

In this work, we have introduced new solutions to the Millionaires’ prob-
lem in two different settings. Our first one extends the recent FHE construction
of Bourse et al. [9] to enable efficient computation of the encrypted boolean
(m1 ≤ m2) given only the encryption of (a-priori unbounded) integers m1 and
m2. Our second solution leverages the threshold homomorphic encryption scheme
of Carlton et al. [10] to construct a two-passes integer comparison protocol that
improves over the state-of-the art. Although these constructions are very dif-
ferent, they both share the same guiding principles, namely reducing as much
as possible the number of interactions and avoiding bitwise decomposition of
the integers. Regarding the latter point, this concretely means that our pro-
tocols achieve a log2(b) speedup factor compared to most homomorphic-based
solutions, where b > 4 is some integer depending on the parameters of our con-
structions.
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