)

Check for
updates

Public-Coin Zero-Knowledge Arguments
with (almost) Minimal Time and Space
Overheads

Alexander R. Block!®) | Justin Holmgren?, Alon Rosen®, Ron D. Rothblum?,
and Pratik Soni®

! Purdue University, West Lafayette, USA
block9@purdue.edu
2 NTT Research, East Palo Alto, USA
justin.holmgren@ntt-research.com
3 IDC Herzliya, Herzliya, Israel
alon.rosen@idc.ac.il
4 Technion, Haifa, Israel
rothblum@cs.technion.ac.il
5 University of California, Santa Barbara, Santa Barbara, USA
pratik_soni@cs.ucsb.edu

Abstract. Zero-knowledge protocols enable the truth of a mathemat-
ical statement to be certified by a verifier without revealing any other
information. Such protocols are a cornerstone of modern cryptography
and recently are becoming more and more practical. However, a major
bottleneck in deployment is the efficiency of the prover and, in particu-
lar, the space-efficiency of the protocol.

For every NP relation that can be verified in time 7" and space S,
we construct a public-coin zero-knowledge argument in which the prover
runs in time 7' - polylog(T) and space S - polylog(T'). Our proofs have
length polylog(7T') and the verifier runs in time 7 - polylog(7") (and space
polylog(T)). Our scheme is in the random oracle model and relies on the
hardness of discrete log in prime-order groups.

Our main technical contribution is a new space efficient polynomial
commitment scheme for multi-linear polynomials. Recall that in such a
scheme, a sender commits to a given multi-linear polynomial P : F* — F
so that later on it can prove to a receiver statements of the form
“P(x) = y”. In our scheme, which builds on commitments schemes of
Bootle et al. (Eurocrypt 2016) and Biinz et al. (S&P 2018), we assume
that the sender is given multi-pass streaming access to the evaluations
of P on the Boolean hypercube and we show how to implement both the
sender and receiver in roughly time 2" and space n and with communi-
cation complexity roughly n.

1 Introduction

Zero-knowledge protocols are a cornerstone of modern cryptography, enabling
the truth of a mathematical statement to be certified by a prover to a verifier

© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12551, pp. 168-197, 2020.
https://doi.org/10.1007/978-3-030-64378-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64378-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-64378-2_7

Public-Coin Zero-Knowledge Arguments 169

without revealing any other information. First conceived by Goldwasser, Micali,
and Rackoff [27], zero knowledge has myriad applications in both theory and
practice and is a thriving research area today. Theoretical work primarily inves-
tigates the complexity tradeoffs inherent in zero-knowledge protocols:

— the number of rounds of interaction,

— the number of bits exchanged between the prover and verifier

— the computational complexity of the prover and verifier (e.g. running time,
space usage)

— the degree of soundness—in particular, soundness can be statistical or com-
putational, and the protocol may or may not be a proof of knowledge.

ZK-SNARKs (Zero-Knowledge Succinct Non-interactive ARguments of
Knowledge) are protocols that achieve particularly appealing parameters: they
are non-interactive protocols in which to certify an NP statement z with wit-
ness w, the prover sends a proof string 7 of length |r| < |w|. Such proof
systems require setup (namely, a common reference string) and (under widely
believed complexity-theoretic assumptions [24,25]) are limited to achieving com-
putational soundness.

One of the main bottlenecks limiting the scalability of ZK-SNARKs is the
high computational complexity of generating proof strings. In particular, a major
problem is that even for the lowest-overhead ZK-SNARKs (see e.g. [4,22,39] and
follow-up works), the prover requires £2(T") space to certify correctness of a time-
T computation, even if that computation uses space S < T.

As typical computations require much less space than time, such space usage
can easily become a hard bottleneck. While it is straight-forward to run a pro-
gram for as long as one’s patience allows, a computer’s memory cannot be
expanded without purchasing additional hardware. Moreover, the memory archi-
tecture of modern computer systems is hierarchical, consisting of different tiers
(various cache levels, RAM, and nonvolatile storage), with latencies and capaci-
ties that increase by orders of magnitude at each successive level. In other words,
high space usage can also incur a heavy penalty in running time.

In this work, we focus on uniform non-deterministic computations—that is,
proving that a nondeterministic time-7" space-S Turing machine accepts an input
x. Our objective is to obtain “complexity-preserving” (ZK-)SNARKs [10] for
such computations, i.e., SNARKs in which the prover runs in time roughly
T and space roughly S. Relatively efficient privately verifiable solutions are
known [11,29]. In such schemes the verifier holds some secret state that, if leaked,
compromises soundness. However, many applications (such as cryptocurrencies
or other massively decentralized protocols) require public verifiability, which is
the emphasis of our work.

To date, publicly verifiable complexity-preserving SNARKSs are known only
via recursive composition [9,47]. This approach indeed yields SNARKs with
prover running time O(T) and space usage S - polylog(T), but with significant
concrete overheads. Recursively composed SNARKS require both the prover and
verifier to make non-black-box usage of an “inner” verifier for a different SNARK,
leading to enormous computational overhead in practice.

170 A. R. Block et al.

Several recent works [14,16,18] attempt to solve the inefficiency problems
with recursive composition, but the protocols in these works rely on heuristic and
poorly understood assumptions to justify their soundness. While any SNARK
(with a black-box security reduction) inherently relies on non-falsifiable assump-
tions [23], these SNARKS possess additional troubling features. They rely on
hash functions that are modeled as random oracles in the security proof, despite
being used in a non-black-box way by the honest parties. Security thus cannot
be reduced to a simple computational hardness assumption, even in the random
oracle model. Moreover, the practicality of the schemes crucially requires usage
of a novel hash function (e.g., Rescue [1]) with algebraic structure designed to
maximize the efficiency of non-black-box operations. Such hash functions have
endured far less scrutiny than standard SHA hash functions, and the algebraic
structure could potentially lead to a security vulnerability.

In this work, we ask:

Can we devise a complezity-preserving ZK-SNARK in the random oracle
model based on standard cryptographic assumptions?

1.1 Our Results
Our main result is an affirmative answer to this question.

Theorem 1. Assume that the discrete-log problem is hard in obliviously sam-
pleable! prime-order groups. Then, for every NP relation that can be verified by
a random access machine in time T and space S, there exists a publicly verifiable
ZK-SNARK, in the random oracle model, in which both the prover and verifier
run in time T - polylog(T), the prover uses space S - polylog(T), and the verifier
uses space polylog(T'). The proof length is poly-logarithmic in T.

We emphasize that the verifier in our protocol has similar running time to
that of the prover, in contrast to other schemes in the literature that offer poly-
logarithmic time verification. While this limits the usefulness of our scheme in
delegating (deterministic) computations, our scheme is well-geared towards zero-
knowledge applications in which the prover and verifier are likely to have similar
computational resources.

At the heart of our ZK-SNARK for NP relations verifiable by time-T' space-
S random access machine (RAM) is a new public-coin interactive argument of
knowledge, in the random oracle model, for the same relation where the prover
runs in time 7 - polylog(T) and requires space S - polylog(T). We make this
argument zero-knowledge by using standard techniques which incurs minimal

! By obliviously sampleable we mean that there exist algorithms S and S~' such
that on input random coins r, the algorithm S samples a uniformly random group
element g, whereas on input g, the algorithm S™! samples random coins r that are
consistent with the choice of g. In other words, if S uses ¢ random bits then the joint
distributions (Ue, S(Uy)) and (S™1(S(Uy)), S(Ue)) are identically distributed, where
U, denotes the uniform distribution on ¢ bit strings..

Public-Coin Zero-Knowledge Arguments 171

asymptotic blow-up in the efficiency of the argument [2,20,48]. Finally, applying
the Fiat-Shamir transformation [21] to our public-coin zero-knowledge argument
yields Theorem 1.

Space-Efficient Polynomial Commitment for Multi-linear Polynomi-
als. The key ingredient in our public-coin interactive argument of knowledge is
a new space efficient polynomial commitment scheme, which we describe next.

Polynomial commitment schemes were introduced by Kate et al. [32] and have
since received much attention [3,7,17,33,49,50], in particular due to their usage
in the construction of efficient zero-knowledge arguments. Informally, a polyno-
mial commitment scheme is a cryptographic primitive that allows a committer
to send to a receiver a commitment to an n-variate polynomial @ : F* — F, over
some finite field F, and later reveal evaluations y of @ on a point x € F" of the
receiver’s choice along with a proof that indeed y = Q(x).

In this work we construct polynomial commitment schemes where the space
complexity is (roughly) logarithmic in the description size of the polynomial.
In order to state this result more precisely, we must first determine the type of
access that the committer has to the polynomial.

We first note that in this work we restrict our attention to multi-linear poly-
nomials (i.e., polynomials which have individual degree 1). Note that such a
polynomial @ : F"* — F is uniquely determined by its evaluations on the Boolean
hybercube, that is, (Q(O), Q0 — 1)), where the integers in Zgn are associ-
ated with vectors in {0,1}" in the natural way.

Towards achieving our space efficient implementation, and motivated by our
application to the construction of an efficient argument-scheme, we assume that
the committer has multi-pass streaming access to the evaluations of the poly-
nomial on the Boolean hypercube. Such an access pattern can be modeled by
giving the committer access to a read-only tape that is pre-initialized with the
values (Q(O), Q02 — 1)) At every time-step the committer is allowed to
either move the machine head to the right or to restart its position to 0.

Theorem 2 (Informal, see Theorem 5). Let G be an obliviously sampleable
group of prime-order p and let Q : F™ — F be some n-variate multi-linear poly-
nomial. Assuming the hardness of discrete-log over G and multi-pass streaming
access to the sequence (Q(0),...,Q(2"™ — 1)), there exists a polynomial commit-
ment scheme for @ in the random oracle model such that

1. The commitment consists of one group element, evaluation proofs consist of
O(n) group and field elements,

2. The committer and receiver perform 0(2”) group and field operations, make
0(2”) queries to the random oracle, and store only O(n) group and field
elements, and

3. The committer makes O(n) passes over (Q(0),...,Q(2" —1)).

Following [32], a number of works have focussed on achieving asymptotically
optimal proof sizes (more generally, communication), and time complexity for
both committer and receiver. However, the space complexity of the committer

172 A. R. Block et al.

has been largely ignored; naively it is lower-bounded by the size of the commit-
ter’s input (which is a description of the polynomial). As mentioned above, we
believe that obtaining a space-efficient polynomial commitment scheme in the
streaming model to be of independent interest and may even eventually lead to
significantly improved performance of interactive oracle proofs, SNARKS, and
related primitives in practice.

We also mention that the streaming model is especially well-suited to our
application of building space-efficient SNARKs. The reason is that in such
schemes, the prover typically uses a polynomial commitment scheme to commit
to a low-degree extension of the transcript of a RAM program, which, natu-
rally, can be generated as a stream in space that is proportional to the space
complexity of the underlying RAM program.

At a high level, we use an algebraic homomorphic commitment (e.g., Peder-
sen commitment [40]) to succinctly commit to the polynomial @ (by committing
to the sequence (Q(0),...,Q(2" —1)). Next, to provide evaluation proofs, our
scheme leverages the fact that evaluating) on point x reduces to computing
an inner-product between (Q(0),...,Q(2™ — 1)) and the sequence of Lagrange
coefficients defined by the evaluation point x. Relying on the homomorphic prop-
erties of our commitment, the basic step of our evaluation protocol is a 2-move
(randomized) reduction step which allows the committer to “fold” a statement
of size 2" into a statement of size 2" /2. Our scheme is inspired from the “inner-
product argument” of Bootle et al. [13] (and its variants [15,48]) but differs in
the 2-move reduction step. More specifically, their reduction step folds the left
half of (Q(0),...,Q(2" — 1)) with its right half (referred to as msb-based folding
as the index of the elements that are folded differ in the most significant bit).
This, unfortunately, is not compatible with our streaming model (we explain this
shortly). We instead perform the more natural Isb-based folding which, indeed, is
compatible with the streaming model. We additionally exploit random access to
the inner-product argument’s setup parameters (defined by the random oracle)
and the fact that any component of the coefficient sequence can be computed
in polylogarithmic time, i.e. poly(n) time. We give a high level overview of our
scheme in Sect. 2.1.

1.2 Prior Work

Complezity Preserving ZK-SNARKs. Bitansky and Chiesa [11] proposed to con-
struct complexity preserving ZK-SNARKS by first constructing complexity pre-
serving multi-prover interactive proof (MIPs) and then compile them using cryp-
tographic techniques. While our techniques share the same high-level approach,
our compilation with a polynomial-commitment scheme yields a publicly verifi-
able scheme whereas [11] only obtain a designated verifier scheme.

Blumberg et al. [12] give a 2-prover complexity preserving MIP of knowledge,
improving (concretely) on the complexity preserving MIP of [11] (who obtain a
2-prover MIP via a reduction from their many-prover MIP). Both Bitansky and
Chiesa and Blumberg et al. obtain their MIPs from reducing RAMs to circuits via
the reduction of Ben-Sasson et al. [5], then appropriately arithmetize the circuit

Public-Coin Zero-Knowledge Arguments 173

into an algebraic constraint satisfaction problem. Holmgren and Rothblum [29]
obtain a non-interactive protocol based on standard (falsifiable assumptions) by
also constructing a complexity preserving MIP for RAMs (achieving no-signaling
soundness) and compiling it into an argument using fully-homomorphic encryp-
tion (4 la [8,30,31]). We remark that [29] reduce a RAM directly to algebraic
constraints via a different encoding of the RAM transcript, thereby avoiding the
reduction to circuits entirely.

Another direction for obtaining complexity preserving ZK-SNARKS is via
recursive composition [9,47], or “bootstrapping”. Here, one begins with an
“inefficient” SNARK and bootstraps it recursively to produce publicly veri-
fiable complexity preserving SNARKs. While these constructions yield good
asymptotics, these approaches require running the inefficient SNARK on many
sub-computations. Recent works [14,16,18] describe a novel approach to recur-
sive composition which attempt to solve the inefficiencies of the aforementioned
recursive compositions, though at a cost to the theoretical basis for the soundness
of their scheme (as discussed above).

Interactive Oracle Proofs. Interactive oracle proofs (IOPs), introduced by Ben-
Sasson et al. [6] and independently by Reingold et al. [41], are interactive proto-
cols where a verifier has oracle access to all prover messages. IOPs capture (and
generalize), both interactive proofs and PCPs.

A recent line of work [5,12,19,26,42, 44,46, 48] follows the framework of Kilian
[34] and Micali [37] to obtain efficient arguments by constructing efficient IOPs
and compiling them into interactive arguments using collision resistant hashing
[6,34] or the random oracle model [6,37].

Polynomial Commitments. Polynomial commitment schemes were introduced
by Kate et al. [32] and have since been an active area of research. Lines of
research for construction polynomial commitment schemes include privately ver-
ifiable schemes [32,38], publicly-verifiable schemes with trusted setup [17], and
zero-knowledge schemes [49]. More recently, much focus has been on obtaining
publicly-verifiable schemes without a trusted setup [3,7,17,33,49,50]. We note
that in all prior works on polynomial commitments, the space complexity of
the sender is proportional to the description size of the polynomial, whereas we
achieve poly-logarithmic space complexity.

2 Technical Overview

As mentioned above, the key component in our construction is that of a public-
coin interactive argument for RAM computations. The latter construction itself
consists of two key technical ingredients. First, we construct a polynomial inter-
active oracle proof (polynomial I0P) for time-T space-S RAM computations
in which the prover runs in time T - polylog(T) and space S - polylog(T). We
note that this ingredient is a conceptual contribution which formalizes prior
work in the language of polynomial IOPs. Second, we compile this IOP with

174 A. R. Block et al.

a space-efficient extractable polynomial commitment scheme where the prover
has multi-pass streaming access to the polynomial to which it is committing—a
property that plays nicely with the streaming nature of RAM computations. We
emphasize that the construction of the space-efficient polynomial commitment
scheme is our main technical contribution, and describe our scheme in more
detail next.

2.1 Polynomial Commitment to Multi-linear Polynomials
in the Streaming Model

Fix a finite field F of prime order p. Also fix an obliviously sampleable (see
Footnote 1) group G of order p in which the discrete logarithm is hard. Let
H :{0,1}" — G be the random oracle.

In order to describe our polynomial commitment scheme, we start with some
notation. Let n be a positive integer and set N = 2”. We will be considering
N-dimensional vectors over F and will index such vectors using n dimensional
binary vectors. For example, if b € F2° then bgoo101 = bs. For convenience, we
will denote b € FYN by (be : ¢ € {0,1}") where b, is the c-th element of b. For
b = (bn,...,b1) € {0,1}" we refer to by as the least-significant bit (Isb) of b.
Finally, for b € FV, we denote by b, the restriction of b to the even indices, that
is, be = (beo : ¢ € {0,1}"71). Similarly, we denote by b, = (be; : ¢ € {0,1}" 1)
the restriction of b to odd indices.

Let @ : F* — F be a multi-linear polynomial. Recall that such a polyno-
mial can be fully described by the sequence of its evaluations over the Boolean
hypercube. More specifically, for any x € F", the evaluation of () on x can be
expressed as

Qx)= > Qb)-z(x,b), (1)

be{0,1}"
where z(x,b) = [[;¢, (bi- @ + (L —b;)- (1 — ;). We use Q € FV to denote
the restriction of @ to the Boolean hybercube (i.e., Q = (Q(b) : b € {0,1}")).

Next, we describe the our commitment scheme which has three phases: (a)
Setup, (b) Commit and (c) Evaluation.

Setup and Commit Phase. During setup, the committer and receiver both
consistently define a sequence of N generators for G using the random oracle,
that is, g = (b = H(b) : b € {0,1}"). Then, given streaming access to Q, the
committer computes the Pedersen multi-commitment [40] C defined as

o= II (m® @

be{0,1}"

For g € G*" and Q € F?", we use gQ as a shorthand to denote the value
Hbe{0,1}"(9b)Qb~ Assuming the hardness of discrete-log for G, we note that C
in Eq. (2) is a binding commitment to Q under generators g. Note that the

Public-Coin Zero-Knowledge Arguments 175

committer only needs to perform a single-pass over Q and performs N expo-
nentiations to compute C while storing only O(1) number of group and field
elements.?

Evaluation Phase. On input an evaluation point x € F”, the committer com-
putes and sends y = Q(x) and defines the auxiliary commitment Cy < C'- g¥ for
some receiver chosen generator g. Then, both engage in an argument (of knowl-
edge) for the following NP statement which we refer to as the “inner-product”
statement:

3Qez) : y=(Qz) and C,=g" g%, (3)

where z = (2(x,b) : b € {0,1}") as defined in Eq. (1). This step can be viewed
as proving knowledge of the decommitment Q of the commitment Cy, which
furthermore is consistent with the inner-product claim that y = (Q, z).

Inner-product Argument. A basic step in the argument for the above inner-
product statement is a 2-move randomized reduction step which allows the prover
to decompose the N-sized statement (C,,z,y) into two N/2-sized statements
and then “fold” them into a single N/2-sized statement (Cy,Z = (2. : ¢ €
{0, 1}”71),17) using the verifier’s random challenge. We explain the two steps
below (as well as in Fig. 1).

1. Committer computes the cross-product y. = (Qe,2Z,) between the even-
indexed elements Q. with the odd-indexed vectors z,. Furthermore, it com-
putes a binding commitment C, that binds y. (with g) and Q. (with g,).
That is,

C, = g% .gge , (4)

where recall that for g = (¢1,...,¢:) and x = (21, ..., x:) the expression g* =
[Tic 97 This results in an N/2-sized statement (Ce, z,, ye) with witness Q..
Similarly, as in Fig. 1 it computes the second N/2-sized statement (C,, Ze, Yo)
with witness Q,. The committer sends (ye, Yo, Ce, Cy) to the receiver.

2. After receiving a random challenge o € F*, committer folds its witness Q
into an N/2-sized vector Q = a - Q. + a~! - Q,. More specifically, for every
ce{0,1}",

Qc:a'QCO+a_1'ch . (5)

Similarly, the committer and receiver both compute the rest of the folded
statement (Cy,Z,y) as shown in Fig. 1.

Relying on the homomorphic properties of Pedersen commitments, it can be
shown that if Q were a witness to (Cy,z,y) then Q is a witness for (Cy, 2, 7).3
In the actual protocol, the parties then recurse on smaller statements (Cy, Z, §)

2 Here, we treat exponentiation as an atomic operation but note that computing g for
«a € Z, can be emulated, via repeated squarings, by O(logp) group multiplications
while storing only O(1) number of group and field elements.

3 Albeit under different set of generators but we ignore this for now.

176 A. R. Block et al.

Reduce(C, € G,g € GV, g€ G,z c FY y c F;Q € FV)
Prover Verifier

Ye < (Qe; Zo), Yo < (Qo, Ze)
Ce + g¥° ,g?e7 Co + g¥° ’ggo

(yﬁv y07 C€7 CU)

QHQ'QSJFO‘_I'QO

Z+a ' zetaz,

g (g)" *(g0)"
gt yetyt+a oy,
Gy C? ., o
Reduce(Cy, €, 9, 7, 7; Q)

Fig. 1. Our 2-move randomized reduction step for the inner-product protocol where
recall that for any Q € FV, we denote by Q. the elements of Q indexed by even
numbers where Q, denotes the elements with odd indices. On input a statement of
size N > 1, Reduce results in a statement of size N/2.

forming a recursion tree. After log N steps, the statement is of size 1 in which
case the committer sends its witness which is a single field element. This gives
an overall communication of O(log N) field and group elements. Next we briefly
discuss the efficiency of the scheme.

Efficiency. For the purpose of this overview, we focus only on the time and space
efficiency of the committer in the inner-product argument (the analysis for the
receiver is analogous). Recall that in a particular step of the recursion, suppose
we are recursing on the N/2-sized statement (Cy, %, y) with witness Q, the com-
mitter’s computation includes computing (a) the cross-product (Q.,Z,) between
the even half of Q and the odd half of Z, and (b) the “cross-exponentiation” g®«
of the even half of Q with the odd half of the generators g.*

A straightforward approach to compute (a) is to have Q (and Z) in mem-
ory, but this requires the committer to have 2(N) space which we want to
avoid. Towards a space efficient implementation, first note every element of Q
depends on only two, more importantly, consecutive elements of Q. This cou-
pled with streaming access to Q is sufficient to simulate streaming access to
Q while making only one pass over Q. Secondly, by definition, computing any
element of z requires only O(log N) field operations while storing only O(n)
field elements This then allows to compute any element of Z on the fly with
polylog(N) operations. Given the simulated streaming access to Q along with

4 Efficiency for (Q,,Z.) and g2 can be argued similarly.

Public-Coin Zero-Knowledge Arguments 177

Scheme|[13,15] (msb-based)|This work (Isb-based)
Qb |0 Qb+a " Qb a Quot+a " Qu

= -1 -1
Zb a “rzobtQa-czib | - zZbot+ Q- 2Zbl

G | (gon)® *(g1p)* | (9b0)* * (gb1)®

Fig. 2. Table highlights the differences between the 2-move randomized reduction steps
of the inner-product argument of [13,15] (second column) and our scheme (third col-
umn). Specifically, given Q, z, g of size 2", the rows describe the definition of the 2" /2
sized vectors Q, Z, g respectively where b € {0, 1}"_1.

the ability to compute any element of zZ on the fly is sufficient to compute the
(Qe,Z,). Note this step, overall, requires performing only a single pass over Q
and N -polylog N operations, and storing only the evaluation point x and verifier
challenge « (along with some book-keeping). The computation of (b) is handled
similarly, except that here we crucially leverage the fact that g is defined using
the random oracle, and hence the committer has random access to all of the
generators in g. Relying on similar ideas as in (a), the committer can compute
g9Q while additionally making O(N) queries to the random oracle. Overall, this
gives the required prover efficiency. Please see Sect. 4.3 for a full discussion on
the efficiency.

Comparison with the 2-move Reduction Step of [13,48]. In their protocol,
a major difference is in how the folding is performed (Step 2, Fig. 1). We list
concrete differences in Fig. 2. But at a high level, since they fold the first element
Qoon—1 with the N/2-nd element Qqgn-1, it takes at least a one pass over Q to
even compute the first element of Q, thereby requiring £2(IN) passes over Q
which is undesirable.® Although we differ in the 2-move reduction steps, the
security of our scheme follows from ideas similar to [13,48].

2.2 Polynomial IOPs for RAM Programs

The second ingredient we use to obtain space-efficient interactive arguments for
NP relations verifiable by time-T space-S RAMs is a space-efficient polynomial
interactive oracle proof system [6,17,41]. Informally, an interactive oracle proof
(IOP) is an interactive protocol such that in each round the verifier sends a
message to the prover, and the prover responds with proof string that the verifier
can query in only a few locations. A polynomial IOP is an IOP where the proof
string sent by the prover is a polynomial (i.e, all evaluations of a polynomial
on a domain), and if a cheating prover successfully convinces a verifier then the
proof string is consistent with some polynomial.

5 When a polynomial commitment is used in building arguments, it takes O(N) time
to stream Q, and requiring 2(IN) passes results in a prover that runs in quadratic
time.

178 A. R. Block et al.

We consider a variant of the polynomial IOP model in which the prover
sends messages which are encoded by the channel; in particular, the time and
space complexity of the encoding computed by the channel do not factor into
the complexity of the prover. For our purposes, we use the polynomial IOP that
is implicit in [12] and consider it with a channel which computes multi-linear
extensions of the prover messages. We briefly describe the IOP construction for
completeness (see Sect. 5 for more details). The polynomial IOP at its core first
leverages the space-efficient RAM to arithmetic circuit satisfiability reduction
of [12] (adapting techniques of [5]). This reduction transforms a time-7" space-S
RAM into a circuit of size T - polylog(7') and has the desirable property (for our
purposes) that the circuit can be accessed by the prover in a streaming manner:
the assignment of gate values in the circuit can be streamed “gate-by-gate” in
time T+ polylog(T') and space S -polylog(T'), which, in particular, allows a prover
to compute a correct transcript of the circuit in time 7T - polylog(T') and space
S - polylog(T).

The prover sends the verifier an oracle that is the multi-linear extension of
the gate values (i.e., the transcript), where we remark that this extension is
computed by the channel. The correctness of the computation is reduced to
an algebraic claim about a low degree polynomial which is identically 0 on the
Boolean hypercube if and only if the circuit is satisfied by the given witness.
Finally, the prover and verifier engage in the classical sum-check protocol [36,
45] to verify that the constructed polynomial indeed vanishes on the Boolean
hypercube.

Theorem 3. There exists a public-coin polynomial 10P over a channel which
encodes prover messages as multi-linear extensions for NP relations verifiable by
a time-T space-S random access machine M such that if y = M (x;w) then

1. The 10P has perfect completeness and statistical soundness, and has
O(log(T')) rounds;

2. The prover runs in time T -polylog(T') and space S-polylog(T) (not including
the space required for the oracle) when given input-witness pair (z;w) for
M, sends a single polynomial oracle in the first round, and has polylog(T')
communication in all subsequent rounds; and

3. The verifier runs in time (|z| + |y|) - polylog(T), space polylog(T), and has
query complexity 3.

2.3 Obtaining Space-Efficient Interactive Arguments

We compile Theorem 3 and Theorem 2 into a space-efficient interactive argument
scheme for NP relations verifiable by RAM computations.

Theorem 4 (Informal, see Theorem 6). There exists a public-coin inter-
active argument for NP relations verifiable by a time-T space-S random access
machine M, in the random oracle model, under the hardness of discrete-log in
obliviously sampleable prime-order groups such that:

1. The prover runs in time T - polylog(T) and space S - polylog(T);

Public-Coin Zero-Knowledge Arguments 179

2. The verifier runs in time T - polylog(T) and space polylog(T); and
3. The round complexity is O(logT) and the communication complexity is

polylog(T).

The interactive argument of Theorem 4 is obtained by modifying the polynomial
IOP of Theorem 3 with the commitment scheme of Theorem 2 in the following
manner. First, the prover uses the polynomial commitment scheme to send a
commitment to the multi-linear extension of the gate values rather than an ora-
cle. This is possible to do in a space-efficient manner because of the streaming
nature of RAM computations and the streaming nature of the IOP. Second,
the verifier oracle querie are replaced with the prover and verifier engaging in
the evaluation protocol of the polynomial commitment scheme. The remain-
der of the IOP protocol remains unchanged. Thus we obtain Theorem 4. We
obtain Theorem 1 by transforming the interactive argument to a zero-knowledge
interactive argument using standard techniques, then apply the Fiat-Shamir
transformation [21].

3 Preliminaries

We let A denote the security parameter, let n € N and N = 2". For a finite,

non-empty set S, we let 28 denote sampling element x from S uniformly at
random. We let Primes(1%) denote the set of all A\-bit primes. We let F,, denote
a finite field of prime cardinality p, often use lower-case Greek letters to denote
elements of F, e.g., a € F. For a group G, we denote elements of G with sans-serif
font; e.g., g € G. We use boldface lowercase letters to denote binary vectors, e.g.
b € {0,1}". We assume for a bit string (by,...,b1) = b € {0,1}" that b, is the
most significant bit and b; is the least significant bit. For bit string b € {0,1}"
and b € {0,1} we let bb (resp., bb) denote the string (bob) € {0,1}""" (resp.,(bo
b) € {0,1}"""), where “o” is the string concatenation operator. We use boldface
lowercase Greek denotes F vectors, e.g., @ € F" and let @ = (a,...,q1)
for a; € F. We let uppercase letters denote sequences and let corresponding
lowercase letters to denote its elements, e.g., Y = (yp € F: b € {0,1}") is a
sequence of 2" elements in F. We denote by FV the set of all sequences over F
of size N.

Random Oracle. We let /()) denote the set of all functions that map {0, 1}"
to {0, 1}/\. A random oracle with security parameter \ is a function H : {0,1}" —
{0,1}* sampled uniformly at random from /().

3.1 The Discrete-Log Relation Assumption

Let GGen be an algorithm that on input 1* € N returns (G, p, g) such that G is
the description of a finite cyclic group of prime order p, where p has length A,
and g is a generator of G.

180 A. R. Block et al.

Assumption 1 (Discrete-log Assumption). The Discrete-log Assumption
holds for GGen if for all PPT adversaries A there exists a megligible function
w(N) such that

Pria’ =a:(G,gp) < GGen(1Y), a < Z,, o/ < A(G, g7g‘“)] < p(A) .
For our purposes, we use the following variant of the discrete-log assumption
which is equivalent to Assumption 1.

Assumption 2 (Discrete-log Relation Assumption [13]). The Discrete-log
Relation Assumption holds for GGen if for all PPT adversaries A and for all
n > 2 there exists a negligible function () such that

n $ A §
Pr|3a; #0n][l =1 (G.g.p) = GGen(1Y), g1, 080 = C | _)
ey (1, o) €Zy — A(G, g1, ,8n) -
We say H?zl g7 = 11is a non-trivial discrete log relation between g1, ..., gn.

The Discrete Log Relation assumption states that an adversary can’t find a
non-trivial relation between randomly chosen group elements.

3.2 Interactive Arguments of Knowledge in ROM

Definition 1 (Witness Relation Ensemble). A witness relation ensemble or
relation ensemble is a ternary relation Ry that is polynomially bounded, polyno-
mial time recognizable and defines a language £ = {(pp,x) : Jw s.t. (pp,z,w) €
Re}. We omit pp when considering languages recognized by binary relations.

Definition 2 (Interactive Arguments [27]). Let R be some relation ensem-
ble. Let (P,V) denote a pair of PPT interactive algorithms and Setup denote a
non-interactive setup algorithm that outputs public parameters pp given security
parameter 1*. Let (P(pp,z,w),V (pp,x)) denote the output of V'’s interaction
with P on common inputs public parameter pp and statement x where addition-
ally P has the witness w. The triple (Setup, P, V) is an argument for R in the
random oracle model (ROM) if

1. Perfect Completeness. For any adversary A

Pr[(z,w) ¢ R or (P (pp,z,w), V" (pp,x)) =1] =1,

where probability is taken over H < U(N), pp < Setup™ (1), (z, w) <= AH (pp).
2. Computational Soundness. For any non-uniform PPT adversary A

Pr [Vw (z,w) ¢ R and (A (pp, x, st), VI (pp, x)) = 1} < negl(\) ,

where probability is taken over H ﬁU()\),pp < Setu pH(1>‘)7 (z, st) < A (pp).

Remark 1. Usually completeness is required to hold for all (z, w) € R. However,
for the argument systems used in this work, statements x depends on pp output
by Setup and the random oracle H. We model this by asking for completeness

to hold for statements sampled by an adversary A, that is, for (z,w) S A(pp).

Public-Coin Zero-Knowledge Arguments 181

For our applications, we will need (Setup, P, V') to be an argument of knowl-
edge. Informally, in an argument of knowledge for R, the prover convinces the
verifier that it “knows” a witness w for « such that (z,w) € R. In this paper,
knowledge means that the argument has witness-extended emulation [28,35].

Definition 3 (Witness-Extended Emulation). Given a public-coin interac-
tive argument tuple (Setup, P, V) and some arbitrary prover algorithm P*, let
Record(P*, pp, x, st) denote the message transcript between P* and V' on shared
input x, initial prover state st, and pp genmerated by Setup. Furthermore, let
ERecord(P™.pp.2.:5t) denote a machine E with a transcript oracle for this interaction
that can be rewound to any round and run again on fresh verifier randomness.
The tuple (Setup, P, V') has witness-extended emulation if for every determinis-
tic polynomial-time P* there exists an expected polynomial-time emulator E such
that for all non-uniform polynomial-time adversaries A the following holds:

H < UN), pp < Setup™ (1%),
(z,st) < A (pp), tr < Record™ (P*, pp, x, st)

H < UN), pp - Setup™ (11),

(z, st) < A (pp),
) S EH,RecordH(P*,ppJnSt)(

Pr A" (tr)=1:

A (tr) =1 and)
tr accepting = (x,w) € R’

(tr, w pp,)

It was shown in [13,17] that witness-extended emulation is implied by an
extractor that can extract the witness given a tree of accepting transcripts.
For completeness we state this—dubbed Generalized Forking Lemma—more for-
mally below but refer to [17] for the proof.

Definition 4 (Tree of Accepting Transcripts). An (ni,...,n.)-tree of
accepting transcripts for an interactive argument on input x is defined as fol-
lows: The root of the tree is labelled with the statement x. The tree has r depth.
Each node at depth i < r has n; children, and each child is labeled with a distinct
value for the i-th challenge. An edge from a parent node to a child node is labeled
with a message from P to V. Every path from the root to a leaf corresponds to
an accepting transcript, hence there are Hz:1 n; distinct accepting transcripts
overall.

Lemma 1 (Generalized Forking Lemma [13,17]). Let (Setup, P,V) be an
r-round public-coin interactive argument system for a relation R. Let T be a
tree-finder algorithm that, given access to a Record(-) oracle with rewinding capa-
bility, runs in polynomial time and outputs an (ny, ..., n,)-tree of accepting tran-
scripts with overwhelming probability. Let Ext be a deterministic polynomial-time
extractor algorithm that, given access to T'’s output, outputs a witness w for the
statement x with overwhelming probability over the coins of T. Then, (P, V) has
witness-extended emulation.

Definition 5 (Public-coin). An argument of knowledge is called public-coin if
all messages sent from the verifier to the prover are chosen uniformly at random
and independently of the prover’s messages, i.e., the challenges correspond to
the verifier’s randomness H.

182 A. R. Block et al.

Zero-Knowledge. We also need our argument of knowledge to be zero-
knowledge, that is, to not leak partial information about w apart from what
can be deduced from (z,w) € R.

Definition 6 (Zero-knowledge Arguments). Let (Setup, P, V') be an public-
coin interactive argument system for witness relation ensemble R. Then,
(Setup, P, V') has computational zero-knowledge with respect to an auziliary input
if for every PPT interactive machine V*, there exists a PPT algorithm S, called
the simulator, running in time polynomial in the length of its first input, such
that for every (x,w) € R and any z € {0,1}":

View((P(w), V*(2))(z)) =~ S(z, 2),

where View((P(w), V*(2))(z)) denotes the distribution of the transcript of inter-
action between P and V*, and ~. denotes that the two quantities are computa-
tionally indistinguishable. If the statistical distance between the two distributions
1s negligible then the interactive argument is said to be statistical zero-knowledge.
If the simulatro is allowed to abort with probability at most 1/2, but the dis-
tribution of its output conditioned on mot aborting is identically distributed to
View((P(w), V*(2))(x)), then the interactive argument is called perfect zero-
knowledge.

3.3 Multi-linear Extensions

Definition 7 (Multi-linear Extensions). Let n € N, F be some finite field
and let W : {0,1}" — F. Then, the multi-linear extension of W (denoted as
MLE(W,-) : F™ — F) is the (unique) multi-linear polynomial that agrees with W
on {0,1}". Equivalently,

MLEW, ¢ eF™) = Y w(b)-[]80:¢) ,

be{0,1}" i=1

where B8(b,{) =b- ¢+ (1—0b)-(1—¢).

k
For notational convenience, we denote [] 3(b;,¢;) by B(b,).

i=1
Remark 2. There is a bijective mapping between the set of all functions from
{0,1}" — T to the set of all n-variate multi-linear polynomials over F. More
specifically, as seen above every function W : {0,1}" — F defines a (unique)
multi-linear polynomial. Furthermore, every multi-linear polynomial @ : F* — F
is, in fact, the multi-linear extension of the function that maps b € {0,1}" —

Q(b).

Public-Coin Zero-Knowledge Arguments 183

Streaming Access to Multi-linear Polynomials. For our commitment
scheme, we assume that the committer will have multi-pass streaming access to
the function table of W (which defines the multi-linear polynomial) in the lexico-
graphic ordering. Specifically, the committer will be given access to a read-only
tape that is pre-initialized with the sequence W = (wp = W(b) : b € {0,1}").
At every time-step the committer is allowed to either move the machine head to
the right or to restart its position to 0.

With the above notation, we can now view MLE(W,¢{ € F™) as an inner-
product between W and Z = (zp = B3(b,¢) : b € {0,1}") where computing 21,
requires O(n = log N) field multiplications for fixed ¢ any b € {0,1}".

3.4 Polynomial Commitment Scheme to Multi-linear Extensions

Polynomial commitment schemes, introduced by Kate et al. [32] and generalized
in [17,44,48], are a cryptographic primitive that allows one to commit to a
multivariate polynomial of bounded degree and later provably reveal evaluations
of the committed polynomial. Since we consider only multi-linear polynomials,
we tailor our definition to them.

Convention. In defining the syntax of various protocols, we use the following
convention for any list of arguments or returned tuple (a,b,c;d, e) — variables
listed before semicolon are known both to the prover and verifier whereas the
ones after are only known to the prover. In this case, a,b, ¢ are public whereas
d, e are secret. In the absence of secret information the semicolon is omitted.

Definition 8 (Commitment to Multi-linear Extensions). A poly-
nomial commitment to multi-linear extensions is a tuple of protocols
(Setup, Com, Open, Eval):

1. pp s SetupH(l)‘,lN) takes as input the unary representations of security
parameter A\ € N and size parameter N = 2™ corresponding to n € N, and
produces public parameter pp. We allow pp to contain the description of the
field F over which the multi-linear polynomials will be defined.

2. (C;d) s ComH(pp, Y) takes as input public parameter pp and sequence Y =
(yp : b € {0,1}") € FN that defines the multi-linear polynomial to be com-
mitted, and outputs public commitment C and secret decommitment d.

3. b«— OpenH(pp, C,Y,d) takes as input pp, a commitment C, sequence commit-
ted Y and a decommitment d and returns a decision bit b € {0,1}.

4. EvaIH(pp7 C,¢,v;Y,d) is a public-coin interactive protocol between a prover P
and a verifer V. with common inputs—public parameter pp, commitment C,
evaluation point ¢ € F™ and claimed evaluation v € F, and prover has secret
inputs Y and d. The prover then engages with the verifier in an interactive
argument system for the relation

Romie(pp) = { (C.¢.7:Y,d) : Open” (pp, C,Y.d) = 1 Ay = MLE(Y. Q) } . (6)

The output of V is the output of Eval protocol.

184 A. R. Block et al.

Furthermore, we require the following three properties.

1. Computational Binding. For all PPT adversaries A and n € N

H < UN), pp < Setup™ (14, 1V)
(Ca}/EL}/IadCHdI) (iAH(pp)
bO — OpenH(pp,C,Yg,do)
bl A OpenH(ppaCaYiadl)

2. Perfect Correctness. For alln,\ € N and all Y € FN and ¢ € F",

Pr b():bl?é()/\}/o#yll gnegl()\)

H < UN), pp < Setupt (1*,17),

Pr |1 =Evall (pp,C, Z,~;Y,d) : : =
P2 2TV) 2 Com(pp.), 5 = MLE(Y.)

3. Witness-extended Emulation. We say that the polynomial commitment
scheme has witness-extended emulation if Eval has a witness-extended emu-
lation as an interactive argument for the relation ensemble {Rmie(pp)}pp
(Eq. (6)) except with negligible probability over the choice of H and coins

of pp < Setup® (1*,1).

4 Space-Efficient Commitment for Multi-linear
Extensions

In this section we describe our polynomial commitment scheme for multilinear
extensions, a high level overview of which was provided in Sect. 2.1. We dedicate
the remainder of the section to proving our main theorem:

Theorem 5. Let GGen be a generator of obliviously sampleable, prime-order
groups. Assuming the hardness of discrete logarithm problem for GGen, the
scheme (Setup, Com, Open, Eval) defined in Sect. 4.1 is a polynomial commit-
ment scheme to multi-linear extensions with witness-extended emulation in the
random oracle model. Furthermore, for every N € N and sequence Y € FN, the
committer/prover has multi-pass streaming access to'Y and

1. Com performs O(N logp) group operations, stores O(1) field and group ele-
ments, requires one pass over Y, makes N queries to the random oracle,
and outputs a single group element. Evaluating MLE(Y,) requires O(N) field
operations, storing O(1) field elements and requires one pass over'Y .

2. Eval is public-coin and has O(log N) rounds with O(1) group elements sent
i every round. Furthermore,

— Prover performs O(N - (log? N) - logp) field and group operations,
O(Nlog N) queries to the random oracle, requires O(log N) passes over
Y and stores O(log N) field and group elements.

— Verifier performs O(N - (log N) - logp) field and group operations, O(N)
queries to the random oracle, and stores O(log N) field and group ele-
ments.

Section 4.1 describes our scheme, Sect. 4.2 and Sect. 4.3 establish its security
and efficiency.

Public-Coin Zero-Knowledge Arguments

185

Eval(pp,C, ¢, v;Y)

1: V samples and sends g &e
2: PandV define C, «+ C-g”

3: P and V define the sequence Z = (zp = Hﬁ(bi,g) :be{0,1}"7)
i=1

4: P and V engage in EvalReduce(C,, Z,v,8,g;Y)

EvalReduce(C, € G, Z = (2p),7 € F, g = (gb), 8; Y = (yp))

1

1

1:

2
3
4
5
6

proves knowledge of Y such that: C, = Com(g,Y)-g” and (Y, Z) =~.

N « |Z|,n + log N
if N=1: then
Letg=(g), Z=(2), Y = (y)
P sends y to V who accepts iff C, =gV - g¥”*
else
P computes v and g where
N Z Ybo " Zbl 5 TR Z Yb1 * Zbo-
be{0,1}n—1 be{0,1}n—1
P computes and sends C; and Cg where
Geegt J[@™ Geg™ [(@0)™.
be{0,1}n—1 be{0,1}7—1
V samples « < F and sends it to P.
P computes and sends 7' = o Y+ a2 .
0: P and V both compute

Chr e (C)™" -Gy (CR)™

Z' = (z{) =a 'zt a- Zb1)b€{071}n717
a~! [
g = (gb=(g00)" - (861)")peioiyn-1-

1: P computes V' = (y{, =a-ypot+a’ 'ybl)b€{071}n—1 .

12 return EvaIReduce(C;/,Z',’y',g',g;Y’)

Fig. 3. Eval protocol for the commitment scheme from Sect. 4.1.

4.1 Commitment Scheme

We describe a commitment scheme (Setup,Com,Open, Eval) to multi-linear
extensions below.

1. Setu pH(l)‘, 1%): On inputs security parameter 1* and size parameter N = 2"

and access to H, Setup samples (G, p,g) < GGen(1*), sets F = F, and returns

186 A. R. Block et al.

pp = (G,F, N, p). Furthermore, it implicitly defines a sequence of generators
g=(gpb=H(b):be{0,1}").
2. Com™ (pp,Y) returns C € G as the commitment and Y as the decommitment

where
c II (.
be{0,1}"

3. OpenH(pp, C,Y) returns 1 iff C = ComH(pp,Y).

4. Eval (pp,C,¢,7;Y) is an interactive protocol (P, V) that begins with V
sending a random g £ G. Then, both P and V' compute the commitment
C, «— C-g" to additionally bind the claimed evaluation . Then, P and V
engage in an interactive protocol EvalReduce on input (C,, Z,g,g,7v;Y) where
the prover proves knowledge of Y such that

C,=Com(g,Y) -g"A(Y,Z) =,
where Z = (21, = B(b,¢) : b € {0,1}"). We define the protocol in Fig. 3.

Remark 3. In fact, our scheme readily extends to proving any linear relation o
about a committed sequence Y (i.e., the value («,Y")), as long as each element
of ae can be generated in poly-logarithmic time.

4.2 Correctness and Security

Lemma 2. The scheme from Sect. 4.1 is perfectly correct, computationally bind-
ing and Eval has witness-extended emulation under the hardness of the discrete
logarithm problem for groups sampled by GGen in the random oracle model.

The perfect correctness of the scheme follows from the correctness of EvalReduce
protocol, which we prove in Lemma 3, computationally binding follows from that
of Pedersen multi-commitments which follows from the hardness of discrete-log
(in the random oracle model). The witness-extended emulation of Eval follows
from the witness-extended emulation of the inner-product protocol in [15]. At
a high level, we make two changes to their inner-product protocol: (1) sample
the generators using the random oracle H, (2) perform the 2-move reduction
step using the lsb-based folding approach (see Sect. 2.1 for a discussion). At a
high level, given a witness Y for the inner-product statement (C,, g, Z,v), one
can compute a witness for the permuted statement (C,,n(g),n(Z),v) for any
efficiently computable/invertible public permutation 7. Choosing 7 as the per-
mutation that reverses its input allows us, in principle, to base the extractability
of our scheme (Isb-based folding) to the original scheme of [15]. We provide a
formal proof in the full version. Due to (1) our scheme enjoys security only in
the random-oracle model.

Lemma 3. Let (C,,Z,7,8,8;Y) be inputs to EvalReduce and let (C’W”Z','yﬂ
g',g;Y') be generated as in Fig. 3. Then,

C,y = Com(g,Y) . g” Ciy/ = Com(g/7yl) : g’y/
A — A\
(Y,Z) =~ Y',2Z') =~

Public-Coin Zero-Knowledge Arguments 187

Proof. Let N = |Z| and let n = log N. Then,

1. To show ~' = (Y', Z'):

<Y/aZ/> = Z y{a 'le:n

bE{O,l}”fl
= Z (a'ybOJFOfl‘ybl)‘(Ofl 2o + - 2b1),
be{o,1}" 1!

2 -2
= E Yb0o - 2b0 T Q7 - Ybo - bl T Ybl * bl T & ~ - Yb1 - Zbl,
be{0,1}" 1

=y+a®-yw+a?gr=7.

2. €, = Com(g',Y") g7

/ -1 a-ypotalypr
Comg',v)= [()™= TI (et 91 ,
be{o,l}n—l be{071}1L—1
= IT (el omo ™ emn™ ely),
be{0,1}n !
_9 2
= II el el ey - (g™
be{o0,1}n !

Then, above with the definition of 4" implies that C, = Com(g’,Y”) - g

4.3 Efficiency

In this section we discuss the efficiency aspects of each of the protocols defined
in Sect. 4.1 with respect to four complexity measures: (1) queries to the random
oracle H, (2) field/group operations performed, (3) field/group elements stored
and (4) number of passes over the stream Y.

For the rest of this section, we fix n, N = 2", H,G,F, € F" and furthermore
fix YV = (ypb : b€ {0,1}"), g =(gp = Hb) : b € {0,1}") and Z = (2p =
B(b,¢) : b € {0,1}"). Note given ¢, any 2}, can be computed by performing
O(n) field operations.

First, consider the prover P of Eval protocol (Fig. 3). Given the inputs
(C,Z,7,8,8;Y), P and V call the recursive protocol EvalReduce on the N sized
statement (C,,Z,7,8,8;Y) where C, = C- g". The prover’s computation in
this call to EvalReduce is dictated by computing (a) v,vr (line 6), (2) C.,Cg
(line 7) and (c) inputs for the next recursive call on EvalReduce with N/2 sized
statement (C.,, Z',7',g’,g;Y") (line 9,11). The rest of its computation requires
O(1) number of operations. The recursion ends on the n-th call with statement
of size 1. For k € {0,...,n}, the inputs at the k-th depth of the recursion
be denoted with superscript k, that is, C*) () Z(#) gk) y(*) For example,

188 A. R. Block et al.

Computez(k, c, ¢,) Computeg™ (k, c, @)

1: zék)eo 1: gf:k)e()

2: foreach a € {0,1}" do 2: foreach a € {0,1}* do

3 temp < 1r 3: temp < 1p

4: foreach j € {1,...,k} do 4: foreach j € {1,...,k} do

5 temp < temp - coeff(a ™V ;) 5: temp « temp - coeff(a) q;)
6: 2 « temp - B(coa,() 6: g « H(coa)®™

7: return zék) 7: return g(ck>

Fig. 4. Algorithms for computing zl()k) and g{)m. In both algorithms ¢ € {0,1}"* and
a=(@9,...,a®*) where B(b,¢) = [1/, B(bi, () for b = coa and coeff(a, c) =
a-c+a - (1-¢).

Z©) = 7, Y(© =Y denote the initial inputs (at depth 0) where prover com-
putes fyfo),*yéo),C(LO), C}(?O) with verifier challenge o(?). The sequences Z®*) Y (%)
and g®) are of size 2",

At a high level, we ask prover to never explicitly compute the sequences
g®), Z®) Yy (*) (item (c) above) but instead compute elements gék),zl()k),yl()k),
of the respective sequences, on demand, which then can be used to compute
*yfk),vék), CEk)7C|(?k) in required time and space. For this, first it will be useful
to see how the elements of sequences Z*), Y (*) g(k) depend on the initial (i.e.,
depth-0) sequence Z(©), Y (0) g(0),

Relating Y*) with Y(©). First, lets consider Y(®) = (y,(f) :b e {0,1}"7") at
depth k € {0,...,n}. Let (a?, ..., aF=1D) be the verifier’s challenges sent in
all prior rounds.

Lemma 4 (Streaming of Y®)). For every b € {0,1}" ",

k
yl()k) = Z H coeff(a=Y ¢;) | - Yboe, (7)
ce{0,1}* \J=1
where coeff(a,c) =a-(1—c)+a ! c

The proof follows by induction on depth k. Lemma 4 allows us to simulate the
stream Y (%) with one pass over the initial sequence Y, additionally performing
O(N - k) multiplications to compute appropriate coeff functions.

Relating Z®) with Z(©). Next, consider Z(¥) = (zt()k) b e {0,1}"7%) at depth
ke{0,...,n}.

Public-Coin Zero-Knowledge Arguments 189

Lemma 5 (Computing z,)) For every b € {0,1}"~

k
zf)k) = Z H coeff(a=1 ¢;) | - 2boe, (8)
ce{0,1}* \J=1
where coeff(a,¢) = a- ¢+ a~ ! (1 —¢). Furthermore, computing zl()k) requires
O(2F-n) field multiplications and storing O(n) elements (see algorithm Computez
in Fig. 4).

Relating g® with g(®. Finally, consider gi*) = (gf)k) :b e {0,1}"%) at depth
ke {0,...,n}.

Lemma 6 (Computing g{)k)). For every b € {0,1}" ",

k
g = [e coeff(ae) = [[al Vg4 (D) (1-cp). (9)
CE{O,l}k i=1

Furthermore, computing g() requires 2F - k field multiplications, 2% queries to
H, 2% group multiplications and exponentiations, and storing O(k) elements (see
algorithm Computeg in Fig. 4).

We now discuss the efficiency of the commitment scheme.

Commitment Phase. We first note that Com’ on input pp and given stream-
ing access to Y can compute the commitment C = [, (H (b)) for b € {0,1}"
making N queries to H, performing N group exponentiations and a single pass
over Y. Furthermore, requires storing only a single group element.

Note that a single group exponentiation g¢ can be emulated while performing
O(log p) group multiplications while storing O(1) group and field elements. Since,
G, F are of order p, field and group operations can, furthermore, be performed
in polylog(p())) time.

Evaluating MLE(Y,). The honest prover (when used in higher level proto-

cols) needs to evaluate MLE(Y, ¢) which requires performing O(N log N) field
operations overall and a single pass over stream Y.

Prover Efficiency. For every depth- k of the recursion it is sufficient to dis-

cuss the efﬁmency of computing ’y(k TR (k) C(lc C . We argue the complexity of

computing 7|(_ and C(Lk and the analysis for the remaining is similar. We give

a formal algorithm Prover in Fig. 5.

Computing 'y,_ . Recall that 'y() = => yl()o 1) for b e {0,1}" =1 To com-

pute 'y() we stream the initial N-sized sequence Y and generate elements of

190 A. R. Block et al.

ProverH(pp7 k7 Y? C? g7 a(0)7 M) a(kil))

1: ’YL7’YR,Z/(k> — O]F,g<k),C|_,CR < lg, count < 0
2: foreach b= (b,,...,b1) € {0,1}" do

3: temp < 1p

4 foreach j € {1,...,k} do

5: temp < temp - coeff(a V) b))

6 : y(k> — y(k) + temp - yp

7 count < count + 1

8 : if count == 2" then

9: 2%« Computez(k, (bn, ... bn_ks1,1 —bn_x),C 0P . a7
10 : g(k) — ComputegH(k7 (bry ey bn—kt1, 1 — bri), L a<k_1>)
11 : if b,,_x == 0 then

12 =+ 2 -y(k) ; CL«Cp- (gm)y(k)

13 : else

14 R TR+ 2 y(k) ; CR+ Cgr- (g(k))y(k)

15 : y(k) < Or; g(k> < 1g; count <~ 0

16: CL+CL-g"; CR+Cr-g™®
17: return (v, Ci, R, Cr)

Fig. 5. Space-efficient prover

the sequence (ygg) b € {0,1}" ") in a streaming manner. Since each ygf))

depends on a contiguous block of 2 elements in the initial stream Y, we can

compute yl()%) by performing 2* - k field operations (lines 2-7 in Fig. 5). For every

b € {0, 1}”7]671, after computing yl()%), we leverage “random access” to Z and

compute z](akl) (Lemma 5) which requires O(2% - k) field operations. Overall, 'yfk)

can be computed in O(N - k) field operations and a single pass over Y.

Computing CI(_k). The two differences in computing CEk) (see Fig. 3 for the def-
inition) is that (a) we need to compute g,(okl) instead of computing z,(akl) and (b)

(k)

perform group exponentiations, that is, g](fl)ybo as opposed to group multiplica-

tions as in the computation of ’yfk). Both steps overall can be implemented in
O(N -k-log p) field and group operations and N queries to H (Lemma 6). Overall,
at depth k the prover (1) makes O(N) queries to H, (2) performs O(N -k-log(p))
field and group operations and (3) requires a single pass over Y.

Therefore, the entire prover computation (over all calls to EvalReduce)
requires O(log V) passes over Y, makes O(N log N) queries to H and performs
O(N - log? N - log p) field/group operations. Furthermore, this requires storing
only O(log N) field and group elements.

Public-Coin Zero-Knowledge Arguments 191
Verifier Efficiency. V only needs to compute folded sequence Z(™ and folded
generators g™ at depth-n of the recursion. These can computed by invoking
Computez and Computeg (Fig. 4) with & = n and require O(N - log(N, p)) field
and group operations, O(N) queries to H and storing O(log N) field and group
elements.

Lemma 7. The time and space efficiency of each of the phases of the protocols
are listed belou® :

Computation | H queries |Y passes | F/G ops G/F elements
Com N 1 O(N) O(1)

MLE(Y,) 0 1 O(NlogN) 0O(1)

P (in Eval) |O(NlogN)|O(log N)|O(Nlog? N) O(log N)

V (in Eval) | O(N) 0 O(NlogN) |O(log N)

Finally, Theorem 5 follows directly from Lemma 2 and Lemma 7.

5 A Polynomial IOP for Random Access Machines

We obtain space efficient arguments for any NP relation verifiable by time-T
space-S RAM computations by compiling our polynomial commitment scheme
with a suitable space-efficient polynomial interactive oracle proof (IOP) [6,17,41].
Informally, a polynomial IOP is a multi-round interactive PCP such that in each
round the verifier sends a message to the prover and the prover responds with a
proof oracle that the verifier can query via random access, with the additional
property that the proof oracle is a polynomial.

We dedicate the remainder of this section to giving a high-level overview
our polynomial IOP (PIOP), presented in Fig. 6, which realizes Theorem 3. Full
details are deferred to the full-version. We first recall that we consider a variant
of the polynomial IOP model in which all prover messages are encoded by a
channel and that the prover does not incur the cost of this encoding in its time
and space complexity. In particular, we consider a channel which computes the
multi-linear extension of the prover messages. Our space-efficient PIOP leverages
the RAM to circuit satisfiability reduction of [12]: this RAM to circuit reduction
outputs an arithmetic circuit of size T - polylog(T"), which we denote as Cy,
over finite field IF of size polylog(T). The circuit is defined such that such that
Cp(z) =y if and only if M (z;w) = y for auxiliary input w. Further, the circuit
has a “streaming” property: the string of gate assignments W of C}; on input x
can be computed “gate-by-gate” in time T - polylog(T') and space S - polylog(T).
In our model, this allows our prover to stream its message through the encoding
channel in time T - polylog(T') and space S - polylog(T') and send the verifier

5 log(p) factors are omitted.

192 A. R. Block et al.

PIOP(M, z,T, S;w)

1: P compiles circuit Cps and transcript W via the reduction of [12].

2: P provides V with an oracle for W.

3: V samples T < F* and sends T to P.

4: P computes polynomial h, and sets v <— 0. P sends v to V.

5: Vsetsy .

6: foreach j € {1,...,3s} do / sum-check

7: P sends h{(X;) to V, where hi?) (X;) Z he(ou,. .. a5-1,X;,c).
o/€{0,1}3s—3

8: V checks v = h{(0) + h (1), rejecting if equality doesn’t hold.

9: V samples o & F and sets 7/ hs;’l)(a])‘

10 : if j < 3s thenV sends «; to P endif

11: V queries the oracle W and obtains v; + W (') for i € {1,2,3}, where ' « (as1,...,qis).

12: V computes h,(c) using oracle queries y; and accepts if and only if v = h.(cx).

Fig. 6. Our Polynomial IOP for time-T" space-S RAM computations.

with an oracle to the multi-linear extension of W, denoted as W. We emphasize
that W is the only oracle sent by the prover to the verifier, and that this and
the streaming property of W are key to the composition of our PIOP with the
polynomial commitment scheme of Theorem 5.

The circuit satisfiability instance (Cas,z,y) is next reduced to an algebraic
claim about a constant-degree polynomial F, , whose structure depends on the
wiring pattern of Cy/, and y, and the oracle W. The polynomial F, , has the
property that it is the O-polynomial if and only if W is a multi-linear extension
of a correct transcript; i.e., that W is a witness for Cy(x) = y. A verifier is
convinced that F, , is the O-polynomial if F, ,(7) = 0 for uniformly random
F-vector 7. F, 4 is suitably structured such that a prover can convince a verifier
that F, ,(7) = 0 via the classical sum-check protocol [36,45]. In particular, the
value Fj ,(7) is expressed as a summation of some constant-degree polynomial
h, over the Boolean hypercube:

Foy(r)= 3 ho(c).

ce{0,1}"

The polynomial h, has the following two key efficiency properties: (1) the
prover’s messages in the sum-check that depend on h, are computable in
T - polylog(T) time and space S - polylog(T') (see [12, Lemma 4.2], full details
deferred to the full-version); and (2) given oracle W the verifier in time
polylog(T) can evaluate h, at any point without explicit access to the circuit Cjy
(see [12, Theorem 4.1 and Lemma 4.2], full details deferred to the full-version).

Public-Coin Zero-Knowledge Arguments 193

6 Time- and Space-Efficient Arguments for RAM

We obtain space-efficient arguments (P, Varg) for NP relations that can be
verified by time-T space-S RAMs by composing the polynomial commitment
scheme of Theorem 5 and the polynomial IOP of Fig. 6. Specifically, the prover
P, and V,, runs the prover and the verifier of the underlying PIOP except two
changes: (1) Pag (line 2, Fig. 6) instead provides V,,g with a commitment to the
multilinear extension of the circuit transcript W. Here P, crucially relies on
streaming access to W to compute the commitment in small-space using Com.
(2) P,z and V,,, run the protocol Eval in place of all verifier queries to the oracle

W (line 11, Fig. 6). We state the formal theorem and defer its proof to the
full-version.

Theorem 6 (Small-Space Arguments for RAMSs). There exists a public-
coin interactive argument for NP relations verifiable by time-T space-S random
access machines M, in the random oracle model, under the hardness of discrete-
log in obliviously sampleable prime-order groups with the following complezity.

1. The protocol has perfect completeness, has O(log(T)) rounds and polylog(T)
communication, and has witness-extended emulation.

2. The prover runs in time T - polylog(T') and space S - polylog(T') given input-
witness pair (x;w) for M ; and

3. The verifier runs in time T - polylog(T') and space polylog(T).

We discuss how we modify our interactive argument of knowledge from The-
orem 6 to satisfy zero-knowledge and then make the resulting argument non-
interactive, thus obtaining Theorem 1.

Zero-Knowledge. We use commit-and-prove techniques introduced in [2,20]
and later implemented in [48]. At a high level, this requires making two changes
in our base protocols: (1) modify polynomial commitment from Sect. 4 to satisfy
zero-knowledge—we modify all commitments sent in both Com and Eval proto-
cols (Fig. 3) to additionally include blinding factors. For example, commitment
to x € F under generator g € G is changed from ¢g* to ¢g* - A" for some ran-

domly sampled hG and ré T, Further, at the end of the EvalReduce protocol
when N = 1, prover instead of sending the witness in the clear instead engages
with the verifier in Schnorr’s zero-knowledge proof of dot-product protocol [43].
This along with hiding of the commitments now ensure that the resulting poly-
nomial commitment is zero-knowledge. (2) We replace all messages sent in the
argument Theorem 6 in the clear with Pedersen hiding commitments and use
techniques developed in [48] to ensure verifier checks go through. We empha-
size that these changes do not asymptotically blow up the complexity of the
protocol and, in particular, keep the space-complexity low. Furthermore, this
transformation preserves the knowledge-soundness and public-coin features of
the underlying argument [48].

194 A. R. Block et al.

Non-interactivity. We apply the Fiat-Shamir (FS) transform [21] to our zero-
knowledge argument of knowledge, thereby obtaining a non-interactive, zero-
knowledge argument of knowledge. However, note that it is folklore that apply-
ing F'S to a t-round public-coin argument of knowledge yields a non-interactive
argument of knowledge where the extractor runs in time exponential in ¢. Since
our protocol has O(logT') rounds our extractor runs in poly(T")-time.

Acknowledgements. This work was done in part while Alexander R. Block and
Pratik Soni were visiting the FACT Research Center at IDC Herzliya, Israel. Ron
Rothblum was supported in part by a Milgrom family grant, by the Israeli Science
Foundation (Grants No. 1262/18 and 2137/19), and the Technion Hiroshi Fujiwara
cyber security research center and Israel cyber directorate. Alon Rosen is supported in
part by ISF grant No. 1399/17 and Project PROMETHEUS (Grant 780701). Pratik
Soni was supported in part by NSF grants CNS-1528178, CNS-1929901 and CNS-
1936825 (CAREER), Glen and Susanne Culler Chair, ISF grant 1861/16 and AFOSR
Award FA9550-17-1-0069. Alexander R. Block was supported in part by NSF grant
CCF-1910659.

References

1. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint
Archive, Report 2019/426 (2019). https://eprint.iacr.org/2019/426

2. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37-56. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2_4

3. Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, 1., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1-14:17. Schloss Dagstuhl
(2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701-732. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26954-8_23

5. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems: extended abstract. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 401-414. ACM (2013). https://doi.org/10.
1145/2422436.2422481

6. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31-60. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

7. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness. Cryptology ePrint Archive, Report 2019/336 (2019).
https://eprint.iacr.org/2019/336

8. Biehl, I., Meyer, B., Wetzel, S.: Ensuring the integrity of agent-based computations
by short proofs. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp.
183-194. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057658

https://eprint.iacr.org/2019/426
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1007/978-3-662-53644-5_2
https://eprint.iacr.org/2019/336
https://doi.org/10.1007/BFb0057658

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Public-Coin Zero-Knowledge Arguments 195

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111-120. ACM Press (2013). https://
doi.org/10.1145/2488608.2488623

Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. Cryptology ePrint Archive, Report 2012/461 (2012).
http://eprint.iacr.org/2012/461

Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 255-272. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5-16

Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. Cryptology ePrint Archive, Report 2014/846 (2014). http://eprint.
iacr.org/2014/846

Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327-357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019). https://
eprint.iacr.org/2019/1021

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315-334. IEEE Computer Society Press (2018). https://
doi.org/10.1109/SP.2018.00020

Biinz, B., Chiesa, A., Mishra, P., Spooner, N.: Proof-carrying data from accumula-
tion schemes. Cryptology ePrint Archive, Report 2020/499 (2020). https://eprint.
iacr.org/2020,/499

Biinz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677-706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Chiesa, A., Ojha, D., Spooner, N.: FRACTAL: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part 1. LNCS, vol. 12105, pp. 769-793. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1_27

Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Goldwasser, S. (ed.) ITCS 2012, pp. 90-112. ACM
(2012). https://doi.org/10.1145/2090236.2090245

Cramer, R., Damgard, I.: Zero-knowledge proofs for finite field arithmetic, or:
can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424-441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626—645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9_37

https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
http://eprint.iacr.org/2012/461
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-32009-5_16
http://eprint.iacr.org/2014/846
http://eprint.iacr.org/2014/846
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2020/499
https://eprint.iacr.org/2020/499
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

196

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

A. R. Block et al.

Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99-108. ACM Press (2011). https://doi.org/10.1145/1993636.1993651

Goldreich, O., Hastad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205-214 (1998)

Goldreich, O., Vadhan, S.P., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complex. 11(1-2), 1-53 (2002)

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113—
122. ACM Press (2008). https://doi.org/10.1145/1374376.1374396

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186-208 (1989). https://doi.org/10.1137/
0218012

Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379-396. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_22

Holmgren, J., Rothblum, R.: Delegating computations with (almost) minimal time
and space overhead. In: Thorup, M. (ed.) 59th FOCS, pp. 124-135. IEEE Computer
Society Press (2018). https://doi.org/10.1109/FOCS.2018.00021

Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 143-159. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_9

Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In: Boneh,
D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 565-574. ACM
Press (2013). https://doi.org/10.1145/2488608.2488679

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol.
6477, pp. 177-194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

Kattis, A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKS from list poly-
nomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400 (2019).
https://eprint.iacr.org/2019/1400

Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723-732. ACM Press (1992). https://doi.org/
10.1145/129712.129782

Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143-184 (2003). https://doi.org/10.1007/s00145-002-0143-7
Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS, pp. 2-10. IEEE Computer Society Press (1990).
https://doi.org/10.1109/FSCS.1990.89518

Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436-453. IEEE
Computer Society Press (1994). https://doi.org/10.1109/SFCS.1994.365746
Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222-242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2_13

Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238-252.
IEEE Computer Society Press (2013). https://doi.org/10.1109/SP.2013.47
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1109/FOCS.2018.00021
https://doi.org/10.1007/978-3-642-03356-8_9
https://doi.org/10.1145/2488608.2488679
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2019/1400
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/s00145-002-0143-7
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/3-540-46766-1_9

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Public-Coin Zero-Knowledge Arguments 197

Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC,
pp. 49-62. ACM Press (2016). https://doi.org/10.1145/2897518.2897652
Ron-Zewi, N.,; Rothblum, R.: Local proofs approaching the witness length. Elec-
tron. Colloquium Comput. Complex. 26, 127 (2019). https://eccc.weizmann.ac.il/
report/2019/127

Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161—
174 (1991). https://doi.org/10.1007/BF00196725

Setty, S.: Spartan: efficient and general-purpose zkSNARKSs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol.
12172, pp. 704-737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1_25

Shamir, A.: IP=PSPACE. In: 31st FOCS, pp. 11-15. IEEE Computer Society Press
(1990). https://doi.org/10.1109/FSCS.1990.89519

Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 71-89. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_5

Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1-18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1
Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926-943. IEEE Computer Society Press (2018). https://doi.org/10.
1109/SP.2018.00060

Wijesekera, P., et al.: The feasibility of dynamically granted permissions: aligning
mobile privacy with user preferences. In: 2017 IEEE Symposium on Security and
Privacy, pp. 1077-1093. IEEE Computer Society Press (2017). https://doi.org/10.
1109/SP.2017.51

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security
and Privacy, pp. 859-876. IEEE Computer Society Press (2020). https://doi.org/
10.1109/SP40000.2020.00052

https://doi.org/10.1145/2897518.2897652
https://eccc.weizmann.ac.il/report/2019/127
https://eccc.weizmann.ac.il/report/2019/127
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1109/FSCS.1990.89519
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2017.51
https://doi.org/10.1109/SP.2017.51
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP40000.2020.00052

	Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time and Space Overheads
	1 Introduction
	1.1 Our Results
	1.2 Prior Work

	2 Technical Overview
	2.1 Polynomial Commitment to Multi-linear Polynomials in the Streaming Model
	2.2 Polynomial IOPs for RAM Programs
	2.3 Obtaining Space-Efficient Interactive Arguments

	3 Preliminaries
	3.1 The Discrete-Log Relation Assumption
	3.2 Interactive Arguments of Knowledge in ROM
	3.3 Multi-linear Extensions
	3.4 Polynomial Commitment Scheme to Multi-linear Extensions

	4 Space-Efficient Commitment for Multi-linear Extensions
	4.1 Commitment Scheme
	4.2 Correctness and Security
	4.3 Efficiency

	5 A Polynomial IOP for Random Access Machines
	6 Time- and Space-Efficient Arguments for RAM
	References

