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Abstract. Broadcast Encryption is a fundamental cryptographic prim-
itive, that gives the ability to send a secure message to any chosen target
set among registered users. In this work, we investigate broadcast encryp-
tion with anonymous revocation, in which ciphertexts do not reveal any
information on which users have been revoked. We provide a scheme
whose ciphertext size grows linearly with the number of revoked users.
Moreover, our system also achieves traceability in the black-box confir-
mation model.

Technically, our contribution is threefold. First, we develop a generic
transformation of linear functional encryption toward trace-and-revoke
systems. It is inspired from the transformation by Agrawal et al.
(CCS’17) with the novelty of achieving anonymity. Our second contribu-
tion is to instantiate the underlying linear functional encryptions from
standard assumptions. We propose a DDH-based construction which does
no longer require discrete logarithm evaluation during the decryption
and thus significantly improves the performance compared to the DDH-
based construction of Agrawal et al.. In the LWE-based setting, we tried
to instantiate our construction by relying on the scheme from Wang et
al. (PKC’19) but finally found an attack to this scheme. Our third con-
tribution is to extend the 1-bit encryption from the generic transforma-
tion to n-bit encryption. By introducing matrix multiplication functional
encryption, which essentially performs a fixed number of parallel calls on
functional encryptions with the same randomness, we can prove the secu-
rity of the final scheme with a tight reduction that does not depend on
n, in contrast to employing the hybrid argument.

Keywords: Anonymity · Trace and revoke · Functional encryption

1 Introduction

Trace-and-revoke systems, introduced in [21,22] have been studied extensively
in many works, including [4,11,14,18,24]. A trace-and-revoke system is a multi-
recipient encryption scheme in which a content distributor can find malicious
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users and revoke their decryption capability. Note that a user might share its
secret key with non-legitimate entity. In such a case, it should be possible to
identify the user, so that it is revoked from further accessing new content. A
traitor tracing system guarantees that if a coalition of users pool their secret keys
to construct a pirate decoder box that can decrypt ciphertexts, then there is an
efficient trace algorithm to find at least one guilty user provided the algorithm is
given access to the decoder. Then the content distributor can use the revocation
functionality to prohibit guilty users from accessing the data in the future. A
revocation system ensures that if a coalition of illegitimate users pools their
secret keys, they still cannot decrypt the ciphertext. A natural question occurs
if one can devise a protocol where a revoked user is not able to find out if it has
been revoked. One may further request that, given a ciphertext, no legitimate
user will get any information about the users who have been revoked.

Anonymity of receivers is important in numerous real-life applications and
have been considered in multiple works, such as [7,13,15,19,20]. The standard
notion of anonymity requires that the adversary cannot distinguish between
ciphertexts of two targeted sets of its choice, even if it can corrupt any user in
the intersection of these two sets or outside of the two sets. Unfortunately, it
turned out to be extremely difficult to achieve this anonymity level in the general
case without any restriction on the size of the target set. The state-of-the-art
constructions by Barth et al. [7] and Libert et al. [20] start from a public-key
encryption and result in schemes with ciphertext size which is N times larger,
where N denotes the total number of users. Moreover, Kiayias and Samari [17]
proved that ciphertext size will be linear in N in the general case.

For revoke systems, the efficiency is often negatively correlated to the upper
bound on the number of revoked users. One of the most important applications
of broadcast encryption is Pay-TV and it can typically be in the form of a
revoke system: the service broadcasts to all users except revoked users who were
detected as traitors or who unsubscribed from the system. The state-of-the-art
revoke systems [4,11,21,22] have compact ciphertext sizes that grow as O(r)
for r the bound of revoked users and which is not dependent in the number of
users. None of these schemes is anonymous. An attempt was made to consider
outsider adversaries, who can only corrupt users outside of the two targeted
sets. In this limited setting, Fazio and Perera [15] showed that one can get
key and ciphertext sizes that are sublinear in the number of users. We observe
totally different situations for getting anonymity in broadcast encryption and in
revoke systems: in broadcast encryption, optimal solutions exist [6,9] but one
cannot get the anonymity with sublinear ciphertext size in the total number of
users; in revoke systems, no impossibility result has been settled and it does
not exclude the possibility to get an anonymous schemes which is as efficient as
non-anonymous ones, namely ciphertext size is O(r), independent in the number
of users. In this paper, we show that we can design anonymous schemes with
O(r) ciphertext size. Moreover, we also handle traceability to achieve anonymous
trace-and-revoke systems.
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1.1 Contributions

Our primary contribution is to develop the first symmetric-key trace-and-revoke
scheme with traceability and anonymous revocation. We give two constructions
of trace-and-revoke schemes, namely TR0 and TR1 from so-called linear func-
tional encryptions. The former TR0 is generically constructed from inner prod-
uct functional encryption (IPFE) and encrypts single bit messages. Similarly,
TR1 is constructed from matrix multiplication functional encryption (MMFE)
to support n-bit messages. Interestingly, unlike [4], our DDH instantiations do
not require discrete-log evaluation for ciphertext decryption.

Our second contribution is to propose efficient constructions. We give an
efficient construction of MMFE in the prime-order groups and prove that our
MMFE construction is indeed tightly secure under the standard matDH assump-
tion. As IPFE construction and its security proof follow from those of MMFE,
we omit them here and describe them in the full version. This construction can
be seen as tweaking Tomida’s tightly secure IPFE for the symmetric-key set-
tings [25]. However, we note that our security argument is somewhat different
from Tomida’s. On top of that, our tightly secure MMFE is more efficient than
applying [25] naively.

Our third contribution is a cryptanalysis on the LWE-based IPFE construc-
tion of [26]. This justifies our choice of LWE-based IPFE to instantiate TR0.

Anonymous Revocation. Before describing our results, we discuss the notion
of anonymous revocation in trace-and-revoke schemes. The Enc algorithm of
any trace-and-revoke scheme takes a message m and a revoked user set descrip-
tion R and computes a ciphertext that can only be decrypted by users outside R.
The anonymity property intuitively means that no information on R should be
inferred from the ciphertext. A typical multi-challenge security model is defined
by polynomially many challenge phases where the adversary adaptively produces
(m(t),R(t)

0 ,R(t)
1 ) on the t-th phase and gets an encryption of (m(t),R(t)

β ) for the
same β ← {0, 1} throughout the phases. However, this security model is quite
strong and there are practical scenarios that do not require such stronger defi-
nition. For example, a typical trace-and-revoke scheme revokes more and more
users over time. If a revoked user wants to get access to the system again, it
has to contact the broadcaster, which can give the user a new key. In such a
scenario, the revoked user set increases with time, such that R(t−1) ⊆ R(t) for
any timestamp t > 1. We model this scenario by introducing the restriction
that, for any t, if the adversary produces the challenge (m(t),R(t)

0 ,R(t)
1 ), then

R(t−1)
0 ⊆ R(t)

0 and R(t−1)
1 ⊆ R(t)

1 , and call the resulting security property multi-
challenge monotonic anonymity mIND-ID-CPA.

1.2 Technical Overview

We start with a basic description of the trace-and-revoke scheme by Agrawal et
al. [4] (in the bounded collusion model). Each user id in this scheme is associated
with a vector xid and, correspondingly, a set R is associated with XR, the vector
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space spanned by (xid)id∈R. Then, the predicate ‘id /∈ R’ can be emulated by
testing if ‘〈xid,vR〉 = 0’ for vR orthogonal to XR. Using this relation, one
encrypts a message m by encrypting m · vR using an IPFE. An IPFE key for
xid is used to evaluate id /∈ R in the encrypted domain. We now describe the
decryption algorithm of [4] to clarify that this construction does not achieve
anonymity of the revocation set. Decryption takes a ciphertext ct for (m,R)
and a secret key sk for id and runs IPFE decryption to obtain an intermediate
Res = 〈xid,m · vR〉. The correctness then follows from the fact that decryption
can compute 〈xid,vR〉 and divide Res by it to retrieve m. This is the reason why
the description of R is provided as part of the ciphertext. Thus, the Agrawal et
al. scheme does not achieve revocation set hiding.

Our constructions build on [4], but avoid the above difficulty by exploiting
the fact that if we consider the message to be single bit (i.e., m ∈ {0, 1}), we
have the following four cases:

– m = 0, id ∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is zero.
– m = 1, id ∈ R: Same as above where the value of 〈xid,yR〉 = m · 〈xid,vR〉 is

zero; therefore, when id ∈ R, the message m is hidden.
– m = 0, id /∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is again zero.
– m = 1, id /∈ R: The value of 〈xid,yR〉 = m · 〈xid,vR〉 is non-zero.

The above list of cases shows that a secret key for xid decrypts an IPFE ciphertext
for m ·vR and retrieves m ∈ {0, 1} correctly if id /∈ R. Note that the decryption
algorithm no longer requires the description of the revoked set R. Based on this
observation, our constructions translate (m,R) into a vector m·vR where vR is a
random vector orthogonal to XR and id to a non-zero vector xid. The monotonic
anonymity (in the mIND-ID-CPA security model discussed above) then follows
from the fact that the underlying IPFE hides the plaintext vector (here m ·vR).
For an n-bit message space, we can run independent and parallel executions of
the IPFE that allow bit-by-bit retrieval of the message encrypted.1 We propose
a more efficient alternative, namely, matrix multiplication functional encryption
(MMFE). Our generic transformation above ensures that any efficient instan-
tiation of MMFE will result in efficient trace-and-revoke scheme. We discuss
constructions of MMFE in both the group-based settings and in the lattice-
based settings. We further show that our group-based construction of MMFE is
tightly secure under standard assumptions. For lattice-based setting, we suggest
to use [4] as we could mount a concrete attack on the state-of-the-art [26], ren-
dering it insecure. Lastly, we note that tracing is performed in a similar fashion
to [4].

An Attack on the Wang et al. IPFE. Here, we show that the IPFE construction
by Wang et al. can be broken for the parameters chosen in [26]. Our attack
can be thwarted by increasing the parameters, but then the scheme does not
1 In practice, we use this scheme to send 128-bit session keys or a stream: if an user is

in the targeted set then it decrypts correctly and if the user is not in the targeted set
then it gets all 0s (and therefore the equivalent of a trivial decryptor which generates
0 all the time).
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enjoy great efficiency compared to the one from [4]. Here, we give the overview
LWE-based IPFE from [26]. The dimension n of the LWE secrets is proportional
to the security parameter λ, the parameters �,m, p, q are polynomial in n. The
master secret key is Z, uniform over {0, . . . , p − 1}�×m. The public key is of
the form pk = (A ∈ Z

m×n
q ,T = ZA ∈ Z

�×n
q ). The secret key for the vector

x ∈ Z
�
p is skx = xt · Z. The ciphertext for a vector y ∈ Z

�
p is of the form

(c0 ≈ As, c1 ≈ Ts+(q/p)·y). The authors state that under the LWE assumption,
this IPFE is adaptively secure for chosen message distributions, assuming that
the secret key queries are linearly independent. We will give an algorithm that
can recover the master key from the public key and ciphertexts (i.e., recover z
from Xt and Xtz, where z ← {0, . . . , p − 1}� and X ∈ {0, . . . , p − 1}�×(�−1) is
chosen by the adversary). We remark that z belongs to a coset of the lattice
orthogonal of X defined by t. The crux of the attack is that for parameters as
above, the minimum of this lattice is larger than ‖z‖. This means that we have a
Bounded Distance Decoding problem instance in a lattice of dimension 1. Finally,
we also explain why our attack does not extend to the schemes from [4,5].

Organization of the Paper. In Sect. 2, we present some important definitions.
In Sect. 3, we present black-box transformations to convert linear functional
encryptions into trace-and-revoke systems with traceability and anonymity of
revocation. Before we present group-based MMFE construction, in Sect. 4, we
show an attack of a recent LWE-based IPFE construction [26]. Then, in Sect. 5,
we present a construction of MMFE in the prime-order groups.

2 Definitions and Preliminaries

For a, b ∈ N such that a ≤ b, we often use [a, b] to denote {a, . . . , b}. Given a set
of vectors S, we use Matrix(S) to denote the matrix whose each row is a distinct
vector from S. For any two sets S and R, we define SΔR = (S \ R) ∪ (R \ S).
For a dictionary D = (k, vk)k, D.vals() gives the set {vk : k ∈ D}. For a vector
space V over a field K, the corresponding orthogonal space is denoted by V⊥.
For a distribution D, we write x ← D to say that x is sampled from D. The
ppt abbreviation stands for probabilistic polynomial time. We denote Ggen(1λ, p)
→ (g,G) such that G is a cyclic group of prime order p and g generates G. For
A = (aij) ∈ Z

β×α
p we denote [A] = (gaij ) ∈ Z

β×α
p . For m, k ∈ N for m > k, we

use M ← Dm,k to get a full rank matrix M ∈ Z
m×k
p where the first k rows are

linearly independent.

2.1 Linear Functional Encryption

A functional encryption scheme [10] allows a user, having a secret key skf corre-
sponding to a function f , to evaluate f(z) securely given a ciphertext ctz for a
plaintext z. The inner product function, being one of the simplest functionalities,
has received a tremendous amount of exposure [1–3,5,12,25]. We here define an
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extended version for IPFE in symmetric-key settings called Matrix Multiplica-
tion Functional Encryption (MMFE). Informally speaking, having a secret key
skx for x ∈ Z

�
p, given a ciphertext ctM for for M ∈ Z

n×�
p , MMFE outputs a binary

vector of length n where the ith component indicates if Mix = 0 for i ∈ [n] in
terms of a predicate f : Zp → {0, 1}. Precisely, MMFE .Dec(skx, ctM) outputs

(f(M1x), . . . , f(Mnx)) where f(z) =

{
0 if z = 0
1 otherwise

. We say that an MMFE

scheme MMFE is IND-CPA-secure if no polynomial adversary can distinguish a
ciphertext ctM(0) from another ciphertext ctM(1) for distinct M(0),M(1) ∈ Z

n×�
p .

Thus, IPFE scheme IPFE is basically MMFE with n = 1. We present the defini-
tions more formally in the full version of the paper due to page limitation.

2.2 Trace-and-Revoke Systems

A symmetric key traitor tracing encryption scheme is a multi-recipient encryp-
tion system in which a broadcasting office has the master secret key for encryp-
tion and there are many users with decryption capabilities, each having its
own secret key. Additionally, the encryption scheme provides a feature to let
the broadcaster identify at least one user from a coalition T of malicious users
(traitors) that built an unauthorized decryption device D. The following is the
blackbox confirmation model [8], in which an efficient tracing algorithm Trace is
given oracle access to D, which we denote by OD. The oracle OD takes as input
any message-ciphertext pair (m,C) and returns 1 if D(C) = m and 0 otherwise.
Given as input a set S of suspected users containing T , the Trace algorithm
should disclose the identity of at least one user from the set T . For security, a
traitor coalition should not be able to design a useful box that escapes tracing,
i.e., such that the Trace algorithm replies ⊥ or frames an innocent user in S \T .

Following [4], the probability of decryption of decoder D, can be estimated by
repeatedly querying the oracle OD with plaintext-ciphertext pairs. Therefore, we
assume the decryption device D correctly decrypts a properly generated cipher-
text with significant probability. The following is a description of D, reproduced
from [4] and modified for the symmetric-key setting. Let R be any set of revoked
users, of size ≤ r. Let the message m be sampled uniformly at random from the
message space M and let CR be the output of the encryption algorithm Enc
using the master secret key msk and R as the set of revoked users. With CR as
input, the device D is assumed to output m with probability significantly more
than 1/|M|:

Pr
m ← U(M)

CR ← Enc(msk, pp, R, m)

[
OD(CR,m) = 1

]
≥ 1

|M| +
1
λc

, (1)

for some constant c > 0.
We let the identity space ID and the message space M be implicit arguments

to the setup algorithm below. We let the secret key space K, the ciphertext
space C (along with ID and M) and the descriptions of mathematical tools that
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are used be part of the public parameters output by the setup algorithm. We
adapt the definition from [4] to the symmetric-key setting.

Definition 1. A dynamic trace-and-revoke scheme TR in the black-box confir-
mation model is a tuple TR = (Setup,KeyGen,Enc,Dec,Trace) of five ppt algo-
rithms with the following specifications.

• Setup(1λ, 1r, 1t) takes as input the security parameter λ, the bound t on the
size of traitor coalitions and the bound r on the number of revoked users. It
outputs (msk, pp, dir) containing the master secret key msk, the public param-
eters pp and the initially empty user directory dir. Here, unlike [4], dir is kept
secret.

• KeyGen(pp,msk, dir, id) takes as input the public parameters pp, the master
secret msk, the user directory dir and an identity id ∈ ID of a user. It out-
puts the corresponding secret key skid and some information uid for the given
identity id. It also updates dir to include uid.

• Enc(pp,msk, dir,R,m) takes as input the public parameters pp, the master
secret msk, the user directory dir, a set R of size ≤ r which contains the uid
of each revoked user in dir, and a plaintext message m ∈ M. It outputs a
ciphertext CR ∈ C.

• Dec(pp, skid, CR) takes as input the public parameters pp, a secret key skid of a
user with identity id and a ciphertext CR ∈ C. It outputs a plaintext m′ ∈ M.

• Trace(pp,msk, dir,R,S,OD) is a tracing algorithm in the black-box confirma-
tion model that takes as input the public parameters pp, the master secret
key msk, the user directory dir, a set R of ≤ r revoked users, a set S of ≤ t
suspect users, and has black-box access to the pirate decoder D through the
oracle OD. It outputs an identity id or ⊥.

The correctness requirement is that, with overwhelming probability over the
randomness used by the algorithms, for (pp,msk, dir) ← Setup(1λ, 1r, 1t), for any
set R of ≤ r revoked users:

∀m ∈ M, ∀id ∈ ID \ R : Dec(pp, skid,Enc(pp,msk, dir,R,m)) = m.

In this work, we consider three security properties for a trace-and-revoke
scheme: message hiding, revocation set hiding, and traceability.

2.2.1 Message Hiding
The IND-CPA security of a trace-and-revoke scheme TR is defined based on the
following game. Informally speaking, neither a system outsider nor a revoked
user must be able to get any information about the encrypted message.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public param-
eters pp to the adversary A. The adversary may ask the challenger to add
polynomially many users in the system (these user addition queries can be
adaptive and take place at any time in the game). The challenger updates dir
accordingly.
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• The adversary can adaptively make up to r secret key queries and a single
challenge ciphertext query, of the following form:

∗ Given a key generation query id, the challenger provides the corresponding
skid to A.

∗ Given the challenge ciphertext query (m0,m1,R) with R ⊂ ID of size ≤ r,
the challenger samples β ← {0, 1} and provides C(β) ← Enc(pp,msk,
dir,R,mβ) to A.

These queries are subject to the restriction that every queried id belongs to R.
• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the

challenger. The adversary wins this game if β = β′.

The advantage of the adversary A is defined as

AdvIND-CPA
TR,A = |Pr[β = β′] − 1/2|.

A trace-and-revoke scheme TR is said to be IND-CPA secure if AdvIND-CPA
TR,A is

negligible for all ppt adversary A.

2.2.2 Revocation Set Hiding
The anonymity of a trace-and-revoke scheme TR captures the idea of hiding the
revocation set in the ciphertext: if tth challenge ciphertext is created for one of
the two adversarially chosen revoked sets (R(t)

0 ,R(t)
1 ) on the tth challenge phase,

then the adversary cannot distinguish if R(t)
0 or R(t)

1 was used for the encryption
for all of t.

As we already have mentioned in the Introduction, we aim for a multi-
challenge security settings that properly emulates the following scenario: A typ-
ical trace-and-revoke scheme traces and revokes more and more users over the
time. In such a scenario, each new ciphertext is created for growing revoked user
sets. We call this setting as monotonic anonymity security model (mIND-ID-CPA)
and define it as following.

• The challenger runs Setup(1λ, 1r, 1t) and gives the produced public param-
eter pp to the adversary A. The adversary may ask the challenger to add
polynomially many users in the system (these user addition queries can be
adaptive and take place at any time in the game). The challenger updates dir
accordingly.

• The adversary can adaptively make up to (r + t) secret key queries and
polynomially many anonymity challenge queries, of the following form:

∗ Given a key generation query id, the challenger provides the corresponding
skid to A.

∗ Given a challenge anonymity query (m,R0,R1) with R0,R1 ⊂ ID of
size ≤ r, the challenger samples β ← {0, 1} and provides C(β) ←
Enc(pp,msk, dir,Rβ ,m) to A.

These queries are subject to the restriction that for every queried id, either
id ∈ R0 ∩R1 or id ∈ ID\ (R0 ∪R1). Among all the key queries that have been
made, at most t of them could be satisfying id ∈ ID \ (R0 ∪ R1) and at most
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r of them could be satisfying id ∈ R0 ∩ R1. The challenge anonymity queries
also have a natural restriction that R(i)

0 ⊆ R(j)
0 and R(i)

1 ⊆ R(j)
1 for all i ≤ j

where the tth challenge anonymity query was made on (m(t),R(t)
0 ,R(t)

1 ).
• Finally, the adversary returns its guess β′ ∈ {0, 1} for the bit β chosen by the

challenger. The adversary wins this game if β = β′.

The advantage of the adversary A is defined as

AdvmIND-ID-CPA
TR,A = |Pr[β = β′] − 1/2|.

A trace-and-revoke scheme TR is said to be mIND-ID-CPA secure if
AdvmIND-ID-CPA

TR,A is negligible for all ppt adversary A.

2.2.3 Traceability
The notion of traceability considers a suspected set S of users who might have
produced the pirate decoder D. Then the tracing algorithm Trace outputs an
id ∈ S \ T where T is the set of traitors who are already detected. This require-
ment is formalized using the following game, denoted by AD-TT, between an
adversary A and a challenger. We reproduce the security model from [4] for sake
of completeness.2 More precisely, the authors of [4] achieved public-traceability :
for this purpose, the public-key Enc algorithm was used to construct so-called
probe ciphertexts to query OD and identify a traitor. Our trace-and-revoke
scheme relies on a symmetric key Enc algorithm, and hence tracing relies on
the master secret key msk (in particular, tracing is not public).

• The challenger runs Setup(1λ, 1r, 1t) and gives pp to A. The adversary may
ask the challenger to add polynomially many users in the system (these user
addition queries can be adaptive and take place at any time in the game).
The challenger updates dir accordingly.

• Adversary A makes adaptive traitor key queries on at most t distinct users.
For every id queried, the challenger checks to find uid ← dir[id]. If available,
records id in T and returns skid. Otherwise, adds uid to dir[id], records id in
T and returns skid ← KeyGen(pp,msk, id).

• Adversary A sends an adaptively chosen revocation set R ⊂ ID of size ≤ r
and gets back all the secret keys {skid ← KeyGen(pp,msk, id)}id∈R.

• Adversary A then produces a pirate decoder D and gives the challenger its
access in terms of an oracle OD. A also produces a suspect set S of size ≤ t
containing T and sends it to the challenger.

2 Recently, a more general model of pirate, called pirate distinguisher, have been intro-
duced and considered in [16,24]. However, as proven in [13], in the bit-encryption
setting, such a notion of pirate distinguisher is equivalent to the pirate decoder.
In this section, we consider bit-encryption and in the next section about multi-bit
encryption, the tracing is reduced to the tracing in the bit-encryption sub schemes.
Therefore, we keep using the definition from [4] (adapted to the symmetric-key set-
ting).
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• The challenger then runs Trace(pp,msk, dir,R,S,OD). The adversary wins if
both of the following hold:

∗ Equation (1) is satisfied for the set of revoked users R chosen by the
adversary (i.e., decoder D is useful),

∗ the execution of Trace outputs ⊥ or outputs an id ∈ S\T with probability
≥ 1/λc.

We define the tracing advantage AdvAD-TT
TR,A as the probability of A’s win. A trace-

and-revoke scheme TR is said to be AD-TT secure if the advantage AdvAD-TT
TR,A is

negligible for all ppt adversary A.

3 Trace-and-Revoke from Linear Functional Encryption

In this section, we construct a trace-and-revoke system from a linear functional
encryption scheme that achieves traceability and anonymous revocation. This is
achieved in two steps. First, a trace-and-revoke system for single-bit messages is
constructed from inner product functional encryption. Then we extend such a
trace-and-revoke system to support arbitrary fixed length strings.

We first define a generic transformation similar to the one of [4], which con-
verts an IND-CPA secure inner product functional encryption scheme IPFE into
a trace-and-revoke system TR0 for the restricted message space M = {0, 1}
that enjoys anonymous revocation. Note that this transformation converts an
IND-CPA secure IPFE in the bounded collusion model to a trace-and-revoke
system TR0 that supports an exponential number of users like [4]. Then we pro-
vide another generic transformation that converts an IND-CPA secure matrix
multiplication functional encryption scheme (MMFE) into a trace-and-revoke
system TR1 for the message space M = {0, 1}n for n as large as poly(λ). This
transformation also ensures that TR1 achieves anonymous revocation along with
supporting an exponential number of users.

As, our primary contribution in this paper, is to introduce trace-and-revoke
schemes with anonymous revocation, our presentation mainly focuses on the con-
struction and the anonymity security of TR0 and TR1. Nevertheless, in Sect. 3.1,
we have provided a complete description of the TR0 that includes an explicit
description of the Trace function. For the sake of simplicity, we however have
presented the general trace-and-revoke systems TR1 in Sect. 3.2 without a Trace.
Note that, TR1 can use the Trace algorithm of TR0.

3.1 Trace-and-Revoke for Single Bit Messages

We construct a trace-and-revoke scheme TR0 following the specifications of Def-
inition 1 for the message space M = {0, 1}. TR0 relies on a user directory dir
which contains the identities of all the users that have been assigned keys in the
system. This user directory is initially empty. Unlike [4], we assume that dir can
only be accessed by the central authority, which is the sender as well as the key
generator. TR0 relies on an inner product functional encryption scheme IPFE for
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the �-dimensional vector space on Zp, where the value � is a function of r and t.
Recall that, in a typical trace-and-revoke scheme, the bound on the number of
revoked users r and the bound on the number of suspected users (traitors) t
are given as the system parameters. Our description of IPFE (simpler form of
MMFE as noted in Sect. 2.1) comes with an injective map f whose description
is included in the public parameters pp. To define the trace-and-revoke scheme
TR0, we define a special element in the range of the map elem∗ = f(0). Concretely,
in case of a group-based construction of IPFE , we take the exponentiation map
f : x �→ [x] and have elem∗ = [0]. In case of a lattice-based construction, we take
the identity map f : x �→ x and have elem∗ = 0.

1. Setup(1λ, 1r, 1t). Upon input the security parameter λ, the bound t on the
number of the suspected users, and the bound r on the number of revoked
users, set p = λω(1) and proceed as follows:
(a) Let (pp,msk) ← IPFE .Setup(1λ, 1�, p), where we set � = 2r + t + 1. The

key space K and ciphertext space C are the IPFE key space and ciphertext
space, respectively.

(b) Create an empty directory dir.
(c) Output the public parameter pp, master secret key msk and the (empty)

user directory dir.
2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master

secret key msk, the user directory dir and a user identity id ∈ ID, proceed as
follows:
(a) Sample xid ← Z

�
p. The pair uid = (id,xid) is then appended to dir.

(b) Let skid ← IPFE .KeyGen(pp,msk,xid).
(c) Output (skid,xid).

3. Enc(pp,msk, dir,R,m). Upon input the public parameters pp, the master
secret key msk, the user directory dir, a set of revoked users R of size ≤ r and
a plaintext message m ∈ M = {0, 1}, proceed as follows:
(a) Sample vR ← X⊥

R where XR = {xid : id ∈ R}.
(b) Compute yR = m · vR.
(c) Output CR = IPFE .Enc(pp,msk,yR).

4. Dec(pp, (skid,xid), CR). Upon input the public parameters pp, the secret
key skid for user id and a ciphertext CR, proceed as follows:
(a) Compute Res = IPFE .Dec(pp, (skid,xid), CR).
(b) If Res = elem∗, then output 0. Otherwise output 1.

5. Trace(pp,msk, dir,R,S,OD). Upon input the master secret key msk, the user
directory dir, a revoked set of users R, a suspect set of users S and given
access to the oracle OD, proceed as follows:
(a) Suppose the users in the suspect set S can distinguish between the mes-

sages m = 0 and m′ = 1 except with negligible probability provided these
users can access the oracle OD.3

(b) Set S1 = {id1, id2, . . .} = S \ R.
(c) Sample vR ← X⊥

R where XR = {xid : id ∈ R}.

3 Note that [4] used Hoeffding’s inequality to ensure that one can efficiently find such
distinguishable m and m′. In our case, it is simpler, as M = {0, 1}.
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(d) For all i = 1, 2, . . . , t,
– If i = 1, set vSi

= 0. If Si = ∅, set vSi
= (m′ − m) · vR.

– Otherwise, sample vSi
← X⊥

R∪Si
∩

(
X⊥

S1\Si
+ (m′ − m) · vR

)
where

XR∪Si
= {xid : id ∈ R ∪ Si} and XS1\Si

= {xid : id ∈ S1 \ Si}.
– Construct yi = vSi

+ m · vR;
– Provide the oracle OD with (CSi

,m) as input and get a binary value bi

as output. Suppose the probability of bi = 1 is pi.
– The probe ciphertext is CSi

= IPFE .Enc(pp,msk,yi); We note that,
the decryption result of the probe ciphertext CSi

is m if id ∈ Si and
m′ if id ∈ S \ Si.

– If i > 1 and |pi − pi−1| is non-negligible,
• Output idi−1 as the traitor identity and abort;
• If Si = φ, output ⊥ and abort. Otherwise, set Si+1 = Si \ {idi}.

We state the following theorems that are essential for the correctness and defer
the proofs to the full version of the paper, due to page limitation.

Theorem 1. Assume that p = λω(1). Then, for every set R of revoked users of
size ≤ r, every id /∈ R and every m ∈ M = {0, 1}, we have

Dec(pp, (skid,xid),Enc(pp,msk, dir,R,m)) = m,

with probability ≥ 1 − λ−ω(1).

Theorem 2. Let R be arbitrary of size ≤ r and assume Eq. (1) holds for OD

and R. Then we have:∣∣∣∣ Pr
C←Enc(pp,msk,dir,R,0)

[OD(C, 0) = 1] − Pr
C←Enc(pp,msk,dir,R,1)

[OD(C, 0) = 1]
∣∣∣∣ ≥ 2

λc
,

with probability ≥ 1 − λ−ω(1) and for some constant c > 0.

Security. We prove that the base scheme TR0 enjoys message hiding, revocation
set hiding and traceability. We defer these proofs to the full version.

Theorem 3. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing up to r key extraction queries, then TR0 is IND-CPA secure.

Theorem 4. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing up to (t + r) key extraction queries, then TR0 is mIND-ID-CPA
secure.

Theorem 5. If IPFE is an IND-CPA secure inner product functional encryption
scheme allowing (r + t) queries, then TR0 is AD-TT secure.
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3.2 Efficient Trace-and-Revoke for Bit Strings

We present a trace-and-revoke scheme TR1 for M = {0, 1}n that does not run
parallel independent n executions of TR0. However, we note that, we omit the
description of Trace here as it follows from the Trace algorithm of TR0. This
scheme again assumes the existence of a user directory dir which is initialized
to be empty, contains the identities of the users that have been assigned keys in
the system. We assume that dir can only be modified by the central authority
who is the sender as well as the key generator. Here, we assume existence of
an efficient matrix multiplication functional encryption MMFE that encrypts
matrices of n × � dimension. The intuitive idea here is that, we utilize n copies
of inner product of � dimensional vectors as a linear system of equations Mx
where M ∈ Z

n×�
p and x ∈ Z

�
p. Each of the rows of M is used to encrypt each

message bit.

1. Setup(1λ, 1n, 1r, 1t). Upon input the security parameter λ, the message bit-
length n, the bound t on the number of the suspected users and the bound r
on the number of revoked users, set p = λω(1) and proceed as follows:
(a) Let (pp,msk) ← MMFE .Setup(1λ, 1�, 1n, p), where we set � = 2r+t+n+1.
(b) Output the public parameter pp, master secret key msk and an empty

user directory dir.
2. KeyGen(pp,msk, dir, id). Upon input the public parameters pp, the master

secret key msk, the user directory dir and a user identity id ∈ ID, proceed as
follows:
(a) Sample xid ← Z

�
p. The pair uid = (id,xid) is then appended to the user

directory dir.
(b) Let skid ← MMFE .KeyGen(pp,msk,xid) ∈ MMFE .K.
(c) Output (skid,xid).

3. Enc(pp,msk, dir,R,m). Upon input the public parameter pp, the master secret
key msk, the user directory dir, a set of revoked users R of size ≤ r and a
plaintext messages m ∈ M = {0, 1}n, proceed as follows:
(a) Sample vR,1, . . . ,vR,n ← X⊥

R where XR = {xid ∈ Z
�
p : id ∈ R}.

(b) Compute yR,i = mi · vR,i for i ∈ [1, n].
(c) Define a matrix MR = (yR,1, . . . ,yR,n)	.
(d) Output CR = MMFE .Enc(pp,msk,MR).

4. Dec(pp, (xid, skid), CR). Upon input the public parameters pp, the secret
key skid for user id and a ciphertext CR considering the revoked set R, proceed
as follows:
(a) Compute t = MMFE .Dec(pp, (xid, skid), CR).
(b) Output m′ = (m′

1, . . . ,m
′
n) ∈ {0, 1}n where for all i ∈ [1, n], m′

i = 0 if
ti = elem∗; else m′

i = 1.

Correctness. The correctness basically follows from the correctness of TR0

above. The main difference is that, functionally, Enc of TR1 is some-what n
many copies of Enc of TR0. Thus, Dec must concatenate all the bits to get back
the message. Therefore, TR1 is correct if Dec of TR1 retrieves all the bits mi

correctly. Now, if ∃i ∈ [1, n], such that Dec of TR1 didn’t compute mi correctly,
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this can be extended to an attack on the correctness of Dec of TR0. This basically
ensures the correctness of TR1.

Security. We prove that TR1 enjoys message hiding and revocation set hiding.
We defer these proofs to the full version due to page limitation.

Theorem 6. If MMFE is an IND-CPA secure matrix multiplication functional
encryption scheme, then TR1 is IND-CPA secure.

Theorem 7. If MMFE is an IND-CPA secure matrix-multiplication functional
encryption scheme allowing at most (t + r − 1) key extraction queries, then TR1

is mIND-ID-CPA secure.

Construction TR0 and TR1. Note that, available IPFE schemes [4,5] suffice to
construct of TR0 and TR1. In particular, withholding the public keys of available
IPFE schemes, one can get symmetric-key IPFE schemes and use them to con-
struct TR0. Furthermore, TR1 can be constructed from running n independent
instances of any symmetric-key IPFE scheme. We in fact use this technique to
construct TR0 and TR1 in the lattice-based settings withholding the public key of
Agrawal et al.’s IPFE [4]. In the group-based settings, however, we can achieve
more efficient constructions than naively hiding the public key of the public-
key IPFE. In Sect. 5, we propose new constructions of symmetric-key IPFE and
symmetric-key MMFE in the prime-order groups.

4 Cryptanalysis of the Wang et al. IPFE Construction

As we mention above, the schemes from Sect. 3 can be instantiated with the
LWE-based IPFE scheme from [4]. Note that the latter does not enjoy IND-CPA
security, but it was showed to enjoy a weaker security property that still suffices
for the trace-and-revoke scheme from [4]. That weaker security property restricts
the number of key requests to be significantly smaller than the dimension of the
vector space, and imposes that the vectors of the key queries are uniformly
sampled. This relaxation of IND-CPA security also suffices for our adaptation
from Sect. 3.

IPFE scheme from [26], note that the LWE-based IPFE scheme from [26] is
also claimed to enjoy a security property that is stronger than IND-CPA security
(which the authors leverage to obtain a decentralized Attribute-Based Encryp-
tion scheme). In fact, as we will show below, this scheme can be broken for
the parameters suggested in [26]. Before showing an attack, we first recall some
definitions.

Lattices. Given n linear independent vectors b1, . . . ,bn ∈ R
m, the lattice gen-

erated by them is defined as

L(B) := {Bz =
∑

i∈[1,n]

zibi : z ∈ Z
n}.
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The rank of this lattice is n and its dimension is m.
We define the determinant of L as det(L) :=

√
det(BtB). For a rank-n

matrix B ∈ R
m×n, there exist orthogonal matrices U,V and a diagonal matrix

Σ = Diag(σ1, . . . , σn) ∈ R
m×n such that B = UΣVt and σ1 ≥ · · · ≥ σn > 0.

From this decomposition, we see that det(L(B)) =
∏

i∈[1,n] ‖σi‖.
For i ∈ [1, n], the i-th successive minimum λi(L) is defined as

λi(L) := inf{r : dim(Span(L ∩ B(r))) ≥ i},

where B(r) denotes the closed zero-centered Euclidean ball of radius r.

Definition 2. Let m > n ≥ 1 be integers and q ≥ 2 be prime. Let X ∈ Z
m×n.

The orthogonal lattice Λ⊥(X) is the integral lattice whose vectors are
orthogonal to the rows of X, i.e.,

Λ⊥(X) := {u ∈ Z
m : Xtu = 0}.

We note that if X has rank n (over the integers), then Λ⊥(X) has rank (m−n).

Definition 3. The bounded distance decoding problem BDDγ is as follows: given
a basis B of an n-rank lattice L, t ∈ R

n, and real d ≤ λ1
2 such that dist(t, L) ≤ d,

find the unique v ∈ L closest to t. Note that this is equivalent to finding e ∈ t+L
such that ‖e‖ ≤ d.

We now describe here a simplified version of the security property that this
scheme aims to achieve, and the corresponding simplified version of the scheme
(this corresponds to setting k = 1 in the definition from [26]; our attack readily
extends to k ≥ 1). In the challenge phase, the adversary sends to the chal-
lenger descriptions of two distributions D0 and D1 over plaintext vectors. The
challenger chooses β ← {0, 1} and samples y ← Dβ ; it encrypts it under the
public key pk and the resulting ciphertext Encpk(y) is given to the adversary.
The adversary can adaptively make key queries x, before or after the challenge
phase. The security property, called adaptive security for chosen message dis-
tributions, requires that the adversary cannot guess β correctly, as long as the
distributions D0 and D1 remain indistinguishable given the replies to the key
queries.

We review their construction based on LWE.

• IPFE .Setup(1n, 1�, p). Set integers m, q = pe for some integer e, and
reals α, α′ ∈ (0, 1). Sample A ← Z

m×n
q , Z ← {0, . . . , p − 1}�×m,4 com-

pute T = ZA ∈ Z
�×n
q , define

msk := Z and pk := (A,T).

4 In [26], the notation Z
�×m
p is used instead of {0, . . . , p − 1}�×m. We stress that it

should indeed be interpreted as {0, 1, . . . , p−1}�×m. In particular, the operation xtZ
in the IPFE .KeyGen algorithm is over Z and not modulo p, as otherwise decryption
correctness would not hold.
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• IPFE .KeyGen(msk,x). Given x ∈ Z
�
p, set zx = xtZ ∈ Z

m (interpreting each
coordinate of x as an integer in {0, . . . , p − 1}), and output skx = zx.

• IPFE .Enc(pk,y). To encrypt a vector y ∈ Z
�
p, sample s ← Z

n
q , e0 ← DZm,αq,

e1 ← DZl,α′q and compute

c0 = As + e0 ∈ Z
m
q , c1 = Ts + e1 + pe−1 · y ∈ Z

�
q.

Then, return the ciphertext C = (c0, c1).
• IPFE .Dec(sk, C). Given C = (c0, c1) and secret key skx = zx, compute μ′ =

〈x, c1〉 − 〈zx, c0〉 mod q, and output the value μ ∈ Zp that minimize |μ′ −
pe−1μ|.
In [26], the dimensions n is proportional to the security parameter λ, the

parameters �,m, p, q, 1/α, 1/α′ are polynomial in n, and e is a constant. In [26,
Theorem 3.5], the authors state that under the LWE assumption, the above
functional encryption for inner products is adaptively secure for chosen message
distributions, assuming that the secret key queries corresponding are linearly
independent.

Below, we describe a cryptanalysis of the scheme above with the specified
parameters. We then explain why this attack does not apply to the schemes
from [5] and [4].

We show that even for with challenge vectors rather than distributions, key
queries allow to recover the master secret key msk. Concretely, we can recover Z
from Xt and XtZ, where Z ← {0, . . . , p−1}�×m and X ∈ {0, . . . , p−1}�×(�−1) is
chosen by the adversary. We let our adversary sample X ← {0, . . . , p−1}�×(�−1)

(recall that the multiplication XtZ is over Z). The fact that X has only � − 1
columns means that we can find distinct challenge plaintexts (which are elements
of Z�

p) so that the columns of X are valid key queries.
It suffices to show how the adversary can recover the first column z of Z

from Xtz, as it can proceed similarly for all columns of Z. Given t = Xtz
and X, we know that z belongs to a coset of the lattice Λ⊥(X) defined by t.

Let us now study the lattice Λ⊥(X). As X ← {0, . . . , p − 1}�×(�−1), its
columns are expected to be linearly independent with overwhelming probability
and det(XZ

�−1) is expected to grow as pΩ(�). These properties would be easier
to prove if the entries of X were Gaussian with standard deviation p, but it can
be experimentally checked that this behaviour also holds for this distribution.
We also expect the lattice XZ

�−1 to be primitive, i.e., that Xt
Z

� = Z
�−1. By [23,

p. 30], we hence have that det(Λ⊥(X)) = det(XZ
�−1). As X is full column-rank,

we known that dim(Λ⊥(X)) = 1, and hence we expect that λ1(Λ⊥(X)) = pΩ(�).
Finally, note that the orthogonal lattice can be efficiently computed, by using a
Hermite Normal Form algorithm.

Now, recall that we want to recover z from a known coset of Λ⊥(X). As ‖z‖ ≤√
�p, by the above analysis of Λ⊥(X), we expect to have

‖z‖ < λ1(Λ⊥(X))/2.

This implies that z is uniquely determined from the coset. Moreover, this is a
Bounded Distance Decoding problem instance in a lattice of dimension 1, which
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can be solved efficiently. Concretely, if Λ⊥(X) = bZ and we are given b and
kb + z, we can recover k = �〈kb + z,b〉/‖b‖2� and hence z.

Remarks. Our proof shows that the scheme from [26] is not secure with the
specified parameters. We explain here why the above attack does not work for
the [5] and [4] schemes. First, in the mod-p scheme from [5, Section 4.1], the
authors take z from a discrete Gaussian distribution with a large standard devi-
ation. With the parameters specified in [5], we then have that ‖z‖ is significantly
larger than λ1(Λ⊥(X)). This implies that there is a large amount of entropy left
in z given t = Xtz. Also, this attack does not work for the [5] scheme over Z,
because in that case, the matrix X and hence the lattice Λ⊥(X) are not random
at all. Indeed, the kernel lattice is forced to be (y0 −y1)Z�, where y0 and y1 are
the challenge vectors. By assumption on the scheme, these challenge vectors are
small. Put differently, in that setting, if we first do (�−1) random queries, there
does not exist y0 − y1 �= 0 short anymore that allows us to create a non-trivial
challenge phase. Finally, the attack does not work for the [4] scheme variant,
because in that case, the matrix X has much fewer columns than rows. This
increases the dimension of Λ⊥(X) enough to make λ1(Λ⊥(X)) much smaller,
and in particular smaller than ‖z‖.

5 Linear Functional Encryptions in Prime-Order Groups

As outlined in Sect. 3, our trace-and-revoke schemes are instantiated using differ-
ent linear functional encryption schemes. In this section, we give a construction
of MMFE in the symmetric-key setting. For n = 1, the MMFE construction
reduces to IPFE . Due to space restraint, we omit the description of IPFE and
present the MMFE below. The point of interest being, the Dec in our MMFE
(and in our IPFE) does not compute the discrete log.

5.1 MMFE from Dk-matDH

We propose a construction of matrix multiplication functional encryption
(MMFE) from Dk-matDH. Since, the complete matrix M = (y1, . . . ,yn)	 is
available to Enc at once, our construction can reuse the randomness for all
yi ∈ Z

�
p. This also allows the proof to be tightly reduced to Dk-matDH. For this,

we require n matrices W1, . . . ,Wn unlike IPFE from Dk-matDH that required
only one. We emphasize that, similar to IPFE above, MMFE also does not need
to evaluate discrete logarithm algorithm.

• Setup(1λ, 1�, 1n, p). Run (g,G) ← Ggen(1λ, p). Sample A ← Dk and W1, . . . ,
Wn ← Z

�×k�n
p . Define msk = (W1, . . . ,Wn) and pp = ([1]).

• KeyGen(pp,msk,x ∈ Z
�
p). Set skx ← (x	W1, . . . ,x	Wn,x).

• Enc(pp,msk,M = (y1, . . . ,yn)	 ∈ Z
n×�
p ) proceeds as follows to encrypt

the given vectors y1, . . . ,yn ∈ Z
�
p. Sample s ← Z

k�n
p . Set ctM ← ([s] ,

[y1 + W1s] , . . . , [yn + Wns]).
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• Dec(pp, skx, ctM). Parse ctM = ([c0] , [c1] , . . . , [cn]). Return t = (t1, . . . , tn)
where ti =

[
x	ci

]
· [skx · c0]

−1.

The correctness is easy to verify.
We show a rough comparison of our scheme with [25] if their scheme was

used for symmetric key settings directly. Section 1 shows that the symmetric key
variant resulted from hiding the public key of [25] has bigger public parameters
and bigger ciphertext i.e. contain more group elements than our scheme. On the
other hand, our secret key contains more elements from Zp. Both the schemes
are proven secure under same assumption Dk-matDH with constant degradation.
We further compare the result for the SXDH based instances which shows that
their scheme outputs ciphertext that is 1.5 times bigger than us.

Table 1. Comparison of naive application of [25] with our construction in symmetric-
key settings. The sizes of pp and ct are in number of group elements, whereas those of
the sk column are in number of elements of Zp.

|pp| |sk| |ct| Degradation Assumption

[25] k3(k + 1)�2 + k2�2 (k + 1)k� n((k + 1)k� + �) 4 Dk-matDH

2�2 + �2 2� 3n� 4 SXDH

This work 1 k�n2 k�n + �n k + 1 Dk-matDH

1 n2� 2n� 2 SXDH

Security. Next, we argue the security of MMFE in the IND-CPA security model.
Our construction is basically a modification of [25] for symmetric-key settings.
This improves upon the performance in terms of ciphertext size and removes
the usage of public parameters completely. Note that, this modification required
us to argue the security proof in a different manner. Although the overall proof
strategy stayed more-or-less the same, our proof presents a completely new proof
for an essential lemma. We state the security theorem next and defer the proof
to the full version due to space restraint.

Theorem 8. For any adversary A of the construction MMFE in the IND-CPA
security model that makes at most qsk secret key queries (for qsk < �) and qct
challenge ciphertext queries in an interleaved manner, there exists adversary C
such that,

AdvIND-CPA
MMFE,A(λ) ≤ (k + 1) · AdvDk-matDH

C (λ).
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