
A Comparison of the Homomorphic
Encryption Libraries HElib, SEAL

and FV-NFLlib

Carlos Aguilar Melchor1, Marc-Olivier Kilijian2, Cédric Lefebvre3(B),
and Thomas Ricosset4

1 ISAE SUPAERO, University of Toulouse, Toulouse, France
2 CRM/UDeM and LATECE/UQAM, CNRS, Montréal, QC, Canada

3 INP, ENSEEIHT, CNRS, IRIT, 31000 Toulouse, France
cedric lefebvre@orange.fr

4 Thales, 92230 Gennevilliers, France

Abstract. Fully homomorphic encryption has considerably evolved dur-
ing the past 10 years. In particular, the discovery of more efficient
schemes has brought the computational complexity down to acceptable
levels for some applications. Several implementations of these schemes
have been publicly released, enabling researchers and practitioners to
better understand the performance properties of the schemes. This
improved understanding of the performance has led to the discovery of
new potential applications of homomorphic encryption, fuelling further
research on all fronts.

In this work, we provide a comparative benchmark of the leading
homomorphic encryption libraries HElib, FV-NFLlib, and SEAL for
large plaintext moduli of up to 2048 bits, and analyze their relative
performance.

Keywords: Homomorphic encryption · Benchmark · SEAL ·
FV-NFLlib · HElib

1 Introduction

Recent advances in homomorphic cryptography completely reshaped the pos-
sibilities to secure a computing system in untrusted environments. Regarded
as cryptography’s “Holy Grail”, Fully Homomorphic Encryption (FHE) enables
evaluating arbitrary functions on encrypted data [4,9]. Since the first fully homo-
morphic encryption schemes were invented, the landscape of FHE has undergone
some great changes. Prototypes demonstrating private health diagnosis, signal
processing, genomic statistics, and database queries spur hope on the practical
deployment of FHE in the near future.

Most of the current applications only consider binary plaintext spaces, and
construct binary circuits to compute the desired functions over encrypted data.
Existing homomorphic encryption libraries like HElib [11–13] or SEAL [5] are
c© Springer Nature Switzerland AG 2019
J.-L. Lanet and C. Toma (Eds.): SecITC 2018, LNCS 11359, pp. 425–442, 2019.
https://doi.org/10.1007/978-3-030-12942-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12942-2_32&domain=pdf
https://doi.org/10.1007/978-3-030-12942-2_32

426 C. Aguilar Melchor et al.

well adapted to this setting. However, they also offer the possibility to choose a
larger plaintext space, for situations where the function can be evaluated more
efficiently when represented by a modular arithmetic circuit. Nevertheless, very
large plaintext moduli do not seem to be the main target for these libraries, and
what is feasible in these settings is unclear and remains to be evaluated.

Handling very large plaintext moduli can be useful for two types of applica-
tions. First, it becomes possible to compute fixed-point high-precision operations
over real (truncated or rounded) data. In this case the modulus bit size is approx-
imately the precision times the multiplicative depth of the circuit. A second set of
applications concerns discrete logarithm and factorization-based cryptographic
operations over encrypted data in an outsourced setting, with imposed moduli
ranging from 256 to 2048 bits.

1.1 This Work

In this paper, we experiment the use of large plaintext moduli with three different
FHE libraries in order to evaluate their respective capabilities and performance:
SEAL, HElib, and FV-NFLlib. It is worth noting that, for this purpose, we had
to modify HElib to be able to handle multi-precision moduli [16], and called this
version HElib-MP. Regarding SEAL and FV-NFLlib, we simply used the plain
versions of those libraries (SEAL v2.3 for plaintext moduli up to 60 bits and
SEAL v2.1 for larger moduli).

Of course, it would be possible to do multi-precision plaintext computations
with any of the libraries by using several instances of the encryption scheme
with relatively prime plaintext moduli (and then using the Chinese Remainder
Theorem to work modulo the product of the plaintext moduli). But using such
a method, one cannot use a specific modulus such as those given for ECDSA or
RSA, which would not factor appropriately.

We analyze the performance results and compare the impact on the overall
performance of the different strategies used in these libraries to handle noise and
representation changes.

All our experiments were conducted on a single core of an Intel(R) Xeon(R)
CPU E5-2695 v3 @ 2.30 GHz; the SHE parameters were selected using the
Albrecht-Player-Scott sagemath script [1] to ensure at least 128 bits of secu-
rity (the default security target in SEAL v2.3). Note that, with classical heuris-
tics, doubling security would only increase costs by a factor of two, enabling a
generalization of our conclusions to higher security choices.

2 Benchmark Description

We benchmark the libraries for both 1 bit, 64 bits, 256 bits, and 2048 bits
plaintexts. The one bit case is not the main focus of our work but is interesting for
comparisons passing from one-bit to multi-bit plaintext moduli involves radical
behaviour changes.

HE Library Comparison 427

For each plaintext size, a set of tests is repeatedly run with increasing mul-
tiplicative depth until the cost of a test reaches 12+ h. Each test consists in
squaring repeatedly a ciphertext until reaching a target multiplicative depth.
The output for each test is its running time (averaged over three runs) divided
by the depth, which gives the average cost of a multiplication.

As batching is very dependent on the exact value of p, and not just its size, we
do not take it into account. The time is thus the average cost of a multiplication
for a batch of plaintexts. The batch size will depend on the exact value of p
and on the used library. The fact that HElib can provide better batch sizes is
something that must be considered on top of plain performance results.

2.1 HElib-MP

In order to be able to run those tests we had to modify HElib. HElib-MP is
basically an HElib extension for multi-precision that keeps using NTL for imple-
menting the BGV scheme.

HElib, as is, only handles plaintext space moduli of the form pr, p and r being
single precision integers. As noted in the introduction, it would be possible to
do multi-precision plaintext computations with HElib, either by using moduli of
the form pr, or by using several instances of HElib with relatively prime plain-
text moduli (and then using the Chinese Remainder Theorem to work modulo
the product of the plaintext moduli). But this method forbids the use of spe-
cific moduli such as those given for ECDSA or RSA, which would not factor
appropriately.

We modified the key generation, encryption, decryption, addition and mul-
tiplication routines to allow working with arbitrary plaintext moduli. We there-
fore adapted the parameters accordingly, such as the parameters concerning the
modulus switching.

2.2 Other Libraries Tested

The benchmark is run for HElib-MP, FV-NFLlib and two versions of SEAL:
v2.1 [6] and v2.3 [5].

While SEAL v2.1 natively supports arbitrary sized plaintext moduli, it was
not optimized to be used with p bigger than 64 bits. SEAL v2.1 stores all cipher-
text in full coefficient representation instead of using a CRT or double-CRT rep-
resentation (see the following performance analysis sections). While this gives a
lot of freedom for the choice of the coefficient modulus and in that sense sim-
plifies the parameter selection, performing the polynomial multiplications over
Z[x] is asymptotically less efficient than using the CRT representation(s), and
this under-performance increases with larger parameters.

Seal v2.3 makes a big leap forward by using both a CRT representation and
the full-RNS1 variant of FV proposed in [2]. We include both versions on the

1 RNS or Residue Number Scheme is the proper name of the representation used when
we use the Chinese Remainder Theorem.

428 C. Aguilar Melchor et al.

benchmark to highlight the importance of CRT representations and to try to
measure the impact of the modifications brought by [2].

2.3 Parameter Selection

For the tests, log q is chosen heuristically as log p times the multiplicative depth,
and then it is increased (using the library granularity as q is a product of fixed
sizes moduli) until being able to decrypt correctly. Then n is chosen as the
smallest power-of-two providing 128 bits of security. This is estimated using
the Albrecht-Player-Scott sagemath script [1].2 After n is chosen, correctness is
tested again and we iterate (increasing q and n) until we obtain both correctness
and an estimation of security above 128 bits.

Note that we cannot give bounds on the probability of the output correctness
as we estimate it heuristically. However log q is large for almost all of our tests
and thus the number of margin bits that one would need to include in q’s size to
ensure a very low (even cryptographically secure) decryption error is negligible.

For the smallest tests (e.g. log p = 1 and low depth) this is not the case,
but as the choice of a decryption error probability is application dependent we
let this issue aside and just highlight that in order to have low decryption error
probabilities the cost of the smallest tests may increase.

3 Benchmark Results

3.1 Ciphertext Modulus Size

We start by presenting the ciphertext modulus size evolution for two settings:
log p = 1 and log p = 64. When the plaintext coefficient size is 256 or 2048 the
results are equivalent, up to a scale factor to the case log p = 64.

Figure 1 (left) describes the setting log p = 1. Note that, as depth grows, all
the libraries converge to quite similar ciphertext modulus sizes. During the relin-
earization phase, HElib-MP includes the so-called special primes and ciphertext
size is a (roughly) constant multiplicative factor larger than without the special
primes.

There is also a small asymptotic multiplicative factor that places FV-NFLlib
above the other two libraries. This comes from the fact that FV-NFLlib takes
larger noise distributions than the other two libraries.

Figure 1 (right) describes the setting log p = 64. We observe the same small
multiplicative gap between FV-NFLlib and SEAL due to noise width. On the
other hand, as depth grows, a much larger multiplicative factor (of two) appears
between HElib-MP and the other two libraries (this factor grows to three in the
relinearization phase). The situation is the same for log p = 256 and log p = 2048.
At first sight, the noise generated by the multiplications follows 2 log p (3 log p
with special primes) whereas for SEAL and FV-NFLlib it follows log p.

2 The script returns the security of best known attacks against cryptography based
on LWE, we assume the results hold for R-LWE.

HE Library Comparison 429

Fig. 1. Evolution of n and log q needed for correctness as a function of the multiplying
depth when log p = 1 (left) and log p = 64 (right). For log p = 256 and log p = 2048,
results are similar to the case log p = 64. Results for HElib-MP are given twice, with
and without the special primes used in the relinearization operation.

3.2 Computational Costs

Figure 2 presents the computational performance results when log p = 1. Note
that the costs for SEAL v2.1 grows much faster than for the other libraries, show-
ing that the usage of CRT is essential for deep multiplications. Costs for SEAL
v2.3 and FV-NFLlib cross themselves regularly, and even if SEAL outperforms
FV-NFLlib most of the time there is no trend separating the two libraries.

The cost for HElib on the other hand seems to grow less quickly than for the
other libraries, starting at depth 25 there is a gap that grows up to a factor 4 for
depth 60. Asymptotically HElib seems to fundamentally outperform the other
libraries.

Fig. 2. Average time for one multiplication as a function of the multiplying depth when
log p = 1.

Figure 4 presents the computational performance results when log p is 64,
256, and 2048, except for SEAL where log p = 64 is replaced by log p = 60 to

430 C. Aguilar Melchor et al.

be able to use SEAL v2.3. The first main observation is that SEAL v2.1, as we
already saw when log p = 1, has a computational cost that grows much faster
than the other libraries. The line corresponding to it stops before the end of the
tests for log p equal 64 or 256 as the tests took more than 12 h after the stopping
point. For 2048 SEAL v2.1 could not handle even a single multiplication.

The second main observation is that SEAL v2.3 and FV-NFLlib show almost
exactly the same performance results (note however that the scale is logarithmic)
for 64 and 256 bit plaintexts. This is remarkable as SEAL v2.3 implements the
full-RNS variant of FV whereas FV-NFLlib doesn’t. For 2048 bit plaintexts the
test could not be run for SEAL v2.3 as the key generation step was stopped
after a full day. As the key generation function is the same for both libraries, it
is probably due to a minor implementation issue.

The third main observation is that the cost for HElib is higher (starting at a
factor 2) when log p = 64 up to a depth around 40 and when log p = 256 up to a
depth of 7. Above that it should be the opposite (tests for log p = 64 and depth
above 40 were too long). There is therefore a crossing point when log q is around
2500 bits after which HElib becomes better and better. For plaintexts of 2048
bits HElib is always better (up to a factor 2.5) (Fig. 5).

Fig. 3. Average time for one multiplication as a function of the multiplying depth when
log p = 64 (log p = 60 for SEAL).

4 Analysis: Noise Estimation

In order to understand the evolution of log q in the benchmark, noise evolution
must be considered for each library. The analysis done in the design document of
HElib [12] provides noise variance estimations, whereas in the original paper of
FV [8] (and on subsequent implementations) the analysis done provides upper-
bounds on the noise (supposing that there is a tail cut on used gaussians).

HE Library Comparison 431

Fig. 4. Average time for one multiplication as a function of the multiplying depth when
log p = 256.

The goal of this section is not to provide fine-tuning strategies for parameter
derivation but to formalize and justify the observations of the previous section.
We therefore approximate the noise estimates using upper-bounds.

Besides the notations of Sect. A we will also use δ = sup(‖a·b‖∞/‖a‖∞‖b‖∞ :
a, b ∈ R), the ring expansion factor. We will also note Bkey and Berr the upper-
bounds associated to χkey and χerr.

4.1 Noise Growth in FV-NFLlib and SEAL

Following the analysis done in [15], a freshly encrypted ciphertext output by
FV.Encrypt has an initial noise term that can be bounded by V = Berr(1+2δBkey).

After L levels of multiplications, each followed by a relinearization operation,
the resulting noise term is bounded by3

UL = CL
1 V + LCL−1

1 C2 = LCL
1 (C2/C1 + V/L),

where
C1 = 2δ2pBkey, C2 = δ2Bkey(Bkey + p2) + δω logω(q)Berr.

In SEAL we have Bkey = 1. Using this, and replacing the constants in the
expression we get

UL = L
(
2δ2p

)L
(

1 + p2

2p
+

ω logω(q)Berr

2δp
+ oL(1)

)
,

where oL(1) is a vanishing term in L. The first fraction is always smaller than
(but close to) p and the second fraction is smaller than 1 for all the considered
values of ω (word used for relinearization). This upper bound can thus be slightly
loosened to get the much simpler expression: UL � Lp(2δ2p)L. For SEAL, we
can therefore expect log q to be close to L log(2δ2p) as L grows.
3 Note that we give here a slightly looser bound to get a simpler expression for C1.

432 C. Aguilar Melchor et al.

Fig. 5. Average time for one multiplication as a function of the multiplying depth when
log p = 2048.

For FV-NFLlib we considered that Bkey = Berr (which is the case in all the
examples given in the website of the library). Using the same approach we get
UL � LpBerr(2δ2pBerr) and thus we can expect log q to be close to L log(2δ2pBerr)
as L grows.

This explains why there is a small multiplicative gap on the cost between
FV-NFLlib and SEAL for log p = 1 which vanishes for larger log p as log(2δ2p)
and log(2δ2pBerr) get are very close for log p ∈ {64, 256, 2048}. Of course, choos-
ing Bkey = 1 for FV-NFLlib by modifying the code and adapting the security
parameters to take the smaller noise into account makes the difference in noise
size disappear between FV-NFLlib and SEAL for log p = 1.

4.2 Noise Growth in HElib

Any HElib ciphertext ct carries an inherent noise term, which is an element
v ∈ R of minimal norm ‖v‖∞, such that c0 + c1 · s = pv + [qiµ]p. If ‖v‖∞ <
qi/p decryption works correctly, which means that it returns the plaintext µ. A
freshly encrypted ciphertext generated by HElib.Encrypt has an inherent noise
term venc = u·e+e0+s·e1 that can be bounded by ‖venc‖∞ < V = (1+2δ)Berr.

A detailed study of the noise evolution of HElib is beyond the scope of this
paper, especially as it has already been done in [12] using the canonical embed-
ding norm, and studying the noise variance, which is probably the best approach
to get precise bounds. However, the resulting formulas are quite involved and
thus hard to use. We are therefore going to provide a simple intuition on what the
upper-bound for the noise resulting from multiplication (and modulus switching,
and relinearization) should be.

HE Library Comparison 433

Multiplication. First, let’s consider multiplying ct := (c0, c1) by itself4 with

c0 := u · b + pe0 + [qiµ]p and c1 := u · a + pe1.

Note that the first term of the resulting ciphertext we compute is [q−1
i]pc0 ·c0.

This is the ciphertext part that will contain information about the plaintext µ.
We must compute

[
q−1
i

]
p
c0·c0 instead of c0·c0, in order to preserve the invariant

which says that the plaintext is encoded, multiplied (mod p) by the current
ciphertext modulus (which ensures decryption correctness). The associated term
resulting from c0 · c0 would be [q2i µ

2]p instead of [qiµ
]
p.

Now that the importance of the [q−1
i]p term is clear let’s focus on its impact.

When multiplying the noise term by itself we get p2e0 · e0. As we also multiply
all the terms by [q−1

i]p, which can (and probably will) be of the same size as p,
we get a bound on this term that is p3 times the previous noise squared. So if
we note U a bound on the previous noise we get after squaring at least a bound
of δp3U2, just considering this term.

Modulus Switching. During a modulus switching operation from the current
modulus qi to the smaller modulus q, the inherent noise term is scaled down by a
Δ = qi/q factor, then increased by the additive term due to the rounding error.
The resulting noise term upper bound is at least ‖vmod‖∞ < ‖v‖∞/Δ+Broundin,
Berr being at least p due to the noise introduced in step 2 to get an element
divisible by p. Note that this implies that modulus switching cannot lower the
noise below p.

L-depth Multiplications. Let’s consider now L-depth multiplications focusing
only on the noise of the first ciphertext element (ignoring for now relineariza-
tions). A fresh ciphertext has a noise upper-bound that is V ∼ 2δBerr. After
a multiplication the bound on the noise becomes (at least) 4p3δ2B2

err. When
p is large, in order to avoid a geometric explosion of the noise, the factor Δ
used in the modulus switching step will have to be at least Δ ∼ p2. Thus, in
order to handle L multiplications, log q will have to grow in 2 log p which justi-
fies the observation that log q grows twice faster for HElib-MP with respect to
FV-NFLlib and SEAL.

Relinearization. Finally, if we consider a multiplication followed by a relin-
earization operation, when ‖v0‖∞‖, ‖v1‖∞‖ < V , the resulting noise term is
bounded by ‖vmul‖∞ < U = tV 2+δBerr

∑�
i=1 Bi/2q′. As in HElib the size of the

Bi is fixed to 1/3 log qi, the analysis done for L-depth multiplications remains
correct as long as log q′ ∼ 1/3 log qi. This validates both the previous simplified
reasoning and the size observed for HElib-MP with special primes.

5 Analysis: Representation and Computation

In order to analyze the performance results we must first consider the rep-
resentations used for polynomials in Rp and Rq, the costs associated to the
4 We consider squaring to reduce the number of variables, as squaring does not change

the noise size with respect to multiplying two different ciphertexts.

434 C. Aguilar Melchor et al.

transformation between representations, and the cost of the different operations
associated to the possible representations.

5.1 Transformation Costs

Switching between a DoubleCRT representation (a vector of polynomial values
in CRT form) and a (simple) CRT representation (a vector of polynomial coef-
ficients in CRT form) is quite inexpensive as it only requires an NTT or an
inverse-NTT transform, whose costs are in O(n log n log q).

Lifting the coefficients from a CRT form, or projecting coefficients into a
CRT vector, on the other hand, can become quite expensive as the cost for each
coefficient is in O(n log2 q) and log q can become quite large when working with
large plaintext moduli.

As a rule of thumb, in order to ensure security in lattice based cryptog-
raphy, n has to grow linearly in log q and thus the ratio log q/ log n (which is
the ratio between the asymptotic costs of the two transformations) will grow in
O(log q/ log log q).

In order to optimize performance the best would therefore be to swap between
DoubleCRT and CRT representations but to avoid coefficient lifting/projections
as much as possible.

5.2 CRT-Compatible Operations

Some polynomial operations can be done directly in DoubleCRT representation:

– Polynomial addition
DoubleCRT(a + b) = DoubleCRT(a)+ DoubleCRT(b)

– Polynomial multiplication
DoubleCRT(a · b) = DoubleCRT(a)· DoubleCRT(b)

– Scalar multiplication
DoubleCRT(p · a) = p·DoubleCRT(a)

– Uniform sampling
DoubleCRT(a) for a U← Rq ∼ a U← Rq

The cost of these operations in Rq is in O(n log q). If the polynomials are
in (simple) CRT form the costs are asymptotically the same except for the
polynomial multiplication which would lead to a O(n log n log q) cost (NTT,
then DoubleCRT multiplication, then inverse-NTT).

Coefficient Operations. Note also that subtracting multiples of a constant
and checking divisibility by an integer for the polynomial coefficients (operations
required by HElib.ModSwitch) also avoid the cost in O(n log2 q) that the CRT
transforms have. To subtract the constant, it is enough to project it into CRT
form (once for the entire polynomial, with a cost in O(log2 q), and then subtract
the CRT representation from each coefficient as many times as required. To
check divisibility by p (in HElib.ModSwitch), it is enough to extend the CRT
representation of the coefficients to q × p and check whether the coordinate

HE Library Comparison 435

associated to p is zero. This extension has a cost O(n log q log p), which does not
grow quadratically (in log q) as we try to compute more and more homomorphic
multiplications.

Finally, if an integer d1 in CRT representation is divisible by a constant
d2 (i.e. if d1 mod d2 = 0), and d2 is part of the CRT basis in which d1 is
represented, then it is possible to compute d1/d2 without leaving the CRT base.
Indeed, it is enough to suppress the coordinate associated to d2 and multiply the
other coordinates by the inverse of d2 with respect to the coordinates moduli.

HElib. Note that the operations described in this section include all that is
required for the algorithms HElib.Add, HElib.Mul, HElib.ModSwitch, HElib.Relin.
HElib only needs to project/lift integers during key generation, encryption and
decryption.

5.3 CRT-Incompatible Operations

Most operations that are incompatible with the CRT representation (e.g. sam-
pling from a gaussian) are only required in key generation, encryption and
decryption algorithms.

There is however a key operation in FV, when computing with ciphertexts,
that is a priori incompatible with the CRT representation. Indeed, homomorphic
multiplication in FV involves computing [�p(a · b)/q�]q with a, b elements of Rq.

The key issue here is that the multiplication p(a · b) must be done over the
integers and not modulo q so we have to lift the CRT representations. More-
over, the division by q and rounding must be done over the coefficients, but of
course we do not want to do the polynomial multiplication a · b on a coefficient
representation which would have a cost quadratic in n.

The trivial approach would require a FastMul algorithm to multiply the
polynomials with a coefficient representation for the polynomials and a baseline
(i.e. non-CRT) representation for the coefficients. Such an approach would have
a cost in Kcn

1+c log2 q with Kc a constant that can be quite large when c is
below 0.58 (for Karatsuba multiplication).

In FV-NFLlib, the idea is to extend the CRT basis to a modulus q′ > q2n,
then do the multiplication modulo q′. As this modulus is beyond the infinity
norm for the result polynomial, there is no reduction mod q′ and therefore the
result is the same as if we did the multiplication over Z.

Note however that the polynomial’s coefficients must be lifted and projected
multiple times with a cost each time in n log2 q. Taking log q = O(L log p) we
get a complexity in O(nL2 log2 p) for FV-NFLlib and in O(nL log2 p) for HElib
which explains the asymptotic results observed.

SEAL and Full-RNS FV. As noted before, Seal v2.3 implements the full-RNS
variant of FV proposed by Bajard et al. at SAC 2016 [2]. The objective of this
paper is precisely to deal with FV’s operations over Z that are required both
during the homomorphic multiplication algorithm and during the decryption
algorithm.

436 C. Aguilar Melchor et al.

The idea is to stay in CRT representation using CRT-basis pivots to extend
basis instead of doing it naively as in FV-FNFLlib. Bajard et al. have many
interesting ideas to reduce costs and circumvent the many issues that arise when
trying to do this. Unfortunately, as they state in Sect. 4.7 of their paper, they
were not able to get rid of the O(n log2 q) complexity in the homomorphic mul-
tiplication algorithm. This seems to be the reason why SEAL faces the same
asymptotic issues as FV-NFLlib when compared to HElib-MP.

6 Conclusions

6.1 Library Choice

The first conclusion we can draw is that there are simple criteria to decide which
library should be used (based on computational performance of multiplicative
homomorphic operations).

For log p = 1 SEAL v2.3 is the best choice up to a depth of around 12. then
SEAL v2.3 and HElib have similar performance until a depth of around 25 and
above HElib clearly outperforms all the other libraries.

For log p = 60 FV-NFLlib and SEAL v2.3 both outperform HElib for all
practical values (up to a depth slightly above 40). Given that FV-NFLlib and
SEAL result in similar performance and that SEAL is more actively developed
and more user friendly, in practice the natural choice is SEAL v2.3.

For log p above 60 two situations arise. If the plaintext modulus can be fac-
torized into sub-moduli of 60 bits then the previous conclusion still applies by
using a CRT approach on the plaintext space. If not (for example if it is a cryp-
tographic prime or a hard-to-factor modulus), then SEAL v2.3 cannot be used
and FV-NFLlib gives the best results for log q < 2000, above that HElib-MP is
the best choice.

6.2 Implementation Recommendations

The first conclusion that arises from our performance analysis is that non-CRT
representation of integers, even with Karatsuba multiplication, do not seem to
be an option for somewhat homomorphic encryption schemes.

The second is that BGV seems to be plainly superior to FV for very large
moduli, even considering the FullRNS variant of Bajard et al. It would be thus
very interesting to see a simpler, more optimized, implementation of BGV, for
example based on NFLlib, to see if it can match FV’s performance for smaller
ciphertext moduli.

Finally, both highly specialized libraries such as NFLlib and the FullRNS
approach of Bajard et al. seem to provide important performance benefits to
FV. An implementation combining both seems feasible and a natural step to go
for in order to fully exploit the potential of this scheme.

HE Library Comparison 437

A Homomorphic Schemes and Libraries

In this section, we recall the variant of the Brakerski-Gentry-Vaikuntanathan
(BGV) homomorphic encryption scheme [4], implemented in the software library
HElib [11,13]. This description is mostly taken from [10]. We also briefly describe
the Fan-Vercauteren (FV) scheme [8], implemented in both SEAL [14] and FV-
NFLlib.

A.1 A BGV Scheme Variant

The variant of the BGV scheme implemented in HElib is defined over polynomial
rings of the form R = Z[x]/Φm(x) where m is a parameter and Φm is the m-th
cyclotomic polynomial. In order to make comparisons simpler we will consider
that m = 2 ∗ n with n a power of two, which implies that Φm(x) = Xn + 1.
The plaintext space is usually the ring Rp = R/pR for an integer p. A plaintext
polynomial a ∈ Rp is encrypted as a vector over Rq = R/qR, where q is an odd
public modulus. More specifically, BGV contains a chain of moduli of decreasing
size q0 > q1 > · · · > qL and freshly encrypted ciphertexts are defined modulo
q0. During homomorphic evaluation, we keep switching to smaller moduli after
each multiplication until we get ciphertexts modulo qL, which cannot be multi-
plied anymore. L is therefore an upper bound on the multiplicative depth of the
circuit. We note qi to indicate that the current modulus we are working with
may be any of {q0, . . . , qL}. We also define another set of primes whose product
is noted q′. These are called the special primes and they are used to limit the
error introduced in relinearization. Noise is drawn from a gaussian distribution
DZn,σ with standard deviation σ over the integer lattice Z

n. Besides the usual
input parameters for key generation used in lattice-based homomorphic schemes
(degree n, deviation σ, plaintext modulus p, ciphertext modulus q), it is also
possible to choose a relinearization parameter � which enables different trade-
offs between noise growth and computational costs. In practice, in HElib this
parameter is always set to three.

• HElib.KeyGen:
sk Sample a random secret key sk := s ← Rq0 with coefficients in {−1, 0, 1},

where exactly h of them are non-zero.
pk Generate a public key pk := (b,a) ∈ R2

q0 , with a ← Rq0 drawn uniformly
at random, and b := pe − a · s, where e ← Rq0 follows DZn,σ.

rk Generate a relinearization key in R2×�
q0·q′ . Split q in � evenly-sized fac-

tors B1, . . . , B�. Define rki := (ai,bi)t ∈ R2
q0q′ , with ai ← Rq0q′ drawn

uniformly and bi :=
(∏i−1

j=0 Bj

)
s2 + pei − ai · s, where ei ← Rq0q′ fol-

lows DZn,σ. Output rk := (rk1, . . . , rk�).
• HElib.Encrypt(pk,µ): Generate a fresh ciphertext ct ∈ R2

q0 from a plaintext
µ ∈ Rp, encrypted using the public key pk := (b,a) ∈ R2

q0 . We have ct :=
(c0, c1) with c0 := u · b + pe0 + [q0µ]p and c1 := u · a + pe1, where u ← Rq0

is drawn uniformly in {−1, 0, 1}n and e0, e1 follow DZn,σ.

438 C. Aguilar Melchor et al.

• HElib.Add(ct0, ct1): Add two ciphertexts ct0 := (c00, c01) ∈ R2
qi and ct1 :=

(c10, c11) ∈ R2
qi into a ciphertext ct+ := (c0, c1) ∈ R2

qi , with c0 = c00 + c10
and c1 = c01 + c11.

• HElib.Mul(ct0, ct1): Multiply two ciphertexts ct0 := (c00, c01) ∈ R2
qi and

ct1 := (c10, c11) ∈ R2
qi into a ciphertext c̃t× := (c0, c1, c2) ∈ R3

qi , with
c0 =

[
q−1
i

]
p
c00·c10, c1 =

[
q−1
i

]
p
(c00·c11+c01·c10) and c2 =

[
q−1
i

]
p
c01·c11.

• HElib.ModSwitch(ct, q): Remove primes from the current modulus to obtain a
new target modulus q and scale the ciphertext ct down by a factor of Δ (equal
to the current modulus divided by the target modulus) using the following
optimized procedure described in [10]:
1. Reduce the coefficients of ct to obtain ct′ = ct mod Δ,
2. Add or subtract multiples of Δ from each coefficient in ct′ until it is

divisible by p,
3. Set ct∗ = ct − ct′, // ct∗ divisible by Δ, and ct∗ ≡ ct (mod p)
4. Output ct∗/Δ.

• HElib.Relin(rk, c̃t×): Relinearize a ciphertext c̃t× := (c0, c1, c2) ∈ R3
qi into a

ciphertext ct× ∈ R2
qi using the relinearizing key rk := W ∈ R2×�

q0q′ . First we
break c2 into a collection of � lower-norm polynomials c2(i):
1. d1 ← c2
2. For i ← 1, . . . , �:
3. c2(i) ← di mod Bi

4. di+1 ← (
di − c2(i)

)
/Bi

We then reduce the relinearization key matrix modulo qiq
′, and add the small

primes corresponding to qiq
′ to all the c2(i)’s, then compute the ciphertext

ct× :=

(

c0 +
�∑

i=1

Wi,0 · c2(i), c1 +
�∑

i=1

Wi,1 · c2(i)
)

∈ R2
qiq′

Finally, using the modulus switching function defined above, we output ct× :=
HElib.ModSwitch(ct×, qi) ∈ R2

qi .• HElib.Decrypt(sk, ct): Decrypt a ciphertext ct := (c0, c1) ∈ R2
qi into a plain-

text µ :=
[[

q−1
i

]
p
[c0 + c1 · s]qi

]

p
∈ Rp.

A.2 Fan and Vercauteren’s Scheme

The Fan-Vercauteren (FV) scheme is closely related to BGV, but instead of
modulus switching it uses the scale-invariant approach of Brakerski [3] to control
noise growth, and encodes the plaintext in the high-order bits of the coefficients
of the ciphertext polynomials, instead of the low-order bits.

It is possible to choose a relinearization parameter, noted in this case ω.
This value is a basis in which the relinearization key is decomposed and can
be modified to tune performance. Two different distributions are used: χkey and
χerr. FV-NFLlib defines χkey = DZn,σkey

and χerr = DZn,σerr , for given σerr and
σerr. SEAL defines χkey as the uniform distribution over {−1, 0, 1} and χerr as
FV-NFLlib does.

HE Library Comparison 439

• FV.KeyGen:
sk Output sk := s ← χkey

pk Let a ← Rq drawn uniformly and e ← χerr.
Define pk := ([−a · s − e]q,a).
rk Generate a relinearization key rk := (rk1, . . . , rk�) with � = �logω(q)�+1
and rki := (s2ωi − (ai · s + ei),ai), with ai ← Rq uniformly at random
and ei ← χerr.

• FV.Encrypt(pk, μ): Generate a fresh ciphertext ct ∈ R2
q from a plaintext µ ∈

Rp, encrypted using the public key pk := (b,a) ∈ R2
q . We have ct := (c0, c1)

with c0 := u · b + e0 + Δ[μ]p and c1 := u · a + e1, where u follows χkey and
e0, e1 follow χerr and Δ = q/p.

• FV.Add(ct0, ct1): Add two ciphertexts ct0 := (c00, c01) ∈ R2
q and ct1 :=

(c10, c11) ∈ R2
q into a ciphertext c̃t+ := (c0, c1) ∈ R2

q , with c0 = c00 + c10
and c1 = c01 + c11.

• FV.Mul(ct0, ct1): Multiply two ciphertexts ct0 := (c00, c01) ∈ R2
q and

ct1 := (c10, c11) ∈ R2
q into a ciphertext c̃t× := (c0, c1, c2) ∈ R3

q , with
c0 = �p/q(c00·c10)�, c1 = �p/q(c00·c11+c01·c10)�) and c2 = �p/q(c01·c11)�.

• FV.Relin(rk, c̃t×): Re-linearize a ciphertext c̃t× := (c0, c1, c2) ∈ R3
q into a

ciphertext ct× ∈ R2
q . Noting the elements of the relinearization key rki =

(rki,0, rki,1) ∈ R2
q , and c2(i) the decomposition of c2 in digits in base ω, return

ct× :=

(

c0 +
�∑

i=0

rki,1 · c2(i), c1 +
�∑

i=1

rki,1 · c2(i)
)

• FV.Decrypt(sk, ct): Decrypt a ciphertext ct := (c0, c1) ∈ R2
q into a plaintext

µ := [�p/q(c0 + c1 · s)�]p

A.3 Homomorphic Operations

In the schemes presented, the plaintext space is Rp, and homomorphic additions
correspond to additions over the ring Rq.5

In order to realize other operations (encryption, homomorphic multiplica-
tion, modulus switching, relinearization, decryption), we also need to compute
multiplications over Rq and, for some of these operations, to manipulate directly
the coefficients of the polynomials in Rq.

Batching. Using the Chinese Remainder Theorem it is possible to encrypt a
vector of elements of Zp [7,17,18] so that homomorphic operations are applied
component-wise between the plaintext vectors. This feature is called batching,
and when used efficiently can massively improve the performance of homomor-
phic computations, e.g. by allowing thousands of instances of a function to be
evaluated simultaneously on different inputs.

5 One can easily obtain an HE scheme with a plaintext space Zp by embedding Zp

into Rp via a ∈ Zp �→ a ∈ Rp, and homomorphic operations then correspond to
arithmetic operations over the ring Zp.

440 C. Aguilar Melchor et al.

To understand how batching works, suppose the cyclotomic polynomial
Φm(x) factors modulo the plaintext modulus p into a product of irreducible
factors Φm(x) =

∏�−1
j=0 Fj(x) (mod p), then a plaintext polynomial a ∈ Rp can

be viewed as encoding � different small polynomials aj = a mod Fj , and each
constant coefficient of the aj can be set to an element of Zp.

Note that the factorization of the cyclotomic polynomial, Φm(x) =∏�−1
j=0 Fj(x) (mod p), depends on m and p. If p is fixed for a given applica-

tion, then the batching capacity will be different for each m depending on how
Φm(x) factors modulo p.

HElib gives complete freedom when choosing m but both FV-NFLlib and
SEAL use optimized NTT transforms that require power-of-two cyclotomic poly-
nomials. In practice this means that HElib is able, in some cases, to provide a
better batching than FV-NFLlib and SEAL.

A.4 DoubleCRT Representation

In this section we recall the DoubleCRT representation used in HElib and NFLlib
to represent elements of the cyclotomic ring Rq (it is also used with Rp, but for
conciseness we will focus on Rq). This representation is composed of two sub-
representations, the Chinese remainder theorem (CRT) and the number theoretic
transform (NTT).

CRT. We consider the CRT basis as a l-uple of co-prime numbers (q0, . . . , ql−1),
we note q =

∏l−1
i=0 pi. An integer a ∈ Zq is represented in CRT as:

CRT(a) = (a mod qi)0≤i<l

This representation is unique for all a ∈ Zq by the Chinese Remainder Theorem.

NTT. Let q be an integer such that Zq contains a primitive m-th root of unity
ζi. A polynomial a ∈ Rq is represented in NTT as:

NTT(a) =
(
a(ζj)

)
j∈Z∗

m

DoubleCRT. To use at the same time the CRT representation for coeffi-
cients/values and the NTT representation, we need a CRT basis (q0, . . . , ql−1)
such that every qi is chosen so that Z/qiZ contains a primitive m-th root of
unity ζi. A polynomial a ∈ Rq is represented in DoubleCRT as:

DoubleCRT(a) =
(
a(ζj

i) mod pi

)

0≤i<l, j∈Z∗
m

HE Library Comparison 441

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://eprint.iacr.org/
2015/046

2. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM, January 2012

5. Chen, H., Han, K., Huang, Z., Jalali, A.: Simple encrypted arithmetic library - seal
(v2.3). Technical report, Microsoft, December 2017. https://www.microsoft.com/
en-us/research/project/simple-encrypted-arithmetic-library/

6. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library - SEAL v2.1.
Cryptology ePrint Archive, Report 2017/224 (2017). http://eprint.iacr.org/2017/
224

7. Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 20

8. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

10. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

11. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

12. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. Technical report, MIT (2014)

13. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 25

14. Laine, K., Chen, H., Player, R.: Simple encrypted arithmetic library - seal (v2.1).
Technical report, Microsoft, September 2016. https://www.microsoft.com/en-us/
research/publication/simple-encrypted-arithmetic-library-seal-v2-1/

15. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 20

16. Ricosset, T.: Helib-multiprecision (2017). https://github.com/tricosset/HElib-MP

http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
http://eprint.iacr.org/2017/224
http://eprint.iacr.org/2017/224
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
http://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-1/
https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-1/
https://doi.org/10.1007/978-3-319-06734-6_20
https://doi.org/10.1007/978-3-319-06734-6_20
https://github.com/tricosset/HElib-MP

442 C. Aguilar Melchor et al.

17. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 25

18. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology
ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/2011/133

https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25
http://eprint.iacr.org/2011/133

	A Comparison of the Homomorphic Encryption Libraries HElib, SEAL and FV-NFLlib
	1 Introduction
	1.1 This Work

	2 Benchmark Description
	2.1 HElib-MP
	2.2 Other Libraries Tested
	2.3 Parameter Selection

	3 Benchmark Results
	3.1 Ciphertext Modulus Size
	3.2 Computational Costs

	4 Analysis: Noise Estimation
	4.1 Noise Growth in FV-NFLlib and SEAL
	4.2 Noise Growth in HElib

	5 Analysis: Representation and Computation
	5.1 Transformation Costs
	5.2 CRT-Compatible Operations
	5.3 CRT-Incompatible Operations

	6 Conclusions
	6.1 Library Choice
	6.2 Implementation Recommendations

	A Homomorphic Schemes and Libraries
	A.1 A BGV Scheme Variant
	A.2 Fan and Vercauteren's Scheme
	A.3 Homomorphic Operations
	A.4 DoubleCRT Representation

	References

