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Abstract. Garg et al. (Crypto 2015) initiated the study of crypto-
graphic protocols over noisy channels in the non-interactive setting,
namely when only one party speaks. A major question left open by
this work is the completeness of finite channels, whose input and output
alphabets do not grow with the desired level of security. In this work, we
address this question by obtaining the following results:
1. Completeness of Bit-ROT with Inverse Polynomial Error.

We show that bit-ROT (i.e., Randomized Oblivious Transfer chan-
nel, where each of the two messages is a single bit) can be used to
realize general randomized functionalities with inverse polynomial
error. Towards this, we provide a construction of string-ROT from
bit-ROT with inverse polynomial error.

2. No Finite Channel is Complete with Negligible Error. To
complement the above, we show that no finite channel can be used
to realize string-ROT with negligible error, implying that the inverse
polynomial error in the completeness of bit-ROT is inherent. This
holds even with semi-honest parties and for computational security,
and is contrasted with the (negligible-error) completeness of string-
ROT shown by Garg et al.

3. Characterization of Finite Channels Enabling Zero-
Knowledge Proofs. An important instance of secure computation
is zero-knowledge proofs. Noisy channels can potentially be used to
realize truly non-interactive zero-knowledge proofs, without trusted
common randomness, and with non-transferability and deniability
features that cannot be realized in the plain model. Garg et al. obtain
such zero-knowledge proofs from the binary erasure channel (BEC)
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and the binary symmetric channel (BSC). We complete the picture
by showing that in fact any non-trivial channel suffices.

1 Introduction

A noisy communication channel is a probabilistic function C : X → Y, map-
ping a sent symbol x to a received symbol y. Standard examples include the
binary symmetric channel (BSC), which flips a bit x ∈ {0, 1} with probabil-
ity 0 < p < 1/2, and the binary erasure channel (BEC), which erases x with
probability p. A fundamental question in information-theoretic cryptography is
– what cryptographic protocols can be constructed from noisy communication
channels? This question has been studied extensively, with respect to various
cryptographic tasks and a variety of channels, and has uncovered a rich landscape
of structural relationships. Starting with the pioneering work of Wyner [30] who
showed that the wiretap channel can be used for secure communication, many
works studied the usefulness of noisy channels for additional cryptographic tasks
(e.g., [5,6,14,23,25,28,29]). This culminated in a complete characterization of
the channels on which oblivious transfer, and hence general secure two-party
computation, can be based [12,13].

Most cryptographic constructions from noisy channels crucially require inter-
action. While this is not a barrier for some applications, there are several use-
ful settings which are inherently non-interactive. A natural question that arises
is what cryptographic tasks can be realized using only one-way noisy chan-
nels, namely by protocols over noisy channels in which only one party speaks.
The question of realizing secure communication in this setting was the topic of
Wyner’s work, and is a central theme in the big body of work on “physical layer
security” [8,24].

A clean way to capture tasks that can potentially be realized using one-way
noisy communication is via a sender-receiver functionality, which takes an input
from a sender S and delivers a (possibly) randomized output to a receiver R. In
more detail, such a sender-receiver functionality is a deterministic or randomized
mapping f : A → B that takes an input a ∈ A from a sender S and delivers
an output b = f(a) to a receiver R. In the randomized case, the randomness is
internal to the functionality; neither S nor R learn it or can influence its choice.

Useful Instances. Several important cryptographic tasks can be captured as
sender-receiver functionalities. For instance, a foundational primitive in cryptog-
raphy is non-interactive zero-knowledge (NIZK) [9,15], which is typically con-
structed in the common random string (CRS) model. NIZK proofs can be cap-
tured in the sender-receiver framework by a deterministic function that takes an
NP-statement and a witness from the sender and outputs the statement along
with the output of the verification predicate to the receiver. As noted by Garg
et al. [17], secure implementation of this function over a one-way channel pro-
vides the first truly non-interactive solution to zero knowledge proofs, where no
trusted common randomness is available to the parties. Moreover, this solution
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can achieve useful properties of interactive zero-knowledge protocols such as non-
transferability and deniability, which are impossible to achieve in the standard
non-interactive setting. Another example from [17] is that of randomly generat-
ing “puzzles” without giving any of the parties an advantage in solving them.
For instance, the sender can transmit to a receiver a random Sudoku challenge,
or a random image of a one-way function, while the receiver is guaranteed that
the sender has no advantage in solving the puzzle and can only general a puzzle
of the level of difficulty prescribed by the randomized algorithm that gener-
ates it. A third example of a useful sender-receiver functionality is randomized
blind signatures, which can be used for applications such as e-cash [3,10,11].
Blind signatures are captured by a randomized function that takes a message
and a signing key from the sender and delivers a signature on some randomized
function of the message to the receiver (for instance by adding a random serial
number to a given dollar amount).1 Another use-case for such randomized blind
signatures is a non-interactive certified PKI generation, where an authority can
issue to a user signed public keys, while only the users learn the correspond-
ing secret keys. Applications notwithstanding, understanding the cryptographic
power of noisy channels with one-way communication is a fundamental question
from the theoretical standpoint.

Prior Work. A large body of theoretical and applied work studied how to
leverage one-way communication to construct secure message transmission (see,
e.g., [4,24] and references therein). More recently, Garg et al. [17] broadened
the scope of this study to include more general cryptographic functionalities.
Notably, they showed that one-way communication over the standard BEC
or BSC channels suffices for realizing NIZK, or equivalently any determinis-
tic sender-receiver functionality. Moreover, for general (possibly randomized)
functionalities, a randomized string-OT channel or (string-ROT for short) is
complete. A string-ROT channel takes a pair of random �-bit strings from the
sender and delivers only one of them, chosen at random by the channel, to the
receiver. This completeness result was extended in [17] to other channels. How-
ever, in all of these general completeness results, the input and alphabet size of
the channel grow (super-polynomially) with both the desired level of security
and the complexity of the functionality being realized. On the negative side, it
was shown in [17] that standard BEC/BSC channels are not complete. A major
question that was left open is the existence of a complete finite channel, whose
input and output alphabets do not grow with the security parameter or the
complexity of the functionality. Furthermore, for the special case of determinis-
tic functionalities (equivalently, NIZK), it was not known whether completeness
holds for all non-trivial finite channels.

1 In more detail, the sender can generate an anonymous $100 bill by letting the input
be m = (Sender-name, 100) and the transmitted message be (m, id) for a random
identifier id picked by the functionality. Consider the scenario where multiple $100
bills are sent to different receivers. The id is needed to prevent double spending.
Anonymity comes from the fact that the sender doesn’t learn id, so it cannot asso-
ciate a particular $100 bill with the receiver to whom it was sent.
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Next, we describe our framework in a bit more detail, followed by a summary
of our results, which essentially settle the above mentioned questions.

Our Framework. Let C be a finite channel. We define a one-way secure com-
putation protocol (OWSC) for a functionality f over channel C as a randomized
encoder that maps the sender’s input a into a sequence x of channel inputs,
and a decoder that maps the sequence of receiver’s channel outputs y into an
output b. Given an error parameter ε, the protocol should satisfy the following
security requirements: (i) given the sender’s view, which consists of its input
a and the message x that it fed into the channel, the receiver’s output should
be distributed as f(a), and (ii) the view of the receiver, namely the message
y it received from the channel, can be simulated from f(a). Note that (i) cap-
tures receiver security against a corrupt sender as well as correctness, while (ii)
captures sender security against a corrupt receiver.

We will construct OWSC protocols for various functionalities over various
finite channels. Of particular interest to us is the randomized �-bit string-ROT
channel discussed above, which we denote by C�

ROT, and its finite instance C1
ROT

that we refer to as the bit-ROT channel.

1.1 Our Results

We are ready to state our results:

1. Completeness of Bit-ROT with Inverse Polynomial Error. We show
that bit-ROT is complete for randomized functionalities with inverse polyno-
mial simulation error. Towards this, we provide a construction of string-ROT
from bit-ROT with inverse polynomial error, and appeal to the complete-
ness of string-ROT. This is captured by the following (formal statement in
Theorem 7):

Theorem 1. (Informal) The bit-ROT channel (C1
ROT) is complete for one-way

secure computation, with inverse-polynomial error. This holds for both semi-
honest and malicious parties. The protocol establishing completeness can either
be efficient in the circuit size, in which case it is computationally secure using
any pseudorandom generator, or efficient in the branching program size, in which
case is it information-theoretically secure.

2. No Finite Channel is Complete with Negligible Error. To complement
the above positive result, we show that no finite channel is complete for
randomized functionalities with negligible error. This is contrasted with the
completeness of string-ROT discussed above. In more detail, we prove the
following theorem (formal statement in Theorem 9):

Theorem 2. (Informal): No finite channel is complete for one-way secure com-
putation, with negligible error, even with semi-honest parties and for compu-
tational security. More concretely, string-ROT cannot be implemented in this
setting.
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3. Every Non-trivial Finite Channel is Complete for Zero-Knowledge.
As discussed above, a particularly compelling use case for one-way commu-
nication over noisy channels is truly non-interactive zero-knowledge proofs,
without a trusted common randomness setup and with desirable features such
as non-transferability and deniability. The results of Garg et al. [17] obtain
such NIZK proofs from the binary erasure channel (BEC) and the binary
symmetric channel (BSC). This raises the question whether all non-trivial
channels enable NIZK.
We show that this is indeed the case if we define a “trivial” channel to be one
that either does not enable communication at all, or is essentially equivalent
to a noiseless channel, when used by malicious senders. In more detail, we
prove the following theorem (see Sect. 5 for a formal statement):

Theorem 3. (Informal): Given a language L ∈ NP \ BPP, a one-way secure
computation protocol over channel C for zero-knowledge for L exists if and only
if C is non-trivial.

1.2 Our Techniques

In this section we provide an overview of our techniques.

Completeness of Bit-ROT with Inverse Polynomial Error. We show
that bit-ROT is complete for randomized functionalities with inverse polynomial
error. Towards this, we show, in Theorem 6, that (�-bit) string-ROT can be
realized with polynomially many invocations of bit-ROT channel with inverse-
polynomial error. The OWSC protocol is efficient in � and is secure even against
malicious adversaries.

In more detail, we use average case secret sharing, which is a weak version of
ramp secret sharing, where both the reconstruction and privacy conditions are
to be satisfied for a random set of r players and t players respectively, where
r and t are the reconstruction and privacy thresholds, respectively. Theorem 4
provides a construction of OWSC protocol for string-ROT using bit-ROT given
an average case secret sharing schemes (Avg-SSS) with sufficiently small gap
parameter. The analysis of this theorem crucially uses the anti-concentration
bound for Bernoulli sums for a small window around the mean. In Theorem 5,
we construct efficient Avg-SSS for N players in which the gap between r and t is
inverse polynomial in N and which have inverse polynomial privacy guarantee.
The scheme we construct and its analysis build on techniques for secret sharing
with binary shares that were recently introduced by Lin et al. [22] (for a different
goal). Our result on efficient realization of string-ROT from bit-ROT directly
follows from combining the above two results.

Impossibility of String-ROT from Finite Channel with Negligible
Error. Next, we show that string-ROT cannot be constructed from bit-ROT
with negligible error. We establish our result in two steps. Our first negative
result in Theorem 8 shows that string-ROT cannot be realized with polynomi-
ally many invocations of bit-ROT channel while guaranteeing negligible error.
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Our proof is inspired by [17]. In more detail, we use an isoperimetric inequality
for Boolean hypercubes (Harper’s theorem), to show the existence of strategies
that can efficiently guess both input strings in any implementation of string-
ROT with polynomially bounded number of bit-ROT invocations, which is a
violation of the ROT security. The machine we describe for guessing the two
input strings is computationally efficient, hence our impossibility result applies
to computationally bounded semi-honest adversaries.

We then extend this result in Theorem 9 to show that no finite channel
can be used to realize string-ROT using polynomially many invocations of the
channel while guaranteeing negligible error. To show this, we model a channel
as a function from the input of the channel and its internal randomness to the
output of the channel. We then proceed to prove the impossibility in a manner
similar to the impossibility for the bit-ROT channel.

Impossibility of Completeness of Finite Channels with Negligible
Error. Theorem 9 shows that string-ROT cannot be realized over any finite
channel efficiently (in terms of the number of channel invocations) and with
negligible error, even in the computational setting. Since string-ROT is a simple
functionality which has a small description in many functional representation
classes, we obtain an impossibility result that strikes off the possibility of a com-
plete channel with negligible error for most function representation classes of
interest.

Characterization of Finite Channels Enabling Zero-Knowledge Proofs.
It is a fundamental question to understand which channels enable ZK proofs.
We give a complete characterization of all finite channels over which a OWSC
protocol for zero-knowledge (proof of knowledge) functionality is possible. In
fact, we show that the only channels which do not enable zero-knowledge proofs
are “trivial” channels (a proof over a trivial channel translates to a proof over
a plain one-way communication channel which is possible only for languages in
BPP). Over any other finite channel, we build a statistical zero-knowledge proof
of knowledge, which is unconditionally secure. Our result generalizes a result
of [17], which gave OWSC zero-knowledge proof protocols over Binary Erasure
Channels (BEC) and Binary Symmetric Channels (BSC) only. Extending this
result to all non-trivial channels requires new ideas, exploiting a geometric view
of channels.

2 Preliminaries

To begin, we define some notation that we will use throughout the paper.

Notation 1. A member of a finite set X is represented by x and sampling an
independent uniform sample from X is denoted by x

$← X . A vector in X n is
represented by x ∈ X n, whose coordinate i ∈ [n] is represented by either xi or
x(i).
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For a vector x ∈ X n and a set A ⊆ [n], the restriction of x to the set A,
represented by x|A is the vector with all the coordinates outside of A replaced
by an erasure symbol ⊥ which is not a member of X . That is, x|A (i) = x(i) if
i ∈ A and x|A (i) = ⊥ otherwise. Finally, Δ (μ0, μ1) denotes the total variation
distance between distributions μ0 and μ1.

2.1 Sender-Receiver Functionalities and Channels

This work addresses secure computation tasks that are made possible by one-
way communication over a noisy channel. Such tasks can be captured by sender-
receiver functionalities, that take an input from a sender S and deliver a (possi-
bly) randomized output to a receiver R. More precisely, a sender-receiver func-
tionality is a randomized mapping f : A → B that takes an input a ∈ A from
a sender S and delivers an output b = f(a) to a receiver R. We will sometimes
refer to f simply as a function and write f(a; ρ) when we want to make the
internal randomness of f explicit.

In order to realize f , we assume that S and R are given parallel access to
a channel C : X → Y, which is a sender-receiver functionality that is typically
much simpler than the target function f . We will typically view C as being finite
whereas f will come from an infinite class of functions. We will be interested in
the number of invocations of C required for realizing f with a given error ε (if
possible at all).

We will be particularly interested in the following channel.

Definition 1 (ROT channel). The �-bit randomized string oblivious transfer
channel (or �-bit string-ROT for short), denoted by C�

ROT, takes from S a pair
of strings a0,a1 ∈ {0, 1}�, and delivers to R

C�
ROT(a0,a1) =

{
(a0,⊥) w.p. 1

2 ,

(⊥,a1) w.p. 1
2 .

Finally, it is sometimes convenient to assume that a sender-receiver func-
tionality f can additionally take a public input that is known to both parties.
For instance, in a zero-knowledge proof such a public input can include the NP-
statement, or in blind signatures it can include the receiver’s public verification
key (allowing f to check the validity of the secret key). All of our definitions and
results can be easily extended to this more general setting.

2.2 Secure Computation with One-Way Communication

A secure protocol for f : A → B over a channel C is formalized via the standard
definitional framework of reductions in secure computation. Our default setting
shall be that of information-theoretic security against semi-honest parties, with
extensions to the setting of computational security and malicious parties. All our
negative results in fact hold for the weakest setting of computational security
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against semi-honest parties. All our positive results hold for (either information-
theoretic or computational) security against malicious parties.

OWSC Protocols. A one-way secure computation protocol for f over C spec-
ifies a randomized encoder that maps the sender’s input a into a sequence of
channel inputs x, and a decoder that maps the receiver’s channel outputs y
into an output b. Given an error parameter ε, the protocol should satisfy the
following security requirements: (i) given the sender’s view, which consists of an
input a and the message x that it fed into the channel, the receiver’s output
should be distributed as f(a), and (ii) the view of the receiver, namely the mes-
sage y it received from the channel, can be simulated from f(a). Note that (i)
captures receiver security against a corrupt sender as well as correctness, while
(ii) captures sender security against a corrupt receiver. We formalize this below.

Definition 2 (One-way secure computation). Given a randomized func-
tion f : A → B and a channel C : X → Y, a pair of randomized functions 〈S,R〉,
where S : A → X N and R : YN → B is said to be an (N, ε) OWSC protocol for
f over C if there exists a simulator SimR : B → YN , such that for all a ∈ A,

Δ ((S(a), f(a)) , (S(a),R(C(S(a)))) ≤ ε

Δ (SimR(f(a)), C(S(a))) ≤ ε

OWSC for Malicious Parties. In this case, our security requirement coincides
with UC security, but with simplifications implied by the communication model.
Specifically, since a corrupt receiver has no input to the functionality nor any
message in the protocol, UC security against a malicious receiver is the same as
in the semi-honest setting. UC security against a malicious sender, on the other
hand, requires that from any arbitrary strategy of the sender, a simulator is able
to extract a valid input.

Formally, an OWSC protocol for f over C is secure against malicious parties
if, in addition to the requirements in Definition 2, there exists a randomized
simulator SimS : X N → A such that for every x ∈ X N ,

Δ (f(SimS(x)),R(C(x))) ≤ ε.

In our (positive) results in this setting, we shall require the simulator to be
computationally efficient as well.

OWSC with Computational Security. We can naturally relax the above
definition of (statistical) (N, ε) OWSC to computational (N,T, ε) OWSC, for
a distinguisher size bound T , by replacing each statistical distance bound
Δ (A,B) ≤ ε by the condition that for all circuits C of size T , |Pr(C(A) =
1) − Pr(C(B) = 1)| ≤ ε.

Complete Channels for OWSC. So far, we considered OWSC protocols for
a concrete function f and with a concrete level of security ε. However, in a
cryptographic context, one is typically interested in a single “universal” protocol
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that takes a description f̂ of a function f and a security parameter λ as inputs
and runs in polynomial time in its input length.

To meaningfully specify the goal of such a universal OWSC protocol, we need
to fix a representation class F that defines an association between a bit-string
f̂ and the (deterministic or randomized) function f it represents. The repre-
sentation classes F we will be interested in include circuits (capturing general
polynomial-time computations) and branching programs (capturing logarithmic-
space computations and logarithmic-depth circuits). The string-ROT channel
C�
ROT can also be viewed as a degenerate function class F in which f̂ = 1�

specifies the string length.
If a channel C enables a universal protocol for F , we say that C is

OWSC-complete for F . We will distinguish between completeness with inverse-
polynomial error and completeness with negligible error, depending on how fast
the error vanishes with λ. We will also distinguish between completeness with
statistical and computational security. We formalize this notion of completeness
below.

Definition 3 (OWSC-complete channel). Let F be a function representa-
tion class and C be a channel. We say that C is OWSC-complete for evaluating
F with (statistical) inverse-polynomial error if for every positive integer c there
is a polynomial-time protocol Π = 〈S,R〉 that, on common input (1λ, f̂), realizes
(N, ε) OWSC of f over C, where ε = O( 1

λc ) and N = poly(λ, |f̂ |). We say that
C is complete with negligible error if there is a single Π as above such that ε is
negligible in λ. We similarly define the computational notions of completeness
by requiring the above to hold with (N,T, ε) instead of (N, ε), for an arbitrary
polynomial T = T (λ).

As discussed above, useful instances of F include circuits, branching programs,
and string-ROT. We will assume statistical security against semi-honest parties
by default, and will explicitly indicate when security is computational or against
malicious parties.

2.3 OWSC Zero-Knowledge Proof of Knowledge

For a language L in NP, let RL denote a polynomial time computable relation
such that x ∈ L if and only if for some w of length polynomial in the length of
x, we have RL(x,w) = 1. In the classic problem of zero-knowledge proof, given a
common input x ∈ L, a polynomial time prover who has access to a w such that
RL(x,w) = 1 wants to convince a polynomial time verifier that x ∈ L, without
revealing any additional information about w. On the other hand, if x 
∈ L, even
a computationally unbounded prover should not be able to make the verifier
accept the proof, except with negligible probability.

While classically, the prover and the verifier are allowed to interact with each
other, or in the case of Non-Interactive Zero-Knowledge (NIZK), are given a com-
mon random string generated by a trusted third party, in a ZK protocol in the
OWSC model, a single string is transmitted from the prover to the receiver, over
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a channel C, with no other trusted set up. We shall require information-theoretic
security, with both soundness and zero-knowledge properties defined via simula-
tion. As simulation-based soundness corresponds to a proof of knowledge (PoK),
we shall refer to this primitive as OWSC/C ZK-PoK.2

Definition 4 (OWSC Zero-knowledge Proof of Knowledge). Given a
channel C, a pair of PPT algorithms (PZK ,VZK) is a OWSC/C zero-knowledge
proof of knowledge (ZK-PoK) for an NP language L with an associated relation
RL if the following hold:
Completeness. There is a negligible function negl, such that ∀x ∈ L and w
such that RL(x,w) = 1,

Pr
[
VZK(1λ, x, C(PZK(1λ, x, w))) 
= 1

]
= negl(λ)

(where the probability is over the randomness of PZK and VZK and that of the
channel).
Soundness. There exists a probabilistic polynomial time (PPT) extractor E
such that, for all x and all collection of strings zλ (collection indexed by λ)

RL

(
x,E(1λ, x, zλ)

)
= 0 ⇒ Pr

[
VZK(1λ, x, C(zλ)) = 1

]
= negl(λ).

Zero-Knowledge. There exists a PPT simulator S such that, for all x ∈ L,
and w such that RL(x,w) = 1,

C(PZK(1λ, x, w)) ≈negl(λ) S(1λ, x),

where ≈ represents computational indistinguishability.

In our construction we use the notion of oblivious zero-knowledge PCP, which
was explicitly defined in [17]. In the problem of oblivious zero-knowledge PCP, a
prover with access to x ∈ L and w such that RL(x,w) = 1 would like to publish a
proof. The verifier’s algorithm probes a constant number of random locations in
the published proof and decides to accept or reject while guaranteeing correctness
and soundness. The notion of oblivious zero-knowledge requires that the PCP is
zero-knowledge when each bit in the proof is erased with finite probability.

Definition 5 (Oblivious ZK-PCP). [17, Definition 1] (PoZK ,VoZK) is a
(c, ν)-oblivious ZK-PCP with knowledge soundness κ for an NP language L if,
when λ is the security parameter, PoZK ,VoZK are probabilistic algorithms that
run in polynomial time in λ and the length of the input x and satisfy the following
conditions.
Completeness. ∀(x,w) ∈ RL when π

$← PoZK(x,w, λ), Pr(VoZK(x, π∗)) = 1
for all choices of π∗ obtained by erasing arbitrary locations of π.
2 Indeed, an OWSC/C ZK-PoK protocol is equivalent to an information-theoretic UC-

secure protocol for the ZK functionality in the C-hybrid model, with an additional
requirement that the protocol involves a single invocation of C and no other com-
munication.
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c-Soundness. There exists a PPT extractor E such that, for all x and purported
proofs π′, if (x,E(x, π′)) /∈ RL then

Pr(VoZK(x, g(π′)) = 0) ≥ κ,

where the probability is taken over the random choices of g, where g is any
function that replaces all but c locations of π′ with ⊥ (and leaves the other
locations untouched).

ν-Zero-Knowledge. There exists a PPT simulator S such that, for all x ∈ L,
the following distributions are statistically indistinguishable:

– Sample π
$← PoZK(λ, x,w), replace each bit in π with ⊥ with probability 1−ν

and output the resultant value.
– S(x, λ).

As described in [17], the following result is implied by a construction in [2]:

Proposition 1 [17, Proposition 1]. For any constant ν ∈ (0, 1), there exists a
(3, ν)-oblivious ZK-PCP with a knowledge soundness κ = 1 − 1

p(λ) , where p(λ)
is some polynomial in λ.

3 String-ROT from Bit-ROT with Inverse Polynomial
Error

In this section, we construct string-ROT from bit-ROT with inverse polynomial
error, and apply this to show that bit-ROT is complete for general sender-receiver
functionalities with inverse-polynomial error. Since the intuition was discussed
in Sect. 1, we proceed directly with the construction.

3.1 Average Case Secret Sharing

An N player average case secret sharing scheme, for �-bit secrets with reconstruc-
tion threshold r and privacy threshold t, consists of a sharing algorithm Share
and a reconstruction algorithm Recst which guarantees that a random subset
of t players learns nothing about the secret and that a random set of r players
can reconstruct the secret with high probability. This is formalized by the next
definition, where the following notation will be useful.

Notation 2. For integers 1 ≤ s ≤ N , we use the following families of subsets
of [N ]: As = {A ⊆ [N ] : |A| = s}, A≥s = {A ⊆ [N ] : |A| ≥ s}, and A≤s = {A ⊆
[N ] : |A| ≤ s}.
Definition 6. A (�,N, t, r, ε) average-case secret-sharing scheme (Avg-SSS, for
short) is a pair of randomized algorithms 〈Share,Recst〉 such that,

Share : {0, 1}� × R → {0, 1}N and Recst : {0, 1,⊥}N → {0, 1}�,
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where R is the private randomness, that satisfy the following properties.

Reconstruction Property: Recst must be able to reconstruct any secret from a
uniformly random set of r shares produced by Share, with at least 1−ε probability.
Formally, for all s ∈ {0, 1}�,

Pr(Recst(Share(s)|A) = s) ≥ 1 − ε,

where the probability is over the randomness used by Share and the choice of
A

$← Ar.

Privacy Property: t random shares of every pair of secrets are ε-close to each
other in statistical distance. Formally, for all s, s′ ∈ {0, 1}�, and A

$← At,

Δ ((Share(s)|A) , (Share(s′)|A)) ≤ ε.

We will typically be interested in (�,N, t, r, ε)-Avg-SSS where �, t, r, ε are func-
tions of N and require Share,Recst to be probabilistic algorithms with poly(N)
complexity.

3.2 String-ROT from Bit-ROT and Average Case Secret Sharing

In this section, we show that an average case secret sharing scheme can be used
to reduce string ROT to bit ROT. The following theorem demonstrates such a
reduction.

Theorem 4. For δ ∈ (0, 1
2 ) and for sufficiently large N , given a (�,N, t, r, ε)-

Avg-SSS, with t =
⌊

N
2

⌋ − N δ, r =
⌈

N
2

⌉
+ N δ and ε = N δ− 1

2 , there exists a
secure (even against malicious parties) (N, 4N δ− 1

2 ) OWSC protocol for C�
ROT

over C1
ROT. If the Avg-SSS scheme is efficient in N , then so is our protocol.

Proof: Let 〈Share,Recst〉 be an (�,N, t, r, ε)-Avg-SSS. The protocol that realizes
C�
ROT in the OWSC/C1

ROT model proceeds as follows.
Let (a0,a1) ∈ {0, 1}� × {0, 1}� be the input to the C�

ROT. Sender computes
x0 = Share(a0) and x1 = Share(a1). For i = 1, . . . , N , sender sends (x0(i),x1(i))
in the i-th invocation of the C1

ROT channel.
The receiver gets x0|A , x1|[N ]\A, where A is a uniformly random subset of

[N ]. If |A| ≥ r, it uniformly samples A0 ⊆ A such that |A0| = r and outputs
(Recst(x0|A0

),⊥), and if |[N ] \ A| ≥ r, it uniformly samples A1 ⊆ [N ] \ A
such that |A1| = r and outputs (⊥,Recst(x1|A1

)). If |A| ∈ (t, r), R samples

a0,a1
$← {0, 1}� and i

$← {0, 1} and outputs (a0,⊥) if i = 0 and (⊥,a1) if i = 1.

Complexity. The complexity of this reduction is N . If Avg-SSS is efficient, the
protocol is efficient as well.

Security. We first show that the receiver’s output is consistent with probability
at least 1−3N δ− 1

2 . That is, if the input to the sender is (a0,a1), with probability
1−3N δ− 1

2 , the receiver outputs either (⊥,a1) or (a0,⊥). To show this, we bound
the probability of the event |A| ∈ (t, r) using an anti-concentration bound on
Bernoulli sums and then argue that conditioned on |A| /∈ (t, r), the receiver’s
output is consistent with probability ≥ 1 − ε.
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Claim 1. Let Xi be i.i.d Bernoulli( 12 ) random variables for i ∈ [N ]. Then, for
all δ ∈ (0, 1/2),

Pr

⎛
⎝

∣∣∣∣∣∣
∑

i∈[N ]

Xi −
⌈

N

2

⌉∣∣∣∣∣∣ < N δ

⎞
⎠ ≤ 2N δ− 1

2 .

Proof: This follows from the fact that,

∀k ∈ [N ], Pr

⎛
⎝ ∑

i∈[N ]

Xi = k

⎞
⎠ ≤ Pr

⎛
⎝ ∑

i∈[N ]

Xi = �N/2�
⎞
⎠ ≤ N−1/2.

��
Denote the event |A| /∈ (t, r) by E. Since r − t = 2N δ, Pr(E) ≥ 1 − 2N δ− 1

2

by the above claim. Conditioned on |A| ≥ r, A is uniformly distributed in
A≥r. Hence, A0 is uniformly distributed in Ar. The receiver is correct if
Recst(Share(a0)|A0

) = a0. By the reconstruction property of 〈Share,Recst〉, for
all a0 ∈ {0, 1}�, we have

Pr(Recst(Share(a0)|A0
) = a0) ≥ 1 − ε = 1 − N δ− 1

2 ,

where the probability is over the randomness used by Share and A0
$← Ar. Similar

bound applies for Pr(Recst(Share(a1)|A1
) conditioned on the event |A| ≤ t. From

these observations, the probability that the receiver outputs (a0,⊥) or (⊥,a1)
when the sender’s input is (a0,a1) can be lower bounded as,

Pr(E) · Pr(Receiver outputs (a0, ⊥) or (⊥,a1)|E) ≥ (1 − 2Nδ− 1
2 )(1 − Nδ− 1

2 ) ≥ 1 − 3Nδ− 1
2 .

Furthermore, when |A| /∈ (t, r), the events |A| ≥ r and N −|A| ≥ r are equiprob-
able. That is, the index on which the receiver outputs ⊥ is decided entirely by
the randomness in the channel. Hence, for all a0,a1 ∈ {0, 1}�,

Δ
((

a0,a1,S(a0,a1),R(C1
ROT(S(a0,a1)))

)
,
(
a0,a1,S(a0,a1), C�

ROT(a0,a1)
))

≤ 3Nδ− 1
2 .

We now analyze security against the receiver. We claim that conditioned on the
event |A| ≤ t, for any a0,a

′
0,a1 ∈ {0, 1}�, the view of the receiver when the

input to the sender is (a0,a1) is sufficiently close to its view when the sender’s
input is (a′

0,a1). Note that conditioned on |A| ≤ t, |A| is a uniformly random
set of size at most t. Our claim is that for all a0,a

′
0 ∈ {0, 1}� and A

$← A≤t,

Δ (Share(a0)|A , Share(a′
0)|A) ≤ ε = N δ− 1

2 .

To show this, note that the output distributions of the following two experiments
are the same for every a ∈ {0, 1}�:
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(1) Choose 0 ≤ k ≤ t with probability Pr
S

$←A≤t

(|S| = k). When A
$← At, let B

be a uniformly random subset of A of size k. Output Share(a)|B .
(2) A

$← A≤t, output Share(a)|A.
Hence, the distribution Share(a0)|A where A

$← A≤t can be generated by
post-processing the distribution Share(a0)|A where A

$← At. The claim now
follows from the privacy guarantee of Avg-SSS and the fact that statistical
distance only decreases on post-processing.

On input (⊥,a1) the simulator SimR proceeds as follows: Sample a
$← {0, 1}�

and run the algorithm of the sender with input (a,a1), to generate (x0,x1). Sam-
ple A

$← A≤t and output (x0|A , x1|[N ]\A). The case for (a0,⊥) is symmetric.
That SimR satisfies sender’s privacy follows from the following observations:

(a) The event |A| /∈ (t, r) happens with probability at least 1 − 2N δ− 1
2 . (b) a0

(resp. a1) is decoded correctly with probability 1 − N δ− 1
2 when |A| ≥ r (resp.

|A| ≤ t). Furthermore, conditioned on both these events, the receiver’s view for
input (a0,a1) and for input (a′

0,a1) are at most N δ− 1
2 far in statistical distance,

for all a0,a
′
0 ∈ {0, 1}�. Hence,

Δ
(
SimR(C�

ROT(a0,a1)), C1
ROT(S(a0,a1))

) ≤ 4N δ− 1
2

UC-Security Against Malicious Adversaries. For any x ∈ {0, 1}N , sim-
ulator SimS works as follows. Sample A≥r

$← A≥r and A≤t
$← A≤t (this

can be done efficiently by rejection sampling). Let (b0,⊥) = R(x|A≥r
) and

(⊥, b1) = R(x|A≤t
). Sample A

$← [N ], if |A| ∈ (t, r), output (s0, s1), where

s0, s1
$← {0, 1}�, else output (b0, b1).

We claim that distribution C1
ROT(SimS(x)) is identical to the output distribu-

tion of the receiver when a malicious sender sends x. In the event that |A| ∈ (t, r),
the output of the receiver is distributed as if the input to the string-ROT were
a pair of random strings. In the events A ∈ A≤t and A ∈ A≥r, R outputs
according to a random erasure from A≤t and A≥r respectively. This is indeed
the distribution generated by the simulator and so this proves the theorem. ��
Remark 1. The OWSC protocol is said to be Las-Vegas if it either aborts after
returning ⊥ or is correct conditioned on not aborting, i.e., outputs (a0,⊥) or
(⊥,a1) with equal probability. Suppose the Avg-SSS is Las-Vegas in the following
sense. For every A ∈ Ar, Recst either reconstructs the secret correctly or aborts
after returning ⊥. We can tweak the above OWSC protocol to output ⊥ whenever
|A| ∈ (t, r) and to return whatever the Recst outputs when |A| ≥ r makes the
OWSC protocol also Las-Vegas. This guarantees that in Theorem 4, if Avg-SSS
is Las-Vegas, then OWSC protocol is also Las-Vegas. In the next section, we will
construct an Avg-SSS scheme which is Las-Vegas.

3.3 Construction of Average Case Secret Sharing

In this section, we construct an average case secret sharing scheme. Our con-
struction is similar to the construction of constant rate secret sharing schemes
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in [22]. The only difference is that the reconstruction and privacy properties
are with respect to random corruptions, hence we are able to use randomized
erasure correcting codes with better error parameters. Before we describe the
construction, we provide the following definitions.

Definition 7. A function Ext : {0, 1}d × {0, 1}n → {0, 1}� is a (k, ε) strong
seeded extractor if for every random variable X, with alphabet {0, 1}n and min-
entropy k, when z

$← {0, 1}d and r
$← {0, 1}�,

Δ ((Ext(z,X),z), (r,z)) ≤ ε.

A randomized map Ext−1 is an inverter map of Ext if it maps z ∈ {0, 1}d, s ∈
{0, 1}� to a sample from the uniform distribution over {0, 1}n, i.e. Un, subject
to (Ext(z, Un) = s).

The following lemma describes an improvement of Trevisan’s extractor [27]
due to Raz et al. [26]. The statement itself is from [22].

Lemma 1 [22, Lemma 4]. There is an explicit linear (k, ε) strong seeded extrac-
tor Ext : {0, 1}d × {0, 1}n → {0, 1}� with d = O(log3 n/ε) and � = k − O(d).

The other component in our construction is an erasure correcting code. Since
Avg-SSS allows for shared randomness between the sharing algorithm Share and
the reconstruction algorithm Recst, we could use randomized erasure correcting
codes.

Definition 8. An (n, k, r, ε)-linear erasure correcting scheme (Enc,Dec) consists
of a linear encoder Enc : {0, 1}k → {0, 1}n and a decoder Dec : {0, 1}n → {0, 1}k

such that, for all x ∈ {0, 1}k,

Pr
A

$←Ar

(Dec(Enc(x)|A) 
= x) ≤ ε.

Lemma 2. For all k ≤ r ≤ n, there exist efficient (n, k, r, ε)-linear erasure
correcting schemes with ε = 2k−r.

A proof of the lemma is provided in the full version [1], where we will also argue
that the erasure correcting code we construct is Las-Vegas i.e., the decoder either
aborts or correctly decodes the message. It can be verified that the Avg-SSS
scheme we construct is Las-Vegas whenever the erasure correcting scheme is
Las-Vegas.

Theorem 5. For parameters t < n < n+ d < r < N and �, ε, let Ext : {0, 1}d ×
{0, 1}n → {0, 1}� be a linear (n − t, ε) strong seeded extractor with inverter map
Ext−1. Let (Enc,Dec) be a (N,n + d, r, ε)-randomized linear erasure correcting
code. Then, 〈Share,Recst〉, described below, is a (�,N, t, r, 8ε)-Avg-SSS:

Share(s) = Enc(z||Ext−1(z, s)),where z
$← {0, 1}d,

Recst(v|A) = Ext(z||x),where z||x = Dec(v|A)

where s ∈ {0, 1}� and A ⊂ [N ], when (·||·) is the concatenation operator.
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Proof: We show that the scheme satisfies the reconstruction and privacy prop-
erties.
Reconstruction. By the performance guarantee of the error correcting code,
for any v ∈ {0, 1}n+d,

Pr
A

$←Ar

(Dec(Enc(v)|A) = v) ≥ 1 − ε.

Hence, Recst(v|A) = s, for a random A, with probability 1 − ε.

Privacy. We use the following result from [22]:

Lemma 3 [22, Lemma 13]. Let Ext : {0, 1}d × {0, 1}n → {0, 1}� be a linear
(k, ε) strong extractor. Let fA : {0, 1}n+d → {0, 1}t be an affine function with
t ≤ n − k. For any s, s′ ∈ {0, 1}�, when (Z,X) = (Ud, Un)|(Ext(Ud, Un) = s)
and (Z ′,X ′) = (Ud, Un)|(Ext(Ud, Un) = s′), we have

Δ (fA(Z,X), fA(Z ′,X ′)) ≤ 8ε.

Enc is a linear function and for any A ⊆ [N ] the restriction operator (·)|A is a
projection. Hence, for any s ∈ {0, 1}� and A ⊆ [N ] such that |A| = t, Share(s)|A
is an affine map with range {0, 1}t applied to (Ud, Un)|(Ext(Ud, Un) = s). Ext
used in the theorem is a (n − t, ε) extractor, hence the privacy follows directly
from the above lemma. ��

For any N and δ ∈ (0, 1/2), Lemma 1 guarantees an explicit linear (N δ, 1
8N )

strong seeded extractor Ext : {0, 1}d × {0, 1}N
2 → {0, 1}� with d = O(log3 N)

and � = N δ − O(log3 N). Furthermore, Lemma 2 guarantees a (N, k, r, ε)-linear
erasure correcting code for k = N

2 + d, r = N
2 + N δ and ε = 1

8N (in fact,
the lemma gives much better maximum error probability guarantees, but we
would not need this). Note that both Ext−1 and (Enc,Dec) are efficient. Using
this extractor and the erasure correcting scheme in Theorem 5, we obtain the
following corollary.

Corollary 1. For large enough N and δ ∈ (0, 1
2 ), when � = Nδ

2 , t = N
2 −N δ, r =

N
2 + N δ and ε = 1

N , there exists an efficient (�,N, t, r, ε)-Avg-SSS.

Given such a Avg-SSS, we appeal to the Theorem 4 to get the following
theorem.

Theorem 6. For δ ∈ (0, 1
2 ), there exists an efficient protocol that realizes (N, ε)

secure OWSC for C�
ROT over C1

ROT, with ε = O(N δ− 1
2 ), and � = Nδ

2 . In particular,
bit-ROT is complete for string-ROT with inverse-polynomial error.

3.4 General Completeness of Bit-ROT with Inverse Polynomial
Error

In the previous section, we showed that bit-ROT is complete for string-ROT
with inverse-polynomial error. Garg et al. [17] (Theorem 11) showed that string-
ROT is complete for arbitrary finite functionalities even for the case of malicious
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parties, where the (statistical) error is negligible in the ROT string length �.
Combined with our reduction from string-ROT to bit-ROT, this gives a sim-
ilar completeness result for bit-ROT with inverse-polynomial error. Below we
extend this to functions represented by branching programs and circuits, where
in the latter case we need to settle for computational security using any (black-
box) pseudorandom generator. Thus, assuming the existence of a one-way func-
tion, bit-ROT is complete with inverse-polynomial computational error for any
polynomial-time computable functionality.

Theorem 7 (Bit-ROT is complete with inverse-polynomial error).
The bit-ROT channel C1

ROT is OWSC-complete, with inverse-polynomial error,
for evaluating circuits with computational security against malicious parties,
assuming a (black-box) pseudorandom generator. Moreover, replacing circuits
by branching programs, the same holds unconditionally with inverse-polynomial
statistical error.

Proof: We start by addressing the simpler case of semi-honest parties. In this
case, the computational variant follows by combining the reduction from string-
ROT to bit-ROT with Yao’s garbled circuit construction [31] in the following
way. Given a randomized sender-receiver functionality f(a; r), define a determin-
istic (two-way) functionality f ′ that takes (a, r1) from the sender and r2 from
the receiver, and outputs f(a; r1 ⊕ r2) to the receiver. Using Yao’s protocol to
securely evaluate f ′ with uniformly random choices of r1, r2, we get a computa-
tionally secure reduction of f to (chosen-input) string-OT where the receiver’s
inputs are random. Replacing the random choices of the receiver by the use
of a string-ROT channel, we get a computational OWSC protocol for f over
string-ROT using any (black-box) PRG. Finally, applying the reduction from
string-ROT to bit-ROT with a suitable choice of parameters, we get the inverse-
polynomial completeness result for circuits with semi-honest parties. A similar
result for branching programs with statistical (and unconditional) security can
be obtained using information-theoretic analogues of garbled circuits [16,18,20].

To obtain similar protocols for malicious parties, we appeal to a result of [19],
which obtains an analogue of Yao’s protocol with security against malicious
parties by only making a black-box use of a pseudorandom generator along with
parallel calls to a string-OT oracle.3 (This result too has an unconditional version
for the case of branching programs.) Unlike Yao’s protocol, the protocol from [19]
encodes the receiver’s input before feeding it into the parallel OTs. However, this
encoding has the property that a random receiver input is mapped to random
OT choice bits. Thus, the same reduction as before applies. ��

The unconditional part of Theorem 7 implies polynomial-time statistically-
secure protocols (with inverse-polynomial error) for the complexity classes NC1

and Logspace. This is a vast generalization of the positive result for C�
ROT. In

the result for general circuits, the use of a pseudorandom generator is inherent
given the current state of the art on constant-round secure computation.
3 Note that the conceptually simpler approach of applying NIZK proofs is not appli-

cable here, since in the setting of secure computation over noisy channels there is no
public transcript to which such a proof can apply.
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〈S,R〉(a0,a1)

1. (x0,x1) = S(a0,a1).
2. Sample s $← {0, 1}N and let (y0,y1) = fN

C1
ROT

((x0,x1), s).

3. (b0, b1) = R(y0,y1).
4. Output ((a0,a1), (x0,x1), (y0,y1), (b0, b1)).

Fig. 1. Execution of a protocol 〈S,R〉 for OWSC of C�
ROT over C1

ROT channel. Here a0,a1

are the �-bit input strings for C�
ROT, the N -bit strings x0,x1 are the inputs for the N

invocations of the C1
ROT channel, y0,y1 are the outputs of these N invocations, and

b0, b1 are the outputs of C�
ROT.

4 Impossibility of String-ROT from Bit-ROT with
Negligible Error

In this section we show that string-ROT with negligible error is impossible
to achieve from bit-ROT. Moreover, this holds even against a computationally
bounded semi-honest adversary.

Theorem 8. For sufficiently large N and � ≥ 2 log N , an (N, 1
N2 ) OWSC pro-

tocol for C�
ROT over C1

ROT is impossible even against semi-honest parties. In fact,
the same holds even if one settles for OWSC with computational security. That
is, there exists a polynomial T = T (N) such that there is no computational
(N,T, 1

N2 ) OWSC protocol for C�
ROT over C1

ROT.

Proof: C1
ROT may be equivalently described as a randomized function fC1

ROT
from

the input of the channel and the internal randomness of the channel to the
output of the channel. Formally, For (x0, x1) ∈ {0, 1} × {0, 1}, and s ∈ {0, 1},

fC1
ROT

((x0, x1), s) =

{
(x0,⊥) if s = 0,

(⊥, x1) if s = 1.

Observe that for all (x0, x1) ∈ {0, 1}×{0, 1}, the following distributions are iden-
tical: (1) C1

ROT(x0, x1) and (2) Sample s
$← {0, 1} and output fC1

ROT
((x0, x1), s).

Similarly, N invocations of C1
ROT are equivalent to the randomized function fN

C1
ROT

which on input (x0,x1) ∈ {0, 1}N × {0, 1}N , samples s
$← {0, 1}N and outputs

(y0,y1), where (y0(i),y1(i)) = fC1
ROT

((x0(i),x1(i)), s(i)).
Suppose 〈S,R〉 is a (N, 1

N2 ) OWSC protocol for C�
ROT over C1

ROT channel.
The joint distribution generated by this protocol for an input (pair of strings)
(a0,a1) ∈ {0, 1}� × {0, 1}� is described in Fig. 1. The receiver’s algorithm R
can be assumed to be deterministic w.l.o.g. since we may fix the randomness
in the decoder incurring only a constant hit to the ε = 1

N2 parameter. This is
because, for most values of (y0,y1), R should decode one of the indices with
low probability of error and should be almost entirely unsure of the other index.
Refer to the full version [1] for a formal proof.
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M(y0,y1)
1. Compute (b0, b1) = R(y0,y1) (suppose (b0, b1) = (â0, ⊥) w.l.o.g).
2. Compute (ŷ0, ŷ1) as follows: Sample j

$← [N ]. For i ∈ {0, 1} and k ∈ [N ] \ {j},
set ŷi(k) = yi(k). If yi(j) = ⊥, sample ŷi(j)

$← {0, 1}, and if yi(j) �= ⊥ then
ŷi(j) = ⊥.

3. Compute (b̂0, b̂1) = R(ŷ0, ŷ1).
4. If (b̂0, b̂1) = (⊥, â1), then output (â0, â1); else, abort.

Fig. 2. Execution of the machine M

In the sequel, for brevity, we would represent the tuples (a0,a1), (x0,x1),
(y0,y1) and (b0, b1) also by a,x,y and b, respectively, whenever this does not
cause confusion. For (a0,a1) ∈ {0, 1}� × {0, 1}�, consider the joint distribution
〈S, R〉(a0,a1) described in Fig. 1. We now make some claims about this distri-
bution.

Lemma 4. There exists a set X ⊆ {0, 1}N × {0, 1}N such that Pr(x ∈ X) ≥
1 − 2

N and for all x ∈ X,

Pr(b0 = ⊥|x) ≥ 1
2

− 1
N

and Pr(b1 = ⊥|x) ≥ 1
2

− 1
N

.

The lemma is a consequence of computational 1
N2 -security against sender. Intu-

itively, the sender can guess the index of the message output by the receiver with
substantial probability if Pr(x ∈ X) < 1 − 2

N . Refer to the full version [1] for a
formal proof.

We now design a machine M that guesses both a0 and a1 from (y0,y1) with
substantial probability, contradicting sender’s privacy. On receiving y, machine
M uses the receiver’s strategy R(y) to decode one of the messages, say ai, where
i is either 1 or 0. It then computes a1−i by ‘guessing’ a random neighbor of y,
say ŷ and computing R(ŷ). We would show that with substantial probability,
R(ŷ) yields a1−i, breaking sender’s privacy property. M is formally described in
Fig. 2.

Analysis of M: We show that M outputs (a0,a1) with substantial probability.
We would analyze the output of the machine M for a fixed x ∈ X, where X
is as guaranteed by Lemma 4. Define function fx : {0, 1}N → {0, 1} such that
when y = fN

C1
ROT

(x, s), fx(s) = 1 if R(y) = (b0, b1) such that b0 = ⊥ and
0 otherwise. We next observe a property of fx which is a consequence of an
isoperimetric inequality on Boolean hypercubes (Harper’s Lemma). For binary
strings u,v ∈ {0, 1}n, denote the Hamming distance between them by |u − v|.
Lemma 5. For any function f : {0, 1}n → {0, 1}, if Pr

v
$←{0,1}n

(f(v) = i) ≥ 1
2 (1−

1√
n
) for each i ∈ {0, 1}, then Pr

v
$←{0,1}n

(∃ṽ : |v− ṽ| = 1 and f(ṽ) = 1−f(v)) ≥ Ω

( 1√
n
).
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In words, the lemma says that if f is a 2-coloring of the Boolean hypercube,
where the colors are (almost) balanced, then a significant fraction of the nodes
of the hypercube, have a neighbor of a different color.

By Harper’s Lemma, Hamming balls have the smallest vertex boundary
amongst all sets of the same probability. W.l.o.g, the probability of f(v) = 1 is
at most 1

2 and at least 1
2 (1 − 1√

n
) and Pr

v
$←{0,1}n

(|v − 0| =
⌊

n
2

⌋
) ≥ 1

2
√

n
, where

0 is the all zero string. Hence the Hamming ball centered at 0 with probability
at most 1

2 and at least 1
2 (1 − 1√

n
) has strings with

⌊
n
2

⌋
or

⌊
n
2

⌋ − 1 number of 1’s
in its boundary. Consequently, the size of this boundary is Ω( 1√

n
).

For any x ∈ {0, 1}N × {0, 1}N , the input to M is y = fN
C1
ROT

(x, s), where

s
$← {0, 1}N . The process of generating ŷ in M(y) is equivalent to the following

process. Compute (x̂0, x̂1) and ŝ as follows: Sample j ← [N ], set ŝ(j) = 1−s(j)
and (x̂0(j), x̂1(j))

$← {0, 1} × {0, 1}. For all k 
= j, set ŝ(k) = s(k) and
(x̂0(k), x̂1(k)) = (x0(k),x1(k)). Compute ŷ = fN

C1
ROT

(x̂, ŝ). We make the fol-
lowing observations about the above process.

(i.) ŝ is uniformly distributed over {0, 1}N and |s − ŝ| = 1.
(ii.) ŷ = fN

C1
ROT

(x, ŝ) with probability 1
2 .

(iii.) For any x ∈ X, Pr(fx(s) = 1 − fx(ŝ)) ≥ Ω( 1
N

√
N

).

(i) follows from s being uniform in {0, 1}N and ŝ being obtained by flipping
the value of a random coordinate of s. (ii) can be verified easily from the process
description. When x ∈ X and s

$← {0, 1}N , Pr(fx(s) = i) ≥ 1
2 (1 − 1√

N
) for

i ∈ {0, 1}, by Lemma 4. Hence, by Harper’s Lemma,

Pr (∃s̃ : |s − s̃| = 1 and fx(s̃) = 1 − fx(s)) ≥ Ω(
1√
N

).

Conditioned on the event that such a s̃ exists, ŝ = s̃ with probability at least
1
N . This proves (iii).

(b0, b1) is said to be correct if it is either (a0,⊥) or (⊥,a1). Let E1 be the
event ‘b = R

(
fN

C1
ROT

(x, s)
)

is correct’. Since s is uniform in {0, 1}N , by the

correctness property, E1 happens with probability 1 − 1
N2 . Let E2 be the event

‘b = R(fN
C1
ROT

(x, ŝ) is correct’. By (i), ŝ is also uniform in {0, 1}N , hence E2

happens with probability 1− 1
N2 . From (ii) and (iii) we conclude that, when x ∈

X, M(y) outputs (â0, â1) (instead of aborting) with probability Ω( 1
N

√
N

). Since
x ∈ X happens with probability (1− 2

N ), we may conclude that with probability
at least (1 − 2

N )Ω( 1
N

√
N

), the following event E3 occurs: ŷ = fN
C1
ROT

(x, ŝ) and M

outputs (â0, â1). In the event E1 ∩ E2 ∩ E3, the machine M guesses the input
correctly and outputs (a0,a1). By a union bound, E1 ∩ E2 ∩ E3 happens with
probability (1 − 2

N )Ω( 1
N

√
N

) − 2
N2 . Hence, M predicts (a0,a1) with probability

Ω( 1
N

√
N

). This is a contradiction since, when � = 2 log N and the protocol is 1
N2 -

secure, the adversary can succeed in guessing both inputs with at most 2−2 log N +
1

N2 = 2
N2 probability. This proves the theorem. ��
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4.1 Extending Impossibility to All Finite Channels

In this section we show that the negative result from the previous section applies
not only to bit-ROT but, in fact, to all finite channels. W.l.o.g we consider
channels with rational conditional probability matrices. We begin by modeling
an arbitrary finite channel as a randomized function.

Definition 9. Consider a channel C : X → Y with rational conditional distri-
bution matrix. We define the states of C as a finite set C.states and the channel
function fC : X × C.states → Y, such that for all x ∈ X and y ∈ Y,

Pr(C(x) = y) = Pr
s

$←C.states

(f(x, s) = y).

We emphasize that our channels are all memoryless, and that “states” in this
context should be interpreted as the internal randomness of the channel used in
each invocation (uniform distribution over the set C.states).

The existence of C.states and fC is proved in the full version [1]. For the
convenience of modeling we have defined fC in such a way that the state is
chosen uniformly at random from C.states. Given the above definition, for a
fixed input x ∈ X , the channel C essentially samples a state uniformly from
C.states and deterministically maps x to the output y. This model motivates our
next observation about multiple uses of the channel.

For a finite N , let x = (x1, . . . , xN ) ∈ X N and let y = (y1, . . . , yN ) ∈ YN

be the output of N independent uses of C with input x. Then the distribution
(x,y) can be thought to be generated by the following equivalent process: Sample
s = (s1, . . . , sN ) ← (C.states)N and for i = 1, . . . , N , compute yi = fC(xi, si).

Before we state the next lemma, we set up some notation for generalizing
distance between strings over finite alphabets. For x, x̃ ∈ X n, |x − x̃| = 1 if
they differ in exactly one of the n coordinates, i.e., there exists i ∈ [n] such
that xi 
= x̃i and xj = x̃j for all j 
= i. The following lemma is an extension of
the isoperimetric bound in Lemma 5 that we used for proving Theorem 8. The
lemma is formally proved in the full version [1].

Lemma 6. Let X be a finite set such that |X | = 2k for some k. For any function
f : X n → {0, 1}, if Pr

x
$←X n

(f(x) = i) ≥ 1
2 − 1√

k·n , for each i ∈ {0, 1}, then

Pr
x

$←X n

(∃x̃ : |x − x̃| = 1 and f(x̃) = 1 − f(x)) ≥ Ω

(
1√
k · n

)
.

We are now ready to state the generalization of Theorem 8.

Theorem 9. Let C be a finite channel. For sufficiently large N and � ≥ 2 log N ,
an (N, 1

N2 ) OWSC protocol for C�
ROT over C is impossible even against semi-

honest parties. In fact, the same holds even if one settles for computational
security.

Proof: We proceed in the same way we showed the impossibility in Theorem 8.
To prove a contradiction, suppose 〈S,R〉 is a (N, 1

N2 ) OWSC protocol for C�
ROT
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〈S,R〉(a0,a1)

1. x
$← S(a0,a1).

2. Sample r $← (C.states)N .
3. Compute y where yi = fC(xi, ri).
4. (b0, b1) = R(y).
5. Output ((a0,a1),x,y, (b0, b1)).

Fig. 3. Execution of a protocol 〈S,R〉 for OWSC of C�
ROT over channel C : X → Y. Here

a0,a1 are the �-bit input strings for C�
ROT, the N -bit strings x0,x1 are the inputs for

the N invocations of C, y0,y1 are the outputs of these N invocations, and b0, b1 are
the outputs of C�

ROT.

M(y)
1. Compute (b0, b1) = R(y).
2. Sample i

$← [N ], x $← X , r
$← C.states.

3. Compute ỹ, where ỹi = fC(x, r) and ỹj = yj for all j �= i.
4. Compute (b̃0, b̃1) = R(ỹ).
5. If (b1, b̃0) = (⊥, ⊥), output (b0, b̃1) and if (b0, b̃1) = (⊥, ⊥), output (b̃0, b1); else,

abort.

Fig. 4. Execution of the machine M

over C. The joint distribution, generated by the protocol for input (a0,a1) ∈
{0, 1}� ×{0, 1}�, is described in Fig. 3. We would use a machine M similar to the
one used in the proof of Theorem 8 to guess both a0 and a1 from the received
y with substantial probability, contradicting sender’s privacy. The machine is
described in Fig. 4. Intuitively, M tries to obtain one string from y (due to
correctness of the ROT protocol) and the other string, by changing one item of
y, and hoping to get into a case where the receiver outputs the other string.

Analysis of M. We show that M outputs (a0,a1) with substantial probability.
As observed in Lemma 4, since the protocol is 1

N2 -secure, due to the receiver’s
privacy property, there exists a set X ⊆ X N such that Pr(x ∈ X) ≥ 1 − 2

N and
for all x ∈ X,

P (b0 = ⊥|x) ≥ 1
2

− 1
N

and P (b1 = ⊥|x) ≥ 1
2

− 1
N

.

Fix an x ∈ X. Recall that for a fixed x ∈ X N , the output y of the channel is
a deterministic function of the state of the channel r, i.e., y = fN

C (x, r). Here
fN

C (x, r) outputs y such that yi = fC(xi, ri). Define function fx : (C.states)N →
{0, 1} as follows: for r ∈ (C.states)N , when fN

C (x, r) = y and (b0, b1) = R(y),
then fx(r) = 0 if b0 = ⊥ and fx(r) = 1 otherwise. Hence, for all x ∈ X, function
fx is such that Pr

r
$←(C.states)N

(f(x) = i) ≥ 1
2 − 1

N for i = 0, 1. When 1
N2 ≤ 1

k·N ,
invoking Lemma 6,
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Pr
r

$←(C.states)N

(∃r̃ : |r − r̃| = 1 and fx(r) = 1 − fx(r̃)) ≥ Ω

(
1√
k · n

)
.

Note that y is generated by x and a random state r ← (C.states)N (see Fig. 3).
On input y, machine M can be equivalently thought to be computing ỹ as
fN

C (x̃, r̃), where x̃ and r̃ can be described as follows: Choose a random coordinate
i

$← [N ] (see Fig. 4) and x̃ is computed as x̃i
$← X and x̃j = xj for j 
= i and

r̃ is computed as r̃i
$← C.states and r̃j = rj for j 
= i. We make the following

simple observations.

(i). r̃ is distributed uniformly in (C.states)N and |r − r̃| = 1.
(ii). Pr(x̃ = x) = 1

|X | .
(iii). With probability Ω( 1

N
√

N
), we have fx(r̃) = 1 − fx(r).

Here, (i) and (ii) are clear from the process. For any s ∈ {0, 1}N such that
|r − s| = 1, r̃ = s with probability 1

N ·|C.states| = 1
2k·N . Hence, when x ∈ X

and r
$← {0, 1}N , the probability of the event ‘fx(r) = 1 − fx(r̃))’ is at least

1
2k·N · Ω( 1√

k·N ) = Ω( 1
N

√
N

).
We are now ready to show that M outputs a0,a1 with substantial probability.

Let E1 be the event ‘x̃ = x and fx(r̃) = 1−fx(r)’. We have already established
that conditioned on any x ∈ X, the event E1 occurs with probability Ω( 1

N
√

N
).

Since Pr(x ∈ X) ≥ 1 − 2
N , the probability of E1 is at least (1 − 2

N ) · Ω( 1
N

√
N

).
Let E2 be the event ‘R(fN

C (x, r)) is correct’ and E3 be the event ‘R(fN
C (x, r̃)) is

correct’. Since r and r̃ are uniformly distributed in {0, 1}N , by the correctness
of the protocol, E2 and E3 occur with probability at least 1 − 1

N2 . In the event
E1 ∩ E2 ∩ E3, the machine M guesses the input correctly and outputs (a0,a1).
By a union bound, E1 ∩ E2 ∩ E3 happens with probability (1 − 2

N )Ω( 1
N

√
N

) −
2 1

N2 . Hence, M predicts (a0,a1) with probability Ω( 1
N

√
N

). Note that this is a
contradiction since, when � = 2 log N , such a machine should not exist when the
protocol is 1

N2 -secure. This proves the theorem. ��

5 Zero-Knowledge Proofs from Any Non-trivial Channel

In this section, we characterize finite channels that allow OWSC of zero-
knowledge proofs of knowledge. Our result states that zero-knowledge proofs
of knowledge (ZK PoK) can be realized with OWSC over a channel if and only
if the channel is non-trivial. A trivial channel is one which is essentially equiva-
lent (as formalized below) to a noiseless channel, when used by actively corrupt
senders.

Theorem 10 (Informal). Given a language L ∈ NP\BPP, an OWSC/C zero-
knowledge protocol for L exists if and only if C is non-trivial.

Previously, this result was known only for two special channels, namely, BEC
and BSC [17]. To extend it to all non-trivial channels, we need to take a closer
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look at the properties of abstract channels. To understand what a non-trivial
channel is, it is helpful to geometrically model a channel as we do below.

Redundant Inputs, Core and Trivial Channels. Given a channel C : X →
Y, for each input α ∈ X , define a |Y|-dimensional vector µα with coordinates
indexed by elements of Y, such that µα(β) = Pr(C(α) = β) for each β ∈ Y.
We define the convex polytope RC associated with C as the convex hull of the
vectors {µα|α ∈ X}.

Any α ∈ X such that µα is a convex combination of {µα′ |α′ ∈ X \ {α}} is a
redundant input, because a sender could perfectly simulate the use of α with a
linear combination of other inputs, without being detected (and possibly obtain-
ing more information about the output at the receiver’s end). Geometrically, a
redundant input corresponds to a point in the interior of (possibly a face of) RC
(or multiple inputs that share the same vertex of the polytope). Consider a new
channel Ĉ without any redundant inputs, obtained by restricting C to a subset
of inputs, one for each vertex of the convex hull. Ĉ is called the core of C.4

We note that C : X → Y can be securely realized over Ĉ : X̂ → Y, with
security (in fact, UC security) against active adversaries. In this protocol, when
the sender is given an input α ∈ X \X̂ , it samples an input α′ from X̂ according
to a distribution that results in the same channel output distribution as produced
by α (this is always possible since RC is the same as R

̂C). Correctness (when
both parties are honest) and security against a corrupt receiver are immediate
from the fact that the output distribution is correct; security against a corrupt
sender follows from the fact that its only action in the protocol – sending an
input to Ĉ– can be carried out as it is in the ideal world involving C, with the
same effect. This means that there is a secure OWSC protocol over C only if such
a protocol exists over Ĉ. In turn, since Ĉ has no redundant inputs, it suffices to
characterize which channels among those without redundant inputs, admit ZK
proofs.

A channel without any redundant inputs is trivial if the output distributions
for each of its input symbols are disjoint from each other. Such a channel corre-
sponds to a noiseless channel, as the receiver always learns exactly the symbol
that was input to the channel. Over a noiseless channel, zero-knowledge proofs
exist only for languages in BPP.

Our main goal then, is to show that if a channel C without redundant inputs is
non-trivial, then every language in NP has an OWSC/C zero-knowledge protocol.
We start by providing some intuition about how we achieve this.

5.1 Intuition Behind the Construction

The ZK protocol involves sending many independently generated copies of an
Oblivious ZK-PCP over the channel, after encoding it appropriately; the verifier

4 The notions of redundancy and core were defined more generally in [21], in the
context of 2-party functionalities where both parties have inputs and outputs. Here
we present simpler definitions that suffice for the case of channels.
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tests the proof using a carefully designed scheme before accepting it. The encod-
ing and testing are designed to ensure, on one hand, erasure of a large fraction
of the bits in the proofs (to guarantee zero-knowledge) and, on the other hand,
delivery of sufficiently many bits so that the verifier can detect if the transmitted
proof is incorrect (for soundness). At a high-level, the transmission and testing
of the proof takes place over three “layers”: (i) an inner-most binary channel
layer at the bottom, (ii) an erasure layer over it, and (iii) an outer PCP layer.

The inner-most and outer-most layers are used to ensure soundness while
the middle and outer-most layers work in tandem to obtain the zero-knowledge
property.

Binary-Input Channel Layer. A given channel C (without redundant inputs)
may have an arbitrary number of inputs, which may provide the prover with
room for cheating in the protocol. The binary-input channel layer involves a
mechanism to enforce that the prover (mostly) uses only a prescribed pair of
distinct input symbols α0 and α1. We require that over several uses of the chan-
nel, if the sender uses a different symbol significantly often, then the receiver can
detect this from the empirical distribution of the output symbols it received. This
requires that the sender cannot simulate the effect of sending a combination of
these two symbols by using a combination of some other symbols. Using the geo-
metric interpretation of the channel, this corresponds to the requirement that
the line segment connecting the two vertices µα0 and µα1 of the polytope RC
actually form an edge of the polytope. However, for the erasure layer (described
below) to work we require that the output distributions of α0 and α1 have
intersecting supports. In Lemma 7, we show that in any non-trivial channel C
(without redundant inputs), there indeed exist α0, α1 which satisfy both these
requirements simultaneously. Then, in Lemma 8, we show that there is a statis-
tical test—whose parameters are determined by the geometry of the polytope
RC—that can distinguish between a sender who sends a long sequence of these
two symbols from a sender who uses other symbols in a significant fraction of
positions.

Erasure Layer. We can obtain a non-zero probability of perfect erasure by
encoding 0 as the pair (α0, α1) and 1 as the pair (α1, α0), to be transmitted over
two independent uses of the channel C. Since there is some symbol β such that
both q0 := Pr(C(α0) = β) > 0 and q1 := Pr(C(α1) = β) > 0, the probability of
the receiver obtaining (β, β) is the same positive value q0q1, whether 0 or 1 is
sent as above.5 Hence, one can interpret the view of the receiver as obtained by
post-processing the output of a BEC with erasure probability q0q1, so that the
erasure symbol is mapped to the outcome (β, β).

At the receiver’s end, we use a maximum likelihood decoding, that always
outputs a bit (rather than allowing an erasure symbol as well); if the likelihood
of a received pair of symbols is the same for 0 and 1, it is decoded as a uniformly
random bit. Note that if the sender sends a pair (α0, α0) or (α1, α1), then the
decoding strategy will have the same effect as when the sender sends the encoding

5 This is essentially identical to the Von Neumann extractor trick.
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of a random bit – namely, it will be decoded to a uniformly random bit. Thus, the
net effect of these two layers is that the prover communicates with the verifier
using bits sent via a BSC, except for a few positions where the sender may
arbitrarily control the channel characteristics. While the receiver’s view includes
more information than the output of the BSC, it can be entirely simulated from
the output of a BEC.

PCP Layer. At the outer-most layer, our proof resembles the OWSC/BSC
ZK protocol of [17], but is in fact somewhat simpler.6 Here, the prover simply
sends several independently generated copies of an Oblivious ZK-PCP (routed
through the inner layers discussed above). As we noted above, the view of the
receiver is obtained by post-processing the output of a BEC; hence, by choosing
the parameters of the ZK-PCP appropriately, we can ensure that the receiver’s
view can be statistically simulated.

Ensuring soundness requires more work. The receiver, after obtaining the
bits decoded from the inner layers (provided that no deviation was detected at
the inner-most layer), can try to execute the PCP verification on each proof.
However, it cannot reject the proof on encountering a single proof that fails
the verification, because, even if the prover is honest, the channel can introduce
errors in the received bits. As such, the verifier should be prepared to tolerate
a certain probability of error. One may expect that if the proof was originally
incorrect, then the probability of error would increase. However, this intuition
is imprecise: it is plausible that a wrong proof can match or even surpass some
honest proofs in the probability of passing the PCP verification.

To deal with this, we note that it is not necessary to carry out the original
PCP verification test on the received bits, but rather one should design a sta-
tistical test that separates all correct proofs from incorrect proofs, as received
through the inner layers. We show that for any predicate used by the original
PCP verifier, there is an error-score one can assign to the bits decoded from
the BSC, so that the expected error-score of the decoded bits is lower when they
originally satisfy the PCP verifier’s predicate. The verifier accepts or rejects the
proof by computing the empirical average of the score across all repetitions of
the proof, and thresholding it appropriately.

We remark that our scoring scheme and its analysis are more direct, and
perhaps simpler, compared to the one in [17]. An additional subtlety that arises
in our case is that there can be a few positions where the inner layers do not
constitute the BSC that we try to enforce. Nevertheless, the above approach
remains robust to such deviations, by ensuring that the scores come from a
suitably bounded range.

6 In [17], an encoding scheme was used to argue that with some probability, the bits
sent through the BSC are “erased.” But this encoding turns out to be redundant,
as a BSC implicitly guarantees erasure: Concretely, a BSC with error probability p
can be simulated by post-processing a BEC with erasure probability 2p. The post-
processing corresponds to decoding the erasure symbol as a uniformly random bit.
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5.2 Properties of Non-trivial Channels

The following lemma shows that if C is non-trivial and without redundant inputs,
there is a pair of input symbols α0, α1 with properties that we can use to enforce
binary-input channel layer in Lemma 8 and to realize erasure channel layer in
Lemma 9. Proofs of these lemmas are provided in the full version [1] (Fig. 5).

Fig. 5. Illustration of condition (ii) in Lemma 7. The polytope RC is illustrated here.
Since C has no redundant symbols, there is a bijection between vertices of RC and
the input symbols of the channel. The edge between µα0 and µα1 is highlighted. The
solid part is the convex hull of the vertices other than µα0 and µα1 . By the separating
hyperplane theorem [7], there exists a vector v ∈ [−1, 1]Y and ε > 0 as illustrated.
In Lemma 8, the existence of v, ε is used to devise the statistical test that enforces
the binary input channel layer. That µα0 and µα1 have intersecting support is used in
realizing the erasure layer.

Lemma 7. If C : X → Y without redundant inputs is non-trivial, then there
exist distinct symbols α0, α1 ∈ X , v ∈ [−1, 1]Y and ε > 0 with the following
properties:

(i) ∃y ∈ Y such that µα0(y),µα1(y) > 0.
(ii) 〈µα0 ,v〉 = 〈µα1 ,v〉, and for all α ∈ X \ {α0, α1}, 〈µα,v〉 − 〈µα0 ,v〉 ≥ ε.

In the next lemma, we show that, over several uses of C, a sender who uses
only α0, α1 described in the previous lemma, can be distinguished from one that
uses other symbols (different than α0, α1) significantly often, using the empirical
distribution of the output symbols. Let histogram of a vector y ∈ Ym be defined
as histy (β) = 1

m |{i ∈ [m] : yi = β}| for all β ∈ Y. The following function is a
statistical test that achieves this: fm(y) = 〈histy ,v〉 − 〈µα0 ,v〉.
Lemma 8. If a channel C without redundant inputs is non-trivial, then there
exist α0, α1 ∈ X , ε > 0 and functions fm : Ym → R, for m ∈ N, such that, for
all λ > 0, when x ∈ X m, t = |{i ∈ [m] : xi /∈ {α0, α1}}| and y = C(x),
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〈Enc,Dec〉(a)
For channel C : X → Y , choose α0, α1 ∈ X that satisfy the conditions in Lemma 7. When
a ∈ {0, 1},

1. Enc(a) = (x0, x1) where x0 = αa and x1 = α1−a.
2. (y0, y1) = C(x0, x1).

3. Dec(y0, y1) =

{
b if Pr [C(αb, α1−b) = (y0, y1)] > Pr [C(α1−b, αb) = (y0, y1)] ,
0 (resp. 1) w. p. 1

2
if Pr [C(α0, α1) = (y0, y1)] = Pr [C(α1, α0) = (y0, y1)] .

Fig. 6. Realizing BSC using a channel C : X → Y. Here, a is the input bit to BSC
channel and b is its output. The messages are encoded using symbols α0, α1 ∈ X that
satisfy the conditions in Lemma 7.

Pr

(
fm(y) ≥

√
λ

m
· ε

∣∣∣∣∣t = 0

)
≤ 2e− λ·ε2

2 and

Pr

(
fm(y) ≤

√
λ

m
· ε

∣∣∣∣∣t ≥ 2
√

m · λ

)
≤ 2e− λ·ε2

2 .

The following lemma analyzes the coding scheme in Fig. 6 that realizes era-
sure layer using α0, α1 described in Lemma 7. The fidelity of the scheme is a
consequence of µα0 and µα1 being distinct. As we already observed, receiving
(β, β) in this scheme is effectively the same as receiving an erasure. The lemma
shows that since µα0 ,µα1 having intersecting supports, erasure happens with
non-zero probability. The lemma also formalizes the observation that sending
invalid encodings (αi, αi) for i ∈ {0, 1} is effectively the same as sending the
valid encoding of a random bit.

Lemma 9. The scheme 〈Enc,Dec〉 in Fig. 6 satisfies the following properties:

(i). Pr [Dec (Enc(a)) = a] = p > 1
2 for a ∈ {0, 1};

(ii). Pr [Dec (C(αi, αi)) = 0] = 1
2 for i = 0, 1;

(iii). Let ⊥ be the event that the receiver gets (β, β) as output, where β is in the
support of µα0 and µα1 . Then Pr(⊥|Enc(a)) = ρ > 0, for all a ∈ {0, 1}.

The Binary Symmetric Channel (BSC), with parameter p, is defined as BSCp :
{0, 1} → {0, 1} such that for b ∈ {0, 1}, Pr(BSCp(b) = b) = p. Consider the
scenario where a configuration x ∈ {0, 1}k is sent through BSCp amongst which
S ⊂ {0, 1}k is the set of acceptable configurations. The following lemma assigns
scores {γS

y }y∈{0,1}k to the received configurations in such a way that the expected
score is 0 when an acceptable configuration x ∈ S is sent and the expected score
is a strictly positive constant φS when an unacceptable configuration x /∈ S in
sent.



Cryptography from One-Way Communication 681

Lemma 10. For k ∈ N, let U = {0, 1}k and S ⊆ U . For x,y ∈ U , define
pxy = Pr(BSCp(x) = y). There exists φS > 0 and {γS

y }y∈U ∈ [−1, 1] such that∑
y∈U

pxyγS
y = 0,∀x ∈ S and

∑
y∈U

pxyγS
y = φS ,∀x /∈ S.

Proof: Consider the matrix M ∈ R
U×U such that Mxy = pxy . By the defini-

tion of BSCp, when |x − y| denotes the Hamming distance between x,y ∈ U ,
pxy = (1 − p)|x−y | · pk−|x−y |. It can be verified that, when ⊗ denotes the tensor
operation,

M = H⊗k, where H =
[

p 1 − p
1 − p p

]
.

Since H is invertible and tensor operation preserves non-singularity, M is an
invertible matrix. The existence of φS > 0 and {γS

y }y∈U ∈ [−1, 1] follows directly
from the invertibility of M . ��

5.3 Construction and Analysis

The scheme 〈PZK ,VZK〉 is given in Fig. 7. We now formally prove that this is a
zero-knowledge proof of knowledge with negligible completeness and soundness
error.

We first comment on the strategy of a malicious prover who encodes bits
as (αi, αi) for i = 0, 1. Notice that the statistical test of thresholding f2n·�(y)
is insensitive to such a malicious strategy. But, by statement (ii) in Lemma 9,
a bit that is encoded as (αi, αi) is decoded as 0 (resp. 1) with probability 1

2 .
Hence, with respect to decoding, such a malicious strategy is effectively the
same as encoding a random bit honestly using Enc. Consequently, every malicious
prover strategy (including ones that encode bits incorrectly using (αi, αi)) can
be thought of as a randomized strategy over a sub-class of strategies in which
each bit is encoded as (α, α′), where α 
= α′. Hence, in the sequel, we analyze
soundness only with respect to this class of strategies.

The proof proceeds by bounding the number of bad proofs a malicious sender
can send without getting rejected by the tests performed by the verifier. We
define Bencoding as the set of bad proofs in which at least one bit is encoded
using symbols outside the set {α0, α1}. Also, define Bincorrect as the set of proofs
in which each bit is correctly encoded using Enc, but the proof itself is invalid.
This is formalized as the proofs from which the extractor E for 〈PoZK ,VoZK〉
cannot extract a valid witness. We would argue soundness by showing that if the
sizes of Bencoding and Bincorrect are substantial, then VZK rejects with all but
negligible probability. Furthermore, completeness follows from the tests accept-
ing an honest prover with all but negligible probability. These are established in
the following claims; see the full version [1] for formal proofs. Formally, Bencoding

and Bincorrect are defined as follows.

Bencoding = {i ∈ [n] : ∃(j, k) ∈ [�] × {0, 1} s.t. xi,j
k /∈ {α0, α1}},

Bincorrect = {i ∈ [n] : i /∈ Bencoding and RL(x,E(πi, x)) = 0}.
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〈PZK ,VZK〉
Common input to prover and verifier x ∈ L.
Auxiliary input to prover w such that RL(x, w) = 1.
For a non-trivial channel C, without redundant symbols, consider symbols α0, α1 ∈ X ,
functions fm, for m ∈ N, and ε > 0 as described in Lemma 8. Let 〈Enc,Dec〉 be the
encoding scheme described in Figure 6 w.r.t. α0, α1. Let p and ρ be as described in
Lemma 9 for this encoding scheme. For S ⊂ {0, 1}3, consider γS

y , for each y ∈ {0, 1}3,
and φS , from Lemma 10 with respect to BSCp. Define φ = minS⊂{0,1}3 φS . For security
parameter λ, let (PoZK ,VoZK) be a (3, 1 − ρ)-ZK-PCP with knowledge soundness κ.
Finally, when 	 = poly(λ, |x|) is the length of proof output by PoZK , let n = �λ

κ

)2.
1. PZK samples π1, . . . , πn

$← PoZK(x, w, λ). For all i ∈ [n], j ∈ [	], let the jth bit in
the proof πi be bi,j , then encode bi,j using Enc to obtain (xi,j

0 , xi,j
1 ).

2. For all i ∈ [n], j ∈ [	], let yi,j
0 , yi,j

1

)
= C xi,j

0 , xi,j
1

)
. Let y be the vector

yi,j
k

)
i∈[n],j∈[�],k∈{0,1}.

3. If f2n·�(y) ≥
√

λ
2n�

, then VZK aborts and rejects the proof. Otherwise, VZK decodes
π1, . . . , πn as π̂1, . . . , π̂n such that, for i ∈ [n] and j ∈ [	], the bit bi,j is decoded
as b̂i,j = Dec yi,j

0 , yi,j
1

)
. For each k ∈ [n], choose 3 random indices a1, a2, a3 ∈

[	] of π̂k. If S is the set of accepting configurations for the indices (a1, a2, a3) w.r.t.
VoZK(x, ·), set sk = γS

b̂k
, where b̂k = (b̂k,a1 , b̂k,a2 , b̂k,a3). If 1

n

∑
k∈n sk < κ·φ

12
, then

VZK accepts, else it rejects.

Fig. 7. Description of OWSC/C ZKPoK scheme for a non-trivial channel C without
redundant input symbols.

Claim 2. If Bencoding is empty, then the probability with which f2n·�(y) ≥
√

λ
2n�

is negligible in λ. If |Bencoding| ≥ nκφ
6 , then the probability with which f2n·�(y) <√

λ
2n� is negligible in λ.

Claim 3. If Bencoding = Bincorrect = ∅, then 1
n

∑n
k=1 sk ≥ κ·φ

12 with probability

at most 2e− 1
2 ( �λ·φ

12 )2 . If |Bencoding| ≤ nκφ and |Bincorrect| ≥ n
3 , then 1

n

∑n
k=1 sk <

κ·φ
12 with probability at most 2e− 1

2 ( �λ·φ
12 )2 .

Below, we argue that 〈PZK ,VZK〉 is a zero-knowledge proof using these claims.

Completeness. The above claims directly imply that if π1, . . . , πn are valid
proofs which are correctly encoded, then VZK accepts with all but negligible
probability.

Soundness. We build an extractor E′ from E (the extractor for 〈PoZK ,VoZK〉)
as follows. For each i ∈ [n], extractor E′ tries to extract a proof π∗

i from
the encoding of the purported proof πi. Rejecting each purported proof πi

that is incorrectly encoded, i.e., i ∈ Bencoding. If for some i, we have
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RL(x,E(π∗
i , x)) = 1, output E(π∗

i , x); else, output ⊥. Clearly, E′ aborts only
if Bencoding ∪ Bincorrect = [n]. But the above claims imply that VZK rejects with
all but negligible probability, whenever |Bencoding ∪ Bincorrect| ≥ 2n

3 .

Zero-Knowledge. By Lemma 9, Enc induces an erasure (⊥ in the lemma) with
probability ρ > 0. Recall that the proof uses a (3, 1−ρ)-ZK-PCP 〈PoZK ,VoZK〉.
Let S be a simulator for this ZK-PCP. The construction of simulator S′ for
〈PZK ,VZK〉, using the simulator S is quite straightforward: S′ runs n indepen-
dent executions of S(x, λ) to get π∗

1 , . . . , π
∗
n. It is easy to see that if S produced

a perfect simulation of the ZK-PCP, then S′ would also produce a perfect simu-
lation of the verifier’s view in the ZK proof. Since the simulation by S incurs a
negligible error, so does the simulation by S′.
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