
HAL Id: hal-03355875
https://hal.archives-ouvertes.fr/hal-03355875

Submitted on 27 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Post-quantum Online Voting Scheme
Guillaume Kaim, Sébastien Canard, Adeline Roux-Langlois, Jacques Traoré

To cite this version:
Guillaume Kaim, Sébastien Canard, Adeline Roux-Langlois, Jacques Traoré. Post-quantum Online
Voting Scheme. FC 2021 - Financial Cryptography and Data Security. International Workshops, Mar
2021, Virtual event, France. pp.290-305, �10.1007/978-3-662-63958-0_25�. �hal-03355875�

https://hal.archives-ouvertes.fr/hal-03355875
https://hal.archives-ouvertes.fr


Post-Quantum Online Voting Scheme

Guillaume Kaim1,2, Sébastien Canard1,
Adeline Roux-Langlois2, and Jacques Traoré1

1 Orange Labs, Applied Crypto Group, Caen, France
2 Univ Rennes, CNRS, IRISA, France

Abstract. We propose a new post-quantum online voting scheme whose
security relies on lattice assumptions. Compared to the state-of-the-
art, our work does not make use of homomorphic primitives nor mix-
nets, that are more traditional ways to build electronic voting proto-
cols. The main reason is that zero-knowledge proofs, mandatory in the
two aforementioned frameworks, are far to be as efficient as in “classi-
cal”cryptography, leading us to explore other approaches.
We rather base our work on a framework introduced by Fujioka et al.
at Auscrypt 1992 that makes use of a blind signature scheme as the
main building block. We depart however from this seminal work by al-
lowing threshold issuance of blind signatures (to prevent ballot stuffing
by malicious authorities) and by using a threshold post-quantum public
key encryption scheme (rather than a commitment scheme) to allow vot-
ers to “vote and go”and to prevent “partial results”. We instantiate all
the required primitives with lattice-based constructions leading to the
first online voting scheme that simultaneously provides post-quantum
public verifiability and everlasting privacy (information-theoretic ballot
anonymity). Another advantage of our protocol is that it can, contrary
to recent proposals, efficiently handle elections with multiple candidates
or with complex ballots (and not only referendums or single member plu-
rality voting) without weakening the whole voting protocol by increasing
the parameters size as with previous post-quantum voting schemes.

1 Introduction

The notion of online voting is appealing since the emergence of remote com-
munications. However until now, there is no online voting protocol that fulfills
all the properties (security, efficiency...) required for such a sensitive topic. Still
there exists some interesting constructions that have been used in real-world
elections such as Votopia [KKLA01] or Helios [Adi08] which was trialed during
student elections, for example in Princeton and the Catholic University of Lou-
vain. The International Association of Cryptographic Researcher (IACR) also
adopted Helios to elect its Board.

In this work we investigate the construction of a post-quantum online voting
system built from a framework introduced by Fujioka et al. in Auscrypt 1992,
which mainly relies on the well-known cryptographic primitive called a blind
signature scheme. This framework contrasts from the current trend that makes

c©IFCA The final publication will be available at Springer.



use of homomorphic encryption, or mix-nets system to improve the efficiency of
the tallying phase in addition to offer strong verifiability and privacy properties
thanks to zero-knowledge proofs. However in post-quantum settings, a lack of
efficiency of some of the primitives used in the two frameworks cited above lead us
to investigate on new options for a practical online voting protocol. Indeed since
the groundbreaking work of Shor [Sho97], we know that the arrival of quantum
computers will harm most of the current cryptosystem used in practice, this
is why it is important to replace them with quantum resistant constructions,
among them lattice-based cryptography seems to be the most promising.

Post-Quantum Constructions. To the best of our knowledge, there exists
only 2 post-quantum constructions, both built from lattice-based primitives.
The first scheme is based on fully-homomorphic encryption by Chillotti et al
[CGGI16]. The second one uses zero-knowledge proofs on top of homomorphic
commitments by del Pino et al. [dPLNS17].

Concerning the scheme of Chillotti et al. [CGGI16], the key idea is that they
get rid of the zero-knowledge proofs that are inefficient in lattice-based settings.
Indeed, their work is inspired by the online voting protocol of Helios [Adi08]
which however requires zero-knowledge proofs to allow the voters to prove that
their ballots are correctly formed, but also to permit the tally authority to prove
that the result of the election is correct. In a nutshell, [CGGI16] uses a fully-
homomorphic encryption scheme to replace the zero-knowledge proofs on the
voter’s side, while they use publicly verifiable ciphertext trapdoors to overcome
the absence of zero-knowledge proofs on the authority side. However, using fully-
homomorphic encryption makes the resulting voting scheme quite inefficient as
pointed by del Pino et al. [dPLNS17]. This problem of efficiency may explains
why implementations for the [CGGI16] scheme are lacking.

Concerning the construction of del Pino et al. [dPLNS17], the most important
difference is that they make use zero-knowledge proofs contrary to [CGGI16]. In
fact, the study of lattice-based zero-knowledge proofs has been intensive in the
past five years with several advances in particular regarding their efficiency. This
allows them to rely on a construction that makes a trade-off between efficiency
and security. In short, their construction focuses on the Fiat-Shamir framework
of [Lyu12], in order to prove the knowledge of the multiple of a short element
instead of the element itself. In addition to the zero-knowledge primitive, they
use a commitment scheme that benefits of an additive homomorphic property,
which is very appealing in the online voting context. Finally, as said above, they
provided an implementation of their voting scheme, that permits to analyze the
efficiency of their construction in a real-world scenario. Indeed, generating and
casting ballot is about 8.5 ms, and the time needed on the authority side as well
as for the verification step takes about 0.15 sec. However, their implementation
only considers two candidates, while if we want to add more candidates, the
globals parameters get bigger. Indeed, for 2k possible candidates, the number of
proofs needed is multiplied by a factor k, then the size of the vote increases from
a logarithmic factor in the number of candidates.

2



Framework of Fujioka et al. and Adaptations. We base our construction
on the framework of Fujioka et al. [FOO92] (FOO). In such framework, the
anonymity is granted by a cryptographic primitive called blind signature, while
everyone can verify that the outcome of the election is correct since all the
elements that are necessary to the tally are made public at the end of the election.
Blind signatures allow a user to obtain a signature on a message by interacting
with a signing authority. At the end of the protocol, the authority has never seen
the message and is not able to link a signature to the interactions that led to
this signature. Therefore, the main building blocks of this framework are a blind
signature scheme and a commitment scheme. The first one allows to preserve
the anonymity of each voter, a requirement that is mandatory for any election,
while it forbids voters from voting twice. The commitment scheme prevents any
partial result to leak before the end of the election.

Concretely to generate his vote, any voter begins by computing a commit-
ment of its voting choice, in order to conceal it from other voters until the end
of the election. Then, he authenticates to the voting authority in order to obtain
a blind signature on the commitment of his vote. Both the commitment and the
(blind) signature constitute the voter’s ballot which is then sent to the Bulletin
Board (BB) via here again a perfectly anonymous channel. The later only stores
signed ballots and discard invalid ones (i.e. either ballot that are not signed or
ballot with an invalid signature). At the end of the election, all the voters have to
open their commitment (they have to reveal their voting option and the random
value used to generate the commitment), and to send both values (voting choice
and random value) to the BB. However thanks to the blidness property and the
use of a perfectly anonymous channel, the anonymity is preserved since no one
will be able to link a signed ballot to the voter who requested the corresponding
signature (and therefore no one will be able to link a voter to his vote). Finally
anyone can tally the result of the election, by counting the votes and verifying
the validity of the blind signatures associated to the opened commitments.

The FOO voting scheme suffers from several major drawbacks. The main one
is that all voters have to participate to the ballot counting process, having to open
their commitment at the end of the election: their scheme is not “vote and go”
and would be unsuitable for real-life elections. Worse, the blind signature private
key is held by a single authority who could easily stuff the BB by generating as
many blind signatures (meaning valid but illegitimate ballots) as he wishes.

Our Contribution. Our main contribution is a new post-quantum online vot-
ing scheme whose security relies on lattice assumptions. Compared to the state-
of-the-art, our work does not make use of homomorphic primitives nor zero-
knowledge proofs of knowledge, that are more traditional ways to build electronic
voting protocols. One interest of our construction is also that its efficiency does
not depend on the number of candidates considered. Our construction can in
particular handle complex ballots and could be used for example for preference
voting or for elections with multiple candidates or voting options (for instance
to select the most valuable players of a tournament as Votopia [KKLA01] did).

3



Our scheme uses of the FOO framework, with two main modifications.

– First, we use an encryption scheme instead of a commitment scheme so
that the voting choices are now encrypted. At the end of the election, the
decryption key will be made public so that anyone can decrypt the ballots
and compute the election’s result. With such modification, voters won’t have
to come back at the end of the election to open their commitment. Moreover,
thanks to the indistinguishability property of the encryption scheme, the
votes will remain hidden until the end of the election.

– Second, we transform the encryption and the blind signature schemes into
threshold variants which allows to share the secret key between several au-
thorities. Indeed the private key of the blind signature scheme is given to a
single authority in [FOO92], who could generate as many ballots as he wants
and stuff the Bulletin Board with them. The same problem would arise for
the encryption scheme if we give the private decryption key to a single au-
thority. It means that if the authority owning this private decryption key
is corrupted, then he can get partial results by decrypting the ciphertexts
before the end of the election, which is not desirable for most elections.

We then instantiate the needed building blocks in the lattice setting. We first
chose to use the ring version of Dual-Regev [GPV08,LPR13] as our encryption
scheme. The threshold transformation we considered turns it into a slight version
of a threshold encryption scheme. Indeed, we just need to avoid that the secret
key is given to a single authority, then only the key generation mechanism is
impacted. The idea is that at the end of the election, at least a threshold of T
authorities publish their shares, so that anyone can reconstruct the whole private
key and decrypt the ciphertexts of the valid ballots included in the bulletin board.

We then use the lattice-based blind signature scheme given in [BCE+20] that
we also adapt as a threshold variant. This second transformation is heavier, since
the whole blind signature protocol is impacted. We start by using the result of
Bendlin et al. [BKP13] that exhibits a generic transformation of a trapdoor based
signature scheme [MP12] into a threshold variant3. Since the security of this
transformation is proven using the universally composable (UC) model [Can01],
then by composability our threshold variant remains secure. The two operations
on the signer’s part (the commitment and the signing step) are finally done in a
threshold way by communicating with, at least, t signing authorities. We would
like to emphasize that a recent paper [HKLN20] pointed out several issues in the
one-more unforgeability proofs of previous lattice-based blind signature schemes.
It leads to the fact that one-more unforgeability of [BCE+20] is only conjectured,
while it proposes a better efficiency than the construction of [HKLN20].

3 The basic threshold transformation of [BKP13] makes use of a trusted setup. A
variant without such trusted setup is also given but needs the use of non-mature
multilinear maps [GGH13]. In practice, it is not suitable to have an authority owning
the complete secret keys, as implied by the trusted setup. However we would like
to emphasize that the parameters of a voting scheme can be set a long time before
election day and then we decided to focus on the operations performed by voters
and the authority on the election day.

4



2 Preliminaries

Notation. The vectors are written in bold lower-case letters, and matrices in
bold upper-case letters. The euclidean norm of a vector is denoted by ‖b‖, and
the norm of a matrix ‖T‖ = maxi‖ti‖, where the ti’s are its column vectors.
We denote by D a distribution over some countable support S and x ←↩ D the
choice of x following the distribution D.

2.1 Lattices

We define a m-dimensional full rank lattice Λ as a discrete additive subgroup
of Rm. A lattice is the set of all integer combinations of some linearly independent
basis vector B = {b1, . . . ,bm} ∈ Rn×m: Λ(B) = {

∑m
i=1 zibi, zi ∈ Z}.

We consider n a power of two, such that the polynomial ring R = Z[x]/(xn + 1)

is isomorphic to the integer lattice Zn. Then a polynomial f =
∑n−1
i=0 fix

i in R
corresponds to the integer vector of its coefficients (f0, . . . , fn−1) in Zn. The
notation norm of a polynomial ‖f‖ means that we consider the norm of its
coefficient vector, and as for the integer, the norm of a vector of polynomial
‖f‖ = maxi‖fi‖. For the rest of the paper we will work with polynomials over R,
or Rq = R/qR = Zq[x]/(xn + 1), where q is a prime verifying q = 1 (mod 2n).

Computational Problems. We consider Ring-SIS, a variant of the Short Integer
Solution problem (SIS), proven to be at least as hard as the Shortest Independent
Vectors Problem (SIVP) problem on ideal lattices [LM06,PR06].

Definition 1 (Ring-SISq,m,β). Given a = (a1, . . . , am)T ∈ Rm
q a vector of m

uniformly random polynomials, find a non-zero vector of small polynomials x =
(x1, . . . , xm)T ∈ Rm such that fa(x) =

∑m
i=1 ai ·xi = 0 mod q and 0 < ‖x‖ 6 β.

We also define Ring-LWE that is similar to the Learning With Errors problem
(LWE) [Reg05] but on a polynomial ring:

Definition 2 (Ring-LWEq,DR,αq,m). Given a uniformly chosen vector a ∈ Rm
q

and a polynomial b = a·s+e mod q, with s←$ Rq and e← DRm,αq, the search
Ring-LWE problem asks to find s. The decisional version asks to distinguish if
a pair (a,b) ∈ Rm

q × Rm
q has been generated from the uniform distribution on

Rm
q × Rm

q or if it has been generated as a Ring-LWE sample (a,b = a · s+ e).

Gaussian distribution. The Gaussian function of center c ∈ Rn and width param-

eter σ is defined as ρσ,c(x) = exp(−π ‖x−c‖2
σ2 ), for all x ∈ Rn. A positive definite

covariance matrix is defined as Σ = BBT : ρ√Σ,c = exp(−π(x−c)TΣ−1(x−c)).

The discrete Gaussian distribution over a lattice Λ is defined as DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ) where ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). The vectors sampled from DΛ,σ are short

with overwhelming probability.

Lemma 1 ([Ban93, lemma 1.5]). For any lattice Λ ⊆ Rn, σ > 0 and c ∈ Rn,
we have Prx←↩DΛ,σ,c [‖x− c‖ 6

√
nσ] > 1− 2−Ω(n).

5



Trapdoors. As introduced in [Ajt96] and widespread in [GPV08], a trapdoor for
A ∈ Zn×mq is a short basis of the lattice Λ⊥q (A) := {v ∈ Zm such that Av =
0 mod q}. A trapdoor allows to sample short Gaussian vectors solutions to the
Inhomogeneous Small Integer Solution (ISIS) problem: Av = x mod q with x ∈
Znq . This technique is called Preimage Sampling. In this work we make use of
the trapdoor construction of [MP12]. Construction. In [MP12], the construction
of the gadget-based trapdoor uses a gadget vector g = (1, 2, 4, . . . , 2k−1)T ∈
Rk
q , with k = dlog2 qe, takes as input the modulus q, the Gaussian parameter τ ,

and an optional a′ ∈ Rm−k
q and h ∈ Rq. If no a′ is given it is chosen uniformly

in Rm−k
q and if no h is given, h = 1. The construction outputs a matrix a =

(a′T ‖hg − a′TT)T with T ∈ R(m−k)×k its trapdoor associated to the tag h,
generated as a Gaussian of parameter τ .

Preimage sampling. The construction given in [MP12] enables the use of the
PreSample algorithm. Given a ∈ Rm

q , such algorithm computes a short vector
solution v ∈ Rm of a Ring-SIS problem fa(v) =

∑m
i=1 ai ·vi = 0 mod q, available

only thanks to a trapdoor T ∈ R
(m−k)×k
q for a.

Hash function. We use the hash function family developed in [LM06], denoted
H(Rq,m). Let Rq be a ring and m > 1 a positive integer. The hash function

ha : Rm
q → Rq for a ∈ Rm

q is defined as: x 7→ 〈a,x〉 =
∑m−1
i=0 ai · xi.

Definition 3 (inspired by [Rüc10, definition 2.1]). Let D ⊂ R, the colli-
sion problem Col(H(Rq,m), D) asks to find a distinct pair (x,x′) ∈ Dm ×Dm

such that h(x) = h(x′) for h← H(Rq,m).

Rejection sampling. The construction of blind signature we consider, makes a
significant use of the rejection sampling technique from [Lyu12]. Such rejection
sampling is used in the case we have a distribution depending on a secret we
want to hide. The main idea is to “reject” the elements of this distribution using
a distribution probability not depending on the related secret. In case we can
not perform any rejection sampling, the following lemma also allows to hide the
center of a gaussian distribution.

Lemma 2 ([GKPV10, Lemma 3]). Let v ∈ R be arbitrary. The statistical

distance between the distributions DR,σ and DR,σ,v is at most ‖v‖σ .

2.2 Online Voting Definition and Security Properties

We now give the definition of an online voting system, first talking about entities.

– First we get a set of N eligible voters Vi for i ∈ [N ].
– We also need a set of p authorities Aj for j ∈ [p], that will share the private

election keys.
– Finally we need a bulletin board BB, that will collect the (valid) ballots cast

by the voters. At the end of the election, the valid ballots will be tallied.

6



We take as a basis the definition of an online voting protocol by Cortier et
al. [CGGI14]. However, we voluntarily omit the credential phase, in which eligible
voters obtain their voting credentials. We also modify some parts to manage the
fact that our online voting framework needs interactiveness between voters and
authorities.

Security. We discuss the security properties a secure online voting protocol
should fulfill. Concerning correctness, we fit in with the definition of [CGGI14].
The idea is that a genuinely generated ballot is always accepted into the bulletin
board, and for an election where all parties behave honestly, the result of the
tally always corresponds to the votes cast by the voters.

The verifiability property is a fundamental security property needed in
online voting schemes which has been the subject of several papers in the voting
literature (see [CGK+16]). However, we also rely on the verifiability property
introduced in [CGGI14]. Before describing it, we would like to emphasize that
we only consider “partial tallying online voting protocols”, which means that
the tallying phase is not performed in a single computation, but each ballot is
open separately, then the resulting tally is computed step by step. Verifiability
asks the tallying result to be consistent with the votes cast by honest voters.

Vote secrecy is another fundamental security property. It asks that the voting
choice of a voter remains private during and after the end of the election. In our
definition, called ballot anonymity we depart from the classical ballot privacy
requirement, that has been the subject of an intensive research (summarized in
[BCG+15]). Indeed in our online voting protocol, each ballot will be anonymous,
that is, it does not identify the voter who casts it. This contrasts with most of
other voting protocols, where each ballot is directly linked to the voter who casts
it, leading to the fact that in the tally procedure each individual ballot could
not be open (or decrypt) otherwise this would leak for whom a voter voted.
Our ballot anonymity requirement is very close to the privacy property defined
in [KR05]. A voting protocol satisfies our ballot anonymity requirement if an
attacker cannot link a ballot to the voter who casts it.

3 Our Construction

In this section, we first briefly recall the main tools that we are using: blind
signature schemes and the ring version of the dual Regev encryption scheme.
Then, we transform them in a distributed variant where the private key is shared
among several authorities using the result from Bendlin et al. [BKP13]. Finally,
we present our scheme and discuss its security.

3.1 Cryptographic Primitives

Blind Signatures. We first recall the blind signature described in [BCE+20].

– Setup. We consider the polynomial ring Rq = Zq[X]/(Xn+1). Two families
of hash functions are necessary in this protocol, first a generic one H ←$

7



H(1n) : {0, 1}∗ → R2 (modelled as a random oracle), and a second one on
the specific ring Rq, typically h←$ H(Rq,m) as defined in the preliminaries.
Table 1 shows up the different sizes of the parameters: n is a power of 2, in
order to have the polynomial Xn + 1 irreducible, m ensures the worst-case
to average case reduction of the scheme. The others parameters are set such
that the rejection sampling and security arguments work.

– Key Generation. The key generation algorithm BS.Keygen(1n) selects a
secret key s ∈ Rm

3 and a vector of polynomial a = (a′T ‖hg−a′TTa)T ∈ Rm
q ,

along with a trapdoor Ta on a, such that the hash function ha ∈ H(Rq,m)
is built with this polynomial vector a. Finally the public key p = ha(s) is
made public. BS.Keygen(1n) outputs sk = (s,Ta), pk = (p,a).

– Signature. The interactive blind signature protocol
BS.Sign(Signer(s,Ta),User(p,M)) is composed of 3 exchanges:
• The signer generates y←↩ Dm

R,σ and sends x = ha(y) to the user.
• The user generates two ephemeral vectors t1 ←↩ DR,α, t2 ←↩ Dm

R,β , such

that if ‖t2‖ > t
√
n ·m · β it generates a fresh t2 ←↩ Dm

R,β until the
test succeeds. He then generates the hashing values e = H(x − p · t1 −
ha(t2),M) and e∗ = e− t1 and applies the rejection sampling test on e∗.
If this test passes, it sends e∗ and otherwise, it restarts this whole step.

• The signer generates the signature z∗ = e∗ ·s+y, it applies the rejection
sampling test and sends z∗ if the test passes and uses its trapdoor Ta

to generate a presample on e∗ · p + x with parameter σ if not. Finally if
‖z∗‖ > t

√
n ·m · σ it generates fresh z∗ with its trapdoor until this test

passes. He sends z∗ to the user.
The user computes z = z∗ − t2 and outputs the blind signature (M, (z, e)).

– Verification. The verification procedure BS.Verif(p,M, (z, e)) outputs 1
iff ‖z‖ 6 D and H(ha(z)− p · e,M) = e.

Encryption Scheme. Concerning the encryption scheme, we use the Dual-
Regev encryption scheme [GPV08,LPR13] on a polynomial ring Rq. However,
any post-quantum encryption scheme would fit into our voting protocol.

– Setup. The set-up algorithm PK.Setup chooses integers n,m, q and two real
α, β such that the dual-Regev encryption scheme on the polynomial rings is
secure (see [LPR13]).

Parameter Value Asymptotic

n power of 2 -

m blog qc+ 1 Ω(logn)

γ nα O(n
√
n)

α ω(k
√

logn) O(
√
n)

β 2ω(logn)σ
√
n O(n3 2ω(logn))

σ ω((n
√
nα)
√

logn) O(n2√n)

D t
√
n ·m(β + σ) O(n3√n 2ω(logn))

q > 4mn
√
n log(n)D.prime Θ(n6 2ω(logn))

Table 1. Parameters of [BCE+20].

8



– KeyGen. The Key generation algorithm PK.KeyGen(1n) starts by sampling
s ←↩ DRm,α, a ←$ Rm

q uniformly at random and computes u = aT s ∈ Rm
q .

It outputs (ek,mk) where ek = s ∈ Rm
q is the secret key and mk = (a, u) ∈

Rm
q × Rq is the public key.

– Encrypt. Given a message m ∈ R2, and a public key mk, the encryption
algorithm PK.Encrypt(m,mk) chooses a vector v ∈ Rq uniformly at random,
and outputs the ciphertext (b = av + e, c = u · v + e′ + bq/2cm) ∈ Rm

q ×Rq

where e←↩ DRm,β , e′ ←↩ DR,β .
– Decrypt. Given a ciphertext (b, c) ∈ Rm

q × Rq and a private key ek = s ∈
Rm
q , PK.Decrypt((b, c), ek) computes µ = c− bT s = −eT · s + e′ + bq/2cm.

To recover the message m, it suffices to look after each coordinate of µ, if
the i-th coordinate is closer to 0 than to bq/2c then the i-th bit of m is equal
to 0 and 1 otherwise.

3.2 Threshold Functionalities

Threshold Tools and Variants. In the original version of a blind signature
scheme, there is only one signer who could easily, in the context of online voting,
stuff the Bulletin Board by adding as many valid (but illegitimate) ballots as he
wishes. We therefore transform it into a threshold one, using the generic trans-
formation of a trapdoor based signature scheme with strong trapdoor of [MP12],
into a threshold trapdoor based signature scheme by [BKP13]. The construction
of [BKP13] is built on the integer ring Zq, but the blind signature of [BCE+20]
relies on polynomial ring Rq. However the strong trapdoor construction can be
adapted to this ring setting [MP12], and the Shamir secret sharing [Sha79] still
works on this type of rings. Then the whole construction of [BKP13] can be
adapted to the polynomial ring setting.

As our transformation is applied on a blind signature scheme and not on a
signature scheme, we have several modifications to provide. The signer’s part
of the blind signature is composed of two steps. At first, it has to generate a
commitment, which one can be transformed in a threshold manner using Shamir
secret sharing and a trusted setup to share a Gaussian vector. The second step
consists in a classic “Fiat-Shamir with abort” signature, which can easily be
transformed into a threshold one by means of homomorphic properties of the
Shamir secret sharing. In case of abort, the signer performs a GPV-like signature
which is a generic signature scheme and can be transformed using the generic
transformation of [BKP13] into a threshold scheme.

The proofs of the various protocols from [BKP13] are realized in the UC
model [Can01], so that we just have to plug the threshold functionalities into
the blind signature scheme, to obtain, by composability, a secure threshold vari-
ant of the blind signature scheme. Below we describe the two main protocols,
which are the KeyGen and the SampleZ protocol. Moreover we choose to give
an informal description of the functionalities involved for these two protocols.
The full construction can be found in the paper of [BKP13].

We consider p authorities, such that a threshold of t authorities is mandatory
to execute the various functions developed below. Let a′ ∈ Rm−k

q be a uniformly

9



distributed vector of polynomial and T ∈ R
(m−k)×k
q be a Gaussian-distributed

matrix. Let {[T]i}i∈[p] be the shares of the polynomial matrix T. Let us denote
by a1 = a′T ·T mod q and a = [a′|a1].

– FBlind: This functionality takes as input shares of an arbitrary value x and
output fresh shares [x]i of this same value.

– FSampZ: This functionality takes as input dimensions h × d and a gaussian
variance z. It outputs shares [Z]i of a gaussian distributed matrix Z← Dh×d

z .
– Threshold KeyGen protocol : The KeyGen protocol is realised in the FBlind,
FSampZ model. On input the tuple (a′, h∗ ∈ Rq, z ∈ Z), each party i does:
1. call FSampZ((m− k)× k, z), then receive [T]i;
2. call FBlind(−a′T [T]i) , then receive [a1]i;
3. broadcast [a1]i and reconstruct a1 = a′T ·T mod q from other shares;
4. output a = [a′|h∗ · g + a1] as the public key and [T]i as the private key

of the authority i.
– FGadget: It takes as input a coset value v ∈ Rq and outputs shares [u]i ∈ Rk

of a gaussian distributed polynomial vector such that gT · u = v.
– FCorrect: This functionality generates for each j ∈ [k] and v ∈ Rq queues
Qj,v of at least B values in each queue, that will allow the signer to perform
at least B pre-image of each vector v ∈ Rq. Each queue Qj,v is composed
by using the gadget functionality developed above and the shares [T]i of the

trapdoor such that each authority gets a share of yj,v =

[
T
I

]
(ej ⊗ zj,v) for

zj,v ∈ Λ⊥v (gT ), with ej the vector composed of 0 elements except the j-th
coordinate which is equal to 1.
Then, in the sampling algorithm of [MP12], when we have to correct a per-
turbation to get a correct sample for a given syndrom v ∈ Rq, the authorities
recover a value in the corresponding queue Qj,v1 , · · · , Qj,vn .

– FPerturb: The perturb algorithm in the threshold setting, is the same as in
the standard setting, but the perturbation vector is then shared between
the p authorities using the functionality FSampZ. then it takes as inputs a
dimension h×d and a gaussian parameter z, it outputs [P]i with P← Dh×d

z .

SampleZ protocol. Using FPerturb and FCorrect defined above (threshold coun-
terparts of the steps composing the Preimage sampling protocol introduced
in [MP12]), the SampleZ protocol generates a presample in the same way, but
with the threshold variants of the subalgorithms perturb and correct.

Threshold Variants of our Building Blocks. Using the above tools, we now
give the modifications we need to provide a threshold variant of both the en-
cryption scheme (PK.KeyGen to TBS.KeyGen) and the blind signature primitive
of [BCE+20] (BS.KeyGen and BS.Sign to TBS.KeyGen and TBS.Sign resp.).

– TPK.KeyGen(1n, 1p). It generates s ←↩ DRm,α as the secret key in a dis-
tributed way using the FSampZ algorithm, such that each authority Ai, i ∈ [p]
gets a share [s]i. Concerning the public key, it chooses a←$ Rm

q uniformly at

10



random. Finally each authority computes and reveals [u]i = aT [s]i ∈ Rm
q , i ∈

[p] such that u can be recovered and output publicly. The secret keys are
then the elements [ek]i = [s]i ∈ Rm

q , i ∈ [p] and the public key is composed
of the pair mk = (a, u) ∈ Rm

q × Rq, it outputs (ek,mk).
– TBS.KeyGen(1n, 1p). TBS.KeyGen generates a public polynomial vector

a with a trapdoor T using a trapdoor generation algorithm in a distributed
way using the Threshold Keygen protocol described above. It then generates
a random polynomial vector s ∈ Rm

3 with its image by the hash function
such that p = ha(s). Concerning s, the algorithm FSampZ is executed by each
authority, in order to obtain [s]i, i ∈ [p], they each then have to broadcast
their public part a·[s]i, i ∈ [p] to recover and output the public key p. Finally
the algorithm outputs the public key pk = (p,a) and the private key share
[sk]i = ([T]i, [s]i), i ∈ [p] to each authority Ai, i ∈ [p].

– TBS.Sign({(Ai([sk]i))}i∈T ,V(pk,M)). Considering a set of T signing au-
thorities Ai, i ∈ [T ], the signature algorithm is the same as the one in
[BCE+20] from the user’s side. Concerning the signer’s view, firstly the
commitment y is generated in a distributed manner using the algorithm
FSampZ, such that the authorities get a share [y]i and distributively output
the corresponding element x = ha(y) in the same way as it was done in the
TBS.KeyGen algorithm for the pair (s,p). Concerning the signing step, from
the signer’s view, the first attempt of signature, which is a Fiat-Shamir like
signature [Lyu12], is performed between the authorities thanks to the homo-
morphic property of the Shamir secret sharing, while the GPV-like [GPV08]
signature generation is performed in a threshold manner using the SampZ
protocol. Finally, the algorithm outputs the signature σ = (M, e, z).

3.3 Our Scheme

As explained above, we chose to modify the [FOO92] framework in order to let
voters “Vote and go” and to prevent ballot stuffing by a malicious authority.
Instead of committing to their voting choices, voter will have to encrypt them
using the public election key. At the end of the election, the decryption key will
be disclosed so that anyone will be able to decrypt the ballots and compute
the result of the election. To avoid fraud by a malicious authority, we transform
the underlying encryption and blind signature schemes considered into threshold
variants, so that the corresponding private keys would be shared among several
authorities and not a single one.

Considering these modifications of the [FOO92] framework, we describe the
complete online voting protocol that we build from the above cryptographic
primitives. First, a setup phase generates the parameters of the protocol, in-
cluding the private and public keys of the used cryptographic schemes. Next the
voting phase is composed of two steps: the voter first encrypts his voting option
(using the public election key) and then interacts with (at least) t voting author-
ities to obtain a blind signature on his ciphertext. His ballot b is composed of
the ciphertext c of his voting choice v along with a (blind) signature σ on c such
that b = (c, σ). The Bulletin Board accepts the ballot if σ is a valid signature

11



on c and discards it otherwise. In the counting phase, the tallying authorities
reveal their share of the private encryption key, so that anyone can recover the
corresponding decryption key and decrypt the ballots (the ciphertexts c) to com-
pute the result of the election. Auditing the election is easy. For this purpose, an
interested voter first has to check that all the ballots collected by the Bulletin
Board are valid (i.e. that the signatures σ are valid) and that the decryption key
published by the talliers is correct (i.e., corresponds to the public election key).
He then has to decrypt all the ballots using the decryption key and computes
the result of the election just as the talliers did.

• Setup(1n, 1p, 1N ). This algorithm has to generate two pairs of secret/public
keys, one pair for the encryption scheme and another one for the blind signa-
ture scheme. Moreover these keys have to be generated in a threshold manner,
for a number p of authorities, with a threshold number of t. Let us denote by
(sk, pk) ← BS.KeyGen(1n) and (ek,mk) ← PK.KeyGen(1n), and by [sk]i

(resp [ek]i) the shares of the private blind signature key (resp encryption key).
Then the setup algorithms outputs pk = (pk,mk) and sk = ([sk]i, [ek]i)i∈[p].

• Vote(Vi(v,pk),Aj([sk]j)j∈T). The voting phase is split in two steps. First, the
voter Vi encrypts his vote v ∈ {0, 1}∗ in c = PK.encrypt(v,mk) in an offline
phase. Then in an online phase, he is first authenticated (to check whether
he is an eligible voter who has not yet requested a blind signature from the
voting authorities). The protocol aborts if the authentication failed or if the voter
already requested a blind signature. He then interacts with voting authorities
Aj to get a blind signature σ = BS.Sign({Aj([sk]j)}j∈T,Vi(pk, c)), with T a
set of authorities of size at least t. Finally the voter outputs (σ, c) as his ballot
and casts it, anonymously, into the bulletin board BB.

• Validate(b, pk). On input a ballot b = (σ, c), anyone can check its validity by
performing the verification algorithm of the blind signature BS.Verify(pk, c, σ),
it outputs 0 if the blind signature verification fails and 1 otherwise.

• Box(BB, b). It takes as input the current state of the bulletin board BB,
along with a ballot b. It first checks the validity of b by performing the algo-
rithm described above: Validate(b, pk). It updates BB ← BB ∪ {b} if Validate
outputs 1 and remains unchanged if it outputs 0.

• Tally(BB, pk, Ej([ek]j)j∈[p]). At the end of the election, at least t (the thresh-
old) authorities (Ej)j∈[t] holding the shares of the decryption key ek reveal pub-
licly their share ([ek]j)j∈t, such that anyone can rebuild the decryption key ek.
Then for each ballot (σ, c) ∈ BB, anyone can decrypt c and retrieve the vote
v = PK.decrypt(c, ek) of each voter, after verifying that BS.Verify(σ, pk) = 1.
Then he/she can tally and outputs the result r, which corresponds to the out-
come of the election r = {vi}i∈k with k 6 N the number of voters that output
a valid ballot.

• Verify(BB, r, ek). This algorithm is straightforward. Since the decryption
secret key ek is made public (and since anyone can check that it corresponds to
the public election key), anyone can check the validity of the result by decrypting
all the ciphertexts c contained in valid ballots (σ, c) ∈ BB (i.e., with a valid blind
signature σ) and tally them to compare to the announced result r.

12



3.4 Security of our Scheme

Theorem 1 (Correctness). Since the blind signature and public key encryp-
tion schemes are correct, then our online voting scheme is correct.

Proof. According to our definition, our voting protocol is correct if a ballot gen-
erated by an honest voter is accepted with overwhelming probability by the BB,
and if the result of an election where every party behaves honestly, corresponds
to the votes cast by voters. The first condition is fulfilled since the blind signa-
ture scheme used to authenticate valid ballots is correct. The second condition is
verified since the encryption scheme satisfies the correctness requirement. Since
our voting protocol satisfies both conditions it is therefore correct.

Theorem 2 (Verifiability). Using a strong authentication scheme and a one-
more unforgeable blind signature scheme, our voting scheme is verifiable.

Sketch of proof. To win the game, the attacker has either to (1) impersonate an
honest voter or (2) cast more valid votes (let say nC + 1) than the number nC
of corrupted users. (1) would mean that he has successfully broken the strong
authentication scheme used by voters to authenticate to Voting Authorities.
(2) would mean that the attacker could generate more valid blind signatures
than requested (therefore breaking the one-more unforgeability of the threshold
blind signature scheme) or that there exists more dishonest voting authorities
than assumed (which could generate as many valid but illegitimate-ballots as
they wish). Furthermore, he can not cheat after the end of the election, since
the election’s tally is made public. We further notice that the tally can not give
two different results for two iterations of the Tally algorithm since the decryption
mechanism and the blind signature verification algorithm are both deterministic.

Theorem 3 (Ballot anonymity). Our voting scheme provides perfect (infor-
mation-theoretic) ballot anonymity.

Sketch of proof. In the ballot anonymity game, an attackerA∗ chooses two honest
voters V0 and V1 and two voting options v0 and v1. It then interacts with V0
and V1 who then cast, using a perfectly anonymous channel, two ballots bc (on
v0) and b1−c (on v1). A∗ has to identify which voter outputs which ballot. We
then have to prove that the attacker A∗ has a negligible advantage (compared
to random guessing) to win. In our protocol, each ballot does not include any
information about the identity of each voter, since the encryption and blind
signature schemes are performed only on the voting choices v0 and v1. As our
blind signature scheme provides perfect blindness and since we assumed that
ballots are cast via a perfectly anonymous channel, A∗ cannot find c better
than random guessing. Therefore, provided that ballots are cast via a perfectly
anonymous channel, our voting protocol provides perfect ballot anonymity.

Partial results. The encryption scheme prevents any partial result to leak. Indeed
the decryption key is shared among several authorities, which cannot open the
ballots without at least t shares of it. Then as long as p− t+ 1 of them remain
honest, the ballots cannot be opened before the end of the election.

13



4 Conclusion

In this paper we presented a new practical lattice-based online voting system.
In contrast to traditional schemes, our protocol does not rely on homomorphic
aggregation or mix-nets and does not make use of zero-knowledge proofs, which
have previously been the main issue in the post-quantum setting. Instead, our
scheme extends on an idea first introduced at Auscrypt’92, where the security
is (among others) achieved through a blind signature scheme. Compared to the
state-of-the art in post-quantum online voting, our system supports complex
ballots and provides stronger privacy guarantees (namely everlasting privacy
thanks to the perfect blindness provided by the blind signature scheme we used).
In a future version of this work, we plan to implement our protocol and present
benchmarks of its computational runtime and to develop the intuitive security
analysis presented here, using rigorous definitions and formal proofs.

Acknowledgement

The authors wants to thank the anonymous reviewers for their useful comments.
This work has been supported by the European Union H2020 PROMETHEUS
Innovation Program Grant 780701.

References

Adi08. B. Adida. Helios: Web-based open-audit voting. In USENIX Security Sym-
posium, pages 335–348. USENIX Association, 2008.

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In STOC, pages 99–108. ACM, 1996.

Ban93. W. Banaszczyk. New bounds in some transference theorems in the geometry
of numbers. Mathematische Annalen, 296(4):625–636, 1993.

BCE+20. S. Bouaziz-Ermann, S. Canard, G. Eberhart, G. Kaim, A. Roux-Langlois,
and J. Traoré. Lattice-based (partially) blind signature without restart.
IACR Cryptol. ePrint Arch., 2020:260, 2020.

BCG+15. D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. Sok: A
comprehensive analysis of game-based ballot privacy definitions. In IEEE
Symposium on Security and Privacy, pages 499–516. IEEE Computer So-
ciety, 2015.

BKP13. Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice
trapdoor: Threshold protocols for signatures and (H)IBE. In ACNS, volume
7954 of Lecture Notes in Computer Science, pages 218–236. Springer, 2013.

Can01. R. Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, pages 136–145. IEEE Computer Society,
2001.

CGGI14. V. Cortier, D. Galindo, S. Glondu, and M. Izabachène. Election verifiability
for helios under weaker trust assumptions. In ESORICS (2), volume 8713
of Lecture Notes in Computer Science, pages 327–344. Springer, 2014.

14



CGGI16. I. Chillotti, N.s Gama, M. Georgieva, and M. Izabachène. A homomorphic
LWE based e-voting scheme. In PQCrypto, volume 9606 of LNCS, pages
245–265. Springer, 2016.

CGK+16. V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung. Sok:
Verifiability notions for e-voting protocols. In IEEE Symposium on Security
and Privacy, pages 779–798. IEEE Computer Society, 2016.

dPLNS17. Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler.
Practical quantum-safe voting from lattices. In ACM Conference on Com-
puter and Communications Security, pages 1565–1581. ACM, 2017.

FOO92. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret
voting scheme for large scale elections. In AUSCRYPT, volume 718 of
Lecture Notes in Computer Science, pages 244–251. Springer, 1992.

GGH13. S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, volume 7881 of LNCS, pages 1–17. Springer,
2013.

GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption. In ICS, pages
230–240. Tsinghua University Press, 2010.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206. ACM,
2008.

HKLN20. Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-
based blind signatures, revisited. IACR Cryptol. ePrint Arch., 2020:769,
2020.

KKLA01. K. Kim, J. Kim, B. Lee, and G. Ahn. Experimental design of worldwide
internetvoting system using pki. SSGRR2001, 2001.

KR05. S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the ap-
plied pi calculus. In ESOP, volume 3444 of LNCS, pages 186–200. Springer,
2005.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In ICALP (2), volume 4052 of Lecture Notes
in Computer Science, pages 144–155. Springer, 2006.

LPR13. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryp-
tography. In EUROCRYPT, volume 7881 of LNCS, pages 35–54. Springer,
2013.

Lyu12. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
volume 7237 of LNCS, pages 738–755. Springer, 2012.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT, volume 7237 of Lecture Notes
in Computer Science, pages 700–718. Springer, 2012.

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In TCC, volume 3876 of Lecture
Notes in Computer Science, pages 145–166. Springer, 2006.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93. ACM, 2005.

Rüc10. Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, volume
6477 of Lecture Notes in Computer Science, pages 413–430. Springer, 2010.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
Sho97. Peter W. Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–
1509, 1997.

15


	Post-Quantum Online Voting Scheme

