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Abstract. The random oracle model (ROM) enjoys widespread popularity, mostly because it
tends to allow for tight and conceptually simple proofs where provable security in the standard
model is elusive or costly. While being the adequate replacement of the ROM in the post-
quantum security setting, the quantum-accessible random oracle model (QROM) has thus
far failed to provide these advantages in many settings. In this work, we focus on adaptive

reprogrammability, a feature of the ROM enabling tight and simple proofs in many settings. We
show that the straightforward quantum-accessible generalization of adaptive reprogramming is
feasible by proving a bound on the adversarial advantage in distinguishing whether a random
oracle has been reprogrammed or not. We show that our bound is tight by providing a matching
attack. We go on to demonstrate that our technique recovers the mentioned advantages of the
ROM in three QROM applications: 1) We give a tighter proof of security of the message
compression routine as used by XMSS. 2) We show that the standard ROM proof of chosen-
message security for Fiat-Shamir signatures can be lifted to the QROM, straightforwardly,
achieving a tighter reduction than previously known. 3) We give the �rst QROM proof of
security against fault injection and nonce attacks for the hedged Fiat-Shamir transform.

Keywords: Post-quantum security, QROM, adaptive reprogramming, digital signature, Fiat-
Shamir transform, hedged Fiat-Shamir, XMSS

1 Introduction

Since its introduction, the Random oracle model (ROM) has allowed cryptographers to prove e�cient
practical cryptosystems secure for which proofs in the standard model have been elusive. In general,
the ROM allows for proofs that are conceptually simpler and often tighter than standard model
security proofs.

With the advent of post-quantum cryptography, and the introduction of quantum adversaries, the
ROM had to be generalized: In this scenario, a quantum adversary interacts with a non-quantum net-
work, meaning that "online" primitives (like signing) stay classical, while the adversary can compute
all "o�ine" primitives (like hash functions) on its own, and hence, in superposition. To account for
these stronger capabilities, the quantum-accessible ROM (QROM) was introduced [BDF+11]. While
successfully �xing the de�nitional gap, the QROM does not generally come with the advantages of
its classical counterpart:
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- Lack of conceptual simplicity. QROM proofs are extremely complex for various reasons. One
reason is that they require some understanding of quantum information theory. More important,
however, is the fact that many of the useful properties of the ROM (like preimage awareness and
adaptive programmability) are not known to translate directly to the QROM.

- Tightness. Many primitives that come with tight security proofs in the ROM are not known
to be supported by tight proofs in the QROM. For example, there has been an ongoing e�ort
[SXY18, JZC+18, JZM19, BHH+19, KSS+20, HKSU20] to give tighter QROM proofs for the
well-known Fujisaki-Okamoto transformation [FO99, FO13], which is proven tightly secure in
the ROM as long as the underlying scheme ful�lls IND-CPA security [HHK17].

In many cases, we expect certain generic attacks to only di�er from the ROM counterparts by
a square-root factor in the required number of queries if the attack involves a search problem, or
no signi�cant factor in the case of guessing. Hence, it was conjectured that it might be su�cient to
prove security in the ROM, and then add a square-root factor for search problems. However, recent
results [YZ20] demonstrate a separation of ROM and QROM, showing that this conjecture does not
hold true in general, as there exist schemes which are provably secure in the ROM and insecure in
the QROM. As a consequence, a QROM proof is crucial to establish con�dence in a post-quantum
cryptosystem.5

Adaptive programmability. A desirable property of the (classical) ROM is that any oracle value
O(x) can be chosen when O is queried on x for the �rst time (lazy-sampling). This fact is often
exploited by a reduction simulating a security game without knowledge of some secret information.
Here, an adversary A will not recognize the reprogramming of O(x) as long as the new value is
uniformly distributed and consistent with the rest of A's view. This property is called adaptive
programmability.

The ability to query an oracle in superposition renders this formerly simple approach more
involved, similar to the di�culties arising from the question how to extract classical preimages
from a quantum query (preimage awareness) [Unr14b, AHU19, BHH+19, KSS+20, Zha19, DFMS19,
LZ19, BL20, CMP20]. Intuitively, a query in superposition can be viewed as a query that might
contain all input values at once. Already the �rst answer of O might hence contain information
about every value O(x) that might need to be reprogrammed as the game proceeds. It hence was
not clear whether it is possible to adaptively reprogram a quantum random oracle without causing
a change in the adversary's view.

Until recently, both properties only had extremely non-tight variants in the QROM. For preimage
awareness, it was essentially necessary to randomly guess the right query and measure it (with an
unavoidable loss of at least 1/q for q queries, and the additional disadvantage of potentially rendering
the adversary's output unusable due to measurement disturbance). In a recent breakthrough result,
Zhandry developed the compressed oracle technique that provides preimage awareness [Zha19] in
many settings. For adaptive reprogramming, variants of Unruh's one-way-to-hiding lemma allowed
to prove bounds but only with a square-root loss in the entropy of the reprogramming position
[Unr14a, ES15, HRS16].

In some cases [BDF+11, KLS18, SXY18, HKSU20], reprogramming could even be avoided by
giving a proof that rendered the oracle �a-priori consistent�, which is also called a �history-free� proof:
In this approach, the oracle is completely rede�ned in a way such that it is enforced to be a priori
consistent with the rest of an adversary's view, meaning that it is rede�ned before execution of the
adversary, and on all possible input values. Unfortunately, it is not always clear whether it is possible
to lift a classical proof to the QROM with this strategy. Even if it is, the �a-priori� approach usually
leads to conceptually more complicated proofs. More importantly, it can even lead to reductions that
are non-tight with respect to runtime, and may necessitate stronger or additional requirements like,

5 Unless, of course, a standard model proof is available.
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e.g., the statistical counterpart of a property that was only used in its computational variant in the
ROM. An example is the CMA-security proof for Fiat-Shamir signatures that was given in [KLS18].

Hence, in this work we are interested in the question:

Can we tightly prove that adaptive reprogramming can also be done in the
quantum random oracle model?

Our contribution. For common use cases in the context of post-quantum cryptography, this work
answers the question above in the a�rmative. In more detail, we present a tool for adaptive re-
programming that comes with a tight bound, supposing that the reprogramming positions hold
su�ciently large entropy, and reprogramming is triggered by classical queries to an oracle that
is provided by the security game (e.g., a signing oracle). These preconditions are usually met in
(Q)ROM reductions: The reprogramming is usually triggered by adversarial signature or decryption
queries, which remain classical in the post-quantum setting, as the oracles represent honest users.

While we prove a very general lemma, using the simplest variant of the superposition oracle
technique [Zha19], we present two corollaries, tailored to cases like a) hash-and-sign with randomized
hashing and b) Fiat-Shamir signatures. In both cases, reprogramming occurs at a position of which
one part is an adversarially choosen string. For a), the other part is a random string z, sampled
by the reduction (simulating the signer). For b), the other part is a commitment w chosen from a
distribution with su�cient min-entropy, together with additional side-information. In both cases,
we manage to bound the distinguishing advantage of any adversary that makes qs signing and qH
random oracle queries by

1.5 · qs
√
qH · 2−r ,

where r is the length of z for a), and the min-entropy of w for b).
We then demonstrate the applicability of our tool, by giving

� a tighter proof for hash-and-sign applications leading a tighter proof for the message-compression
as used by the hash-based signature scheme XMSS in RFC 8391 [HBG+18] as a special case,

� a runtime-tight reduction of unforgeability under adaptive chosen message attacks (UF-CMA)
to plain unforgeability (UF-CMA0, sometimes denoted UF-KOA or UF-NMA) for Fiat Shamir
signatures.

� the �rst proof of fault resistance for the hedged Fiat-Shamir transform, recently proposed
in [AOTZ20], in the post-quantum setting.

Hash-and-sign. As a �rst motivating and mostly self-contained application we analyze the hash-
and-sign construction that takes a �xed-message-length signature scheme SIG and turns it into
a variable-message-length signature scheme SIG′ by �rst compressing the message using a hash
function. We show that if SIG is secure under random message attacks (UF-RMA), SIG′ is secure
under adaptively chosen message attacks (UF-CMA). Then we show that along the same lines, we can
tighten a recent security proof [BHRvV20] for message-compression as described for XMSS [BDH11]
in RFC 8391. Our new bound shows that one can use random strings of half the length to randomize
the message compression in a provably secure way.

The Fiat-Shamir transform. In Section 4.1, we show that if an identi�cation scheme ID is Honest-
Veri�er Zero-Knowledge (HVZK), and if the resulting Fiat-Shamir signature scheme SIG := FS[ID,H]
furthermore possesses UF-CMA0 security, then SIG is also UF-CMA secure, in the quantum random
oracle model. Here, UF-CMA0 denotes the security notion in which the adversary only obtains the
public key and has to forge a valid signature without access to a signing oracle. While this statement
was already proven in [KLS18], we want to point out several advantages of our proof strategy and
the resulting bounds.
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Conceptual simplicity. A well-known proof strategy for HVZK,UF-CMA0 ⇒ UF-CMA in the ran-
dom oracle model (implicitly contained in [AFLT12]) is to replace honest transcripts with simulated
ones, and to render H a-posteriori consistent with the signing oracle during the proceedings of the
game. I.e., H(w,m) is patched after oracle SIGN was queried onm. Applying our lemma, we observe
that this approach actually works in the quantum setting as well. We obtain a very simple QROM
proof that is congruent with its ROM counterpart.

In [KLS18], the issue of reprogramming quantum random oracle H was circumvented by giving
a history-free proof: In the proof, messages are tied to potential transcripts by generating the latter
with message-dependent randomness, a priori, and H is patched accordingly, right from the beginning
of the game. During each computation of H(w,m), the reduction therefore has to keep H a-priori
consistent by going over all transcript candidates (wi, ci, zi) belonging to m, and returning ci if
w = wi.

Tightness with regards to running time. Our reduction B has about the running time of
the adversary A, as it can simply sample simulated transcripts and reprogram H, accordingly. The
reduction in [KLS18] su�ers from a quadratic blow-up in its running time: They have running time
Time(B) ≈ Time(A) + qHqS , as the reduction has to execute qS computations upon each query to H
in order to keep it a-priori consistent. As they observe, this quadratic blow-up renders the reduction
non-tight in all practical aspects. On the other hand, our upper bound of the advantage comes
with a bigger disruption in terms of commitment entropy (the min-entropy of the �rst message (the
commitment) in the identi�cation scheme). While the source of non-tightness in [KLS18] can not be
balanced out, however, we o�er a trade-o�: If needed, the commitment entropy can be increased by
appending a random string to the commitment.6

Generality. To achieve a-priori consistency, [KLS18] crucially relies on statistical HVZK. Further-
more, they require that the HVZK simulator outputs transcripts such that the challenge c is uniformly
distributed. We are able to drop the requirement on c altogether, and to only require computational
HVZK. (As a practical example, alternate NIST candidate Picnic [CDG+17] satis�es only computa-
tional HVZK.)

Robustness of the hedged Fiat-Shamir transform against fault attacks.When it comes
to real-world implementations, the assessment of a signature scheme will not solely take into consid-
eration whether an adversary could forge a fresh signature as formalized by the UF-CMA game, as
the UF-CMA de�nition does not capture all avenues of real-world attacks. For instance, an adversary
interacting with hardware that realizes a cryptosystem can try to induce a hardware malfunction,
also called fault injection, in order to derail the key generation or signing process. Although it might
not always be straightforward to predict where exactly a triggered malfunction will a�ect the exe-
cution, it is well understood that even a low-precision malfunction can seriously injure a schemes'
security. In the context of the ongoing e�ort to standardize post-quantum secure primitives [NIS17],
it hence made sense to a�rm [NIS20] that desirable additional security features include, amongst
others, resistance against fault attacks and randomness generation that has some bias.

Very recently [AOTZ20], the hedged Fiat-Shamir construction was proven secure against biased
nonces and several types of fault injections, in the ROM. This result can for example be used to argue
that alternate NIST candidate Picnic [CDG+17] is robust against many types of fault injections.
We revisit the hedged Fiat-Shamir construction in Section 4.2 and lift the result of [AOTZ20] to

6 While this increases the signature size, the increase is mild in typical post-quantum Fiat-Shamir based
digital signature schemes. As an example, suppose Dilithium-1024x768, which has a signature size of 2044
bytes, had zero commitment entropy (it actually has quite some, see remarks in [KLS18]). To ensure
that about 2128 hash queries are necessary to make the term in our security bound that depends on the
commitment entropy equal 1, about 32 bytes would need to be added, an increase of about 1.6% (assuming
264 signing queries).
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the QROM. In particular, we thereby obtain that Picnic is resistant against many fault types, even
when attacked by an adversary with quantum capabilities.

We considered to generalize the result further by replacing the standard Fiat-Shamir transform
with the Fiat�Shamir with aborts transform that was introduced by Lyubashevsky [Lyu09, KLS18].
Recall that Fiat�Shamir with aborts was established due to the fact that for some underlying lattice-
based ID schemes (e.g., NIST �nalist Dilithium [DKL+18]), the prover sometimes cannot create a
correct response to the challenge, and the protocol therefore allows for up to κ many retries during
the signing process. While our security statements can be extended in a straightforward manner,
we decided not to further complicate our proof with the required modi�cations. For Dilithium, the
implications are limited anyway, as several types of faults are only proven ine�ective if the underlying
scheme is subset-revealing, which Dilithium is not.7

Optimality of our bound. We also show that our lower bound is tight for the given setting,
presenting a quantum attack that matches our bound, up to a constant factor. Let us restrict our
attention to the simple case where H : {0, 1}n → {0, 1}k is a random function, which is potentially
reprogrammed at a random position x∗ resulting in a new oracle H ′. Consider an attacker that is
allowed 2q queries to the random oracle.

A classical attack that matches the classical bound for the success probability, O(q · 2−n), is
the following: pick values x1, ..., xq and compute the XOR of the outputs H(xi). After the oracle is
potentially reprogrammed, the attacker outputs 0 i� the checksum computed before is unchanged.

In order to match the quantum lower bound, we use the same attack, but on a superposition
of tuples of inputs: the attacker queries H with the superposition of all possible inputs, and then
applies a cyclic permutation σ on the input register. This process is repeated q − 1 times (on the
same state). After the potential reprogramming, we repeat the same process, but now applying the
permutation σ−1 and querying H ′. Using techniques from [AMR20], we show how to distinguish the
two cases with advantage Ω

(√
q
2n

)
in time poly(q, n).

2 Adaptive reprogramming: the toolbox

Before we describe our adaptive reprogramming theorem, let us quickly recall how we usually model
adversaries with quantum access to a random oracle: As established in [BDF+11, BBC+98], we
model quantum access to a random oracle O : X × Y via oracle access to a unitarian UO, which is
de�ned as the linear completion of |x〉X |y〉Y 7→ |x〉X |y ⊕ O(x)〉Y , and adversaries A with quantum
access to O as a sequence of unitarians, interleaved with applications of UO. We write A|O〉 to indicate
that O is quantum-accessible.

As a warm-up, we will �rst present our reprogramming lemma in the simplest setting. Say we
reprogram an oracle R many times, where the position is partially controlled by the adversary, and
partially picked at random. More formally, let X1 and X2 be two �nite sets, where X1 speci�es the
domain from which the random portions are picked, and X2 speci�es the domain of the adversarially
controlled portions. We will now formalize what it means to distinguish a random oracle O0 :
X1 ×X2 → Y from its reprogrammed version O1. Consider the two Repro games, given in Fig. 1:
In games Reprob, the distinguisher has quantum access to oracle Ob (see line 03) that is either
the original random oracle O0 (if b = 0), or the oracle O1 which gets reprogrammed adaptively
(b = 1). To model the actual reprogramming, we endow the distinguisher with (classical) access to
a reprogramming oracle Reprogram. Given a value x2 ∈ X2, oracle Reprogram samples random
values x1 and y, and programs the random oracle to map x1‖x2 to y (see line 06). Note that apart

7 Intuitively, an identi�cation scheme is called subset-revealing if its responses do not depend on the secret
key. Dilithium computes its responses as z := y + c · s1, where s1 is part of the secret key.
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from already knowing x2, the adversary even learns the part x1 of the position at which O1 was
reprogrammed.

GAME Reprob

01 O0 ←$ Y
X1×X2

02 O1 := O0

03 b′ ← A|Ob〉,Reprogram

04 return b′

Reprogram(x2)
05 (x1, y)←$ X1 × Y
06 O1 := O

(x1‖x2)7→y
1

07 return x1

Fig. 1. Adaptive reprogramming games Reprob for bit b ∈ {0, 1} in the most basic setting.

Proposition 1. Let X1, X2 and Y be �nite sets, and let A be any algorithm issuing R many calls
to Reprogram and q many (quantum) queries to Ob as de�ned in Fig. 1. Then the distinguishing
advantage of A is bounded by

|Pr[ReproA
1 ⇒ 1]− Pr[ReproA

0 ⇒ 1]| ≤ 3R

2

√
q

|X1|
. (1)

The above theorem constitutes a signi�cant improvement over previous bounds. In [Unr14a] and
[ES15], a bound proportional to q|X1|−1/2 for the distinguishing advantage in similar settings, but
for R = 1, was given. In [HRS16], a bound proportional to q2|X1|−1 is claimed, but that seems to
have resulted from a �translation mistake� from [ES15] and should be similar to the bounds from
[Unr14a, ES15]. What is more, we show in Section 6 that the above bound, and therefore also its
generalizations, are tight, by presenting a distinguisher that achieves an advantage equal to the right
hand side of Eq. (1) for trivial X1, up to a constant factor.

In fact, we prove something more general than Proposition 1: We prove that an adversary will
not behave signi�cantly di�erent, even if

- the adversary does not only control a portion x2, but instead it even controls the distributions
according to which the whole positions x := (x1, x2) are sampled at which O1 is reprogrammed,

- it can additionally pick di�erent distributions, adaptively, and
- the distributions produce some additional side information x′ which the adversary also obtains,

as long as the reprogramming positions x hold enough entropy.
Overloading notation, we formalize this generalization by games Repro, given in Fig. 2: Repro-

gramming oracle Reprogram now takes as input the description of a distribution p that generates
a whole reprogramming position x, together with side information x′. Reprogram samples x and
x′ according to p, programs the random oracle to map x to a random value y, and returns (x, x′).

GAME Reprob

01 O0 ←$ Y
X

02 O1 := O0

03 b′ ← D|Ob〉,Reprogram

04 return b′

Reprogram(p)

05 (x, x′)← p
06 y ←$ Y
07 O1 := Ox7→y

1

08 return (x, x′)

Fig. 2. Adaptive reprogramming games Reprob for bit b ∈ {0, 1}.
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We are now ready to present our main Theorem 1. On a high level, the only di�erence between the
statement of Proposition 1 and Theorem 1 is that we now have to considerRmany (possibly di�erent)
joint distributions on X×X ′, and to replace 1

|X1| (the probability of the uncontrolled reprogramming

portion) with the highest likelihood of any of those distributions generating a position x.

Theorem 1 (�Adaptive reprogramming� (AR)). Let X, X ′, Y be some �nite sets, and let D
be any distinguisher, issuing R many reprogramming instructions and q many (quantum) queries to
O. Let qr denote the number of queries to O that are issued inbetween the (r − 1)-th and the r-th
query to Reprogram. Furthermore, let p(r) denote the rth distribution that Reprogram is queried

on. By p
(r)
X we will denote the marginal distribution of X, according to p(r), and de�ne

p(r)max := Emax
x

p
(r)
X (x),

where the expectation is taken over D's behaviour until its rth query to Reprogram.

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| ≤
R∑
r=1

(√
q̂rp

(r)
max +

1

2
q̂rp

(r)
max

)
, (2)

where q̂r :=
∑r−1
i=0 qi.

For R = 1 and without additional side information output x′, the proof of Theorem 1 is given
in Section 5. The extension to general R is proven in Appendix A via a standard hybrid argument.
Finally, all our bounds are information-theoretical, i.e. they hold against arbitrary query bounded
adversaries. The additional output x′ can therefore be sampled by the adversary (see details in
Appendix A).

We will now quickly discuss how to simplify the bound given in Eq. (2) for our applications, and
in particular, how we can derive Eq. (1) from Theorem 1: Throughout sections 3 and 4, we will only
have to consider reprogramming instructions that occur on positions x = (x1, x2) such that

- x1 is drawn according to the same distribution p for each reprogramming instruction, and
- x2 represents a message that is already �xed by the adversary.

To be more precise, x1 will represent a uniformly random string z in 3, and no side information
x′ has to be considered. In Section 4, (x1, x

′) will represent a tuple (w, st) that is drawn according
to Commit(sk).

In the language of Theorem 1, the marginal distribution p
(r)
X will always be the same distribution

p, apart from the already �xed part x2. We can hence upper bound p
(r)
max by pmax := maxx1

p(x1),

and q̂r by q, to obtain that q̂rp
(r)
max < qpmax for all 1 ≤ r ≤ R.

In our applications, we will always require that p holds su�ciently large entropy. To be more
precise, we will assume that pmax <

1
q . In this case, we have that qpmax < 1, and that we can upper

bound qpmax by
√
qpmax to obtain

Proposition 2. Let X1, X2, X
′ and Y be some �nite sets, and let p be a distribution on X1 ×X ′.

Let D be any distinguisher, issuing q many (quantum) queries to O and R many reprogramming
instructions such that each instruction consists of a value x2, together with the �xed distribution p.
Then

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| ≤ 3R

2

√
qpmax ,

where pmax := maxx1
p(x1).

From this we obtain Proposition 1 setting pmax = |X1|.
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3 Basic applications

In this section, we present two motivating examples that bene�t from the most basic version of
our bound as stated in Proposition 1. As a �rst example we chose the canonical hash-and-sign
construction when used to achieve security under adaptive chosen message attacks (UF-CMA) from
a scheme that is secure under random message attacks (UF-RMA). It is mostly self-contained and
similar to our second example. The second example is a tighter bound for the security of hash-and-
sign as used in RFC 8391, the recently published standard for the stateful hash-based signature
scheme XMSS. For missing de�nitions and detailed transforms see Appendix B.

3.1 From RMA to CMA security via Hash-and-Sign

In the following, we present a conceptually easy proof with a tighter bound for the canonical UF-RMA
to UF-CMA transform using hash-and-sign SIG′ = HaS[SIG,H], in the QROM (which additionally
allows for arbitrary message space expansion). Recall that Sign′(sk ,m′) �rst samples a uniformly ran-
dom bitstring z ←$ Z, computes σ ← Sign(sk ,H(z‖m′)) and returns the pair (z, σ). Vrfy′ accordingly
�rst computes m := H(z‖m′) and then calls Vrfy(pk ,m, σ).

The reduction M from UF-RMA to UF-CMA in this case works as follows: First, we have to handle
collision attacks. We show that an adversary which �nds a forgery for SIG′ that contains no forgery
for SIG breaks the multi-target version of extended target collision resistance (M-eTCR) of H, and
give a QROM bound for this property. Having dealt with collision attacks leaves us with the case
where A generates a forgery that contains a forgery for SIG. The challenge in this case is how to
simulate the signing oracle SIGN. Our respective reduction M against UF-RMA proceeds as follows:
Collect the qs many message-signature pairs {(mi, σi)}1≤i≤qs , provided by the UF-RMA game. When
A queries SIGN(m′i) for the ith time, sample a random zi, reprogram H(zi‖m′i) := mi, and return
(zi, σi). See also Fig. 5 below.

In the QROM, this reduction has previously required qs applications of the O2H Lemma in two
steps, loosing an additive O(qs · q/

√
|Z|) term. In contrast, we only loose a O(qs

√
q/|Z|) (both

constants hidden by the O are small):

Theorem 2. For any (quantum) UF-CMA adversary A issuing at most qs (classical) queries to the
signing oracle SIGN and at most qH quantum queries to H, there exists an UF-RMA adversary M
such that

SuccUF-CMA
SIG′ (A) ≤ SuccUF-RMA

SIG (M) +
8qs(qs + qH + 2)2

|M′|
+ 3qs

√
qH + qs + 1

|Z|
,

and the running time of M is about that of A.

The second term accounts for the complexity to �nd a second preimage for one of the messages
mi, which is an unavoidable generic attack. The third term is the result of 2qs reprogrammings. Half
of them are used in the QROM bound for M-eTCR, the other half in the reduction M. This term
accounts for an attack that correctly guesses the random bitstring used by the signing oracle for one
of the queries (such an attack still would have to �nd a collision for this part but this is inherently
not re�ected in the used proof technique).

Proof. We now relate the UF-CMA security of SIG′ to the UF-RMA security of SIG via a sequence of
games.

Game G0. We begin with the original UF-CMA game for SIG′ in game G0. The success probability
of A in this game is AdvUF-CMA

SIG′ (A) per de�nition.
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BBox,|H〉()
01 (pk , sk)← KG
02 (m′∗, σ′∗) = ASIGN,|H〉(pk)
03 Parse σ′∗ as (z∗, σ∗)
04 if ∃j : H(z∗‖m′∗) = H(zj‖m′j)
05 i := j
06 else i←$ [1, qs]
07 return (m′∗, z∗, i)

SIGN(m′i)

08 zi ← Box(m′i)
09 σi ← Sign(sk ,H(zi,m

′
i))

10 return (zi, σi)

Fig. 3. Reduction B breaking M-eTCR. Here, Box is the M-eTCR challenge oracle.

Game G1. We obtain game G1 from game G0 by adding an additional condition. Namely, game
G1 returns 0 if there exists an 0 < i ≤ qs such that H(z∗‖m′∗) = H(zi‖m′i), where z∗ is the
random element in the forgery signature, and zi is the random element in the signature returned by
SIGN(m′i) as the answer to the ith query. We will now argue that

|Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]| ≤ 8qs(qs + qH + 2)2

|M′|
+

3qs
2

√
qH + qs + 1

|Z|
.

Towards this end, we give a reduction B in Fig. 3, that breaks the M-eTCR security of H whenever
the additional condition is triggered, making qs+qH+1 queries to its random oracle. B simulates the
UF-CMA game for SIG′, using H and an instance of SIG. Clearly, B runs in about the same time as
game GA

0 , and succeeds whenever A succeeds and the additional condition is triggered. To complete
this step, it hence remains to show that the success probability of any such (qs + qH + 1)-query
adversary is

SuccM-eTCR
H (B, qs) ≤

8qs(qs + qH + 2)2

|M′|
+

3qs
2

√
qH + qs + 1

|Z|
. (3)

We delay the proof of Eq. (3) until the end.

Game G2. The next game di�ers from G1 in the way the signing oracle works. In game G2 (see
Fig. 4), the ith query to SIGN is answered by �rst sampling a random value zi, as well as a random

message mi, and programming H′ := H′
(zi‖m′i)7→mi . Then mi is signed using the secret key. We will

now show that

|Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1]| ≤ 3qs
2

√
qH + qs + 1

|Z|
.

Game G2

01 i := 1
02 (pk , sk)← KG()
03 (m′∗, σ′∗) = ASIGN,|H〉(pk)
04 Parse σ′∗ as (z∗, σ∗)
05 if ∃1 ≤ i ≤ qs : H(z∗‖m′∗) = H(zi‖m′i)
06 return 0
07 return Vrfy(pk ,m′∗, σ∗) ∧m′∗ 6∈ {m′i}qsi=1

SIGN(m′i)
08 zi ←$ Z,mi ←$ M
09 H := H(zi‖m′i)7→mi

10 σi ← Sign(sk ,mi)
11 i := i+ 1
12 return (zi, σi)

Fig. 4. Game G2.



10 A. B. Grilo, K. Hövelmanns, A. Hülsing, C. Majenz

MA,|H〉(pk , {(mi, σi)}1≤i≤qs)

01 H′ := H; i := 1
02 (m′∗, σ′∗) = ASIGN,|H′〉(pk)
03 Parse σ′∗ as (z∗, σ∗)
04 return (H(z∗‖m′∗), σ)

SIGN(m′i)
05 zi ←$ Z
06 if ∃m̂i s. th. (zi‖m′i, m̂i) ∈ LH′

07 LH′ := LH′ \ {(zi‖m′i, m̂i)}
08 LH′ := LH′ ∪ {(zi‖m′i,mi)}
09 i := i+ 1
10 return (zi, σi)

H′(z‖m′)
11 if ∃m s. th. (z‖m′,m) ∈ LH′

12 return m
13 else return H(z‖m′)

Fig. 5. Reduction M reducing UF-RMA to UF-CMA.

Consider a reduction C that simulates game G2 for A to distinguish the Reprob game. Accord-
ingly, C forwards access to its own oracle Ob to A instead of H. Instead of sampling zi,mi itself
in line 08 and programming H in line 09, C obtains zi ← Reprogram(m′i) from its own oracle
and computes mi := Ob(zi‖m′i) as the output of its random oracle. Now, if C plays in Repro0 it
perfectly simulates G1 for A, as the oracle remains unchanged. If C plays in Repro1 it perfectly
simulates G2, as can be seen by inlining Reprogram and removing doubled calls used to recompute
mi. Consequently,

|Pr[GA
1 ⇒ 1]− Pr[GA

2 ⇒ 1]| = |Pr[ReproCA

0 ⇒ 1]− Pr[ReproCA

1 ⇒ 1]| ≤ 3qs
2

√
qH + qs + 1

|Z|
.

To conclude our main argument, we will now argue that

Pr[GA
2 ⇒ 1] = AdvUF-RMA

SIG (M) ,

where reduction M is given in Fig. 5. Since reprogramming is done a-posteriori in game G2, M can
simulate a reprogrammed oracle H′ via access to its own oracle H and an initial table look-up: M
keeps track of the (classical) values on which H′ has to be reprogrammed (see line 08) and tweaks
A's oracle H′, accordingly. The latter means that, given the table LH′ of pairs (zi‖m′i,mi) that
were already de�ned in previous signing queries, controlled on the query input being equal to zi‖m′i
output mi, and controlled on the input not being equal to any zi‖m′i, forward the query to M's own
oracle H. If needed, M reprograms values (see line 07) by adding an entry to its look-up table. Given
quantum access to H, M can implement this as a quantum circuit, allowing quantum access to H′.

Hence, M perfectly simulates game G2 towards A. The only di�erences are that M neither samples
the mi itself, nor computes the signatures for them. Both are given to M by the UF-RMA game.
However, they follow the same distribution as in game G2. Lastly, whenever A would win in game
G2, M succeeds in its UF-RMA game as it can extract a valid forgery for SIG on a new message. This
is enforced with the condition we added in game G1.

The �nal bound of the theorem follows from collecting the bounds above, and it remains to prove
the bound on M-eTCR claimed in Eq. (3). We improve a bound from [HRS16], in which it was shown
that for a small constant c,8

SuccM-eTCR
H (B, qs) ≤

8qs(qH + 1)2

|M′|
+ c

qsqH√
|Z|

.

8 This is a corrected bound from [HRS16], see discussion in Section 2.
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Their proof of this bound is explicitly given for the single target step. It is then argued that the
multi-target step can be easily obtained, which was recently con�rmed in [BHRvV20]. The proof
proceeds in two steps. The authors construct a reduction that generates a random function from an
instance of an average-case search problem which requires to �nd a 1 in a boolean function f . The
function has the property that all preimages of a randomly picked point m in the image correspond
to 1s of f . When A makes its query to Box, the reduction picks a random z and programs H(z‖m′) 7→m.
An extended target collision for (z‖m′) hence is a 1 in f by design. This gives the �rst term in the
above bound, which is known to be optimal.

The second term in the bound is the result of above reprogramming. I.e., it is a bound on the
di�erence in success probability of A when playing the real game or when run by the reduction. More
precisely, the bound is the result of analyzing the distinguishing advantage between the following
two games (which we rephrased to match our notation):

Game Ga. A gets access to H. In phase 1, after making at most q1 queries to H, A outputs a message
m′ ∈ M′. Then a random z ←$ Z is sampled and (z,H(z‖m′)) is handed to A. A continues to the
second phase and makes at most q2 queries. A outputs b ∈ {0, 1} at the end.
Game Gb. A gets access to H. After making at most q1 queries to H, A outputs a message m′ ∈M′.
Then a random z ←$ Z is sampled as well as a random range element m ←$ M. Program H :=
H(z‖m′)7→m. A receives (z,m = H(z‖m′)) and proceeds to the second phase. After making at most
q2 queries, A outputs b ∈ {0, 1} at the end.

The authors of [HRS16] showed that for a small constant c (see Footnote 8),

|Pr[GA
b ⇒ 1]− Pr[GA

a ⇒ 1]| ≤ c qH√
|Z|

.

A straightforward application of Proposition 1 shows that

|Pr[GA
b ⇒ 1]− Pr[GA

a ⇒ 1]| ≤ 3

2

√
qH + 1

|Z|
.

as the games above virtually describe the games Reprob with the exception that in Reprob the
oracle Reprogram only returns z and not H(z‖m′)). Hence, a reduction needs one additional query
per reprogramming.

When applying this to the qs-target case, a hybrid argument shows that the bound becomes
3qs/2

√
qH+1/|Z|. Combining this with the reduction of [HRS16] and taking into account that B makes

(qs +qH +1) queries con�rms the claimed bound of

SuccM-eTCR
H (B, qs) ≤

8qs(qs + qH + 2)2

|M′|
+

3qs
2

√
qH + qs + 1

|Z|
.

3.2 Tight security for message hashing of RFC 8391

Another extremely similar application of our basic bound is for another case of the hash-and-sign
construction, used to turn a �xed message length UF-CMA-secure signature scheme SIG into a vari-
able input length one SIG′. This case is essentially covered already by Section 3.1: A proof can
omit game G2 and state a simple reduction that simulates game G1 to extract a forgery. The
bound changes accordingly, requiring one reprogramming bound less and becoming SuccUF-CMA

SIG′ (A) ≤
SuccUF-CMA

SIG (M) + 8qs(qs+qH)
2
/|M′|+ 1.5qs

√
qH+qs/|Z|.

In [HBG+18], the authors suggested that for stateful hash-based signature schemes, like, e.g.,
XMSS [HBG+18], the multi-target attacks which cause the �rst occurence of qs in the bound could
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be avoided. This was recently formally proven in [BHRvV20]. The idea is to exploit the property
of hash-based signature schemes that every signature has an index which binds the signature to a
one-time public key. Including this index into the hash forces an adversary to also include it in a
collision to make it useful for a forgery. Even more, the index is di�erent for every signature and
therefore for every target hash.

Summarizing, the authors of [BHRvV20] showed that there exists a tight standard model proof
for the hash-and-sign construction, as used by XMSS in RFC 8391, if the used hash function is qs-
target extended target-collision resistant with nonce (nM-eTCR, see Appendix B.1), an extension of
M-eTCR that considers the index. To demonstrate the relevance of this result, the authors analyzed
the nM-eTCR-security of hash functions under generic attacks, proving a bound for nM-eTCR-security
in the QROM in the same way as outlined for M-eTCR above. So far, this bound was suboptimal,
as it included a bound on distinguishing variants of games Ga and Gb above in which H takes an
additional, externally given index as input (for the modi�ed games see Appendix B.1). Hence, the
bound was SuccnM-eTCR

H (A, p) ≤ 8(qs+qH)
2
/|M′| + 32qsq

2
H/|Z|. Due to the translation error, we believe

that the second term needs to be updated to 32qs · α, where α = qH/
√
|Z|, instead of 32qs · α2.

In [BHRvV20], it was conjectured that in α, a factor of
√
qH can be removed. We can con�rm this

conjecture. As in the case above, Proposition 1 can be directly applied to the distinguishing bound
for games Ga and Gb. A reduction would simply treat the index as part of the message sent to
Reprogram. Plugging this into the proof in [BHRvV20] leads to the bound

SuccnM-eTCR
H (A, p) ≤ 8(qs + qH)

2

|M′|
+ 1.5qs

√
qH + qs
|Z|

.

4 Applications to the Fiat-Shamir transform

For the sake of completeness, we include all used de�nitions for identi�cation and signature schemes
in Appendix B. The only non-standard (albeit straightforward) de�nition is computational HVZK
for multiple transcripts, which we give below.

(Special) HVZK simulator.We �rst recall the notion of an HVZK simulator. Our de�nition comes
in two �avours: While a standard HVZK simulator generates transcripts relative to the public key, a
special HVZK simulator generates transcripts relative to (the public key and) a particular challenge.

De�nition 1 ((Special) HVZK simulator). An HVZK simulator is an algorithm Sim that takes as
input the public key pk and outputs a transcript (w, c, z). A special HVZK simulator is an algorithm
Sim that takes as input the public key pk and a challenge c and outputs a transcript (w, c, z).

Computational HVZK for multiple transcripts. In our security proofs, we will have to argue
that collections of honestly generated transcripts are indistinguishable from collections of simulated
ones. Since it is not always clear whether computational HVZK implies computational HVZK for
multiple transcripts, we extend our de�nition, accordingly: In the multi-HVZK game, the adversary
obtains a collection of transcripts (rather than a single one). Similarly, we extend the de�nition of
special computational HVZK from [AOTZ20].

De�nition 2 ((Special) computational multi-HVZK). Assume that ID comes with an HVZK
simulator Sim. We de�ne multi-HVZK games t-HVZK as in Fig. 6, and the multi-HVZK advantage
function of an adversary A against ID as

Advt-HVZKID (A) :=
∣∣∣Pr[t-HVZKA

1 ID ⇒ 1]− Pr[t-HVZKA
0 ID ⇒ 1]

∣∣∣ .
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To de�ne special multi-HVZK, assume that ID comes with a special HVZK simulator Sim. We de�ne
multi-sHVZK games as in Fig. 6, and the multi-sHVZK advantage function of an adversary A against
ID as

Advt-sHVZKID (A) :=
∣∣∣Pr[t-sHVZKA

1 ID ⇒ 1]− Pr[t-sHVZKA
0 ID ⇒ 1]

∣∣∣ .
GAME t-HVZKb

01 (pk , sk)← IG(par)
02 for i ∈ {1, · · · , t}
03 trans0i ← getTrans(sk)
04 trans1i ← Sim(pk)
05 b′ ← A(pk , (transbi )1≤i≤t)
06 return b′

GAME t-sHVZKb

07 i := 1
08 (pk , sk)← IG(par)
09 b′ ← AgetTrans(pk)
10 return b′

getTrans(c)

11 if i > t return ⊥
12 i := i+ 1
13 trans0 ← getTransChall(sk , c)
14 trans1 ← Sim(pk , c)
15 return transb

Fig. 6. Multi-HVZK game and multi-sHVZK game for ID. Both games are de�ned relative to bit b ∈ {0, 1},
and to the number t of transcripts the adversary is given.

Statistical HVZK. Unlike computational HVZK, statistical HVZK can be generalized generically,
we therefore do not need to deviate from known statistical de�nitions (included in Appendix B). We
denote the respective upper bound for (special) statistical HVZK by ∆HVZK (∆sHVZK).

4.1 Revisiting the Fiat-Shamir transform

In this section, we show that if an identi�cation scheme ID is HVZK, and if SIG := FS[ID,H] possesses
UF-CMA0 security (also known as UF-KOA security), then SIG is also UF-CMA secure, in the QROM.
Note that our theorem makes no assumptions on how UF-CMA0 is proven. For arbitrary ID schemes
this can be done using a general reduction for the Fiat-Shamir transform [DFMS19], incurring a q2H
multiplicative loss that is, in general, unavoidable [DFM20]. For a lossy ID scheme ID, UF-CMA0

of FS[ID,H] can be reduced tightly to the extractability of ID in the QROM [KLS18]. In addition,
while we focus on the standard Fiat-Shamir transform for ease of presentation, the following theo-
rem generalizes to signatures constructed using the multi-round generalization of the Fiat-Shamir
transform like, e.g., MQDSS [CHR+16].

Theorem 3. For any (quantum) UF-CMA adversary A issuing at most qs (classical) queries to the
signing oracle SIGN and at most qH quantum queries to H, there exists a UF-CMA0 adversary B
and a multi-HVZK adversary C such that

SuccUF-CMA
FS[ID,H](A) ≤ SuccUF-CMA0

FS[ID,H] (B) + Advqs−HVZKID (C) (4)

+
3qs
2

√
(qH + qs + 1) · γ(Commit) , (5)

and the running time of B and C is about that of A. The bound given in Eq. (4) also holds for the
modi�ed Fiat-Shamir transform that de�nes challenges by letting c := H(w,m, pk) instead of letting
c := H(w,m).
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Note that if ID is statistically HVZK, we can replace Advqs−HVZKID (C) with qs ·∆HVZK.

Proof. Consider the sequence of games given in Fig. 7.

GAMES G0 - G2

01 (pk , sk)← IG(par)
02 (m∗, σ∗)← ASIGN,|H〉(pk)
03 if m∗ ∈ LM return 0
04 Parse (w∗, z∗) := σ∗

05 c∗ := H(w∗,m∗)
06 return V(pk , w∗, c∗, z∗)

SIGN(m)
07 LM := LM ∪ {m}
08 (w, c, z)← getTrans(m) �G0-G1

09 (w, c, z)← Sim(pk) �G2

10 H := H(w,m)7→c �G1 -G2

11 return σ := (w, z)

getTrans(m) �G0-G1

12 (w, st)← Commit(sk)
13 c := H(w,m) �G0

14 c′ ←$ C �G1

15 z ← Respond(sk , w, c, st)
16 return (w, c, z)

Fig. 7. Games G0 - G2 for the proof of Theorem 3.

Game G0. Since game G0 is the original UF-CMA game,

SuccUF-CMA
FS[ID,H](A) = Pr[GA

0 ⇒ 1] .

Game G1. In game G1, we change the game twofold: First, the transcript is now drawn according to
the underlying ID scheme, i.e., it is drawn uniformly at random as opposed to letting c := H(w,m),
see line 14. Second, we reprogram the random oracle H in line 10 such that it is rendered a-posteriori-
consistent with this transcript, i.e., we reprogram H such that H(w,m) = c.

To upper bound the game distance, we construct a quantum distinguisher D in Fig. 8 that is run
in the adaptive reprogramming games ReproR,b with R := qS many reprogramming instances. We
identify reprogramming position x with (w,m), additional input x′ with st, and y with c. Hence, the
distribution p consists of the constant distribution that always returns m (as m was already chosen
by A), together with the distribution Commit(sk). Since D perfectly simulates game Gb if run in its
respective game Reprob, we have

|Pr[GA
0 = 1]− Pr[GA

1 = 1]| = |Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| .

Since D issues qS reprogramming instructions and (qH+qS+1) many queries to H, Proposition 2
yields

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| ≤ 3qS
2

√
(qH + qS + 1) · pmax , (6)

where pmax = EIG maxw PrW,ST←Commit(sk)[W = w] = γ(Commit).

Game G2. In game G2, we change the game such that the signing algorithm does not make use
of the secret key any more: Instead of being de�ned relative to the honestly generated transcripts,
signatures are now de�ned relative to the simulator's transcripts. We will now upper bound |Pr[GA

1 =
1]−Pr[GA

2 = 1]| via computational multi-HVZK. Consider multi-HVZK adversary C in Fig. 9. C takes
as input a list of qs many transcripts, which are either all honest transcripts or simulated ones. Since
reprogramming is done a-posteriori in game G1, C can simulate it via an initial table look-up, like
the reduction M that was given in Section 3.1 (see the description on p. 10). C perfectly simulates
game G1 if run on honest transcripts, and game G2 if run on simulated ones, hence

|Pr[GA
1 = 1]− Pr[GA

2 = 1]| ≤ AdvqS−HVZKID (C) .
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Distinguisher D|H〉

01 (pk , sk)← IG(par)
02 (m∗, σ∗)← ASIGN,|H〉(pk)
03 if m∗ ∈ LM return 0
04 Parse (w∗, z∗) := σ∗

05 c∗ := H(w∗,m∗)
06 return V(pk , w∗, c∗, z∗)

SIGN(m)
07 LM := LM ∪ {m}
08 (w, st)← Reprogram(m,Commit(sk))
09 c := H(w,m)
10 z ← Respond(sk , w, c, st)
11 return σ := (w, z)

Fig. 8. Reprogramming distinguisher D for the proof of Theorem 3.

Adversary C|H〉(pk , ((wi, ci, zi)
qs
i=1)

01 i := 0
02 LH′ := ∅
03 (m∗, σ∗)← ASIGN,|H′〉(pk)
04 if m∗ ∈ LM return 0
05 Parse (w∗, z∗) := σ∗

06 c∗ := H(w∗,m∗)
07 return V(pk , w∗, c∗, z∗)

SIGN(m)
08 i++
09 LM := LM ∪ {m}
10 (w, c, z) := (wi, ci, zi)
11 if ∃c′ s. th. (w,m, c′) ∈ LH′

12 LH′ := LH′ \ {(w,m, c′)}
13 LH′ := LH′ ∪ {(w,m, c)}
14 return σ := (w, z)

H′(w,m)
15 if ∃c s. th. (w,m, c) ∈ LH′

16 return c
17 else return H(w,m)

Fig. 9. HVZK adversary C for the proof of Theorem 3.

It remains to upper bound Pr[GA
2 ⇒ 1]. Consider adversary B, given in Fig. 10. B is run in game

UF-CMA0 and perfectly simulates game G2 to A. If A wins in game G2, it cannot have queried SIGN
on m∗. Therefore, H′ is not reprogrammed on (m∗, w∗) and hence, σ∗ is a valid signature in B's
UF-CMA0 game.

Pr[GA
2 ⇒ 1] ≤ SuccUF-CMA0

FS[ID,H] (B) .

Collecting the probabilities yields the desired bound.

Adversary B|H〉(pk)
01 LH′ := ∅
02 (m∗, σ∗)← ASIGN,|H′〉(pk)
03 if m∗ ∈ LM ABORT
04 return (m∗, σ∗)

SIGN(m)
05 LM := LM ∪ {m}
06 (w, c, z)← Sim(pk)
07 if ∃c′ s. th. (w,m, c′) ∈ LH′

08 LH′ := LH′ \ {(w,m, c′)}
09 LH′ := LH′ ∪ {(w,m, c)}
10 return σ := (w, z)

H′(w,m)
11 if ∃c s. th. (w,m, c) ∈ LH′

12 return c
13 else

14 return H(w,m)

Fig. 10. Adversary B for the proof of Theorem 3.

It remains to show that the bound also holds if challenges are derived by letting c := H(w,m, pk).
To that end, we revisit the sequence of games given in Fig. 7: We replace c := H(w,m) (and
c∗ := H(w∗,m∗)) with c := H(w,m, pk) (and c∗ := H(w∗,m∗, pk)) in line 13 (line 05), and change
the reprogram instruction in line 10, accordingly. Since pk is public, we can easily adapt both
distinguisher D and adversaries B and C to account for these changes. In particular, D will simply
include pk as a (�xed) part of the probability distribution that is forwarded to its reprogramming
oracle. Since the public key holds no entropy once that it is �xed by the game, this change does not
a�ect the upper bound given in Eq. (6).
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4.2 Revisiting the hedged Fiat-Shamir transform

In this section, we show how Theorem 1 can be used to extend the results of [AOTZ20] to the
quantum random oracle model: We show that the Fiat-Shamir transform is robust against several
types of one-bit fault injections, even in the quantum random oracle model, and that the hedged
Fiat-Shamir transform is as robust, even if an attacker is in control of the nonce that is used to
generate the signing randomness. In this section, we follow [AOTZ20] and consider the modi�ed
Fiat-Shamir transform that includes the public key into the hash when generating challenges. We
consider the following one-bit tampering functions:

flip-biti(x): Does a logical negation of the i-th bit of x.
set-biti(x, b): Sets the i-th bit of x to b.

Hedged signature schemes. Let N be any nonce space. Given a signature scheme SIG =
(KG,Sign,Vrfy) with secret key space SK and signing randomness space RSign, and random ora-
cle G : SK ×M×N → RSign, we de�ne

R2H[SIG,G] := SIG′ := (KG,Sign′,Vrfy) ,

where the signing algorithm Sign′ of SIG′ takes as input (sk ,m, n), deterministically computes r :=
G(sk ,m, n), and returns σ := Sign(sk ,m; r).

Security of (hedged) Fiat-Shamir against fault injections and nonce attacks. Next,
we de�ne UnForgeability in the presence of Faults, under Chosen Message Attacks (UF-F-CMA), for
Fiat-Shamir transformed schemes. In game UF-F-CMA, the adversary has access to a faulty signing
oracle FAULTSIGN which returns signatures that were created relative to an injected fault. To be
more precise, game UF-FF -CMA is de�ned relative to a set F of indices, and the indices i ∈ F specify
at which point during the signing procedure exactly the faults are allowed to occur. An overview is
given in Fig. 11.
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Fig. 11. Faulting a (hedged) Fiat-Shamir signature. Circles represent faults, and their numbers are the
respective fault indices i ∈ F (following [AOTZ20], for the formal de�nition see Fig. 12). Greyed out fault
wires indicate that the hedged construction can not be proven robust against these faults, in general. Dashed
fault nodes indicate that the Fiat-Shamir construction is robust against these faults if the scheme is subset-
revealing.

For the hedged Fiat-Shamir construction, we further de�ne UnForgeability, with control over the
used Nonces and in the presence of Faults, under Chosen Message Attacks (UF-N-F-CMA). In game
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UF-N-F-CMA, the adversary is even allowed to control the nonce n that is used to derive the internal
randomness of algorithm Commit. We therefore denote the respective oracle by N-FAULTSIGN. Our
de�nitions slightly simplify the one of [AOTZ20]: While [AOTZ20] also considered fault attacks on
the input of algorithm Commit (with corresponding indices 2 and 3), they showed that the hedged
construction can not be proven robust against these faults, in general. We therefore omitted them
from our games, but adhered to the numbering for comparability.

The hedged Fiat-Shamir scheme derandomizes the signing procedure by replacing the signing
randomness by r := G(sk ,m, n). Hence, game UF-N-F-CMA considers two additional faults: An
attacker can fault the input of G, i.e., either the secret key (fault index 1), or the tuple (m,n) (fault
index 0). As shown in [AOTZ20], the hedged construction can not be proven robust against faults
on (m,n), in general, therefore we only consider index 1.

Furthemore, we do not formalize derivation/serialisation and drop the corresponding indices 8
and 10 to not overly complicate our application example. A generalization of our result that also
considers derivation/serialisation, however, is straightforward.

De�nition 3. (UF-F-CMA and UF-N-F-CMA) For any subset F ⊂ {4, · · · , 9}, let the UF-FF -CMA
game be de�ned as in Fig. 12, and the UF-FF -CMA success probability of a quantum adversary A
against FS[ID,H] as

SuccUF-FF -CMA
FS[ID,H] (A) := Pr[UF-FF -CMAA

FS[ID,H] ⇒ 1] .

Furthermore, we de�ne the UF-N-FF -CMA game (also in Fig. 12) for any subset F ⊂ {1, 4, · · · , 9},
and the UF-N-FF -CMA success probability of a quantum adversary A against SIG′ := R2H[FS[ID,H],G]
as

SuccUF-N-FF -CMA
SIG′ (A) := Pr[UF-N-FF -CMAA

SIG′ ⇒ 1] .

Game UF-FF -CMA UF-N-FF -CMA

01 (pk , sk)← IG(par)

02 (m∗, σ∗)← AFAULTSIGN,|H〉(pk)

03 (m∗, σ∗)← AN-FAULTSIGN,|H〉,|G〉(pk)

04 if m∗ ∈ LM return 0
05 Parse (w∗, z∗) := σ∗

06 c∗ := H(w∗,m∗)
07 return V(pk , w∗, c∗, z∗)

FAULTSIGN(m, i ∈ F , φ)
08 fi := φ and fj := id ∀ j 6= i
09

10 (w, st)← Commit(sk)
11 (w, st) := f4(w, st)
12 (ŵ, m̂, p̂k) := f5(w,m, pk)
13 c := f6(H(ŵ, m̂, p̂k))
14 z ← Respond(f7(sk , c, st))
15 LM := LM ∪ {m̂}
16 return σ := f9(w, z)

N-FAULTSIGN(m,n, i ∈ F , φ)
17 fi := φ and fj := id ∀ j 6= i
18 r := G(f1(sk),m, n)
19 (w, st)← Commit(sk ; r)
20 (w, st) := f4(w, st)
21 (ŵ, m̂, p̂k) := f5(w,m, pk)
22 c := f6(H(ŵ, m̂, p̂k))
23 z ← Respond(f7(sk , c, st))
24 LM := LM ∪ {m̂}
25 return σ := f9(w, z)

Fig. 12. Left: Game UF-FF -CMA for SIG = FS[ID,H], and game UF-N-FF -CMA for the hedged Fiat-Shamir
construction SIG′ := R2H[FS[ID,H],G], both de�ned relative to a set F of allowed fault index positions. φ
denotes the fault function, which either negates one particular bit of its input, sets one particular bit of its
input to 0 or 1, or does nothing. We implicitly require fault index i to be contained in F , i.e., we make the
convention that both faulty signing oracles return ⊥ if i /∈ F .

From UF-CMA0 to UF-F-CMA. First, we generalize [AOTZ20, Lemma 5] to the quantum random
oracle model. The proof is given in Appendix C.

Theorem 4. Assume ID to be validity aware (see De�nition 5, Appendix B). If SIG := FS[ID,H] is
UF-CMA0 secure, then SIG is also UF-FF -CMA secure for F := {5, 6, 9}, in the quantum random
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oracle model. Concretely, for any adversary A against the UF-FF -CMA security of SIG, issuing at
most qS (classical) queries to FAULTSIGN and qH (quantum) queries to H, there exists an UF-CMA0

adversary B and a multi-HVZK adversary C such that

Succ
UF-F{5,6,9}-CMA

SIG (A) ≤ SuccUF-CMA0

SIG (B) + Advqs−HVZKID (C)

+
3qS
2

√
2 · (qH + qS + 1) · γ(Commit) . (7)

and B and C have about the running time of A.
If we assume that ID is subset-revealing, then SIG is even UF-FF ′-CMA secure for F ′ := F∪{4, 7}.

Concretely, the bound of Eq. (7) then holds also for F ′ = {4, 5, 6, 7, 9}.

From UF-F-CMA to UF-N-F-CMA. Second, we generalize [AOTZ20, Lemma 4] to the QROM. The
proof is given in Appendix D.

Theorem 5. If SIG := FS[ID,H] is UF-FF -CMA secure for a fault index set F , then SIG′ :=
R2H[SIG,G] is UF-N-FF -CMA secure for F ′ := F ∪ {1}, in the quantum random oracle model,
against any adversary that issues no query (m,n) to N-FAULTSIGN more than once. Concretely,
for any adversary A against the UF-N-FF -CMA security of SIG′ for F ′, issuing at most qS queries
to N-FAULTSIGN, at most qH queries to H, and at most qG queries to G, there exist UF-FF -CMA
adversaries B1 B2 such that

SuccUF-N-FF -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B1) + 2qG ·
√

SuccUF-FF -CMA
SIG (B2) ,

and B1 has about the running time of A, while B2 has a running time of roughly Time(B2) ≈
Time(A) + |sk | · (Time(Sign) + Time(Vrfy)), where |sk | denotes the length of sk .

With regards to the reduction's advantage, this proof is not as tight as the one in [AOTZ20]:
R2H[SIG,G] derives the commitment randomness as r := G(sk ,m, n). During our proof, we need to
decouple r from the secret key. In the ROM, it is straightforward how to turn any adversary noticing
this change into an extractor that returns the secret key. In the QROM, however, all currently known
extraction techniques still come with a quadratic loss in the extraction probability. On the other
hand, our reduction is tighter with regards to running time, which we reduce by a factor of qG when
compared to [AOTZ20]. If we hedge with an independent seed s of length ` (instead of sk), it can
be shown with a multi-instance generalization of [SXY18, Lem. 2.2] that

SuccUF-N-FF -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B) + (`+ 1) · (qS + qG) ·
√

1/2`−1 .

5 Adaptive reprogramming: proofs

We will now give the proof for our main Theorem 1, which can be broken down into three steps:
In this section, we consider the simple special case in which only a single reprogramming instance
occurs, and where no additional input x′ is provided to the adversary. The generalisation to multiple
reprogramming instances follows from a standard hybrid argument. The generalisation that considers
additional input is also straightforward, as the achieved bounds are information-theoretical and a
reduction can hence compute marginal and conditioned distributions on its own. For the sake of
completeness, we include the generalisation steps in Appendix A.

In this and the following sections, we need quantum theory. We stick to the common notation
as introduced in, e.g. [NC10]. Nevertheless we introduce some of the most important basics and
notational choices we make. For a vector |ψ〉 ∈ H in a complex Euclidean space H, we denote the
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standard Euclidean norm by ‖ |ψ〉 ‖. We use a subscript to indicate that a vector |ψ〉 is the state of a
quantum register A with Hilbert space H, i.e. |ψ〉A. Similarly, MA indicates that a matrix M acting
on H is considered as acting on register A. The joint Hilbert space of multiple registers is given by
the tensor product of the single-register Hilbert spaces. Where it helps simplify notation, we take
the liberty to reorder registers, keeping track of them using register subscripts. The only other norm
we will require is the trace norm. For a matrix M acting on H, the trace norm ‖M‖1 is de�ned as
the sum of the singular values of M . An important quantum gate is the quantum extension of the
classical CNOT gate. This quantum gate is a unitary matrix CNOT acting on two qubits, i.e. on
the vector space C2 ⊗ C2, as CNOT |b1〉 |b2〉 = |b1〉 |b2 ⊕ b1〉. We sometimes subscript a CNOT gate
with control register A and target register B with A : B, and extend this notation to the case where
many CNOT gates are applied, i.e. CNOT⊗nA:B means a CNOT gate is applied to the i-th qubit of
the n-qubit registers A and B for each i = 1, ..., n with the qubits in A being the controls and the
ones in B the targets.

5.1 The superposition oracle

For proving the main result of this section, we will use the (simplest version of the) superposition
oracle introduced in [Zha19]. In the following, we introduce that technique, striving to keep this
explanation accessible even to readers with minimal knowledge about quantum theory.

Superposition oracles are perfectly correct methods for simulating a quantum-accessible random
oracle O : {0, 1}n → {0, 1}m. Di�erent variants of the superposition oracle have di�erent additional
features that make them more useful than the quantum-accessible random oracle itself. We will use
the fact that in the superposition oracle formalism, the reprogramming can be directly implemented
by replacing a part of the quantum state held by the oracle, instead of using a simulator that sits be-
tween the original oracle and the querying algorithm. Notice that for this, we only need the simplest
version of the superposition oracle from [Zha19].9 In that basic form, there are only three relatively
simple conceptual steps underlying the construction of the superposition oracle, with the third one
being key to its usefulness in analyses:

� For each x ∈ {0, 1}n, O(x) is a random variable uniformly distributed on {0, 1}m. This random
variable can, of course, be sampled using a quantum measurement, more precisely a computa-
tional basis measurement of the state

|φ0〉 = 2−m/2
∑

y∈{0,1}m
|y〉 .

� For a function o : {0, 1}n → {0, 1}m, we can store the string o(x) in a quantum register Fx.
In fact, to sample O(x), we can prepare a register Fx in state |φ0〉, perform a computational
basis measurement and keep the collapsed so-called post-measurement state. Outcome y of the
measurement corresponds to the projector |y〉〈y|, and a post-measurement state proportional to

|y〉〈y| |φ0〉 = 2−
m
2 |y〉 .

Now a query with input |x〉X |ψ〉Y can be answered using CNOT gates, i.e. we can answer
queries with a superposition oracle unitary O acting on input registers X,Y and an oracle
register F = F0mF0m−11...F1m such that

OXY F |x〉〈x|X = |x〉〈x|X ⊗
(
CNOT⊗m

)
Fx:Y

.
9 Note that this basic superposition oracle does not provide an e�cient simulation of a quantum-accessible
random oracle, which is �ne for proving a query lower bound that holds without assumptions about time
complexity.
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� Since the matrices |y〉〈y|Fx
and

(
CNOT⊗m

)
Fx:Y

commute, we can delay the measurement that
performs the sampling of the random oracle until the end of the runtime of the querying algo-
rithm. Queries are hence answered using the unitary O, but acting on oracle registers Fx that
are all initialized in the uniform superposition state |φ0〉, and only after the querying algorithm
has �nished, the register F is measured to obtain the concrete random function O.

A quantum-accessible oracle for a random function O : {0, 1}n → {0, 1}m is thus implemented
as follows:

� Initialize: Prepare the initial state

|Φ〉F =
⊗

x∈{0,1}n
|φ0〉Fx

.

� Oracle: A quantum query on registers X and Y is answered using OXY F

� Post-processing: Register F is measured to obtain a random function O.

The last step can be (partially) omitted whenever the function O is not needed for evaluation of
the success or failure of the algorithm. In the following, the querying algorithm is, e.g. tasked with
distinguishing two oracles, a setting where the �nal sampling measurement can be omitted.

Note that it is straightforward to implement the operation of reprogramming a random oracle to
a fresh random value on a certain input x: just discard the contents of register Fx and replace them
with a freshly prepared state |φ0〉. In addition, we need the following lemma

Lemma 1 (Lemma 2 in [AMRS20], reformulated). Let |ψq〉AF be the joint adversary-oracle
state after an adverary has made q queries to the superposition oracle with register F . Then this
state can be written as

|ψq〉AF =
∑

S⊂{0,1}n
|S|≤q

|ψ(S)
q 〉AFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

,

where for any set R = {x1, x2, ..., x|R|} ⊂ {0, 1}n we have de�ned FR = Fx1Fx2 ...Fx|R| and |ψ
(S)
q 〉AFS

are vectors such that 〈φ0|Fx
|ψ(S)
q 〉AFS

= 0 for all x ∈ S.

5.2 Reprogramming once

We are now ready to study our simple special case. Suppose a random oracle O is reprogrammed at
a single input x∗ ∈ {0, 1}n, sampled according to some probability distribution p, to a fresh random
output y∗ ← {0, 1}m. We set O0 = O and de�ne O1 by O1(x

∗) = y and O1(x) = O for x 6= x∗. We
will show that if x∗ has su�cient min-entropy given O, such reprogramming is hard to detect.

More formally, consider a two-stage distinguisher D = (D0,D1). The �rst stage D0 has trivial
input, makes q quantum queries to O and ouputs a quantum state |ψint〉 and a sampling algorithm
for a probability distribution p on {0, 1}n. The second stage D1 gets x

∗ ← p and |ψint〉 as input, has
arbitrary quantum query access to Ob and outputs a bit b′ with the goal that b′ = b. We prove the
following.

Theorem 6. The success probability for any distinguisher D as de�ned above is bounded by

Pr[b = b′] ≤ 1

2
+

1

2

√
qpDmax +

1

4
qpDmax,

where the probability is taken over b ← {0, 1}, (|ψint〉 , p) ← DO
0 (1

n) and b′ ← DOb
1 (x∗, |ψint〉), and

pDmax = E
(|ψint〉,p)←D

O0
0 (1n)

maxx p(x).
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Proof. We implement O = O0 as a superposition oracle. Without loss of generality10, we can as-
sume that D proceeds by performing a unitary quantum computation, followed by a measurement
to produce the classical output p and the discarding of a working register G. Let |γ〉RGF be the
algorithm-oracle-state after the unitary part of D0 and the measurement have been performed, con-
ditioned on its second output being a �xed probability distribution p. R contains D0's �rst output.

De�ne εx = 1 −
∥∥ 〈φ0|Fx

|γ〉RGF
∥∥2, a measure of how far the contents of register Fx are from

the uniform superposition. Intuitively, this is the `probability' that the distinguisher knows O(x),
and should be small in expectation over x← p. We therefore begin by bounding the distinguishing
advantage in terms of this quantity. For a �xed x, we can write the density matrix ρ(0) = |γ〉〈γ| as

ρ
(0)
RGF = 〈φ0|Fx

ρ
(0)
RGF |φ0〉Fx

⊗ |φ0〉〈φ0|Fx
+ ρ

(0)
RGF

(
1− |φ0〉〈φ0|Fx

)
+
(
1− |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

. (8)

The density matrix ρ
(1,x)
RGF for the algorithm-oracle-state after D0 has �nished and the oracle has been

reprogrammed at x (i.e. b = 1) is

ρ
(1,x)
RGF = TrFx

[ρ
(1,x)
RGF ]⊗ |φ0〉〈φ0|Fx

= 〈φ0|Fx
ρ
(0)
RGF |φ0〉Fx

⊗ |φ0〉〈φ0|Fx

+TrFx [(1− |φ0〉〈φ0|Fx
)ρ

(0)
RGF ]⊗ |φ0〉〈φ0|Fx

, (9)

where the second equality is immediate when computing the partial trace in an orthonormal basis
containing |φ0〉.

We analyze the success probability of D. In the following, set x∗ = x. The second stage, D1, has
arbitrary query access to the oracle Ob. In the superposition oracle framework, that means D1 can
apply arbitrary unitary operations on its registers R and G, and the oracle unitary O to some sub-
register registers XY of G and the oracle register F . We bound the success probability by allowing
arbitraty operations on F , thus reducing the oracle distinguishing task to the task of distinguishing

the quantum states ρ
(b,x)
RF = TrGρ

(b,x)
RGF for b = 0, 1, where ρ(0,x) := ρ(0). By the bound relating

distinguishing advantage and trace distance,

Pr[b = b′|x∗ = x] ≤1

2
+

1

4

∥∥ρ(0)RF − ρ(1,x)RF

∥∥
1
≤ 1

2
+

1

4

∥∥ρ(0)RGF − ρ(1,x)RGF

∥∥
1
, (10)

where the probability is taken over b ← {0, 1}, |ψint〉 ← DO0
0 (1n) and b′ ← DOb

1 (x, |ψint〉), and we
have used that the trace distance is non-increasing under partial trace. Using Equation (8) and (9),
we bound ∥∥ρ(0)RGF − ρ(1,x)RGF

∥∥
1

≤
∥∥∥ρ(0)RGF (1− |φ0〉〈φ0|Fx

)
+
(
1− |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

− TrFx
[(1− |φ0〉〈φ0|Fx

)ρ
(0)
RGF ]⊗ |φ0〉〈φ0|Fx

∥∥∥
1

≤
∥∥∥ρ(0)RGF (1− |φ0〉〈φ0|Fx

) ∥∥∥
1
+
∥∥∥ (1− |φ0〉〈φ0|Fx

)
ρ
(0)
RGF |φ0〉〈φ0|Fx

∥∥∥
1

+
∥∥∥TrFx

[(1− |φ0〉〈φ0|Fx
)ρ

(0)
RGF ]⊗ |φ0〉〈φ0|Fx

∥∥∥
1
,

10 This can be seen by employing the Stinespring dilation theorem, or by using standard techniques to delay
measurement and discard operations until the end of a quantum algorithm.



22 A. B. Grilo, K. Hövelmanns, A. Hülsing, C. Majenz

Where the last line is the triangle inequality. The trace norm of a positive semide�nite matrix is
equal to its trace, so the last term can be simpli�ed as∥∥∥TrFx [(1− |φ0〉〈φ0|Fx

)ρ
(0)
RGF ]⊗ |φ0〉〈φ0|Fx

∥∥∥
1

= Tr[(1− |φ0〉〈φ0|Fx
) |γ〉〈γ|RGF ] = εx.

The second term is upper-bounded by the �rst via Hölder's inequality, which simpli�es as∥∥∥ρ(0)RGF (1− |φ0〉〈φ0|Fx

) ∥∥∥
1
=
∥∥∥ |γ〉〈γ|RGF (1− |φ0〉〈φ0|Fx

) ∥∥∥
1

=
∥∥∥ (1− |φ0〉〈φ0|Fx

)
|γ〉RGF

∥∥∥
2
=
√
εx

where the second equality uses that |γ〉 is normalized. In summary we have∥∥ρ(0)RGF − ρ(1,x)RGF

∥∥
1
≤ 2
√
εx + εx. (11)

It remains to bound εx in expectation over x← p. To this end, we prove

Ex∗←p
[∥∥ 〈φ0|Fx∗

|γ〉RGF
∥∥2] ≥ 1− qpmax, (12)

where pmax = maxx p(x). In the following, sums over S are taken over S ⊂ {0, 1}n : |S| ≤ q, with
additional restrictions explicitly mentioned. We have

Ex∗←p
[∥∥ 〈φ0|Fx∗

|γ〉RGF
∥∥2] = ∑

x∗∈{0,1}n
p(x∗)

∥∥ 〈φ0|Fx∗
|γ〉RGF

∥∥2
=

∑
x∗∈{0,1}n

p(x∗)
∥∥∑

S

〈φ0|Fx∗
|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2,
where we have used Lemma 1 as well as the notation |ψ(S)

q 〉 from there. (Lemma 1 clearly also holds

after the projector corresponding to second output equaling p is applied). Using 〈φ0|Fx
|ψ(S)
q 〉RGFS

=
0 for all x ∈ S we simplify∑

x∗∈{0,1}n
p(x∗)

∥∥∑
S

〈φ0|Fx∗
|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
=

∑
x∗∈{0,1}n

p(x∗)
∥∥ ∑
S 63x∗

|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2.
The summands in the second sum are pairwise orthogonal, so∑

x∗∈{0,1}n
p(x∗)

∥∥ ∑
S 63x∗

|ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2
=

∑
x∗∈{0,1}n

p(x∗)
∑
S 63x∗

∥∥ |ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2
=
∑
S

∑
x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|−1)
)
FSc\{x∗}

∥∥2
=
∑
S

∑
x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
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where we have used the fact that the state |φ0〉 is normalized in the last line. But for any S ⊂ {0, 1}n
we have ∑

x∗∈Sc

p(x∗) =1−
∑
x∗∈S

p(x∗) ≥ 1− |S|pmax,

where here, pmax = maxx p(x). We hence obtain∑
S

∑
x∗∈Sc

p(x∗)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
≥
∑
S

(1− |S|pmax)
∥∥ |ψ(S)

q 〉RGFS
⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2
≥ (1− qpmax)

∑
S

∥∥ |ψ(S)
q 〉RGFS

⊗
(
|φ0〉⊗(2

n−|S|)
)
FSc

∥∥2 = 1− qpmax,

where we have used the normalization of |γ〉RGF in the last equality. Combining the above equations
proves Equation (12). Putting everything together, we bound

Pr[b = b′] =EpEx Pr[b = b′|p, x] ≤ 1

2
+

1

4
EpEx[2

√
εx + εx]

≤1

2
+

1

4
Ep[2
√
qpmax + qpmax] ≤

1

2
+

1

2

√
qpDmax + qpDmax.

Here, the inequalities are due to Equation (10) and Equation (11), Equation (12) and Jensen's
inequality, and another Jensen's inequality, respectively. ut

6 A matching attack

We now describe an attack matching the bound presented in Theorem 6. For simplicity, we restrict
our attention to the case where just one point is (potentially) reprogrammed.

Our distinguisher makes q queries to O, the oracle before the potential reprogramming, and
q queries to O′, the oracle after the potential reprogramming. In our attack, we �x an arbitrary
cyclic permutation σ on [2n], and for the �xed reprogrammed point x∗, we de�ne the set S =
{x∗, σ−1(x∗), ..., σ−q+1(x∗)}, S = {0, 1}n \ S, Π0 = 1

2

(
|S〉+ |S〉

) (
〈S|+ 〈S|

)
and Π1 = I − Π0.

11

The distinguisher D is de�ned in Fig. 13.

Before potential reprogramming:
01 Prepare registers XY in 1√

2n

∑
x∈[2n] |x, 0〉XY

02 Query O using registers XY
03 for i = 0, ..., q − 1:
04 Apply σ on register X
05 Query O using registers XY

After potential reprogramming:
06 Query O′ using using registers XY
07 for i = q − 2, ..., 0:
08 Apply σ−1 on register X
09 Query O′ using registers XY
10 Measure X according to {Π0, Π1}
11 Output b if the state projects onto Πb.

Fig. 13. Distinguisher for a single reprogrammed point.

11 Formally, S, Π0 and Π1 are functions of x∗ but we omit this dependence for simplicity, since we can
assume that x∗ is �xed.
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Theorem 7. For every 1 ≤ q < 2n−3, the attack described in Figure 13 can be implemented in
quantum polynomial-time. Performing q queries each before and after the potential reprogramming, it
detects the reprogramming of a random oracle O : {0, 1}n → {0, 1}m at a single point with probability
at least Ω(

√
q
2n ).

Proof (sketch). We can analyze the state of the distinguisher before its measurement. If the oracle
is not reprogrammed, then its state is

1√
2n

∑
x

|x〉 |0〉 ,

whereas if the reprogramming happens, its state is∑
x∈S
|x〉 |O(x∗)⊕ O′(x∗)〉+

∑
x∈S

|x〉 |0〉 ,

where O(x∗)⊕ O′(x∗) is a uniformly random value. The advantage follows by calculating the prob-
ability that these states project onto Π0.

For the e�ciency of our distinguisher, we can use the tools provided in [AMR20] to e�ciently
implement Π0 and Π1, which are the only non-trivial operations of the attack.

Due to space restrictions, we refer to Appendix E, where we give the full proof of Theorem 7 and
discuss its extension to multiple reprogrammed points.
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A Adaptive reprogramming: Omitted proofs

We now discuss how to derive our main theorem, Theorem 1, from the simple case proven in Theo-
rem 6. For easier reference we repeat the theorem statement.

Theorem 1 (�Adaptive reprogramming� (AR)). Let X, X ′, Y be some �nite sets, and let D
be any distinguisher, issuing R many reprogramming instructions and q many (quantum) queries to
O. Let qr denote the number of queries to O that are issued inbetween the (r − 1)-th and the r-th
query to Reprogram. Furthermore, let p(r) denote the rth distribution that Reprogram is queried

on. By p
(r)
X we will denote the marginal distribution of X, according to p(r), and de�ne

p(r)max := Emax
x

p
(r)
X (x),

where the expectation is taken over D's behaviour until its rth query to Reprogram.

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| ≤
R∑
r=1

(√
q̂rp

(r)
max +

1

2
q̂rp

(r)
max

)
, (2)

where q̂r :=
∑r−1
i=0 qi.

First, we extend Theorem 6 to multiple reprogramming instances with a hybrid argument. Af-
terwards, we extend the result to cover side information. To prove the �rst step, we introduce helper
games Gb in Fig. 14, in which the adversary has access to oracle Reprogram′. (These are already
almost the same as the Repro games used in Theorem 1. The only di�erence is that they do not
sample and return the additional side information x′.)

Lemma 2. Let D be any distinguisher, issuing R many reprogramming instructions. Let q̂(r) denote
the total number of D's queries to O until the r-th query to Reprogram′. Furthermore, let p(r)

denote the r-th distribution on X on which Reprogram′ is queried, and let

p(r)max := E
[
max
x

p(r)(x)
]
,

where the expectation is taken over D's behaviour until its r-th query to Reprogram′.

The success probability for any distinguisher D is bounded by

|Pr[GD
0 ⇒ 1]− Pr[GD

1 ⇒ 1]| ≤
R∑
r=1

(√
q̂(r)p

(r)
max +

1

2
q̂(r)p(r)max

)
.

https://eprint.iacr.org/2020/787
https://eprint.iacr.org/2020/787
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GAMES Gb

01 O0 ←$ Y
X

02 O1 := O0

03 b′ ← D|Ob〉,Reprogram′

04 return b′

Reprogram
′(p)

05 x← p
06 y ←$ Y
07 O1 := Ox 7→y

1

08 return x

Fig. 14. Games Gb of Lemma 2.

Proof. We de�ne hybrid settings Hr for r = 0, ..., R, in which D has access to oracle O which is
not reprogrammed at the �rst r many positions, but is reprogrammed from the (r + 1)-th position
on. Hence, H0 is the distinguishing game G1, and HR is G0. Any distinguisher D succeeds with
advantage

|Pr[GD
0 ⇒ 1]− Pr[GD

1 ⇒ 1]| = Pr[HD
0 ⇒ 1]− Pr[HD

R ⇒ 1]|

=

∣∣∣∣∣
R∑
r=1

(
Pr[HD

r−1 ⇒ 1]− Pr[HD
r ⇒ 1]

)∣∣∣∣∣
≤

R∑
r=1

∣∣Pr[HD
r−1 ⇒ 1]− Pr[HD

r ⇒ 1]
∣∣ ,

where we have used the triangle inequality in the last line.
To upper bound |Pr[HD

r−1 ⇒ 1]−Pr[HD
r ⇒ 1]|, we will now de�ne distinguishers D̂r = (D̂r,0, D̂r,1)

that are run in the single-instance distinguishing games G′b of Theorem 6: Let O′ denote the oracle

that is provided by G′b. Until right before the r-th query to Reprogram′, the �rst stage D̂r,0 uses

O′ to simulate the hybrid setting Hr−1 to D. (Until this query, Hr−1 and Hr do not di�er.) D̂r,0 then
uses as its output to game G′b the r-th distribution on which Reprogram′ was queried. The second

stage D̂r,1 uses its input x
∗ to simulate the r-th response of Reprogram′. As from (and including)

the (r + 1)-th query, D̂r,1 can simulate the reprogramming by using fresh uniformly random values

to overwrite O′. To be more precise, during each call to Reprogram′ on some distribution p, D̂r,1

samples x← p and y ←$ Y , and adds (x, y) to a list LO. (If x has been sampled before, D̂r,1 replaces

the former oracle value in the list.) D̂r,1 de�nes O by

O(x) :=

{
y ∃y s.th. (x, y) ∈ LO

O′(x) o.w.

In the case that D̂r is run in game G′0, the reprogramming starts with the (r + 1)-th query and

D̂r perfectly simulates game Hr. In the case that D̂r is run in game G′1, the reprogramming already

starts with the r-th query and D̂r perfectly simulates game Hr−1.

|Pr[HD
r−1 ⇒ 1]− Pr[HD

r ⇒ 1]| = |Pr[G′1
D̂r ⇒ 1]− Pr[G′0

D̂r ⇒ 1]| .

Since the �rst stage D̂r,0 issues q̂r many queries to O′, we can apply Theorem 6 to obtain

|Pr[G′1
D̂r ⇒ 1]− Pr[G′0

D̂r ⇒ 1]| ≤
√
q̂r · p(r)max +

1

2
q̂r · p(r)max .

ut
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Second, we prove that Lemma 2 implies our main Theorem 1. For this we have to show that
additional side-information can be simulated by a reduction.

Proof. Consider a distinguisher D run in games Reprob. To upper bound D's advantage, we now
de�ne a distinguisher D̂ against the helper games Gb from Fig. 14.

When queried on a distribution p on X × X ′, D̂ will simulate Reprogram as follows: D̂ will
forward the marginal distribution pX of x to its own oracle Reprogram′, and obtain some x that
was sampled accordingly. It will then sample x′ according to pX′|x, where pX′|x is the probability
distribution on X ′, conditioned on x, i.e.,

pX′|x(x
′) :=

Pr[x, x′]

Pr[x]
.

where the probabilities are taken over (x, x′) ← p, and the probability in the denominator is taken
over x← pX . Note that D̂ can be unbounded, as the statement of Lemma 2 is information-theoretical.
This is important because while p is e�ciently sampleable, pX′|x might not be. Since the distribution

of (x, x′) is identical to p, and since the reprogramming only happens on x, D̂ perfectly simulates
game Reprob to D if run in game Gb and

|Pr[ReproD
1 ⇒ 1]− Pr[ReproD

0 ⇒ 1]| = |Pr[GD̂
1 ⇒ 1]− Pr[GD̂

0 ⇒ 1]| .

Since D̂ can answer any random oracle query issued by D by simply forwarding it, D̂ issues exactly
as many queries to O (until the r-th reprogramming instruction) as D. We can now apply Lemma 2
to obtain

|Pr[GD̂
1 ⇒ 1]− Pr[GD̂

0 ⇒ 1]| ≤
R∑
r=1

(√
q̂rp

(r)
max +

1

2
q̂rp

(r)
max

)
,

where p
(r)
max = Emaxx p

(r)
X (x).

B De�nitions: Hash functions, and identi�cation and signature schemes

B.1 Security of Hash Functions

One of our proofs makes use of a multi-target version of extended target-collision resistance (M-eTCR).
Extended target-collision resistance is a variant of target collision resistance, where the adversary
also succeeds if the collision is under a di�erent key. As we will consider this notion for a random
oracle, we adapt the notion slightly for this setting.

The success probability of an adversary A against M-eTCR security of a quantum-accessible
random oracle H is de�ned as follows. The de�nition makes use of a (classical) challenge oracle
Box(·) which on input of the j-th message xj outputs a uniformly random function key zj .

SuccM-eTCR
H (A, p) = Pr [ (x′, z′, i)← ABox,|H〉() :

x′ 6= xi ∧ H(zi‖xi) = H(z′‖x′) ∧ 0 < i ≤ p] .

A later proof makes use of another version of target collision resistance called multi-target ex-
tended target-collision resistant with nonce (nM-eTCR). The de�nition of nM-eTCR again makes use
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of a (classical) challenge oracle Box(·) that on input of the j-th message Mj outputs a uniformly
random function key zj . Before the experiment starts, A can select an arbitary n-bit string id.

SuccnM-eTCR
H (A, p) = Pr [ id← A(), (x′, z′, i)← ABox(·),|H〉(id) :

x′ 6= xi ∧ H(zi, id, i, xi) = H(z′, id, i, x′) ∧ 0 < i ≤ p] .

The QROM bound for nM-eTCR makes use of the following two games omitted in the main body
of the paper. The games were de�ned in the proof in [BHRvV20], we rephrased them to match our
notation:

Game Ga,i. After A selected id, it gets access to H. In phase 1, after making at most q1 queries to
H, A outputs a message x ∈ X. Then a random z ←$ Z is sampled and (z,H(z‖id‖i‖x)) is handed
to A. A continues to the second phase and makes at most q2 queries. A outputs b ∈ {0, 1} at the end.
Game Gb,i. After A selected id, it gets access to H. After making at most q1 queries to H, A outputs
a message x ∈ X. Then a random z ←$ Z is sampled as well as a random range element y ←$ Y .
Program H := H(z‖id‖i‖x) 7→y. A receives (z, y = H(z‖id‖i‖x)) and proceeds to the second phase. After
making at most q2 queries, A outputs b ∈ {0, 1} at the end.

In a reduction to apply our new bound, id and i would be sent as part of the message to
Reprogram. Note that the proof in [BHRvV20] runs a hybrid argument over qs programmings and
in every programming step a di�erent value for i is used, thereby making those distinct.

B.2 Identi�cation schemes

We now de�ne syntax and security of identi�cation schemes. Let par be a tuple of common system
parameters shared among all participants.

De�nition 4 (Identi�cation schemes). An identi�cation scheme ID is de�ned as a collection of
algorithms ID = (IG,Commit,Respond,V).

� The key generation algorithm IG takes system parameters par as input and returns the public
and secret keys (pk , sk). We assume that pk de�nes the challenge space C, the commitment space
W and the response space Z.

� Commit takes as input the secret key sk and returns a commitment w ∈ W and a state st
� Respond takes as input the secret key sk , a commitment w, a challenge c, and a state st, and

returns a response z ∈ Z ∪ {⊥}, where ⊥ /∈ Z is a special symbol indicating failure.
� The deterministic veri�cation algorithm V(pk , w, c, z) returns 1 (accept) or 0 (reject).

Note that during one of our application examples (i.e., in Section 4.2), we de�ne the response
algorithm such that it does not explicitly take a commitment w as input. If needed, it can be assumed
that st contains a copy of w.

A transcript is a triplet trans = (w, c, z) ∈ W × C × Z. It is called valid (with respect to public
key pk) if V(pk , w, c, z) = 1. Below, we de�ne a transcript oracle getTrans that returns the transcript
trans = (w, c, z) of a real interaction between prover and veri�er. We furthermore de�ne another
transcript oracle getTransChall that returns an honest transcript for a �xed challenge c.

Commitment entropy. We de�ne

γ(Commit) := Emax
w

Pr[w] ,

where the expectation is taken over (pk , sk) ← IG, and the probability is taken over (w, st) ←
Commit(sk).
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Algorithm getTrans(sk)
01 (w, st)← Commit(sk)
02 c←$ C
03 z ← Respond(sk , w, c, st)
04 return (w, c, z)

Algorithm getTransChall(sk , c)
05 (w, st)← Commit(sk)
06 z ← Respond(sk , w, c, st)
07 return (w, c, z)

Fig. 15. Generating honest transcripts with oracles getTrans and getTransChall.

In one of our applications (Section 4.2), the Respond algorithm is required to reject whenever
its challenge input c is malformed. As observed in [AOTZ20], this additional requirement is not too
severe, since most practical implementations perform a sanity check on c. We will call this property
validity awareness.

De�nition 5 (Validity awareness). We say that ID is validity aware if Respond(sk , w, c, st) = ⊥
for all challenges c /∈ C.

Statistical HVZK. We recall the de�nition of statistical honest-veri�er zero-knowledge (HVZK),
and the de�nition of special statistical HVZK from [AOTZ20].

De�nition 6 ((Special) statistical HVZK). Assume that ID comes with an HVZK simulator Sim.
We say that ID is ∆HVZK-statistical HVZK if for any key pair (pk , sk) ∈ supp(IG), the distribution
of (w, c, z) ← Sim(pk) has statistical distance at most ∆HVZK from an honest transcript (w, c, z) ←
getTrans(sk).

To de�ne special statistical HVZK, assume that ID comes with a special HVZK simulator Sim. We
say that ID is ∆sHVZK-statistical sHVZK if for any key pair (pk , sk) ∈ supp(IG) and any challenge
c ∈ C, the distribution of (w, c, z)← getTransChall(sk , c) and the distribution of (w, c, z)← Sim(pk , c)
have statistical distance at most ∆sHVZK.

Following [AOTZ20], we now de�ne subset-revealing identi�cation schemes. Intuitively, an iden-
ti�cation scheme is subset-revealing if Respond responds to a challenge by revealing parts of the state
that was computed by Commit, and does not depend on sk .

De�nition 7 (Subset-revealing identi�cation protocol).
Let ID = (IG,Commit,Respond,V) be an identi�cation protocol. We say that ID is subset-revealing

if for any key pair in the support of IG it holds that

� the challenge space C is polynomial in the security parameter,
� for any tuple (w, st) ∈ supp(Commit(sk)), the state st consists of a collection (st1, · · · , stN ) such

that N is polynomial in the security parameter,
� and furthermore there exists an algorithm DeriveSet such that

• DeriveSet takes as input a challenge c and returns a subset I ⊂ {1, · · · , N},
• for any tuple (w, st) ∈ supp(Commit(sk) and any challenge c ∈ C we have Respond(sk , c, st) =
(sti)i∈I , where I = DeriveSet(c).

B.3 Signature schemes

We now de�ne syntax and security of digital signature schemes. Let par be a tuple of common system
parameters shared among all participants.

De�nition 8 (Signature scheme). A digital signature scheme SIG is de�ned as a triple of algo-
rithms SIG = (KG,Sign,Vrfy).
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� The key generation algorithm KG(par) returns a key pair (pk , sk). We assume that pk de�nes
the message spaceM.

� The signing algorithm Sign(sk ,m) returns a signature σ.
� The deterministic veri�cation algorithm Vrfy(pk ,m, σ) returns 1 (accept) or 0 (reject).

UF-CMA, UF-CMA0 and UF-RMA security. We de�ne UnForgeability under Chosen Message
Attacks (UF-CMA), UnForgeability under Chosen Message Attacks with 0 queries to the signing
oracle (UF-CMA0, also known as UF-KOA or UF-NMA) and UnForgeability under Random Message
Attacks (UF-RMA) success functions of a quantum adversary A against SIG as

SuccUF−XSIG (A) := Pr[UF-XA
SIG ⇒ 1] ,

where the games for X ∈ {CMA, CMA0,RMA} are given in Fig. 16.

Game UF-CMA UF-CMA0

01 (pk , sk)← IG(par)

02 (m∗, σ∗)← ASIGN(pk)

03 (m∗, σ∗)← A(pk)

04 if m∗ ∈ LM return 0
05 return Vrfy(pk ,m∗, σ∗)

SIGN(m)

06 LM := LM∪{m}
07 σ ← Sign(sk ,m)
08 return σ

GAME UF-RMA
01 (pk , sk)← KG()
02 {m1, · · · ,mN} ←$ MN

03 for i ∈ {1, · · · , N}
04 σi ← Sign(sk ,mi)
05 (m∗, σ∗)← A(pk , {(mi, σi)}1≤i≤N )
06 if m∗ ∈ {mi}1≤i≤N

07 return 0
08 return Vrfy(pk ,m∗, σ∗)

Fig. 16. Games UF-CMA, UF-CMA0 (left) and UF-RMA (right) for SIG. Game UF-RMA is de�ned relative
to N , the number of message-signature pairs the adversary is given.

The hash-and-sign construction. To a signature scheme SIG = (KG,Sign,Vrfy) with message
spaceM, and a hash function H : Z ×M′ →M (later modeled as a RO), we associate

SIG′ := HaS(SIG,H) := (KG,Sign′,Vrfy′)

with message spaceM′, where algorithms Sign′ and Vrfy′ of SIG′ are de�ned in Fig. 17.

Sign′(sk ,m′)
01 z ←$ Z
02 σ = Sign(sk ,H(z‖m′))
03 return σ′ = (z, σ)

Vrfy′(pk , σ′,m′)

04 Parse σ′ as (z, σ)
05 m = H(z‖m′)
06 return Vrfy(pk ,m, σ)

Fig. 17. Construction SIG′ = HaS(SIG,H). Key generation remains the same as in SIG.

The Fiat-Shamir transform. To an identi�cation scheme ID = (IG,Commit,Respond,V) with
commitment space W, and random oracle H :W×M→ C for some message spaceM, we associate

FS[ID,H] := SIG := (IG,Sign,Vrfy) ,
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where algorithms Sign and Vrfy of SIG are de�ned in Fig. 18.
We will also consider the modi�ed Fiat-Shamir transform, in which lines 02 and 05 are replaced

with c := H(w,m, pk).

Sign(sk ,m)
01 (w, st)← Commit(sk)
02 c := H(w,m)
03 z ← Respond(sk , w, c, st)
04 return σ := (w, z)

Vrfy(pk ,m, σ = (w, z))
05 c := H(w,m)
06 return V(pk , w, c, z)

Fig. 18. Signing and veri�cation algorithms of SIG = FS[ID,G].

C From UF-CMA0 to UF-F-CMA (Proof of Theorem 4)

We now give the proof for Theorem 4:

Theorem 4. Assume ID to be validity aware (see De�nition 5, Appendix B). If SIG := FS[ID,H] is
UF-CMA0 secure, then SIG is also UF-FF -CMA secure for F := {5, 6, 9}, in the quantum random
oracle model. Concretely, for any adversary A against the UF-FF -CMA security of SIG, issuing at
most qS (classical) queries to FAULTSIGN and qH (quantum) queries to H, there exists an UF-CMA0

adversary B and a multi-HVZK adversary C such that

Succ
UF-F{5,6,9}-CMA

SIG (A) ≤ SuccUF-CMA0

SIG (B) + Advqs−HVZKID (C)

+
3qS
2

√
2 · (qH + qS + 1) · γ(Commit) . (7)

and B and C have about the running time of A.
If we assume that ID is subset-revealing, then SIG is even UF-FF ′-CMA secure for F ′ := F∪{4, 7}.

Concretely, the bound of Eq. (7) then holds also for F ′ = {4, 5, 6, 7, 9}.

Following the proof structure of [AOTZ20], we will break down the proof into several sequential
steps. Consider the sequence of games, given in Fig. 19. With each game-hop, we take one more
index i for which we replace execution of FAULTSIGN with a simulation that can be executed without
knowledge of sk , see line Item 14. The workings of these simulations will be made explicit in the
proof for the respective game-hop. Similar to [AOTZ20], the order of the indices for which we start
simulating is 9, 5, 6, 7, 4.

For a scheme that cannot be assumed to be subset-revealing, we will only proceed until game
G3, and then use game G3 to argue that we can turn any adversary against the UF-F{5,6,9}-CMA
security of SIG into an UF-CMA0 adversary (see Lemma 6).

If we can assume the scheme to be subset-revealing, we will proceed until game G5, and then use
game G5 to argue that we can turn any adversary against the UF-F{4,5,6,7,9}-CMA security of SIG
into an UF-CMA0 adversary (see Lemma 9).

Note that our sequential proof is given for statistical sHVZK. The reason why we do not give our
proof in the computational setting right away is that it would then be required to make all of our
changes at once, rendering the proof overly involved, while not providing any new insights. At the
end of this section, we show how to generalise the proof to the computational setting.



34 A. B. Grilo, K. Hövelmanns, A. Hülsing, C. Majenz

Games G0 - G5

01 (pk , sk)← IG(par)
02 (m∗, σ∗)← AFAULTSIGN,|H〉(pk)
03 if m∗ ∈ LM return 0
04 Parse (w∗, z∗) := σ∗

05 c∗ := H(w∗,m∗)
06 return V(pk , w∗, c∗, z∗)

FAULTSIGN(m, i ∈ F , φ)
07 S := ∅ �G0

08 S := {9} �G1-G5

09 S := S ∪ {5} �G2-G5

10 S := S ∪ {6} �G3-G5

11 S := S ∪ {7} �G4-G5

12 S := S ∪ {4} �G5

13 if i ∈ S
14 σ ← simSignaturei(m,φ)
15 else σ ← getSignature(m, i, φ)
16 return σ

getSignature(m, i, φ)

17 fi := φ and fj := Id ∀ j 6= i
18 (w, st)← Commit(sk)
19 (w, st) := f4(w, st)
20 (ŵ, m̂, p̂k) := f5(w,m, pk)
21 c := f6(H(m̂, ŵ, p̂k))
22 z ← Respond(f7(sk , c, st))
23 LM := LM ∪ {m̂}
24 return σ := f9(w, z)

Fig. 19. Games G0 - G5 for the proof of Theorem 4. Helper methods getSignature and simSignaturei (where
i ∈ {4, 5, 6, 7, 9}) are internal and cannot be accessed directly by A. Recall that we require queried indices i
to be contained in F (see Fig. 12).

Game G0. Since game G0 is the original UF-FF -CMA game,

SuccUF-FF -CMA
SIG′ (A) = Pr[GA

0 ⇒ 1] .

Games G1 - G3. In games G1 to G3, we sequentially start to simulate faulty signatures for fault
indices 9, 5 and 6.

Lemma 3. There exists an algorithm simSignature9 such that for any adversary A against the
UF-FF -CMA security of SIG, issuing at most qS,9 queries to FAULTSIGN on index 9, qS queries
to FAULTSIGN in total, and at most qH queries to H,

|Pr[GA
0 = 1]− Pr[GA

1 = 1]| ≤ qS,9 ·
(
∆sHVZK +

3

2

√
(qH + qS + 1) · γ(Commit)

)
. (13)

The details on algorithm simSignature9 and the proof for Eq. (13) are given in Appendix C.1.

Lemma 4. There exists an algorithm simSignature5 such that for any adversary A against the
UF-FF -CMA security of SIG, issuing at most qS,5 queries to FAULTSIGN on index 5, qS queries
to FAULTSIGN in total, and at most qH queries to H,

|Pr[GA
1 = 1]− Pr[GA

2 = 1]| ≤ qS,5 ·
(
∆sHVZK +

3

2

√
(qH + qS + 1) · 2γ(Commit)

)
. (14)

The details on algorithm simSignature5 and the proof for Eq. (14) are given in Appendix C.2.

Lemma 5. There exists an algorithm simSignature6 such that for any adversary A against the
UF-FF -CMA security of SIG, issuing at most qS,6 queries to FAULTSIGN on index 6, qS queries
to FAULTSIGN in total, and at most qH queries to H,

|Pr[GA
2 = 1]− Pr[GA

3 = 1]| ≤ qS,6 ·
(
∆sHVZK +

3

2

√
(qH + qS + 1) · γ(Commit)

)
. (15)
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The details on algorithm simSignature6 and the proof for Eq. (15) are given in Appendix C.3. What
we have shown by now is that

|Pr[GA
0 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ qS,{5,6,9} ·
(
∆sHVZK +

3

2

√
(qH + qS + 1) · 2γ(Commit)

)
, (16)

where qS,{5,6,9} denotes the maximal number of queries to FAULTSIGN on all indices i ∈ {5, 6, 9}.
We are now ready to give our �rst security statement.

Lemma 6. For any adversary A against the UF-F{5,6,9}-CMA security of SIG, there exists an ad-
versary B such that

Pr[GA
3 ⇒ 1] ≤ SuccUF-CMA0

FS[ID,H] (B) ,

and B has the same running time as A.

The proof is given in Appendix C.4. Collecting the probabilities, we obtain

Succ
UF-F{5,6,9}-CMA

FS[ID,H] (A) ≤SuccUF-CMA0

FS[ID,H] (B)

+ qS ·
(
∆sHVZK +

3

2

√
(qH + qS + 1) · 2γ(Commit)

)
.

Games G4 - G5. In games G4 to G5, we sequentially start to simulate faulty signatures for fault
indices 7 and 4.

Lemma 7. Suppose that ID is subset-revealing. Then there exists an algorithm simSignature7 such
that for any adversary A against the UF-FF -CMA security of SIG, issuing at most qS,7 queries to
FAULTSIGN on index 7, qS queries to FAULTSIGN in total, and at most qH queries to H,

|Pr[GA
3 = 1]− Pr[GA

4 = 1]| ≤ qS,7 ·
(
∆sHVZK +

3

2

√
(qH + qS + 1) · γ(Commit)

)
. (17)

The details on algorithm simSignature7 and the proof for Eq. (17) are given in Appendix C.5.

Lemma 8. Suppose that ID is subset-revealing. There exists an algorithm simSignature4 such that for
any adversary A against the UF-FF -CMA security of SIG, issuing at most qS,4 queries to FAULTSIGN
on index 4, qS queries to FAULTSIGN in total, and at most qH queries to H,

|Pr[GA
4 = 1]− Pr[GA

5 = 1]| ≤ qS,6 ·
(
∆sHVZK +

3

2

√
(qH + qS + 1) · 2γ(Commit)

)
. (18)

The details on algorithm simSignature4 and the proof for Eq. (18) are given in Appendix C.6. What
we have shown by now is that

|Pr[GA
3 ⇒ 1]− Pr[GA

5 ⇒ 1]| ≤ qS,{4,7} ·
(
∆sHVZK +

3√
2

√
(qH + qS + 1) · γ(Commit)

)
,

where qS,{4,7} denotes the maximal number of queries to FAULTSIGN on all indices i ∈ {4, 7}. We
are now ready to give our second security statement.
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Lemma 9. For any adversary A against the UF-F{4,5,6,7,9}-CMA security of SIG, there exists an
adversary B such that

Pr[GA
5 ⇒ 1] ≤ SuccUF-CMA0

FS[ID,H] (B) ,

and B has the same running time as A. The proof is given in Appendix C.7.

Collecting the probabilities, we obtain

Succ
UF-F{4,5,6,7,9}-CMA

FS[ID,H] (A) ≤SuccUF-CMA0

FS[ID,H] (B)

+ qS ·
(
∆sHVZK +

3√
2

√
(qH + qS + 1) · γ(Commit)

)
,

given that ID is subset-revealing.

Generalising the proof for computational sHVZK. To generalise the proof, we observe
that every game-hop consists of two steps: Adaptive reprogramming and, subsequently, replacing
honest transcripts with simulated ones. To obtain the result for computational sHVZK, we have
to reorder the games: We will �rst reprogram the random oracle for all fault indices at once,
with oracle FAULTSIGN reprogramming the random oracle for each fault index as speci�ed in
the sequential proof (see Sections C.1 to C.6). Combined reprogramming yields an upper bound
of 3qS√

2

√
(qH + qS + 1) · γ(Commit). After these changes, the random oracle is a-posteriori repro-

grammed such that it is consistent with the transcripts, and hence, the transition to simulated
transcripts can be reduced to distinguishing the special computational multi-HVZK games (see De�-
nition 2). In more detail, the HVZK reduction can simply use its own transcript oracle getTransChall,
and simulate the adaptive reprogramming like our UF-CMA0 reductions, see, e.g., the reduction given
in Appendix C.4.

C.1 Game G1: Simulating FAULTSIGN for index 9 (Proof of Lemma 3)

As a warm-up, we will �rst consider simulations with respect to fault index 9. Recall that index
9 denotes the fault type which allows A to fault the resulting (honestly generated) signature (see
line 05 in Fig. 20). To prove Lemma 3, let A be an adversary against the UF-FF -CMA security of
SIG, issuing at most qS,9 queries to FAULTSIGN on index 9, qS queries to FAULTSIGN in total, and
at most qH queries to H. We de�ne the signature simulation algorithm simSignature9 as in Fig. 20.

FAULTSIGN(m, i = 9, φ)

01 (w, st)← Commit(sk)
02 c := H(w,m, pk)
03 z ← Respond(sk , c, st)
04 LM := LM ∪ {m}
05 return σ := φ(w, z)

simSignature9(m,φ)

06 c←$ C
07 (w, z)← Sim(pk , c)
08 H := H(w,m,pk)7→c

09 LM := LM ∪ {m}
10 return σ := φ(w, z)

Fig. 20. Original oracle FAULTSIGN for the case that i = 9, and signature simulation algorithm simSignature9
for the proof of Lemma 3.

To proceed from game G0 to G1, we use an argument similar to the one given in Theorem 3:
During execution of FAULTSIGN(m, 9, φ), we �rst derandomise the challenges and reprogram H such
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that it is rendered a-posteriori-consistent with the resulting transcripts, resulting in an invocation
of Theorem 1, where R = qS,9, q = qH + qS +1, and pmax = γ(Commit). As the second step, we then
make use of the fact that we assume ID to be statistically sHVZK, and hence, honestly generated
transcripts can be replaced with simulated ones during execution of FAULTSIGN(m, 9, φ).

After these changes, FAULTSIGN(m, 9, φ) = simSignature9(m,φ) and

|Pr[GA
0 = 1]− Pr[GA

1 = 1]| ≤ qS,9 ·∆sHVZK +
3qS,9
2

√
(qH + qS + 1) · γ(Commit) .

C.2 Game G2: Simulating FAULTSIGN for index 5 (Proof of Lemma 4)

Recall that index 5 denotes the fault type which allows A to fault the triplet (w,m, pk), when
taken as input to random oracle H to compute the challenge c (see line 02 in Fig. 21). To prove
Lemma 4, let A be an adversary against the UF-FF -CMA security of SIG, issuing at most qS,5 queries
to FAULTSIGN on index 5, qS queries to FAULTSIGN in total, and at most qH queries to H. We de�ne
the signature simulation algorithm simSignature5 as in Fig. 21.

FAULTSIGN(m, i = 5, φ)

01 (w, st)← Commit(sk)
02 (ŵ, m̂, p̂k) := φ(w,m, pk)
03 c := H(ŵ, m̂, p̂k))
04 z ← Respond(sk , c, st)
05 LM := LM ∪ {m̂}
06 return σ := (w, z)

simSignature5(m,φ)

07 c←$ C
08 (w, z)← Sim(pk , c)
09 (ŵ, m̂, p̂k) := φ(w,m, pk)

10 H := H(ŵ,m̂,p̂k)7→c

11 LM := LM ∪ {m̂}
12 return σ := (w, z)

Fig. 21. Original oracle FAULTSIGN for the case that i = 5, and signature simulation algorithm simSignature5
for the proof of Lemma 4.

To proceed from game G1 to G2, we adapt the argument of Appendix C.1: During execution of
FAULTSIGN(m, 5, φ), we �rst derandomise the challenges and reprogram H such that it is rendered
a-posteriori-consistent with with the resulting transcripts, resulting in an invocation of Theorem 1,
where R = qS,5 and q = qH + qS + 1. To make pmax explicit, let φw (φm, φpk ) denote the share of φ
acting on w (m, pk). We can now identify reprogramming positions x with (φm(m), φw(w), φpk (pk)).
The distribution p consists hence of the constant distribution that always returns φm(m) and
φpk (pk), as these parts of the reprogramming position are already �xed, together with the dis-
tribution φw(Commit(sk)). Note that φw is either the identity, a bit �ip, or a function that �xes one
bit of w, hence pmax ≤ 2γ(Commit).

As the second step, we can again make use of the fact that we assume ID to be statistically
sHVZK, and honestly generated transcripts can be replaced with simulated ones during execution of
FAULTSIGN(m, 5, φ).

After these changes, FAULTSIGN(m, 5, φ) = simSignature5(m,φ) and

|Pr[GA
1 = 1]− Pr[GA

2 = 1]| ≤ qS,5 ·∆sHVZK +
3qS,5
2

√
(qH + qS + 1) · 2γ(Commit) .

C.3 Game G3: Simulating FAULTSIGN for index 6 (Proof of Lemma 5)

Recall that index 6 denotes the fault type which allows A to fault the output c = H(w,m, pk) of the
challenge hash function H (see line 03 in Fig. 22). To prove Lemma 5, let A be an adversary against
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the UF-FF -CMA security of SIG, issuing at most qS,6 queries to FAULTSIGN on index 6, qS queries
to FAULTSIGN in total, and at most qH queries to H. We de�ne the signature simulation algorithm
simSignature6 as in Fig. 22.

FAULTSIGN(m, i = 6, φ)

01 (w, st)← Commit(sk)
02 c := H(w,m, pk)
03 z ← Respond(sk , φ(c), st)
04 LM := LM ∪ {m}
05 return σ := (w, z)

simSignature6(m,φ)

06 c←$ C
07 (w, z)← Sim(pk , φ(c))
08 if φ(c) /∈ C
09 z := ⊥
10 H := H(w,m,pk)7→c

11 LM := LM ∪ {m}
12 return σ := (w, z)

Fig. 22. Original oracle FAULTSIGN for the case that i = 6, and signature simulation algorithm simSignature6
for the proof of Lemma 5.

To proceed from game G2 to G3, we again adapt the argument from Appendix C.1: During
execution of FAULTSIGN(m, 6, φ), we �rst derandomise the challenges and reprogram H such that it
is rendered a-posteriori-consistent with with the resulting transcripts, resulting in an invocation of
Theorem 1, where R = qS,6 and q = qH + qS + 1. Like in Appendix C.1, pmax = γ(Commit).

As the second step, we can again make use of the fact that we assume ID to be statistically sHVZK,
and hence, honestly generated transcripts can be replaced with simulated ones during execution of
FAULTSIGN(m, 6, φ). Note that as the challenges are faulty, however, we have to simulate rejection
whenever faulting the challenge results in an invalid challenge, i.e., whenever φ(c) /∈ C.

Since the scheme ID is validity aware (see De�nition 5), it holds that after these changes,
FAULTSIGN(m, 6, φ) = simSignature6(m,φ) and

|Pr[GA
2 = 1]− Pr[GA

3 = 1]| ≤ qS,6 ·∆sHVZK +
3qS,6
2

√
(qH + qS + 1) · γ(Commit) .

C.4 UF-CMA0 adversary for game G3, for F = {5, 6, 9} (Proof of Lemma 6)

Recall that in game G3, faulty signatures are simulated for all indices i ∈ {5, 6, 9}. Since adversaries
against the UF-F{5,6,9}-CMA security of SIG only have access to FAULTSIGN(m, i, φ) for i ∈ {5, 6, 9},
the game derives all oracle answers by a call to one of the simulated oracles simSignaturei(m,φ),
where i ∈ {5, 6, 9}. To prove Lemma 6, we construct an UF-CMA0 adversary B in Fig. 23.

Since in game G3, all signatures are de�ned relative to simulated transcripts, and the random
oracle is reprogrammed accordingly, B perfectly simulates G3 and has the same running time as A.

Furthermore, A can not win if m∗ was a query to FAULTSIGN. Therefore, it is ensured that no
reprogramming did occur on m∗ and A's signature is also valid in B's UF-CMA0 game.

Pr[GA
3 ⇒ 1] ≤ SuccUF-CMA0

FS[ID,H] (B) .

C.5 Faulting the response input (Proof of Lemma 7)

Recall that index 7 denotes the fault type which allows A to fault the input (sk , c, st) to the response
function Respond (see line 03 in Fig. 24) and that we assume that ID is subset-revealing. To prove
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Adversary B|H〉(pk)

01 (m∗, σ∗)← AFAULTSIGN,|H′〉(pk)
02 if m∗ ∈ LM ABORT
03 return (m∗, σ∗)

FAULTSIGN(m, i ∈ {5, 6, 9}, φ)
04 σ ← simSignaturei(m,φ)
05 return σ

H′(w,m, pk)

06 if ∃c s. th. (w,m, pk , c) ∈ LH′

07 return c
08 else return H(w,m, pk)

simSignature9(m,φ)

09 c←$ C
10 (w, z)← Sim(pk , c)
11 if ∃c′ s. th. (w,m, pkc′) ∈ LH′

12 LH′ := LH′ \ {(w,m, pkc′)}
13 LH′ := LH′ ∪ {(w,m, pk , c)}
14 LM := LM ∪ {m}
15 return σ := φ(w, z)

simSignature5(m,φ)

16 c←$ C
17 (w, z)← Sim(pk , c)
18 (ŵ, m̂, p̂k) := φ(w,m, pk)
19 if ∃c′ s. th. (ŵ, m̂, p̂k , c′) ∈ LH′

20 LH′ := LH′ \ {(ŵ, m̂, p̂k , c′)}
21 LH′ := LH′ ∪ {(ŵ, m̂, p̂k , c)}
22 LM := LM ∪ {m̂}
23 return σ := (ŵ, z)

simSignature6(m,φ)

24 c←$ C
25 (w, z)← Sim(pk , φ(c))
26 if φ(c) /∈ C
27 z := ⊥
28 if ∃c′ s. th. (w,m, pkc′) ∈ LH′

29 LH′ := LH′ \ {(w,m, pk , c′)}
30 LH′ := LH′ ∪ {(w,m, pk , c)}
31 LM := LM ∪ {m}
32 return σ := (w, z)

Fig. 23. UF-CMA0 Adversary B for the proof of Lemma 6.

Lemma 7, let A be an adversary against the UF-FF -CMA security of SIG, issuing at most qS,7 queries
to FAULTSIGN on index 7, qS queries to FAULTSIGN in total, and at most qH queries to H. We de�ne
the signature simulation algorithm simSignature7 as in Fig. 24.

If fault function φ is targeted at c, the situation is essentially the same as for fault index 6, and
thus, the simulation strategy is identical to that of simSignature6 (see Appendix C.3). If fault function
φ is targeted at sk , φ has no e�ect whatsoever since we assume ID to be subset-revealing, meaning
that the responses returned by Respond do not depend on sk (see De�nition 7). The simulation
strategy is hence identical to that of simSignature9. The simulation algorithm covers both cases by
dissecting φ into the shares φsk (φc, φst) acting on sk (c, st) and treating the cases where φc 6= Id
(φsk 6= Id) similar to simSignature6 (simSignature9).

It remains to discuss the case where φ is targeted at st. Since we assume ID to be subset-revealing
(see De�nition 7), we observe that Respond(φ(sk , c, st)) = Respond(sk , c, φst(st)) = ((φst(st))i)i∈I ,
where I = DeriveSet(c). Hence, computing z ← Respond(φ(sk , c, st)) is equivalent to deriving I ←
DeriveSet(c), only considering the shares φst,i of φst that act on sti, and returning (φst,i(sti))i∈I .
With this alternative description of the original Respond algorithm, it can easily be veri�ed that
even for the case where φ is targeted at the state, honest transcripts can be replaced with simulated
transcripts by letting φ act on the response z as described above.

After these changes, FAULTSIGN(m, 7, φ) = simSignature7(m,φ) and

|Pr[GA
3 = 1]− Pr[GA

4 = 1]| ≤ qS,7 ·∆sHVZK +
3qS,7
2

√
(qH + qS + 1) · γ(Commit) .



40 A. B. Grilo, K. Hövelmanns, A. Hülsing, C. Majenz

FAULTSIGN(m, i = 7, φ)

01 (w, st)← Commit(sk)
02 c := H(w,m, pk)
03 z ← Respond(φ(sk , c, st))
04 LM := LM ∪ {m̂}
05 return σ := (w, z)

simSignature7(m,φ)

06 c←$ C
07 Parse (φsk , φc, φst) := φ
08 if φc 6= Id �φ targets c
09 (w, z)← Sim(pk , φ(c))
10 if φ(c) /∈ C
11 z := ⊥
12 else

13 (w, z)← Sim(pk , c)
14 if φst 6= Id �φ targets st
15 I ← DeriveSet(c)
16 Parse (sti)i∈I := z
17 z := (φst,i(sti))i∈I
18 H := H(w,m,pk)7→c

19 LM := LM ∪ {m}
20 return σ := (w, z)

Fig. 24. Original oracle FAULTSIGN for the case that i = 7, and signature simulation algorithm simSignature7
for the proof of Lemma 7.

C.6 Faulting the commitment output (Proof of Lemma 8)

Recall that index 4 denotes the fault type which allows A to fault the output of Commit(sk) (see
line 02 in Fig. 25). To prove Lemma 8, let A be an adversary against the UF-FF -CMA security of
SIG, issuing at most qS,4 queries to FAULTSIGN on index 4, qS queries to FAULTSIGN in total, and
at most qH queries to H. We de�ne the signature simulation algorithm simSignature4 as in Fig. 25.

If fault function φ is targeted at w, the situation is essentially the same as for fault index 5,
and thus, the simulation strategy is identical to that of simSignature5 (see Appendix C.2). If fault
function φ is targeted at st, the situation is essentially the same as for fault index 7, and thus,
the simulation strategy is identical to that of simSignature7 (see Appendix C.5). Putting both cases
together, we obtain

|Pr[GA
4 = 1]− Pr[GA

5 = 1]| ≤ qS,6 ·∆sHVZK +
3qS,6
2

√
(qH + qS + 1) · 2γ(Commit) .

C.7 UF-CMA0 adversary for game G5, for F = {4, 5, 6, 7, 9} (Proof of Lemma 9)

Recall that in gameG5, faulty signatures are simulated for all indices i ∈ {4, 5, 6, 7, 9}. For adversaries
against the UF-F{4,5,6,7,9}-CMA security of SIG, the game derives all oracle answers by a call to one
of the simulated oracles simSignaturei(m,φ). To prove Lemma 9, observe that we can now extend
adversary B de�ned in Fig. 23 such that it is capable to perfectly simulate game G5 by running the
simulations, and simulating the random oracle to A, accordingly. (I.e., B runs A with oracle access
to H′ that is �rst set to H, and that gets reprogrammed, with B keeping track of the classical queries
to FAULTSIGN.)

Again, A can not win if m∗ was a query to FAULTSIGN, hence a valid signature is also valid in
B's UF-CMA0 game and

Pr[GA
5 ⇒ 1] ≤ SuccUF-CMA0

FS[ID,H] (B) .
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FAULTSIGN(m, i = 4, φ)

01 (w, st)← Commit(sk)
02 (w, st) := φ(w, st)
03 c := H(w,m, pk)
04 z ← Respond(sk , c, st)
05 LM := LM ∪ {m̂}
06 return σ := (w, z)

simSignature4(m,φ)

07 c←$ C
08 (w, z)← Sim(pk , c)
09 Parse (φw, φst) := φ
10 if φw 6= Id �φ targets w
11 (ŵ, m̂, p̂k) := φ(w,m, pk)

12 H := H(ŵ,m̂,p̂k)7→c

13 LM := LM ∪ {m̂}
14 else

15 if φst 6= Id �φ targets st
16 I ← DeriveSet(c)
17 Parse (sti)i∈I := z
18 z := (φst,i(sti))i∈I
19 H := H(w,m,pk)7→c

20 LM := LM ∪ {m}
21 return σ := (w, z)

Fig. 25. Original oracle FAULTSIGN for the case that i = 4, and signature simulation algorithm simSignature4
for the proof of Lemma 8.

D From UF-F-CMA to UF-N-F-CMA (Proof of Theorem 5)

We now present a proof for Theorem 5 which we repeat for convenience.

Theorem 5. If SIG := FS[ID,H] is UF-FF -CMA secure for a fault index set F , then SIG′ :=
R2H[SIG,G] is UF-N-FF -CMA secure for F ′ := F ∪ {1}, in the quantum random oracle model,
against any adversary that issues no query (m,n) to N-FAULTSIGN more than once. Concretely,
for any adversary A against the UF-N-FF -CMA security of SIG′ for F ′, issuing at most qS queries
to N-FAULTSIGN, at most qH queries to H, and at most qG queries to G, there exist UF-FF -CMA
adversaries B1 B2 such that

SuccUF-N-FF -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B1) + 2qG ·
√

SuccUF-FF -CMA
SIG (B2) ,

and B1 has about the running time of A, while B2 has a running time of roughly Time(B2) ≈
Time(A) + |sk | · (Time(Sign) + Time(Vrfy)), where |sk | denotes the length of sk .

In our proof we will use a quantum extraction argument from [AHU19], which we now recall.

One-way to Hiding as a query extraction argument. In [AHU19, Theorem 3], Ambainis et
al. generalised the query-extraction argument from [Unr14b]. In their generalisation, they considered
a distinguisher D that has quantum access to an oracle O ∈ {O1,O2} such that oracles O1 and O2

coincide on all inputs except on some subset S. It was shown that the di�erence in behaviour of
D|O1〉 and D|O2〉 can be upper bounded in terms of the extractability of input elements x ∈ S. The
following theorem is a simpli�ed restatement of [AHU19, Theorem 3].

Theorem 8. Let X and Y be sets, and let S ⊂ X be random. Let O1,O2 ∈ Y X be random functions
such that O1(x) = O1(x) for all x /∈ S, and let inp be a random bitstring. (S,O1,O2, inp) may have
an arbitrary joint distribution. Then, for all quantum algorithms D issuing at most q queries to O,

|Pr[1← D|O1〉(inp)]− Pr[1← D|O2〉(inp)]| ≤ 2q · √pFIND ,
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where

pFIND := Pr[x ∈ S : x← Ext|O1〉(inp)] .

The same result holds with Ext|O2〉 (instead of Ext|O1〉) in the de�nition of pFIND.

Extractor Ext|O〉(inp)
01 j ←$ {1, · · · , qG}
02 Run D|O〉(inp) until jth query to O
03 x←Measure query input register
04 return x

We now proceed to the proof of Theorem 5. Let A be an adversary against the UF-N-FF ′ -CMA
security of SIG′ = R2H[SIG,G] for F ′ := F ∪ {1}, issuing at most qS queries to N-FAULTSIGN, at
most qH queries to H, and at most qG queries to G. In the random oracle model, the proof would
work as follows: Either G is never queried on any faulted version of sk , or it is. In the case that
such query does not exist, the UF-N-FF ′ -CMA experiment is completely simulatable by a reduction
against the UF-FF -CMA security of the underlying scheme SIG, as the signing randomness looks
uniformly random to the adversary. (Note that we made the assumption that A issues no query
(m,n) to N-FAULTSIGN more than once.) In the case that such a query φ(sk) exists, it can be used
to break UF-FF -CMA security by going over all possible secret key candidates, i.e., by going over
all bit-�ip functions, and checking whether any of those candidates can be used to generate a valid
signature.

In principle, our QROM proof does the same. Consider the sequence of games given in Fig. 26: We
decouple the signing randomness from the secret key in game G1. Again, game G1 can be simulated
by a reduction B1 against the UF-FF -CMA security of the underlying scheme SIG. To upper bound
the distance between games G0 and G1, we will use Theorem 8. (In order to give a more detailed
description of how Theorem 8 can be used, we �zoom in� and give two intermediate helper games
G1/3 and G2/3.) Applying Theorem 8, we can upper bound the distance between games G0 and G1 in
terms of the probability that measuring a random query to G yields φ(sk). We then give a reduction
B2 that wins whenever the latter happens, with the same strategy as in the ROM sketch.

Game G0. The (purely conceptual) di�erence between game G0 and the original UF-N-F-CMA
game is that after computing the signing randomness according to SIG′, we outsource the rest of
the signature computation to helper method getSignature. In the case that i = 1, getSignature is
executed with index 2 and id, as the rest of the signature generation is unfaulted.

Succ
UF-N-FF′ -CMA
SIG′ (A) = Pr[GA

0 ⇒ 1] .

Game G1. In game G1, we re-randomise the Commit algorithm by letting r ←$ RSign instead
of r := G(f1(sk),m, n), see lines 10 and 14. To upper bound Pr[GA

1 ⇒ 1], consider UF-FF -CMA
Adversary B1 given in Fig. 27. Adversary B1 has access to the faulty signing oracle FAULTSIGN that
is provided by game UF-FF -CMA, and that covers all faults except the ones that would have occurred
with respect to index 1, i.e., the ones that fault the secret key as input to G. Due to our change
described above, however, randomness r is drawn independently of sk in game G1, hence the Commit
algorithm is randomised. The output of FAULTSIGN therefore allows B1 to perfectly simulate game
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Games G0 - G1

01 (pk , sk)← IG(par)
02 (m∗, σ∗)← AN-FAULTSIGN,|H〉,|G〉(pk)
03 if m∗ ∈ LM return 0
04 Parse (w∗, z∗) := σ∗

05 c∗ := H(w∗,m∗)
06 return V(pk , w∗, c∗, z∗)

N-FAULTSIGN(m,n, i ∈ F ′, φ)
07 if i = 1
08 f1 := φ
09 r := G(f1(sk),m, n) �G0

10 r ←$ RSign �G1

11 σ ← getSignature(m, r, 2, id)
12 else

13 r := G(sk ,m, n) �G0

14 r ←$ RSign �G1

15 σ ← getSignature(m, r, i, φ)
16 return σ

getSignature(m, r, i, φ)

17 fi := φ and fj := id∀j 6= i
18 (w, st)← Commit(sk ; r)
19 (w, st) := f4(w, st)
20 (ŵ, m̂, p̂k) := f5(w,m, pk)
21 c := f6(H(ŵ, m̂, p̂k))
22 z ← Respond(f7(sk , c, st))
23 LM := LM ∪ {m̂}
24 return σ := f9(w, z)

Fig. 26. Games G0 - G1 for the proof of Theorem 5. Helper method getSignature is internal and cannot be
accessed directly by A.

G1 to A. Furthermore, any valid forgery game G1 is also a valid forgery in B1's UF-FF -CMA game.
Hence,

Pr[GA
1 ⇒ 1] ≤ SuccUF-FF -CMA

SIG (B1) .

Adversary B1
|H〉(pk)

01 (m∗, σ∗)← AN-FAULTSIGN,|H〉,|G〉(pk)
02 return (m∗, σ∗)

N-FAULTSIGN(m,n, i ∈ F ′, φ)
03 if i = 1
04 σ ← FAULTSIGN(m, 2, id)
05 else σ ← FAULTSIGN(m, i, φ)
06 return σ

Fig. 27. UF-FF -CMA Adversary B1, with access to its own faulty signing oracle FAULTSIGN, for the proof
of Theorem 5.

It remains to upper bound |Pr[GA
0 = 1]−Pr[GA

1 = 1]|. To this end, we will make use of the query
extraction variant of one-way to hiding (see Theorem 8). In order to keep our proof as accessible as
possible, we introduce intermediate helper games G1/3 and G2/3 in Fig. 28.

As a preparation, we �rst consider intermediate game G1/3, in which we completely replace
random oracle G with another random oracle G′ (see lines 02, 15 and 19), where G′ is de�ned as
follows: Let Lsk denote the set of secret keys that could occur by faulting the secret key with a
one-bit fault injection. We let G′ concur with G for all inputs such that the input secret key is not in
Lsk , i.e., for all sk

′ /∈ Lsk and all (m,n) ∈M×N , we let G′(sk ′,m, n) := G(sk ′,m, n). We can then
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Games G1/3 - G1

01 (pk , sk)← IG(par)
02 O := G′ �G1/3

03 O := G �G2/3-G1

04 (m∗, σ∗)← AN-FAULTSIGN,|H〉,|O〉(pk)
05 if m∗ ∈ LM return 0
06 Parse (w∗, z∗) := σ∗

07 c∗ := H(w∗,m∗)
08 return V(pk , w∗, c∗, z∗)

Extractor E|O〉,|H〉(pk , sk ,LG′)
09 j ←$ {1, · · · , qG}
10 Run AN-FAULTSIGN,|H〉,|O〉(pk)

until jth query to O
11 (sk ′,m, n)←Measure query
input reg.

12 return sk ′

N-FAULTSIGN(m,n, i ∈ F ′, φ)
13 if i = 1
14 f1 := φ
15 r := G′(f1(sk),m, n) �G1/3, G2/3, E
16 r ←$ RSign �G1

17 σ ← getSignature(m, r, 2, id)
18 else

19 r := G′(sk ,m, n) �G1/3, G2/3, E
20 r ←$ RSign �G1

21 σ ← getSignature(m, r, i, φ)
22 return σ

Fig. 28. Intermediate helper gamesG1/3 andG2/3, justifying the game-hop from gameG0 toG1, and query ex-
tractor E. Alternative oracle G′ (see lines 02, 15 and 19) is constructed by letting G′(sk ′,m, n) := G(sk ′,m, n)
for all input (sk ′,m, n) such that sk ′ cannot result from faulting sk , and completing G′ randomly. Helper
method getSignature remains as in Fig. 26.

complete it to a random oracle on SK×M×N by picking another random oracle G′′ : Lsk×M×N ,
and letting G′(sk ′,m, n) := G′′(sk ′,m, n) for all sk ′ ∈ Lsk and all (m,n) ∈ M×N . Since G′ still is
a random oracle, and since we also use G′ to derive the signing randomness, this change is purely
conceptual and

Pr[GA
0 ⇒ 1] = Pr[GA

1/3 ⇒ 1] .

In game G2/3, we prepare to rid the randomness generation of the secret key: We switch back to
providing A with oracle access to the original random oracle G, but we keep using G′ to derive the
signing randomness. After this change, oracle G′ is not directly accessible by A anymore, but only
indirectly via the signing queries. Since we assume that A issues no query (m,n) to N-FAULTSIGN
more than once, we can also replace these values with freshly sampled randomness as in game G1,
i.e.,

Pr[GA
2/3 ⇒ 1] = Pr[GA

1 ⇒ 1] .

So far, we have shown that

Succ
UF-N-FF′ -CMA
SIG′ (A) ≤ SuccUF-FF -CMA

SIG (B1) + |Pr[GA
1/3 ⇒ 1]− Pr[GA

2/3 ⇒ 1]| .

In order to upper bound |Pr[GA
1/3 ⇒ 1] − Pr[GA

2/3 ⇒ 1]|, we invoke Theorem 8: Distinguishing
between the two games can be reduced to extracting one of the faulted secret keys from the queries
to G. To make this claim more formal, consider the query extractor E from Theorem 8, whose explicit
description we give in Fig. 28. Extractor E is run with access to oracle O ∈ {G,G′}, which it will
forward to A. It runs A until A's ith oracle query to O, measures the query input register, and
thereby obtains a triplet (sk ′,m, n) of classical input values. Since we are only interested in points
where G and G′ di�er, it is su�cient to let E output the secret key candidate sk ′. Note that E is able
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Adversary B2
|H〉(pk)

01 j ←$ {1, · · · , qG}
02 Run AN-FAULTSIGN,|H〉,|G〉(pk)

until jth query to G
03 sk ′ ←Measure query input register
04 m∗ ←$ M\ L′M
05 for sk′′ ∈ Lsk′

06 σ ← Sign(sk ′′,m)
07 if Vrfy(m,σ) = 1
08 return (m,σ)
09 return ⊥

N-FAULTSIGN(m,n, i ∈ F ′, φ)
10 if i = 1
11 σ ← FAULTSIGN(m, 2, id)
12 else σ ← FAULTSIGN(m, i, φ)
13 if i = 5 and φ a�ects m
14 L′M := L′M ∪ {φm(m)}
15 else L′M := L′M ∪ {m}
16 return σ

Fig. 29. UF-FF -CMA Adversary B2, with access to its own faulty signing oracle FAULTSIGN, for the proof
of Theorem 5. List Lsk′ (see line 05) denotes the list of secret keys that could occur by faulting sk ′ with a
one-bit fault injection.

to simulate the signing oracle regardless of which oracle O it has access to: Recall that Theorem 8
makes no assumption on the runtime of the query extractor, nor on the size of its input. Hence, the
alternative oracle G′ can simply be encoded as part of the extractor's input, which we denote by
adding LG′ to E's input. Since E perfectly simulates game G1/3 if O = G′, and game G1/3 if O = G,
Theorem 8 yields

|Pr[GA
1/3 ⇒ 1]− Pr[GA

2/3 ⇒ 1]| ≤ 2qG ·
√

Pr[sk ′ ∈ Lsk : sk ′ ← E|G〉,|H〉(pk , sk ,G′)] .

It remains to bound the success probability of the extractor E. At this point, the signing ran-
domness is independent of G. We can hence also replace E with an extractor E′ that uses freshly
sampled randomness to sign, without any change in the extraction probability. (Again, we require
that A issues no query (m,n) to N-FAULTSIGN more than once.)

To bound the success probability of E′, consider UF-FF -CMA Adversary B2, which is given in
Fig. 29. Like B1, adversary B2 has access to the faulty signing oracle FAULTSIGN provided by game
UF-FF -CMA, and it uses FAULTSIGN to answer signing queries. B2 perfectly simulates the view of A
when A is run by extractor E′, and the probability that E′ returns some sk ′ ∈ Lsk is hence exactly
the probability that B2 obtains some sk ′ ∈ Lsk by measuring in line 03. After running A until the
jth query to G, and extracting a secret key candidate sk ′ from this query, B2 computes the list Lsk ′

of candidate secret keys that could occur by faulting sk ′ with a one-bit fault injection (including
the identity function). Since bit �ips are involutory, and set-bit functions can be reversed by set-bit
functions, sk ′ ∈ Lsk i� sk ∈ Lsk ′ . Hence, if B2 obtains some sk ′ ∈ Lsk by measuring, then B2 will
encounter sk during execution of its loop and therefore generate a valid signature.

Pr[sk ′ ∈ Lsk : sk ′ ← E′
|G〉,|H〉

(pk , sk ,G′)] ≤ SuccUF-FF -CMA
SIG (B2) .

E A matching attack - details

We now provide the proof of Theorem 7 which refers to Fig. 13. We �rst repeat both for convenience.

Theorem 7. For every 1 ≤ q < 2n−3, the attack described in Figure 13 can be implemented in
quantum polynomial-time. Performing q queries each before and after the potential reprogramming, it
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detects the reprogramming of a random oracle O : {0, 1}n → {0, 1}m at a single point with probability
at least Ω(

√
q
2n ).

Before potential reprogramming:
01 Prepare registers XY in 1√

2n

∑
x∈[2n] |x, 0〉XY

02 Query O using registers XY
03 for i = 0, ..., q − 1:
04 Apply σ on register X
05 Query O using registers XY

After potential reprogramming:
06 Query O′ using using registers XY
07 for i = q − 2, ..., 0:
08 Apply σ−1 on register X
09 Query O′ using registers XY
10 Measure X according to {Π0, Π1}
11 Output b if the state projects onto Πb.

Fig. 13. Distinguisher for a single reprogrammed point.

Recall that our distinguisher makes q queries to O, the oracle before the potential reprogramming,
and q queries to O′, the oracle after the potential reprogramming. In our attack, we �x an arbitrary
cyclic permutation σ on [2n], and for the �xed reprogrammed point x∗, we de�ne the set S =
{x∗, σ−1(x∗), ..., σ−q+1(x∗)}, S = {0, 1}n \ S, Π0 = 1

2

(
|S〉+ |S〉

) (
〈S|+ 〈S|

)
and Π1 = I −Π0.

Proof (Proof of Theorem 7).
First, notice that before measuring the �nal state, the value of the register XY is

|Ψ〉XY :=
1√
2n

∑
x

|x〉 |
q⊕
j=0

(
O
(
σj(x)

)
⊕ O′

(
σj(x)

))
〉 . (19)

Let us consider the case where O(x∗) = O′(x∗), i.e., when the random oracle was not reprogrammed,
or reprogrammed to the same value. We then have that

|Ψ〉XY =
1√
2n

∑
x

|x〉 |0〉 ,

and in this case, the probability that the distinguisher outputs 0 is∣∣∣∣∣
(

1√
2

(
〈S|+ 〈S|

))( 1√
2n

∑
x

|x〉

)∣∣∣∣∣
2

=

(
q√

2n+1q
+

2n − q√
22n+1 − 2n+1q

)2

=
q

2n+1
+

22n − 2n+1q + q2

22n+1 − 2n+1q
+

q(2n − q)
√
2nq
√
22n − 2nq

≥ 22n

22n+1 − 2n+1q
+

√
q

√
2n − q

(
1− q

2n
−

√
q

√
2n − q

)
≥ 1

2
+

√
q

2
√
2n

, (20)

where we removed some positive terms in the �rst inequality, and in the second inequality we used
the fact that q < 2n−3.



Tight adaptive reprogramming in the QROM 47

On the other hand, if O(x∗) 6= O′(x∗), then the �nal state is

|Ψ〉XY =
∑
x∈S
|x〉 |O(x∗)⊕ O′(x∗)〉+

∑
x∈S

|x〉 |0〉 ,

and when we trace out the output qubit we have the mixed state

q

2n
|S〉 〈S|+ 2n − q

2n
|S〉 〈S| .

Since (
1√
2

(
〈S|+ 〈S|

))
|S〉 =

(
1√
2

(
〈S|+ 〈S|

))
|S〉 = 1√

2
,

we have that the distinguisher then outputs 0 with probability

1

2
. (21)

The advantage of the distiguisher is therefore

Pr[D(·) = 0|no reprogramming]− Pr[D(·) = 0|reprogramming]

= Pr[D(·) = 0|O(x∗) = O′(x∗)]− 1

2m
Pr[D(·) = 0|O(x∗) = O′(x∗)]

− (1− 1

2m
) Pr[D(·) = 0|O(x∗) 6= O′(x∗)]

≥ (1− 1

2m
) ·
√
q

2
√
2n
≥
√
q

4
√
2n

,

where the terms after the �rst equality correspond to the probability that the distinguisher outputs 0
when the function was not reprogrammed, when the function was reprogrammed on x∗ for O′(x∗) 6=
O(x), and when the function was reprogrammed on x∗, but O(x∗) = O′(x∗), respectively. The
following inequality holds due to Equations (20) and (21), and the last inequality holds since m ≥ 1.

It remains to show that the attack can be performed e�ciently. The only step of the distinguisher
whose e�ciency is not straightforward is the measurement on the basis (Π0, Π1). (As an example
for an e�ciently implementable cyclic permutation, consider the operation of adding 1 mod 2n).

In order to prove the e�ciency of the attack, we �rst show how to construct the state |S〉 and
ε-approximate the state |S〉 in time O(q log 1

ε ).
To create the state |S〉, we �rst create the superposition 1√

q

∑q
i=1 |i〉 |σi(x∗)〉 and then erase the

�rst register. Notice that this can be done with O(q) queries to σ and the result is

1
√
q

q∑
i=1

|0〉 |σi(x∗)〉 = |0〉 |S〉 .

This procedure not only gives us a circuit to construct |S〉, but also a circuit that perfectly
uncomputes it (by just running the circuit backwards with appropriate number of auxiliary qubits).

In order to ε-approximate |S〉, we can use the following lemma from [AMR20]:

Lemma 10 (Restatement of Lemma 3 of [AMR20]). Let S ⊆ {0, 1}n and US a circuit that
uncomputes |S〉 and ε > 0. There exists a quantum algorithm PUS that runs in time poly(|S|, log 1

ε )
that satis�es ∣∣∣∣PUS |0〉 |0〉 − |S〉 |0〉

∣∣∣∣2 ≤ ε.



48 A. B. Grilo, K. Hövelmanns, A. Hülsing, C. Majenz

Finally, notice that in this case there is an e�cient circuit C that e�ciently computes the state
1√
2

(
|S〉+ |S〉

)
, by �rst creating the state |+〉 |0〉, conditioned on the �rst qubit being 0, create the

state |S〉, conditioned on the �rst qubit being 1, create the state |S〉, and then, with q extra queries
to σ, �ips the �rst qubit from |1〉 to |0〉 conditioned on the contents of the second register being
in S. Using circuit C, we can ε-approximate the projection of some state ρ onto {Π0, Π1} in time
poly(q, log 1

ε ): append the necessary auxiliary qubits to ρ, perform C† and then measure all qubits
in the computational basis. Then, the output is 0 i� all qubits are 0.

E.1 Generalization to multiple reprogrammings

In this section, we discuss the generalization of the proposed attack to the case with multiple repro-
grammed points. We provide an intuition why this extension works and we leave its formal analysis
for future work.

To warm up, let us consider the simpler case where both the number of potentially reprogrammed
points and the number of queries is polynomial in n. Notice that in this case, since all reprogrammed
values are chosen uniformly at random, the probability that there exists some i, j ∈ [q] and potentially
reprogrammed points x, x′ ∈ {0, 1}n, such that f ik(x) = f jk(x

′) is exponentially small. Conditioning
on the fact that this event does not happen, the previous analysis follows directly.

For the most general case (but considering the number of queries being o(2n), otherwise one
could just use the classical attack), the same analysis holds by bounding the number of collisions
(i.e., the number of i, j ∈ [q] and x, x′ ∈ {0, 1}n, such that f ik(x) = f jk(x

′)) and that these collisions

cancel out (i.e., O(f ik(x))⊕ O(f jk(x
′))⊕ O′(f ik(x)) = O′(f jk(x

′)) = 0), which can be proven by using
tail bounds. Then a more careful analysis following the outline of Theorem 7 also works.
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