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PROMETHEUS-780701-WP3-D3.2.pdf Page VI/55



PROMETHEUS 780701 — D3.2: Intermediate results on computational problems,
cryptanalysis and basic tools (v1.1)

1 Introduction

The objectives of work package 3 are to provide theoretical and practical foundations
for work packages 4, 5 and 6. They are four-fold. At �rst, regarding lattice-based
assumptions and reductions, it has to provide general techniques for proving security
in quantum security models, to improve quantum reductions between lattice problems
and to �nd better reductions between standard quantum problems. Secondly, on
cryptanalysis, it aims at proposing quantum attacks for general and algebraic lattices,
at widening the range of algorithms in FPLLL, exploring generalizations, combinations
and optimisations of lattice attacks in practice and �nally at obtaining precise prediction
for levels of security and automatizing parameters selection. On lattice trapdoors, this
work package is working on the way to lower numerical precision requirements to
�t small architectures and to test practicality of the Fast-Fourier-Orthogonalisation
approach, and explore generalizations. Finally, regarding side-channel attacks, it has
to secure implementations with constant-time runtime, side-channel protection and
fault-injection detection or prevention. In the following, we will present the tasks
within this work package concretely in four parts and explain their impacts on other
packages by giving an example. We will also summarize our results obtained so far.

1.1 Tasks in this work package and their impact

This deliverable will include all intermediate results we achieved so far within the four
subtasks:

• TASK 3.1: Quantum assumptions and reductions;

• TASK 3.2: Algorithm design and implementation of lattice trapdoors;

• TASK 3.3: Classical and quantum cryptanalysis;

• TASK 3.4: Side-channel attacks and countermeasures.

As shown in Figure 1, the impacts of each subtask with other work packages can
be summarized as follows.

• Impact of TASK 3.1: TASK 3.1 studies the relations between known hard
problems and proposes new assumptions with better properties. It also investi-
gates the quantum and classical security model. These results can be used to
choose the appropriate underlying assumptions for designing schemes as well
as security models for capturing the behavior of adversary in WP4 and 5.

• Impact of TASK 3.2: TASK 3.2 develops e�cient algebraic structures for build-
ing cryptographic schemes. It also provides e�cient solutions for implementing
them. These results can be used to design e�cient basic algorithms and building
blocks in WP4 and privacy-preserving protocols in WP5.

• Impact of TASK 3.3: TASK 3.3 improves the state-of-the-art attacks on prob-
lems over Euclidean lattices and structured lattices under classical and quantum
computation to provide more trustworthy parameters. In this subtask, we also
cryptanalyze some NIST (National Institute of Standards and Technology) PQC
(Post-Quantum Cryptography) candidates and eventually give valuable sug-
gestions for deriving secure implementations, which is in particular related
to WP2 about project’s dissemination. These results can be used to build the

PROMETHEUS-780701-WP3-D3.2.pdf Page 1/55
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Abstract Scheme
(e.g., NewHope)

[Impact by TASK 3.2 & 3.3]

Implemented Scheme
(e.g., NewHope.exe)

[Impact by TASK 3.2 & 3.4]

Average-case Problem
(e.g., Ring-LWE)

[Impact by TASK 3.3]

Worst-case Problem
(e.g., Ideal-SVP)

[Impact by TASK 3.3]

[Impact by TASK 3.4] [Impact by TASK 3.4]

[Impact by TASK 3.1]

Figure 1: Impact of each task in WP3.

automated tools provided by WP4 and 5 for generating parameters targeting a
given security level.

• Impact of TASK 3.4: TASK 3.4 investigates the security of lattice-based imple-
mentations that are provably secure based on presumed hard lattice problems.
In other words, it helps to make sure that there is no big security gap between
the speci�cation and the implementation. These results can be used, not only to
help to avoid insecure implementation and provide countermeasures for WP4
and 5, but also to help to design the use cases and demonstrators in WP6.

1.2 Publications in this work package

Current status of publications within this work package is summarized in Table 1. We
have 36 publications (7 in TASK 3.1, 7 in TASK 3.2, 14 in TASK 3.3 and 8 in TASK 3.4).
Most of the publications appear in the top-tier conferences such as Crypto, Eurocrypt
and Asiacrypt as well as journals such as IEEE Transactions on Computers.

Category Status of publications
TASK 3.1 7 publications: 6 in conferences and 1 in preprint
TASK 3.2 7 publications: 3 in conferences, 2 in journals and 2 in preprints
TASK 3.3 14 publications: 11 in conferences and 3 in preprints
TASK 3.4 8 publications: 5 in conferences, 1 in journal and 2 in preprints

Table 1: Current status of publications within this work package.

1.3 Organization of this report

This deliverable provides current results in computational problems, cryptanalysis
and basic tools. It can be used to select the parameters, the underlying hard problems
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and the secure implementations. Section 2 recalls necessary preliminaries on lattices,
lattice assumption as well as some basic tools and schemes. Then, in Sections 3–6,
we detail the results in each subtask. Finally, we conclude our intermediate report in
Section 7.
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2 Background

In this chapter, we recall the basic de�nitions for understanding this deliverable.

2.1 Lattices

We �rst recall the de�nition of lattices and some important and classical quantities
about lattices. Then we brie�y de�ne the discrete Gaussian distribution over lattices
as well as some important properties of it.

2.1.1 De�nitions and properties

We �rst introduce the de�nition of lattices.

De�nition 1 (Lattice) Ann-dimensional latticeΛ ⊆ Qm (m ≥ n) is a discrete additive
subgroup of Qm. The lattice Λ is the set of all integral linear combinations of n linearly
independent basis vectors B = {b1, · · · ,bn} ⊆ Qm. In other words, we have

Λ(B) =

∑
i∈[n]

uibi : u ∈ Zn
 .

We call the matrix B a basis of the lattice Λ. We can have in�nitely many di�erent
bases for a lattice. They can be transferred from one to another by multiplying a basis
by a unimodular matrix U ∈ GLn(Z), where n is the dimension of the lattice. For
example, suppose both B1 and B2 are bases of a same lattice Λ, then we can always
�nd a unimodular matrix U such that B2 = B1U.

For any lattice, we have a unique basis in Hermite normal form, de�ned as follows.

De�nition 2 (Hermite normal form) A matrixA ∈ Zn×k of full row rank for some
integers n, k such that n ≤ k, is in Hermite normal form if it has the form HNF(A) =
(H|0 · · ·0), where H ∈ Zn×n is a square matrix such that

1. hi,j = 0 for i < j;

2. 0 ≤ hi,j < hi,j for i > j.

Here, we recall the uniqueness of the basis of a lattice in Hermite normal form.

Lemma 2.1 ([Sch86, Theorem 4.2]) Let A and Â for some integers n, k such that
n ≤ k, with Hermite normal forms (B|0 · · ·0) and (B̂|0 · · ·0), respectively. Then
Λ(A) = Λ(Â) if and only if B = B̂.

Further, we also recall the result that any generating set of a lattice can be trans-
formed to a (full-rank) basis of the basis by computing the Hermite normal form.

Lemma 2.2 ([Sch86, Corollary 4.3b]) For any matrix A ∈ Zn×k of full row rank
for some integers n, k such that n ≤ k, there is a unimodular matrix U such that
HNF(A) = AU is the Hermite normal form of A.
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According to Lemma 2.2, for any full row rank matrix A ∈ Zn×k for some in-
tegers n, k such that n ≤ k, we can compute its Hermite normal form HNF(A) =
(B|0 · · ·0) with square matrix B ∈ Zn×n, such that Λ(A) = Λ(B). Thus, from any
generating set {ai}i≤k , we can obtain a basis B of the lattice Λ(A) by computing its
Hermite normal form.

For i ≤ n, we denote by πi the orthogonal projection onto the linear subspace
(b1, · · · ,bi−1)⊥. For i < j ≤ n, B[i,j] denote the local block (πi(bi), · · · , πi(bj))
and Λ[i,j] the lattice generated by B[i,j]. It is helpful to consider these projected sub-
lattices for reducing a problem in high dimension to another one in small dimension.
Now we are ready to de�ne the Gram–Schmidt orthogonalization.

De�nition 3 (Gram–Schmidt orthogonalization, GSO) Given B = (b1, · · · ,bn)
a matrix with linearly independent column vectors in Rm, the corresponding GSO is the
matrix B∗ = (b∗1, · · · ,b∗n) where b∗i is de�ned as πi(bi).

To compute the GSO basis vectors, we can �rst set b∗1 = b1, and then compute b∗i
from i = 2 to n as follows:

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j , where µi,j =

〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

De�nition 4 (Successive minima) For any lattice Λ, the i-th minimum λi(Λ) is the
radius of the smallest ball with center the origin, B(0, r), and containing i linearly
independent lattice vectors:

λi(Λ) = inf{r : dim(Span(Λ ∩ B(0, r))) ≥ i}.
In particular, we let λ1(Λ) (respectively, λ∞1 (Λ)) denote the `2-norm (respectively,

`∞-norm) of a shortest non-zero vector of Λ.
If the �rst minimum of the primal lattice becomes smaller, the last minimum of its

dual lattice is likely to become larger. This relation can be quanti�ed as follows.

Lemma 2.3 ([Ban93, Theorem 2.1]) For any n-dimensional lattice Λ, we have 1 ≤
λ1(Λ) · λn(Λ?) ≤ n.

Next, we present two important results on the �rst minimum of lattices, one is
rigorous, another one is heuristic.

Gaussian heuristic. Given an n-dimensional lattice Λ with volume vol(Λ), the
Gaussian heuristic predicts that the number of lattice points in a measurable subset
S of Rn of volume vol(S) is approximately equal to vol(S)/vol(Λ). Assume that
Gaussian heuristic is true when vol(S) ≈ vol(Λ). Then we can select S as an n-ball
with volume equal to vol(Λ). In this case, the radius of S can be expected to be an
approximation of λ1(Λ), which is denoted by

GH(Λ) =
√
n/2πe · vol(Λ)1/n.

Futher, Minkowski’s �rst theorem states that λ1(Λ) is larger than GH(Λ) by a factor
of 2.

Lemma 2.4 (Minkowski’s �rst theorem) For any full-rank lattice Λ of dimension
n, we have

λ1(Λ) ≤ √γn(detΛ)1/n,

where γn is the n-dimensional Hermite constant.
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2.1.2 Gaussian distributions over lattices

In the following, we recall the discrete Gaussian distributions over lattices as well as
the well-known GPV algorithm for sampling lattice points with this distribution. This
will be mainly referred in Section 4 and Section 6.

De�nition 5 (Discrete Gaussian over lattices) For c ∈ Rn, r > 0 and lattice Λ, the
discrete Gaussian distribution over Λ, with center c and standard deviation r is de�ned
as:

DΛ,r,c(x) =
ρr,c(x)

ρr,c(Λ)
,∀x ∈ Λ,

where ρr(x) = exp(−π‖x‖2/r2).

It is well-known that one can e�ciently sample from a Gaussian distribution with
lattice support given a su�ciently short basis of the lattice.

Lemma 2.5 ([BLP
+
13, Le. 2.3]) There exists a PPT algorithm GPVSample that takes

as inputs a basisB of a lattice Λ ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(
√

log n), and outputs
vectors b ∈ Λ with distribution DΛ,σ .

We also recall the trapdoor generation algorithm of Alwen and Peikert [AP09],
which re�nes the technique of Gentry et al. [GPV08]. This trapdoor will be used to
e�ciently solve a hard problem such as SIS (Short Integer Solution).

Lemma 2.6 ([AP09, Th. 3.2]) There is a PPT algorithm TrapGen that takes as inputs
1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Zn×mq

and a basisTA of Λ⊥q (A) such thatA is within statistical distance 2−Ω(n) to U(Zn×mq ),
and ‖T̃A‖ ≤ O(

√
n log q).

2.2 Worst-case lattice problems

In this subsection, we introduce some well-known worst-case lattice problems. They
serve as the hardness foundations of lattice-based cryptography. In particular, the
two central problems SVP and CVP, as well as some of their variants will be recalled.
Finally, we also give some results in approximating the �rst minimum and distance
from any target vector to the lattice. They are su�cient for presenting our results in
Section 5.

2.2.1 De�nitions and relations

Now we introduce the two most well-known problems in lattices: SVP and CVP, as
well as their well-known variants.

De�nition 6 (Shortest Vector Problem, SVP) Given as input a lattice basis B, the
goal is to �nd a vector s ∈ Λ(B) of norm λ1(Λ(B)).

We also introduce its approximation version, which is closely related to the security
foundation of lattice-based cryptography.

De�nition 7 (SVPγ) Given as input a lattice basis B and a factor γ, the goal is to �nd
a non-zero vector s ∈ Λ(B) such that s ≤ γ · λ1(Λ(B)).
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We also have a decision (gap) version of SVPγ .

De�nition 8 (GapSVPn,γ) Given as input an n-dimensional lattice associated with
basis B and a factor γ, for d > 0, the goal is to distinguish the following two cases:

1. Yes instance: λ1(Λ(B)) < d;

2. No instance: λ1(Λ(B)) > γ · d.

Here we brie�y review the two main practical algorithms for solving SVP (or
SVPγ ): the sieve algorithm and the enumeration algorithm. Note that there are algo-
rithms with better cost bounds [MV10b, MV10a, ADRS15], but they are less practical
compared to the two algorithms below.

Sieve algorithm. The sieve algorithm was �rst introduced by Ajtai et al. [AKS01].
The idea is to �rst sample a lot of lattice vectors in Λ ∩ Bn(r) for some initial radius r,
where Bn(r) denotes the ball of radius r centered at the origin in dimension n. Once
we have exponentially many such vectors, we can prove that there is at least a pair
of vectors with their addition falling into Λ ∩ Bn(r/c) for some constant c. Then by
repeating this process polynomially many times, we can successfully �nd some short
vectors with norm close to the �rst minimum. The polynomial number of iterations
contribute to the total solving time by a factor poly(n). In total, the algorithm runs in
time exponential in n.

Enumeration algorithm. First appeared in the 1980s [Kan83, FP83], the enumeration
algorithm is the most practical algorithm for solving SVP. The main idea is to search
for the optimal solution within a given range. Suppose we aim to �nd a shortest vector
with norm bounded by r in an n-dimensional lattice Λ, the strategy of the enumeration
is to �nd all short vectors with norm ≤ r (as potential projections of some shortest
vectors) in projected lattice πi(Λ) for i from n down to 1. This process can be viewed
as a search on a tree: the i-th level is all short vectors in Λ[i,n]; by going to the (i−1)-th
level, we add multiples of b∗i−1 to short vectors found in th i-th level, and we keep
only short resulting vector within given norm. We continue to search until we reach
the �rst level, where we �nd a shortest non-zero vector. In practice, we use the depth
�rst strategy when we search through the tree. Thus the enumeration algorithm is
space e�cient. It was noticed by Hanrot and Stehlé [HS07] that the number of nodes
in level i under the Gaussian heuristic, is

Ni =
1

2
· Vn−i+1(r)

vol(Λ[i,n])
,

where Vn−i+1(r) is the volume of the sphere of radius r in dimension (n − i + 1).
When the searching radius r is estimated by Gaussian heuristic, and Geometry Series
Assumption (refer to Subsection 2.5) is assumed, the number of nodes in level bn/2c is
super-exponential in n. In fact, it was shown by Gama et al [GNR10] that the number
of nodes in level bn/2c is signi�cantly larger than in other levels.

Overall, the sieve algorithm is asymptotically faster than the enumeration algo-
rithm. However, because of the constants hidden in the exponents, there is a crossover
point between the complexity curves of solving these two algorithms. For example, the
enumeration algorithm seems better than the sieve algorithm for solving SVP with
practical dimensions, e.g., less than 200. Furthermore, Alkim et al [ADPS16] state that
sieve algorithm will become more e�cient than enumeration when the dimension is
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≥ 250. More recently, Ducas [Duc18] shows that we can save Θ(n/ log n) dimensions
with the sieve algorithm for solving SVP on n-dimensional lattices.

For completeness, we also recall the k-list problem [BLS16, KMPM19] here.

De�nition 9 (Approximate k-list problem) Assumewe are given k listsL1, · · · , Lk
of equal exponential (in d > 1) size t and whose elements are independently and uniformly
random vectors from Sd−1. The approximate k-list problem is to �nd t solutions, where a
solution is a k-tuple (x1, · · · , xk) ∈ L1 × · · · × Lk satisfying ‖x1 + · · ·+ xk‖ ≤ 1.

For integer d ≥ 1, let Sd ⊂ Rd+1 denote the d-dimensional unit sphere.

De�nition 10 (Closest Vector Problem, CVP) Given as input a lattice basis B and
a vector t, the goal is to �nd a vector v ∈ Λ(B) closest to t.

Correspondingly, we also have a decision (gap) version of CVPγ .

De�nition 11 (GapCVPn,γ) Given as input an n-dimensional lattice associated with
basisB, a target vector t and a factor γ, for d > 0, the goal is to distinguish the following
two cases:

1. Yes instance: dist(t,Λ(B)) < d;

2. No instance: dist(t,Λ(B)) > γ · d.
There is an e�cient reduction from SVP to CVP [GMSS99]. However, in the

converse reduction from CVP to SVP from [Mic00], the dimension increases from n
to nc for some constant c > 1 and the reduction is probabilistic.

Now, we introduce two promise variants, whose instances are a speci�c subset
of instances of SVP and CVP. They are closely related to the underlying security of
lattice-based cryptographic primitives [Reg09, LM09].

De�nition 12 (unique SVPγ , uSVPγ) Let γ ≥ 1. Given as input a lattice basis B
such that λ2(B) ≥ γ · λ1(B), the goal is to �nd a vector s ∈ Λ(B) of norm λ1(Λ(B)).
SVP corresponds to γ = 1.

uSVP is a promise variant of SVP in the sense that the second minimum is
guaranteed to be much larger than the �rst minimum. Said di�erently, any vector that
is not parallel to the two shortest vectors of norms λ1, has norm much larger than λ1.
Thus any approximate shortest vector within this gap should be the shortest vector
itself or multiple of it.

De�nition 13 (Bounded Distance Decoding, BDDα) Let α > 0. Given as inputs a
lattice basis B and a vector t such that dist(t,Λ(B)) ≤ α · λ1(B), the goal is to �nd a
lattice vector v ∈ Λ(B) closest to t.

As opposed to CVP (in which case the target vector can be as far away from
the lattice as possible), the BDD problem promises that the target vector is within a
bounded distance from the lattice. Note that in some works, the range of α is restricted
to (0, 1/2). This is to guarantee that there is exactly one element of Λ in the ball of
radius α · λ1(Λ) centered on t. The problem is well-de�ned even for large α.

2.3 Average-case lattice problems

In this subsection, we �rst give the de�nition of the LWE problem, as well as its
algebraic variants over polynomial, ring and module. This part of preliminary will be
mainly referred in Section 3.
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2.3.1 De�nitions and properties

Now we introduce the LWE problem in two versions: search and decision.

De�nition 14 (LWE distribution) Let n,m ≥ 1, q ≥ 2, and let χ be a probability
distribution on Z. For s ∈ Znq , we de�ne the LWE distribution as the distribution
over Zq × Zq obtained by sampling a ←↩ U(Znq ), e ←↩ χ, and returning the pair
(a,aT · s + e).

De�nition 15 (search-LWE) The search-LWE problem consists in �nding s from a
sampler of LWE distribution, with the secret s ∈ Znq .

De�nition 16 (decision-LWE) The search-LWE problem consists in distinguishing
between a sampler of LWE distribution and a uniform sampler over Zn × Zq , with the
secret s ∈ Znq .

As a counterpart for the LWE problem, the short integer solution (SIS) [Ajt96,
GPV08] and its inhomogeneous variant (Inhomogeneous-SIS (ISIS)) is also known to
have many important applications such as signature, in lattice-based cryptography.

De�nition 17 (SIS) Let n,m ≥ 1, q ≥ 2. Given a matrix A ∈ Zm×nq , the SIS problem
consists in �nding vector x = (x1, · · · , xm)T ∈ Zm with small norm, such that xTA =
0 mod q.

De�nition 18 (ISIS) Let n,m ≥ 1, q ≥ 2. Given a matrix A ∈ Zm×nq and a vector
u ∈ Zn, the SIS problem consists in �nding a vector x = (x1, · · · , xm)T ∈ Zm with
small norm, such that xTA = u mod q.

The q-ary lattices is a speci�c family of lattices, which is of particular importance
in lattice-based cryptography. They are de�ned as follows.

De�nition 19 (q-ary lattices) An n-dimensional q-ary lattice is a lattice Λ ⊆ Zn such
that qZn ⊆ Λ ⊆ Zm.

Thus, in a q-ary lattice, it is su�cient to look at Λ mod q. Because all the shifts of
Λ mod q by qZn form a complete partition of Λ. For A ∈ Zm×nq , we de�ne the q-ary
lattice Λq(A) = {Ax mod q : x ∈ Znq }. This speci�c q-ary lattice is closely related to
the LWE problem. In particular, the LWE problem can be viewed as a BDD instance
in this q-ary lattice Λq(A), where A is the �rst component of LWE sample, and the
second component serves as the target vector of the BDD instance. Once we �nd the
closest vector c = As to target vector b, the secret vector s can be simply recovered
by Gaussian elimination assuming the matrix A is full rank. For completeness, we
recall that for a matrix A randomly chosen from Zm×nq , the matrix A is full rank for a
su�ciently large m with overwhelming probability [BLP+13, Claim 2.13].

2.3.2 Algebraic variants

The protocols relying on the hardness of LWE are inherently ine�cient due to the size
of the public keys which usually contain m elements of Znq , where m is the number of
samples which is usually larger than n log(n). To improve the e�ciency, structured
variants of LWE have been proposed [SSTX09, LPR10, LS15]. One promising variant
is the Polynomial Learning With Errors (P-LWE) problem, introduced by Stehlé et
al. [SSTX09].

PROMETHEUS-780701-WP3-D3.2.pdf Page 9/55



PROMETHEUS 780701 — D3.2: Intermediate results on computational problems,
cryptanalysis and basic tools (v1.1)

De�nition 20 (PLWE distribution) LetK be a degree n number �eld de�ned by f ,
OK its ring of integers, χ a distribution over R[x]/f and q ≥ 2. For s ∈ Zq[x]/f ,
we de�ne the PLWE distribution as the distribution over Z[x]/f × R[x]/f obtained by
sampling a ←↩ U(Zq[x]/f), e ←↩ χ and returning the pair (a, a · s + e) (with Rq =
R/qZ).

De�nition 21 (search-PLWE) The search-PLWE consists in �nding s from a sampler
of PLWE distribution, with the secret s ∈ Zq[x]/f and χ arbitrary.

De�nition 22 (decision-PLWE) The decision-PLWE consists in distinguishing be-
tween a sampler of PLWE distribution and a uniform sampler over Z[x]/f × R[x]/f ,
with the secret s ∈ Zq[x]/f and χ arbitrary.

The P-LWE problem also admits worst-case to average-case connections from
well-studied lattice problems. Whereas the hardness reductions for LWE start from the
lattice problem in the class of general Euclidean lattices, the class has to be restricted
to ideal lattices in the case of P-LWE. These ideal lattices correspond to the ideals in
the polynomial ring Z[x]/f . Lyubashevsky et al. [LPR10] propose another promising
variant, namely the Ring Learning With Errors (R-LWE) problem, where polynomial
rings are replaced by the ring of integers of some number �elds.

De�nition 23 (RLWE and RLWE
∨
distributions) LetK be a degreen number �eld

de�ned by f , R = OK its ring of integers, χ a distribution overKR and q ≥ 2. For s ∈
R/qR (resp. R∨/qR∨), we de�ne the RLWE (resp. RLWE∨) distribution as the distribu-
tion overRq×KR/qR (resp. Rq×KR/qR

∨) obtained by sampling a←↩ U(Rq), e←↩ χ
and returning the pair (a, a · s+ e).

In the de�nition above, we identi�ed the support of χ with KR.

De�nition 24 (search-RLWE and search-RLWE
∨
) The search-RLWE (resp. search-

RLWE∨) consists in �nding s from a sampler of RLWE (resp. RLWE∨) distribution, with
the secret s ∈ Rq (resp. R∨q ) and χ arbitrary.

De�nition 25 (decision-RLWE and decision-RLWE
∨
) The decision-RLWE (resp.

decision-RLWE∨) consists in distinguishing between a sampler of RLWE (resp. RLWE∨)
distribution and a uniform sampler over Rq ×KR/qR (resp. Rq ×KR/qR

∨), with the
secret s ∈ Rq (resp. R∨q ) and χ arbitrary.

In the case of cyclotomic �elds, the P-LWE and R-LWE problems coincide up to
some parameter losses. As a recent result, Roşca et al. [RSW18] show that P-LWE
and R-LWE are equivalent for a larger class of polynomials. In addition, they also
investigate other relations between these structured variants.

In [LS15], Langlois and Stehlé generalize RLWE problem to the module setting
and propose the Module-LWE problem, which helps for a more re�exible parameter
selection as well as a trade-o� between hardness and e�ciency.

2.4 Quantumcomputations andquantumrandomoraclemodel

In this subsection, we present some necessary notations and concepts of quantum
computations as well as the quantum random oracle model, for the description of our
results in Section 3 and Section 5.
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In quantum computations, data is stored as quantum bits (called qubits) in quantum
registers. In general, a state of n qubits is written as

|φ〉 =
∑

x∈{0,1}n
ax |x〉 (1)

where ax ∈ C such that
∑

x∈{0,1}n |ax|2 = 1. The same state |φ〉 can be represented
di�erently, e.g., as follows:

|φ〉 =
∑
x′∈S

a′x′ |x′〉 ,

for any �nite set S that can be mapped (by some function g) to a set of independent
vectors in the Hermitian space C#S . We call the set {|g(x′)〉}x′∈S a basis of the
state. For example, the basis of the state φ1 = (1/

√
2)(|0〉 + |1〉) can be (b1,b2),

where b1 = (1, 0)T and b1 = (0, 1)T. Typically, we let |x〉 |y〉 (or |x, y〉) denote
the tensor product |x〉 ⊗ |y〉 of the two states |x〉 and |y〉. To measure the di�erence
between two quantum states, we use the trace distance.

In classical computations, we are allowed to apply an irreversible gates to data:
x 7→ f(x) for a possibly non-injective function f . It is also well-known that all the
classical circuits can be transformed into corresponding quantum circuits with similar
functionalities with the following map [Ben73]:∑

x∈S
ax |x, y〉 7→

∑
x∈S

ax |x, y ⊕ f(x)〉 .

H

|y〉

|x〉

|y ⊕H(x)〉

|x〉

Figure 2: Quantum circuit for accessing random oracle H with input |x〉.

Quantumrandom-oraclemodel. As considered in [BDF+11], the quantum random-
oracle model (QROM) is similar to their counterparts in the classical random-oracle
model [BR93], with the di�erence that we consider quantum adversaries that are given
quantum access to the random oracles involved. Also refer to Figure 2 as an illustration
of quantum access to random oracle H .

For completeness, we also recall the continuous hidden subgroup problem (HSP) [EHKS14]
as follows.

De�nition 26 (Continuous HSP) Letm ≥ 1, H ⊂ Rm a hidden discrete subgroup.
Given quantum access to a function f : Rm → S as a H-periodic function for some set
S (i.e., |x〉 7→ |f(x)〉), the continuous hidden subgroup problem is to �nd the hidden
subgroup H .
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2.5 Lattice reduction

In this section, we recall some well-known de�nitions of lattice reductions. Among
them, the BKZ reduction is one of the most important tools for assessing the security
of lattice-based cryptographic scheme.

2.5.1 Size reduction

First, we de�ne the size-reduction conditions. If we view the GSO procedure as a QR
decomposition, then the size-reduction conditions can be seen as a requirement on
the upper triangular matrix.

De�nition 27 (Size-reduction) A matrix B ∈ Rm×n is called size-reduced, if it sat-
is�es:

|µi,j | ≤
1

2
, 1 ≤ j < i ≤ n,

where µi,j = 〈bi,b∗j 〉/〈b∗j ,b∗j 〉.

If b∗j = 0, we let µi,j = 0 for any i ≥ j.
Algorithm 1 for achieving the size reduction condition.

Algorithm 1 Size-reduction algorithm
Require: A basis B = {b1, · · · ,bn}.
Ensure: A size-reduced basis of Λ(B).

1: Compute the GSO basis b∗1, · · · ,b∗n
2: for i = 2 to n do

3: for j = i− 1 down to 1 do

4: bi ← bi − dµi,jcbj
5: for k = 1 to j do
6: µi,k ← µi,k − dµi,jcµj,k
7: end for

8: end for

9: end for

The size-reduction condition should be understood more clearly if we consider the
GSO (or QR-decomposition). Suppose that we start from any basis B = QR with an
orthogonal matrix Q and an upper triangular matrix

R =



. . .
... · · ·

... · · ·
‖b∗i ‖ · · · µij‖b∗i ‖ · · ·

. . .
... · · ·
‖b∗j‖ · · ·

. . .


.

In particular, to achieve the size-reduction condition for a speci�c µji with i < j,
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it su�ces to construct a unimodular matrix Uij and apply it on R as follows

R ·Uij=



. . .
... · · ·

... · · ·
‖b∗i ‖ · · · µji‖b∗i ‖ · · ·

. . .
... · · ·
‖b∗j‖ · · ·

. . .


·



. . .
1 −bµjie

. . .
1

. . .


=



. . .
... · · ·

... · · ·
‖b∗i ‖ · · · µ̂ji‖b∗i ‖ · · ·

. . .
... · · ·
‖b∗i ‖ · · ·

. . .


,

where we have |µ̂ji| ≤ 1/2. This step is exactly corresponding to Line 4 of Algorithm 1.
Notice that such an operation R ·Uij for some i < j may also change the values µik
for k < i. Thus we can proceed to apply these speci�c unimodular matrices Uij to R
from bottom (i = j) to up (i = 1) (see Algorithm 1 for a full procedure).

Given a basis B = QR, the product
∏
i ‖b∗i ‖ of the diagonal components of R is

�xed and equal to the determinant of the lattice associated with the basis B. Intuitively,
to obtain a good basis, we aim to make the ‖b∗i ‖’s have limited decrease.

2.5.2 LLL reduction

The LLL-reduction can be computed in polynomial-time (see [LLL82]).

De�nition 28 (LLL-reduction) For δ ∈ (1/4, 1), a matrix B ∈ Rm×n is called LLLδ
reduced, if it is size-reduced and satis�es the Lovász condition:

δ‖b∗i ‖2 ≤ ‖µi+1,ib
∗
i + b∗i+1‖2

for 1 ≤ i < n.

Furthermore, the LLL-reduction condition can be achieved e�ciently in polynomial-
time by the LLL-reduction algorithm proposed by Lenstra et al [LLL82].

Algorithm 2 LLL-reduction algorithm
Require: A basis B = {b1, · · · ,bn} and parameter δ.
Ensure: A δ-LLL-reduced basis of Λ(B).

1: Size-reduce(B).
2: Swap:
3: if ∃i such that ‖µi+1,ib

∗
i + b∗i+1‖2 < δ‖b∗i ‖2 then

4: swap(bi,bi+1)
5: goto Step 1
6: end if

2.5.3 HKZ reduction

The Hermite-Korkine-Zolotarev (HKZ) reduction is more promising for approaching
the successive minima, even though an HKZ-reduced basis does not necessarily reach
them.

De�nition 29 (HKZ-reduction) A matrix B ∈ Rm×n is called HKZ-reduced, if it is
size-reduced and satis�es:

‖b∗i ‖ = λ1(Λ[i,n])

for all i ∈ {1, · · · , n}.
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Here, we recall a result on the relation between the norms of HKZ-reduced basis
vectors and the successive minima of the lattice.
Lemma 2.7 ([LLS90, Theorem 2.1]) LetB = (b1, · · · ,bn) be an HKZ-reduced basis
of a lattice Λ. We have

4

i+ 3
λi(Λ)2 ≤ ‖bi‖2 ≤

i+ 3

4
λi(Λ)2

for all i ∈ [n].

For an n-dimensional HKZ-reduced basis, we can also quantify the relations among
its Gram–Schmidt norms ‖b∗i ‖’s in the worst case as follows.
Lemma 2.8 For any HKZ-reduced basis B = QR of an n-dimensional lattice, we have,
for all i < n,

‖b∗i ‖ ≤
√
γn−i+1 ·

 n∏
j=i

‖b∗j‖

 1
n−i+1

. (2)

This worst-case result is obtained by considering the Minkowski’s �rst theorem.
If we take equalities in the inequalities above, when we �x ‖b∗n‖, all the remaining
‖b∗i ‖’s are also �xed. Equation (2) can be rewritten as

xi =
1

2
log γn−i+1 +

1

n− i+ 1

n∑
j=i

xj

for all i < n, where xi = log ‖b∗i ‖. The xi’s are also known as the worst-case HKZ
pro�le.

To obtain an HKZ-reduced basis, one is needed to �nd a shortest vector in each
projected lattice, with dimension from n to 1. As we have already discussed in Sec-
tion 2.2, the currently best known SVP solvers take time exponential in dimension n,
which becomes very costly when n grows.

Algorithm 3 HKZ-reduction algorithm
Require: A basis B = {b1, · · · ,bn}.
Ensure: A HKZ-reduced basis of Λ(B).

1: for k = 1 to n− 1 do

2: Find any b such that ‖πk(b)‖ = λ1(Λ[k,n])
3: B← LLL-reduce(b1, · · · ,bk−1,b,bk, · · · ,bn)
4: Size-reduce(B)
5: end for

Note that in Step 3 of Algorithm 3, the LLL-reduction is used to remove the linear
dependency between b and {bk, · · · ,bn} (in this case, the input is a generating set
instead of a basis). Further, the inserted vector b will not be exchanged with any of
{b1, · · · ,bk−1} because the Lovász condition is always satis�ed.

2.5.4 BKZ reduction

Later, Schnorr [Sch87] gave a block-wise lattice reduction for trade-o� between the
LLL-reduction and HKZ-reduction. It was also made more practical by Schnorr and
Euchner [SE91, SE94], whose variant is known as the Block Korkine-Zolotarev (BKZ)
reduction algorithm.
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De�nition 30 (BKZ-reduction) A matrix B ∈ Rm×n is said to be BKZβ reduced for
block size β ≥ 2, if it is size-reduced and satis�es:

‖b∗i ‖ ≤ λ1(Λ[i,min(i+β−1,n)])

for all i ∈ {1, · · · , n− 1}.

The BKZ reduction condition can be seen as a run-time/quality trade-o� be-
tween LLL-reduction and HKZ-reduction. Next, we will �rst review the (practical) BKZ
reduction algorithm [SE91, SE94] for (almost) achieving BKZ-reduction.

The BKZ algorithm. The Schnorr-Euchner BKZ algorithm [SE94] takes as inputs
a block-size β and a basis B = {b1, · · · ,bn} of a lattice Λ, and outputs a basis which
is ‘close’ to being BKZβ-reduced (up to numerical inaccuracies, as the underlying
Gram–Schmidt orthogonalization is computed in �oating-point arithmetic, and up
to the progress parameter δ < 1). BKZ starts by LLL-reducing the input basis, then
calls an SVP-solver on consecutive local blocks B[k,min(k+β−1,n)] for k = 1, · · · , n−
1. This is called a BKZ tour. After each execution of the SVP-solver, if we have
λ1(Λ[k,min(k+β−1,n)]) < δ · ‖b∗k‖, then BKZ updates the block B[k,min(k+β−1,n)] by
inserting the vector found by the SVP-solver between indices k − 1 and k, and LLL
reduce the block from the �rst index to the last index of current block (in this case,
the input is a generating set instead of a basis). Otherwise, we LLL-reduce the block
from �rst index to the last index of current block directly, without any insertion.
The procedure terminates when no change occurs at all during a tour. We refer to
Algorithm 4 for a complete description of the BKZ algorithm.

Algorithm 4 The Schnorr and Euchner BKZ algorithm
Require: A basis B = {b1, · · · ,bn}, a block size β ≥ 2 and a constant δ < 1.
Ensure: A BKZβ-reduced basis of Λ(B).

1: repeat

2: for k = 1 to n− 1 do

3: Find any b such that ‖πk(b)‖ = λ1

(
Λ[k,min(k+β−1,n)]

)
4: if δ · ‖b∗k‖ > ‖b‖ then
5: B←LLL-reduce

(
b1, · · · ,bk−1,b,bk, · · · ,bmin(k+β,n)

)
.

6: else

7: B←LLL-reduce
(
b1, · · · ,bmin(k+β,n)

)
.

8: end if

9: end for

10: until no change occurs.

2.6 Basic cryptosystems

In this subsection, we will remind some necessary basic cryptosystems for the need of
presenting our results in Section 5 and Section 6.

2.6.1 The AJPS Mersenne-based cryptosystem

First, we recall the AJPS cryptosystem (See Construction 1), which was known to be a
candidate for �rst-round NIST PQC standardization.

PROMETHEUS-780701-WP3-D3.2.pdf Page 15/55



PROMETHEUS 780701 — D3.2: Intermediate results on computational problems,
cryptanalysis and basic tools (v1.1)

Construction 1. AJPS cryptosystem.

Key Generation: Letn be a prime number. Randomly choose two elements f, g ∈
R = Z/NZ of Hamming weight w, where g is invertible inR andN = 2n− 1.
Set h = f/g. The public key is h, and the secret key is g.

Encryption: To encrypt a bit s, pick random p, q ∈ R of Hamming weight at
most w. Output the ciphertext c = (−1)s(ph+ q) ∈ R.

Decryption: To decrypt c, compute cg = (−1)s(phg + qg) = (−1)s(pf + qg).
Since p, q, f and g all have Hamming weight≤ w, the n-bit string pf + qg has
Hamming weight ≤ 2w2 < n/2. Thus if s = 0, then |cg| < n/2. On the other
hand, if s = 1, then | − cg| < n/2, as a result, |cg| > n− n/2 = n/2. Thus,
to decrypt c, output 0 if |cg| < n/2, and 1 otherwise.

2.6.2 The GGH signature scheme

Next, we recall the GGH signature in a high level (see Contruction 2). The �rst-round
NIST PQC candidate: DRS signature can be seen as a variant following the same design
paradigm of GGH signature. We refer the reader to [PSDS] for a detailed description
for DRS signature.

Construction 2. GGH signature.

Key Generation: Let n be a prime number, H : Zn → Zn be a hash function.
Choose a short basis B for a full rank lattice Λ ⊂ Zn and compute a public
basis B′ = UB with U a randomly chosen unimodular matrix. The signing
key is: B, and the veri�cation key is B′.

Sign: To sign a message m ∈ Zn, �rst useH to hash it to u = H(m) ∈ Zn, then
use the short basis B to compute a lattice vector s close to H(m). Output the
signature (m, s).

Verify: To verify a siganture (m, s), �rst check s is indeed in the lattice Λ(B′) =
Λ(B), then verify if ‖s − H(m)‖ is small, return 0 if either of the test fails,
return 1 otherwise.

2.6.3 The GPV and Lyubashevsky’s signature schemes

Other than the GGH-style signature, there are mainly two types of lattice-based
signatures: GPV signature [GPV08] with trapdoor (see Construction 3) and Schnorr-
like signature without trapdoor [Lyu12] (see Construction 4). The NIST PQC second-
round candidate Falcon [PFH+19] and its simpler predecessor DLP [DLP14] can be
seen as e�cient variants of GPV signature scheme over NTRU lattices, thus achieving
great speed-ups compared to the original one over general lattice setting. On the
other hand, there are also numerous follow-up works of Lyubashevsky’s signature
without trapdoor, which include an e�cient variant with bimodel Gaussians called
BLISS [DDLL13] and its adaptation for embedded system called GLP [GLP12], as well
as the second-round NIST candidate Dilithium [DKL+18].
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Construction 3. GPV signature.

Key Generation: Let n,m ≥ 1, q ≥ 2, H : Zn → Zn be a hash function. Apply
the Alwen and Peikert trapdoor generation algorithm (refer to Lemma 2.6)
to generate a pair (A,T) ∈ Zmnq × Zm×m. The signing key is: T and the
veri�cation key is: A.

Sign: To sign a message m ∈M, �rst useH to hash it to u = H(m) ∈ Zn, then
use the trapdoor T to compute a short solution x to the ISIS instance (A,u).
Output the signature (m,x).

Verify: To verify a signature (m,x), check if xTA = H(m) mod q and x has
small norm, return 0 if either of the test fails, return 1 otherwise.

Construction 4. Lyubashevsky’s signature.

Key Generation: Let d, k, n,m,M ≥ 1, q ≥ 2, H : {0, 1}∗ → {v : v ∈
{−1, 0, 1}k,v has small norm} be a hash function. The signing key is: S ←↩
{−d, · · · , 0, · · · , d}m×k and the veri�cation key is: A←↩ Zn×mq , T = AS.

Sign: To sign a messagem ∈M, �rst selecty←↩ DZm,σ,0 with large enoughσ >
0, then compute c = H(Ay,m) and z = Sc+y. Output the signature m, z, c)

with probability min
( DmZm,σ,0(z)
MDZm,σ,Sc(z)

, 1
)

.
Verify: To verify a signature (m, z, c), check if c = H(Az−Tc,m) and z has

small norm, return 0 if either of the test fails, return 1 otherwise.

2.7 Side-channel attacks and countermeasures

In this subsection, we will recall some necessary preliminaries about side-channel
attacks and countermeasures for presenting our results mainly in Section 6.

2.7.1 Implementation attacks

We note that an extensive introduction on side-channel attacks is well given in deliv-
erable D.3.1. For the sake of completeness, we recall the same content from there as
a necessary preliminaries for current results, which include fault attack and timing
attack.

Fault attacks. The idea of fault attacks is to induce a fault into a circuit and use the
faulty output to get information about the secret key. This can be achieved by high
temperature, unsupported supply voltage or current, excessively high overclocking,
strong electric or magnetic �elds, or even ionizing radiation. Fault attacks are usually
non-invasive as the induced fault is only temporary and the device is not permanently
damaged.

Timing attacks. When implementing cryptographic algorithms, the developer has
to make sure that the execution time is independent of the secret data that is processed.
Otherwise an attacker might be able to exploit the information about the execution
time. Such attacks should not only be considered for embedded devices for which the
attacker has physical access to, but also remote timing attacks are a threat that must
be considered as shown by Brumley and Boneh [BB03]. Timing information can be
leaked by conditional branches, instructions with non-constant execution time, and
memory accesses that trigger cache hits or misses [Ber05].
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2.7.2 Countermeasures

Again, we note that a fairly detailed overview of countermeasure for side-channel
attacks is described in the deliverable D.3.1. For the sake of completeness, we recall
two countermeasures: masking and constant-time implementation.

Masking The idea behind masking is to split a secret value into several shares.
The secret value can only be reconstructed with the knowledge of all shares. The
splitting of the secret value can be performed in a Boolean way or in an arithmetic way.
Boolean masking means that the XOR-sum of all shares results in the secret value and
arithmetic masking means that the arithmetic sum or di�erence of the shares results
in the secret value. There are conversion approaches to switch between arithmetic and
Boolean masking [CGTV15]. The major advantage of masking schemes is that they
allow to prove the side-channel security of an algorithm. Nevertheless, there are still
implementation challenges that have to be taken care of. Otherwise, a provably secure
algorithm might still have a side-channel leakage. To achieve higher-order security, it
is necessary to split the secret value into more shares.

Constant-time implementation. To prevent timing attacks and simple power anal-
ysis it is crucial to develop an implementation that has an execution time independent
from the secrets. Some pitfalls that should be avoided are:

• Comparison of secret strings: Such a comparison must not stop at the �rst
unequal character.

• Branches: Branches must not be dependent on secret data. Ideally the same
branches are taken for every run of the implementation.

• Table look-ups: On platforms with a cache, table look-ups can have varying
access times. Thus the index must not depend on secret data for such platforms.
In same cases it might be necessary to completely disable caches.

• Compiler optimization: A developer must take care that the compiler does not
remove instructions that are critical for the security of the implementation but
irrelevant for its functionality.
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3 TASK 3.1: Quantum assumptions and reductions

Here, we will review the targets of TASK 3.1 and summarize the results obtained so
far.

3.1 Review of the targets

Table 2 describes the targets of TASK 3.1. The main objective is to provide good
candidates for the underlying assumptions and security models for the building blocks
in WP4 and the privacy-preserving schemes in WP5. We �rst aim at investigating how
the security model should be, assuming the existence of quantum computer. There
are mainly three directions to work for this. At the beginning, we need to adapt our
current proof technique with respect to the QROM. Next, we need to further make
sure the QROM-secure protocol can be e�ciently implemented. Finally, we need to
search for possible relaxations of QROM to propose more e�cient solutions. Second,
we want to have a better understanding of the hardness of lattice problems as well
as their related computational problems. To start, we need to try to improve current
reduction, which will hopefully give us more e�cient parameters for lattice-based
cryptography. To continue, we would like to search for new reductions for existing
hard problems, which will bring us new relations and hopefully new hardness results
on known lattice problems or related computational problems.

Targets Concrete contents

Investigate secure models
for post-quantum crypto-
graphic scheme

Develop new proof techniques needed for
QROM
Assess/improve practicality of QROM-
secure schemes
Understand relevance of the QROM, �nd
possible relaxations

Study the hardness of lattice
problems

Improve tightness of known reductions
Find new reductions between lattice prob-
lems

Table 2: Concrete targets within TASK 3.1.

3.2 Overview of current results

An overview of the results obtained in TASK 3.1 can be found in Table 3. We give more
details in the following subsections.

3.3 Current results on quantum assumptions

Within the scope of quantum assumptions, we have 3 publications: 2 in conferences
and 1 in preprint. The question of the quantum security of the Fiat-Shamir transform
(which allows the construction of signature schemes) has been greatly elucidated with
two results [KLS18, DFMS19]. The �rst result [KLS18] gives a tight security proof, and
comes at small cost on schemes such as Dilithium [DKL+18]. The second [DFMS19]
gives a non-tight proof, but requires no extra properties from the scheme, and therefore
comes with no impact on e�ciency. Recently the result [HKSU18] also gives an
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Category Work Status

Quantum assumptions

A Concrete Treatment of Fiat-
Shamir Signatures in the Quantum
Random-Oracle Model [KLS18]

Eurocrypt 2018

Security of the Fiat-Shamir Trans-
formation in the Quantum Random-
Oracle Model [DFMS19]

Crypto 2019

Generic Authenticated Key
Exchange in the Quantum Random
Oracle Model [HKSU18]

Preprint

Reductions

On the Ring-LWE and Polynomial-
LWE Problems [RSW18]

Eurocrypt 2018

Order-LWE and the Hardness
of Ring-LWE with Entropic
Secrets [BP18]

Asiacrypt 2019

Middle-Product Learning with
Rounding Problem and its Applica-
tions [BBD+19]

Asiacrypt 2019

Worst-Case Hardness for LPN and
Cryptographic Hashing via Code
Smoothing [BLVW19]

Eurocrypt 2019

Table 3: Current (intermediate) results on TASK 3.1.

investigation on a simpler generic transformation for authenticated key exchange in
QROM.

A Concrete Treatment of Fiat-Shamir Signatures in the Quantum Random-

Oracle Model. The Fiat-Shamir transform is a technique for combining a hash
function and an identi�cation scheme to produce a digital signature scheme. The
resulting scheme is known to be secure in the random oracle model, which does not,
however, imply security in the scenario where the adversary has also quantum access
to the oracle.

In this work, a generic framework is proposed for constructing tight reductions in
the QROM from underlying hard problems to Fiat-Shamir signatures. The proposed
generic reduction is composed of two results whose proofs are believed to be simple
and natural. First, a security notion (UF-NMA) is considered in which the adversary
obtains the public key and attempts to create a valid signature without accessing a
signing oracle. Second, a tight reduction is given to show that deterministic signatures
(i.e., ones in which the randomness is derived from the message and the secret key)
that are UF-NMA secure are also secure under the standard chosen message attack (UF-
CMA) security de�nition. The second result is showing that if the identi�cation scheme
is “lossy”, as de�ned in [AFLT12] by Abdalla et al, then the security of the UF-NMA
scheme is tightly based on the hardness of distinguishing regular and lossy public keys
of the identi�cation scheme. The latter distinguishing problem is normally exactly the
de�nition of some presumably-hard mathematical problem. The combination of these
components gives the main result.

As a concrete instantiation of this framework, the recent lattice-based Dilithium
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digital signature scheme [DKL+18] by Ducas et al., is modi�ed, so that its underlying
identi�cation scheme admits lossy public keys. The original Dilithium scheme, which
is proven secure in the classical ROM based on standard lattice assumptions, has 1.5KB
public keys and 2.7KB signatures. The new scheme, which is tightly based on the
hardness of the Module-LWE problem in the QROM using the generic reductions, has
7.7KB public keys and 5.7KB signatures for the same security level. Furthermore, due
to the proof of equivalence shown in this work between the UF-NMA and UF-CMA
security notions of deterministic signature schemes, one can formulate a new non-
interactive assumption under which the original Dilithium signature scheme is also
tightly secure in the QROM.

Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle

Model. The famous Fiat-Shamir transformation turns any public-coin three-round
interactive proof, i.e., any so-called sigma-protocol, into a non-interactive proof in the
random-oracle model.

In this work, this transformation is studied in the setting of a quantum adversary
that in particular may query the random oracle with quantum superpositions. The
main result is a generic reduction that transforms any quantum dishonest prover
attacking the Fiat-Shamir transformation in the quantum random-oracle model into
a similarly successful quantum dishonest prover attacking the underlying sigma-
protocol (in the standard model). Applied to the standard soundness and proof-of-
knowledge de�nitions, this reduction implies that both these security properties,
in both the computational and the statistical variant, are preserved under the Fiat-
Shamir transformation even when allowing quantum attacks. This result improves
and completes the partial results that have been known so far, but it also proves wrong
certain claims made in the literature.

In the context of post-quantum secure signature schemes, this results imply that for
any sigma-protocol that is a proof-of-knowledge against quantum dishonest provers
(and that satis�es some additional natural properties), the corresponding Fiat-Shamir
signature scheme is secure in the quantum random-oracle model.

Generic Authenticated Key Exchange in the Quantum Random Oracle Model.

In this work, FOAKE, as a generic construction of two-message authenticated key
exchange (AKE) from any passively secure public key encryption (PKE) in the QROM,
is proposed. Whereas previous AKE constructions relied on a Di�e-Hellman key
exchange or required the underlying PKE scheme to be perfectly correct, this trans-
formation allows arbitrary PKE schemes with non-perfect correctness. Dealing with
imperfect schemes is one of the major di�culties in a setting involving active attacks.
This direct construction, when applied to schemes such as the submissions to the recent
NIST post-quantum competition, is more natural than previous AKE transformations.
Furthermore, this work avoids the use of (quantum-secure) digital signature schemes
which are considerably less e�cient than their PKE counterparts. As a consequence,
one can instantiate this AKE transformation with any of the submissions to the recent
NIST competition, e.g., ones based on codes and lattices. FOAKE can be seen as a
generalization of the Fujisaki-Okamoto transformation [FO99] (for building actively
secure PKE from passively secure PKE) to the AKE setting. As a helper result, a secu-
rity proof is also provided for the Fujisaki-Okamoto transformation in the QROM for
PKE with non-perfect correctness. This work �xes several gaps in a previous proof
in [JZC+18] by Jiang et al, is tighter, and tolerates a larger correctness error.

PROMETHEUS-780701-WP3-D3.2.pdf Page 21/55



PROMETHEUS 780701 — D3.2: Intermediate results on computational problems,
cryptanalysis and basic tools (v1.1)

3.4 Current results on reductions

In the aspect of reduction among lattice problems and related computational problems,
we have 4 publications in top-tier conferences. The work [RSW18] studies variants of
the ring and polynomial LWE problems, and exhibits reductions to show equivalence
between them for many cases. Later the result [BP18] further generalizes RLWE
problem and propose the Order-LWE problem, to study the hardness of RLWE with
secret from di�erent distributions. Motivated by gaining security as well as e�ciency,
the work [BBD+19] proposes a variant of LWE without Gaussian noise but with
potential more hardness (called MPCLWR, short for middle-product computational
learning with rounding), and prove its usability by constructing a public key encryption
based on it. Last the work [BLVW19] successfully provides a worst-case to average-
case reduction for LPN with some speci�c parameters.

On the Ring-LWE and Polynomial-LWE Problems. The RLWE problem comes
in various forms. Vanilla RLWE is the decision dual-RLWE variant, consisting in
distinguishing from uniform a distribution depending on a secret belonging to the
dual OvK of the ring of integers OK of a speci�ed number �eld K . In primal-RLWE,
the secret instead belongs to OK . Both decision dual-RLWE and primal-RLWE enjoy
search counterparts. Also widely used is (search/decision) PLWE, which is not de�ned
using a ring of integers OK of a number �eld K but a polynomial ring Z[x]/f for a
monic irreducible f ∈ Z[x].

In this work, it is shown that there exist reductions between all of these six problems
that incur limited parameter losses (also refer to Figure 3 for an in illustration of
their relations as well as the connections between these six problems with other
computational problems such as MP-LWE and lattice problems such as ApproxSVP
in ideal lattices). More precisely, this work: �rst shows that the (decision/search)
dual to primal reduction from Lyubashevsky et al [LPR10] and Peikert [Pei16] can be
implemented with a small error rate growth for all rings (the resulting reduction is
non-uniform polynomial time); then extends it to polynomial-time reductions between
(decision/search) primal RLWE and PLWE that work for a family of polynomials
f that is exponentially large as a function of deg f (the resulting reduction is also
non-uniform polynomial time); lastly exploits the recent technique from Peikert et
al [PRS17a] to obtain a search to decision reduction for RLWE for arbitrary number
�elds. The reductions incur error rate increases that depend on intrinsic quantities
related to K and f .

Order-LWE and the Hardness of Ring-LWE with Entropic Secrets. In this
work, a generalization of the celebrated RLWE problem [LPR10] is proposed, wherein
the ambient ring is not the ring of integers of a number �eld, but rather an order (a full
rank subring). This work shows that Order-LWE problem enjoys worst-case hardness
with respect to short vector problems in invertible ideal lattices of the order. The
de�nition allows us to provide a new analysis for the hardness of the abundantly used
PLWE problem [SSTX09], di�erent from the one recently proposed by Rosca, Stehlé
and Wallet [RSW18]. This result suggests that Order-LWE may be used to analyze
and possibly design useful relaxations of RLWE. This work shows that Order-LWE
can naturally be harnessed to prove security for RLWE instances where the “RLWE
secret” (which often corresponds to the secret-key of a cryptosystem) is not sampled
uniformly as required for RLWE hardness. Concretely, in this work, the worst-case
hardness is shown even if the secret is sampled from a subring of the sample space.
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[RSW18][LS15]
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decision RLWE∨
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search RLWE

search PLWE

search
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(-modules)
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Module-LWE
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[RSSS17][RSSS17]

Figure 3: Relationships between variants of RLWE and PLWE. The dotted box contains
the problems studied in this work. Each arrow may hide a noise rate degradation
(and module rank - modulus magnitude transfer in the case of [AD17]). The top to
bottom arrows in the dotted box correspond to non-uniform reductions. The reductions
involving PLWE are analyzed for limited family of de�ning polynomials. The arrows
without references correspond to trivial reductions.

Then, the case where the secret is sampled from an ideal of the sample space or a coset
thereof (equivalently, some of its CRT coordinates are �xed or leaked), is well studied.
for the latter, an interesting threshold phenomenon is presented, where the amount of
RLWE noise determines whether the problem is tractable. Lastly, the long standing
question of whether high-entropy secret is su�cient for RLWE to be intractable, is ad-
dressed. This result on sampling from ideals shows that simply requiring high entropy
is insu�cient. Finally, a broad class of distributions is proposed where we conjecture
that hardness should hold, and provides evidence via reduction to a concrete lattice
problem.

Middle-Product Learning with Rounding Problem and its Applications. At
CRYPTO 2017, Rosca et al. introduce a new variant of the LWE problem, called the
MP-LWE. The hardness of this new assumption is based on the hardness of the PLWE
problem parameterized by a set of polynomials, making it more secure against the
possible weakness of a single de�ning polynomial. As a cryptographic application,
they also provide an encryption scheme based on the MP-LWE problem.

In this work, a deterministic variant of their encryption scheme is proposed, which
does not need Gaussian sampling and is thus simpler than the original one. Still, it has
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the same quasi-optimal asymptotic key and ciphertext sizes. The main ingredient for
this purpose is the LWR problem which has already been used to derandomize LWE
type encryption. The hardness of this new scheme is based on a new assumption called
MPCLWR, an adaptation of the computational LWR problem over rings, introduced
by Chen et al [CZZ18]. Finally, this new assumption is proved to be as hard as the
decisional version of MP-LWE and thus bene�ts from worst-case to average-case
hardness guarantees.

Worst-Case Hardness for LPN and Cryptographic Hashing via Code Smooth-

ing. In this work, a worst-case decoding problem is proposed, whose hardness
reduces to that of solving the LPN problem, in some parameter regime. Prior to this
work, no worst case hardness result was known for LPN (as opposed to syntactically
similar problems such as LWE). The caveat is that this worst case problem is only mildly
hard and in particular admits a quasi-polynomial time algorithm, whereas the LPN
variant used in the reduction requires extremely high noise rate of 1/2− 1/poly(n).
Thus this work can only show that “very hard” LPN is harder than some “very mildly
hard” worst case problem. Speci�cally, this work considers the (n,m,w)-nearest
codeword problem ((n,m,w)-NCP) which takes as input a generating matrix for a
binary linear code in m dimensions and rank n, and a target vector which is very close
to the code (Hamming distance at most w), and asks to �nd the codeword nearest
to the target vector. This work shows that for balanced (unbiased) codes and for
relative error w/m ≈ log2n/n, (n,m,w)-NCP can be solved given oracle access
to an LPN distinguisher with noise ratio 1/2 − 1/poly(n). The proof in this work
relies on a smoothing lemma for codes which has further implications: (n,m,w)-NCP
with the aforementioned parameters lies in the complexity class Search-BPPSZK (i.e.
reducible to a problem that has a statistical zero knowledge protocol) implying that
it is unlikely to be NP-hard. Eventually, this work shows that LPN with very low
noise rate log2(n)/n implies the existence of collision resistant hash functions (in this
parameter regime LPN is also in BPPSZK).

3.5 Conclusion

With respect to the concrete targets within TASK 3.1, we have a fairly good progress
and numerous results. Within this subtask, we already have an extensive study on the
underlying hardness assumptions as well as the security model under both classical
and quantum computation. First, with respect to the security model, we have e�ciently
transformed prior schemes with security under classical model to the ones with almost
the same security level, but now under the quantum setting. These transformations
will eventually be used for our design of either building blocks in WP4 or privacy-
preserving protocols in WP5. Second for the underlying hardness assumptions, we
have established and improved the relations between known presumed hard problems
and proposed new ones with better properties.
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4 TASK 3.2: Algorithm design and implementation

of lattice trapdoors

We will now review the targets and summarize the results obtained within TASK 3.2.

4.1 Review of the targets

Table 4 presents the targets of TASK 3.2. The main objective is to provide highly
e�cient solutions for our building blocks in WP4 and related privacy preserving
schemes in WP5 and their implementation. First, we want to improve the parameters
of lattice-based schemes. One of the starting point would be to try more e�cient
underlying structured lattice or apply other metrics such as Rényi divergence for
lattice-based cryptography [BLL+15]. Next, we need to optimize the lattice trapdoor,
i.e., resort to partial trapdoor whenever it is possible. Second, we also need to �nd
other possible enhancement on both e�ciency and security. For e�ciency, we would
like to remove or mitigate the �oating-point arithmetic in Gaussian sampling. To do
more, it is also more desirable to take security with respect to side-channel attacks
into consideration within the design paradigm of Gaussian sampling.

Targets Concrete contents

Investigate improvement for
setting parameters

Tighten parameters using more structured
lattices and statistical tools
Resort to partial trapdoors when possible

Study on other enhancement

Remove or mitigate Floating-Point arith-
metic in Gaussian sampling
Enhanced security (e.g., against side-
channel attacks) together with high e�-
ciency

Table 4: Concrete targets within TASK 3.2.

4.2 Overview of current results

An overview of the results obtained in TASK 3.2 can be found in Table 5.

4.3 Current results on applying more e�cient structures

In the scope of applying more e�cient structure, we have 2 publications in conferences.
The work [BFRS18] proposes an e�cient implementation of lattice-based signature and
IBE based on the RLWE and RSIS problems in the standard model, while other schemes
used the NTRU assumption for e�ciency reasons. Then another contribution [PP19]
works out a recursive algorithm for NTRU key generation by exploiting the tower of
sub�elds in cyclotomic �elds. This work substantially improves the performance of
the trapdoor generation of the Falcon scheme (second-round PQC NIST candidate).

Practical Implementation of Ring-SIS/LWEBased Signature and IBE. Lattice-
based signature and Identity-Based Encryption (IBE) are well-known cryptographic
schemes, and having both e�cient and provably secure schemes in the standard model
is still a challenging task in light of the current NIST post-quantum competition.
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Category Work Status

More e�cient
structures

Practical Implementation of
Ring-SIS/LWE Based
Signature and IBE [BFRS18]

PQCrypto 2018

More E�cient Algorithms
for the NTRU Key
Generation using the Field
Norm [PP19]

PKC 2019

Gaussian sampling

CDT-Based Gaussian Sam-
pling: From Multi to Double
Precision [MR18]

IEEE TC

Integral Matrix Gram
Root and Lattice Gaus-
sian Sampling without
Floats [DGPY19]

Preprint

GALACTICS: Gaussian
Sampling for Lattice-
Based Constant-Time
Implementation of Cryp-
tographic Signatures,
Revisited [BBE+19]

ACM CCS

Table 5: Current (intermediate) results on TASK 3.2.

In this work, provably secure (in the standard model) and e�cient signature and
IBE are constructed, by mixing standard IBE scheme, à la ABB (EUROCRYPT 2010)
on RSIS/RLWE assumptions with the e�cient trapdoor of Micciancio and Peikert
[MP12] to provide an e�cient implementation. The proposed IBE scheme is more
e�cient than the IBE scheme [DLP14] by Ducas, Lyubashevsky and Prest based on
NTRU assumption and is based on more standard assumptions. Finally, an e�cient
implementation together with a formal proof in the standard model is also given for
the underlying signature scheme.

MoreE�cientAlgorithms for theNTRUKeyGenerationusing the FieldNorm.

NTRU lattices [HPS98] are a class of polynomial rings which allow for compact and
e�cient representations of the lattice basis, thereby o�ering very good performance
characteristics for the asymmetric algorithms that use them. Signature algorithms
based on NTRU lattices have fast signature generation and veri�cation, and relatively
small signatures, public keys and private keys. A few lattice-based cryptographic
schemes entail, generally during the key generation, solving the NTRU equation:

fG− gF = q mod xn + 1,

where f and g are �xed. The goal is to compute solutions F and G to the equation,
and all the polynomials are in Z[x]/(xn + 1). The existing methods for solving this
equation are quite cumbersome: their time and space complexities are at least cubic
and quadratic in the dimension n, and for typical parameters they therefore require
several megabytes of RAM and take more than a second on a typical laptop, precluding
onboard key generation in embedded systems such as smart cards.
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In this work, two new algorithms are presented for solving the NTRU equation.
Both algorithms make a repeated use of the �eld norm in tower of �elds; it allows
them to be faster and more compact than existing algorithms by factors Õ(n). For
lattice-based schemes considered in practice, this reduces both the computation time
and RAM usage by factors at least 100, making key pair generation within range of
smart card abilities.

4.4 Current results on Gaussian sampling

Concerning the optimization of Gaussian sampling algorithms, we achieved 3 pub-
lications: 1 in conference, 1 in journal and 2 in preprints. Further work on Rényi
divergence [MR18] shows that doubling the precision is su�cient for usual lattice-
based signatures by using a modi�ed cumulative distribution table (CDT). Further the
work [DGPY19] proposes new techniques to avoid �oating point computation during
the linear algebra step of lattice trapdoor sampling. These techniques are based on
a generalization of the 4-square theorem to matrices. Eventually in [BBE+19], we
propose new techniques for approximating Gaussian sampling achieving constant
time and without �oating points arithmetic (FPA), by resorting to lattice reduction
for approximating transcendental functions by integral polynomials. This work also
permits masked implementation of BLISS [DDLL13].

CDT-Based Gaussian Sampling: From Multi to Double Precision. The Rényi
divergence is a measure of closeness of two probability distributions which has found
several applications over the last years as an alternative to the statistical distance in
lattice-based cryptography. A tight bound has recently been presented for the Rényi
divergence of distributions that have a bounded relative error.

In this work, the Rényi divergence is used to bound the precision requirement in
Gaussian sampling to the IEEE 754 �oating-point standard double precision for usual
lattice-based signature parameters by using a modi�ed cumulative distribution table
(CDT), which reduces the memory needed by CDT-based algorithms and, makes their
constant time implementation faster and simpler. Then, this approach is applied to a
variable-center variant of the CDT algorithm which occasionally requires the online
computation of the cumulative distribution function. As a result, the amount of �oating-
point operations is drastically decreased, which makes the constant-time and cache-
resistant variants of this algorithm viable and e�cient. Finally, some experimental
results are provided to indicate that comparing to rejection sampling, the proposed
approach increases the GPV signature rate by a factor 4 to 8 depending on the security
parameter.

Integral Matrix Gram Root and Lattice Gaussian Sampling without Floats.

Many advanced lattice based cryptosystems require to sample lattice points from
Gaussian distributions. One challenge for this task is that all current algorithms resort
to �oating-point arithmetic (FPA) at some point, which has numerous drawbacks
in practice: it requires numerical stability analysis, extra storage for high-precision,
lazy/backtracking techniques for e�ciency, and may su�er from weak determinism
which can completely break certain schemes.

In this work, techniques are given to implement Gaussian sampling over general
lattices without using FPA. To this end, the approach of Peikert is also revisited, using
perturbation sampling. Peikert’s approach uses the Cholesky decomposition Σ = AAt
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of the target covariance matrix Σ, giving rise to a square matrixAwith real (not integer)
entries. The new proposed idea, in a nutshell, is to replace this decomposition by an
integral one. While there is in general no integer solution if one restricts A to being
a square matrix, it is shown that such a decomposition can be e�ciently found by
allowing A to be wider (say n× 9n). This can be viewed as an extension of Lagrange’s
four-square theorem to matrices. In addition, the proposed integral decomposition
algorithm is further adapted to the ring setting: for power-of-2 cyclotomics, the tower
of rings structure can be exploited to improve the complexity and compactness.

GALACTICS: Gaussian Sampling for Lattice-BasedConstant-Time Implemen-

tation of Cryptographic Signatures, Revisited. In this work, a constant-time
implementation is proposed for the BLISS lattice-based signature scheme [DDLL13].
BLISS is possibly the most e�cient lattice-based signature scheme proposed so far, with
a level of performance on par with widely used pre-quantum primitives like ECDSA.
It is one of the few postquantum signatures to have seen real-world deployment, as
part of the strongSwan VPN software suite.

The outstanding performance of the BLISS signature scheme stems in large part
from its reliance on discrete Gaussian distributions, which allow for better parameters
and security reductions. However, that advantage has also proved to be its Achilles’
heel, as discrete Gaussians pose serious challenges in terms of secure implementations.
Implementations of BLISS so far have included secret-dependent branches and memory
accesses, both as part of the discrete Gaussian sampling and of the essential rejection
sampling step in signature generation. These defects have led to multiple devastating
timing attacks, and were a key reason why BLISS was not submitted to the NIST
postquantum standardization e�ort. In fact, almost all of the actual candidates chose
to stay away from Gaussians despite their e�ciency advantage, due to the serious
concerns surrounding implementation security. Moreover, naive countermeasures will
often not cut it: it is shown that a reasonable-looking countermeasure suggested in
previous work to protect the BLISS rejection sampling can again be defeated using
novel timing attacks, in which the timing information is fed to phase retrieval machine
learning algorithm in order to achieve a full key recovery. Fortunately, careful imple-
mentation techniques are also presented that allow to describe an implementation of
BLISS with complete timing attack protection, achieving the same level of e�ciency
as the original unprotected code, without resorting on �oating point arithmetic or
platform-speci�c optimizations like AVX intrinsics. These techniques, including a new
approach to the polynomial approximation of transcendental function, can also be
applied to the masking of the BLISS signature scheme, and will hopefully make more
e�cient and secure implementations of lattice-based cryptography possible going
forward.

4.5 Conclusion

With respect to our concrete targets within TASK 3.2, we have progressed well and
obtained many results so far. Within this subtask, we have investigated many di-
rections to achieve more e�cient lattice-based cryptographic schemes, which will
eventually serve for our purpose in this project. First, we have tried to apply more e�-
cient structures in the implementation of lattice-based schemes. These more e�cient
structures can serve as important candidates for our need in WP4 and 5. Second, we
have performed an extensive study for optimizing the Gaussian sampling by either
reducing or removing the need of �oating-point arithmetic. Hopefully, the basic tools
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developed can be used to greatly improve the e�ciency of our building blocks as well
as privacy-preserving schemes.
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5 TASK 3.3: Classical and quantum cryptanalysis

We will �rst recall the targets and summarize the results obtained so far within TASK
3.3.

5.1 Review of the targets

Table 6 presents the targets of TASK 3.3. The main objective is to investigate and
improve the state-of-the-art (quantum and classical) algorithms for cryptanalysis,
which will be used to choose parameters in the building blocks in WP4 and the privacy-
preserving protocols in WP5. From the quantum cryptanalysis point of view, it is
important to extend currently known attacks for hard problems in ideal lattices to more
general structured lattice, such as module lattices. Next, as it will always increase the
physical di�culty of maintaining a larger entanglement of qubits, it is also important to
evaluate or improve the concrete number of qubits required in the quantum algorithms.
We also need to investigate the quantum version of best classical algorithms and
their quantum implementations. From classical cryptanalysis aspect, we have a large
family of cryptanalysis algorithms (the sieve, the enumeration and the BKZ algorithm).
The �rst question is whether we can improve or hybridize them. So far, the cost
model for the cryptanalysis algorithm is based on the arithmetic operations count.
To have a more exact cost model, one may need to consider more realistic factor in
real implementation such as the size of RAM and circuit needed. The �nal target is to
derive security models for reliable security estimates and to develop automated tools
for generating parameters.

Targets Concrete contents

Cryptanalysis with quantum
computation

Extend known attacks to more structured
lattices
Evaluate and improve number of required
qubits
Generalize classical algorithm to quantum
setting

Cryptanalysis with classical
computation

Improve and hybridize known algorithms
(Sieve, Enum, BKZ)
Use more realistic cost models (RAM, Cir-
cuit)
Reliable security estimates, automated pa-
rameter selection

Cryptanalysis on NIST can-
didates

They include both �rst and second round
candidates

Table 6: Concrete targets within TASK 3.3.

5.2 Overview of current results

An overview of the results obtained in TASK 3.3 can be found in Table 7.
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Category Work Status

Quantum
cryptanalysis

Quantum Algorithms for the
Approximate k-List Problem
and their Application to Lattice
Sieving [KMPM19]

Eurocrypt 2019

Quantum speedups for lattice sieves
are tenuous at best [AGPS19]

Preprint

On the Quantum Complexity of the
Continuous Hidden Subgroup Prob-
lem [dBDF19]

Preprint

On the Shortness of Vectors to be
found by the Ideal-SVP Quantum
Algorithm [DPW19]

Crypto 2019

Approx-SVP in Ideal Lattices with
Pre-processing [PHS19]

Eurocrypt 2019

An LLL Algorithm for Module
Lattices [LPSW19]

Asiacrypt 2019

Classical
cryptanalysis

Measuring, simulating and ex-
ploiting the head concavity phe-
nomenon in BKZ [BSW18]

Asiacrypt 2018

Shortest Vector from Lattice
Sieving: a Few Dimensions for
Free [Duc18]

Eurocrypt 2018

The General Sieve Kernel and
New Records in Lattice Reduc-
tion [ADH+19]

Eurocrypt 2019

Exploring Trade-o�s in Batch
Bounded Distance Decod-
ing [ACW19]

Preprint

A re�ned analysis of the cost for
solving LWE via uSVP [BMW19]

Africacrypt 2019

Cryptanalysis on
NIST candidates

Estimate all the LWE, NTRU
schemes! [ACD+18]

SCN 2018

Attacks on the AJPS Mersenne-
based cryptosystem [dBDJdW18]

PQCrypto 2018

Learning Strikes Again: the Case of
the DRS Signature Scheme [YD18]

Asiacrypt 2018

Table 7: Current (intermediate) results on TASK 3.3.

5.3 Current results on quantum cryptanalysis

We got 6 publications on quantum cryptanalysis: 4 in top-tier conferences and 2
preprints. First, we try to generalize classical algorithms for cryptanalysis to the quan-
tum setting. The result [KMPM19] generalizes the classical k-list algorithm [HKL18]
to the quantum setting, to get an improvement on both time and space cost for solv-
ing SVP, together with a detailed analysis of the size of quantum circuit needed. To
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have a better understanding on the quantum version of sieve for solving SVP, the
work [AGPS19], shows that the performance of quantum implementation of the near
neighbor search algorithm, as a core part for sieve algorithm, does not di�er a lot from
the classical implementation, with a non-asymptotic analysis. Second, we tried to have
a better understanding on the state-of-the-art algorithms for solving SVP over ideal
lattices under quantum computation. In [dBDF19], the authors give a complete proof
for the correctness and e�ciency of the polynomial-time quantum algorithm for solv-
ing the continuous HSP [EHKS14], which is a core component of the state-of-the-art
solver for SVP over ideal lattices [CDPR16]. Furthermore in [DPW19], the expected
output quality of the same quantum algorithm [CDW17] above for �nding short vec-
tors in cyclotomic ideal lattices is formally quanti�ed. The work also concludes on
when to expect those algorithms to become relevant compared to standard LLL and
BKZ. Moreover, we also make an improvement over the state-of-the-art SVP solver
algorithm over ideal lattices. The work [PHS19] generalizes the above quantum attack
to all number �elds, and provides new trade-o�s between time and approximation
factor. The algorithm requires some preprocessing depending on the �eld only, and up
to this preprocessing, it outperforms prior algorithms [CDPR16, CDW17] for diverse
parameters. Last, we also extend algorithms for Euclidean lattices with less structure
to lattices with more structure. In [LPSW19], the authors propose a way to compute an
LLL algorithm over module lattices in a cyclotomic number �eld. The main drawback
is the need for an exact-CVP oracle.

Quantum Algorithms for the Approximate k-List Problem and their Applica-

tion to Lattice Sieving. The SVP is one of the mathematical foundations of lattice
based cryptography. Lattice sieve algorithms are among the foremost methods for
solving SVP. The asymptotically fastest known classical and quantum sieves solve
SVP in a d-dimensional lattice in 2cd+o(d) time steps with 2c

′d+o(d) memory for small
constants c, c′.

In this work, various quantum sieving algorithms are given that trade compu-
tational steps for memory. First, a quantum analogue of the classical k-Sieve algo-
rithm [HKL18] is given, in the Quantum Random Access Memory (QRAM) model,
achieving an algorithm that heuristically solves SVP in 20.2989d+o(d) time steps us-
ing 20.1395d+o(d) memory. This should be compared to the state-of-the-art algo-
rithm [Laa15], which, in the same model, solves SVP in 20.2653d+o(d) time steps
and memory. In the QRAM model these algorithms can be implemented using
poly(d) width quantum circuits. Secondly, the k-Sieve is framed as the problem
of k-clique listing in a graph and apply quantum k-clique �nding techniques to the
k-Sieve. Finally, the large quantum memory regime is explored by adapting parallel
quantum search [BBG+13] by Beals et al to the 2-Sieve and giving an analysis in the
quantum circuit model. It is also shown how to heuristically solve SVP in 20.1037d+o(d)

time steps using 20.2075d+o(d) quantum memory.

Quantum speedups for lattice sieves are tenuous at best. Quantum variants of
lattice sieve algorithms are often used to assess the security of lattice based crypto-
graphic constructions.

In this work, a heuristic and non-asymptotic analysis of the cost of several al-
gorithms for near neighbor search on high dimensional spheres, is provided. These
algorithms are used in lattice sieves. First, quantum circuits are designed for near
neighbor algorithms and software is provided that numerically optimises algorithm
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parameters according to various cost metrics. Then, using this software, an estimate
is obtained for the cost of classical and quantum near neighbor search on spheres.
Finally, it is found that quantum search may provide a small speedup in dimensions of
cryptanalytic interest, but only under exceedingly optimistic physical and algorithmic
assumptions.

On the Quantum Complexity of the Continuous Hidden Subgroup Problem.

The Hidden Subgroup Problem (HSP) aims at capturing all problems that are suscep-
tible to be solvable in quantum polynomial time following the blueprints of Shor’s
celebrated algorithm. Successful solutions to these problems over various commutative
groups allow to e�ciently perform number-theoretic tasks such as factoring or �nding
discrete logarithms. The latest successful generalization by Eisentrager et al [EHKS14]
considers the problem of �nding a full-rank lattice as the hidden subgroup of the con-
tinuous vector space Rm, even for large dimensions m. It unlocked new cryptanalytic
algorithms by Biasse and Song [BS16], Cramer et al [CDPR16, CDW17], in particular
to �nd mildly short vectors in ideal lattices. The cryptanalytic relevance of such a
problem raises the question of a more re�ned and quantitative complexity analysis. In
the light of the increasing physical di�culty of maintaining a large entanglement of
qubits, the degree of concern may be di�erent whether the above algorithm requires
only linearly many qubits or a much larger polynomial amount of qubits.

In this work, a detailed analysis of (a variation of) the aforementioned HSP al-
gorithm is given, together with a conclusion on its complexity as a function of all
the relevant parameters. Incidentally, this work also clari�es certain claims from the
extended abstract of Eisentrager et al.

On the Shortness of Vectors to be found by the Ideal-SVPQuantumAlgorithm.

The hardness of �nding short vectors in ideals of cyclotomic number �elds (hereafter,
Ideal-SVP) can serve as a worst-case assumption for numerous e�cient cryptosystems,
via the average-case problems RSIS and RLWE. For a while, it could be assumed the
Ideal-SVP problem was as hard as the analog problem for general lattices (SVP), even
when considering quantum algorithms. But in the last few years, a series of works
has lead to a quantum algorithm for Ideal-SVP that outperforms what can be done for
general SVP in certain regimes. More precisely, it was demonstrated (under certain
hypotheses) that one can �nd in quantum polynomial time a vector longer by a factor
at most α = exp(Õ(n1/2)) than the shortest non-zero vector in a cyclotomic ideal
lattice, where n is the dimension.

In this work, the constants hidden behind this asymptotic claim are explored.
While these algorithms have quantum steps, the steps that impact the approximation
factor α are entirely classical, which allows us to estimate it experimentally using
only classical computing. Moreover, heuristic improvements are designed for those
steps that signi�cantly decrease the hidden factors in practice. Finally, new provable
e�ective lower bounds are derived based on volumetric arguments. This study allows
to predict the crossover point with classical lattice reduction algorithms, and thereby
determine the relevance of this quantum algorithm in any cryptanalytic context. For
example, this result predicts that this quantum algorithm provides shorter vectors
than BKZ-300 (roughly the weakest security level of NIST lattice-based candidates) for
cyclotomic rings of rank larger than about 24000.
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Figure 4: Prior (left) and new (right) trade-o�s for ideal approx-SVP in the same �elds
(with a pre-processing of cost exp(Õ(n))).

Approx-SVP in Ideal Lattices with Pre-processing. In this work, an algorithm
to solve the approximate SVP for lattices corresponding to ideals of the ring of integers
of an arbitrary number �eldK is described. This algorithm has a pre-processing phase,
whose run-time is exponential in log |∆| with ∆ the discriminant of K . Importantly,
this pre-processing phase depends only onK . The pre-processing phase outputs an ad-
vice, whose bit-size is no more than the run-time of the query phase. Given this advice,
the query phase of the algorithm takes as input any ideal I of the ring of integers, and
outputs an element of I which is at most exp(Õ((log |∆|)α+1/n)) times longer than
a shortest non-zero element of I (with respect to the Euclidean norm of its canonical
embedding). This query phase runs in time and space exp(Õ((log |∆|)max(2/3,1−2α)))

in the classical setting, and exp(Õ((log |∆|)1−2α)) in the quantum setting. The param-
eter α can be chosen arbitrarily in [0, 1/2]. Both correctness and cost analyses rely on
heuristic assumptions, whose validity is consistent with experiments. The algorithm
builds upon the algorithms from Cramer et al [CDPR16] and Cramer et al [CDW17].
It relies on the framework from Buchmann [Rog88], which allows to merge them and
to extend their applicability from prime-power cyclotomic �elds to all number �elds.
The cost improvements are obtained by allowing precomputations that depend on the
�eld only (also see Figure 4 for an illustration of the improvement).

An LLL Algorithm for Module Lattices. The LLL algorithm [DDLL13] takes as
input a basis of a Euclidean lattice, and, within a polynomial number of operations, it
outputs another basis of the same lattice but consisting of rather short vectors.

In this work, a generalization to R-modules contained in Kn for arbitrary number
�elds K and dimension n is provided, with R denoting the ring of integers of K .
Concretely, an algorithm is introduced which e�ciently �nds short vectors in rank-n
modules when given access to an oracle that �nds short vectors in rank-2 modules,
and an algorithm that e�ciently �nds short vectors in rank-2 modules given access
to a CVP oracle for a lattice that depends only on K . The second algorithm relies on
quantum computations and its analysis is heuristic.

5.4 Current results on classical cryptanalysis

We got 5 articles about classical cryptanalysis: 4 in conferences and 1 preprint. As
for the �rst part, we try to have a better understanding of classical lattice reduction
algorithms. In [BSW18], the authors give a probabilistic simulator that better �ts the
practical behavior of the BKZ algorithm. Furthermore, we try to improve classical
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algorithms. As one of the big news in 2018, in [Duc18], a sub-exponential speed-up
for �nding the shortest vector via sieving has been achieved, which greatly enlarge
the cross-over point with the enumeration algorithm. Based on the breakthrough
works such as [Duc18] and [LM18], the work [ADH+19] represents another major
news in the area from 2019, by achieving new SVP records (up to dimension around
150) using an open source sieving implementation [dt16]. Then we also study the
capability of enumeration and sieving algorithms for concrete applications. The
work [ACW19] shows that when dealing with a batch of BDD instances for a given
lattice, the enumeration algorithm is more e�cient than sieving algorithms. Finally, in
order to have a better understanding on the state-of-the-art cost estimator for solving
LWE [ADPS16, AGVW17] (that helps for parameter selection), [BMW19] provides
many experiments to evaluate the accuracy of this cost estimator, together with more
evidence con�rming the assumptions used.

Measuring, simulating and exploiting the head concavity phenomenon in

BKZ. The BKZ lattice reduction algorithm is central in cryptanalysis, in partic-
ular for lattice-based cryptography. A precise understanding of its practical behavior
in terms of run-time and output quality is necessary for parameter selection in crypto-
graphic design. As the provable worst-case bounds poorly re�ect the practical behavior,
cryptanalysts rely instead on the heuristic BKZ simulator of Chen and Nguyen [CN11].
It �ts better with practical experiments, but not entirely. In particular, it over-estimates
the norm of the �rst few vectors in the output basis. In a nutshell, BKZ performs better
than its Chen-Nguyen simulation, which is a bad news for parameter selection.

In this work, �rst, experiments are reported for providing more insight on this
shorter-than-expected phenomenon. Second, a re�ned BKZ simulator is proposed by
taking the distribution of short vectors in random lattices into consideration. Third,
according to the experiments, this re�ned simulator more accurately predicts the
concrete behavior of BKZ. Furthermore, a new BKZ variant is designed to exploit the
shorter-than-expected phenomenon. For the same cost assigned to the underlying
SVP-solver, the new BKZ variant produces bases of better quality. Its potential impact
is also further illustrated by testing it on the SVP-120 instance of the Darmstadt lattice
challenge.

Shortest Vector from Lattice Sieving: a Few Dimensions for Free. Asymptoti-
cally, the best known algorithms for solving the SVP in a lattice of dimension n are sieve
algorithms, which have heuristic complexity estimates ranging from (4/3)n+o(n) to
(3/2)n/2+o(n) when Locality Sensitive Hashing techniques are used. Sieve algorithms
are however outperformed by pruned enumeration algorithms in practice by several
orders of magnitude, despite the larger super-exponential asymptotical complexity
2θ(n logn) of the latter.

In this work, a concrete improvement of sieve-type algorithms is shown. Precisely,
it is shown that a few calls to the sieve algorithm in lattices of dimension less than
n− d solves SVP in dimension n, where d = θ(n/ log n). Although the improvement
is only sub-exponential, its practical e�ect in relevant dimensions is quite signi�cant.
An implementation is given for it over a simple sieve algorithm with (4/3)n+o(n)

complexity, and it outperforms the best sieve algorithms from the literature by a factor
of 10 in dimensions 70-80. It performs less than an order of magnitude slower than
pruned enumeration in the same range. By design, this improvement can also be
applied to most other variants of sieve algorithms, including LSH sieve algorithms and

PROMETHEUS-780701-WP3-D3.2.pdf Page 35/55



PROMETHEUS 780701 — D3.2: Intermediate results on computational problems,
cryptanalysis and basic tools (v1.1)

tuple-sieve algorithms. In this light, one may expect sieve-techniques to outperform
pruned enumeration in practice in the near future.

TheGeneral Sieve Kernel andNewRecords in Lattice Reduction. In this work,
the General Sieve Kernel (G6K) is proposed, as an abstract stateful machine supporting a
wide variety of lattice reduction strategies based on sieving algorithms. Using the basic
instruction set of this abstract stateful machine, �rst, concise formulations are given
for previous sieving strategies from the literature and then new ones are also proposed.
Then, a light variant of BKZ is given for exploiting the features of the proposed abstract
stateful machine. This encapsulates several recent suggestions (Ducas at Eurocrypt
2018 [Duc18]; Laarhoven and Mariano at PQCrypto 2018 [LM18]) to move beyond
treating sieving as a blackbox SVP oracle and to utilise strong lattice reduction as
preprocessing for sieving. Furthermore, new tricks are proposed to minimise the
sieving computation required for a given reduction quality with mechanisms such
as recycling vectors between sieves, on-the-�y lifting and �exible insertions akin to
Deep LLL and recent variants of Random Sampling Reduction. Moreover, a highly
optimized, multi-threaded and tweakable implementation of this machine is provided,
which we make open-source. Then, an illustration is given for the performance of this
implementation of the proposed sieving strategies by applying G6K to various lattice
challenges. In particular, our approach allows us to solve previously unsolved instances
of the Darmstadt SVP (151, 153, 155) and LWE (e.g. (75, 0.005)) challenges. Our solution
for the SVP-151 challenge was found 400 times faster than the time reported for the
SVP-150 challenge, the previous record. For exact SVP, a performance crossover is
observed between G6K and FPLLL’s state of the art implementation of enumeration at
dimension 70.

Exploring Trade-o�s in Batch Bounded Distance Decoding. Algorithms for
solving the BDD are used for estimating the security of lattice-based cryptographic
primitives, since these algorithms can be employed to solve variants of the LWE
problem. In certain parameter regimes where the target vector is small and/or sparse,
batches of BDD instances emerge from a combinatorial approach where several com-
ponents of the target vector are guessed before decoding.

In this work, trade-o�s are explored in solving “Batch-BDD”, and the proposed
techniques are applied to the small-secret LWE problem. Then, the proposed techniques
are also compared to previous works which solve batches of BDD instances, such as the
hybrid lattice-reduction and meet-in-the-middle attack. Our results are a mixed bag.
It is shown that, in the “enumeration setting” and with BKZ reduction, the proposed
techniques outperform a variant of the hybrid attack which does not consider time-
memory trade-o�s in the guessing phase for certain Round5 (17-bits out of 466),
Round5-IoT (19-bits out of 240), and NTRU LPrime (23-bits out of 385) parameter sets.
On the other hand, the proposed techniques do not outperform the Hybrid Attack
under standard, albeit unrealistic, assumptions. Finally, as expected, our techniques do
not improve on previous works in the “sieving setting” (under standard assumptions)
where combinatorial attacks in general do not perform well.

Are�ned analysis of the cost for solving LWEvia uSVP. The LWE problem [Reg05]
introduced by Regev is one of the fundamental problems in lattice-based cryptography.
One standard strategy to solve the LWE problem is to reduce it to a uSVP problem via
Kannan’s embedding and then apply a lattice reduction to solve the uSVP problem.
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There are two methods for estimating the cost for solving LWE via this strategy:
the �rst method considers the largeness of the gap in the uSVP problem [GN08] by
Gama and Nguyen, and the second method [ADPS16] by Alkim et al., considers the
shortness of the projection of the shortest vector to the Gram-Schmidt vectors. These
two estimates have been investigated by Albrecht et al. [AGVW17] who present a
sound analysis and show that the lattice reduction experiments �t more consistently
with the second estimate. They also observe that in some cases the lattice reduction
even behaves better than the second estimate perhaps due to the second intersection
of the projected vector with the Gram-Schmidt vectors.

In this work, the work of Alkim et al. [ADPS16] and Albrecht et al [AGVW17] are
revisited. First, further experiments are reported for providing more comparisons and
suggesting that the second estimate leads to a more accurate prediction in practice.
Second, empirical evidence is presented for con�rming the assumptions used in the
second estimate. Furthermore, the gaps in uSVP derived from the embedded lattice is
examined and used to explain why it is preferable to use µ = 1 for the embedded lattice.
This shows there is a coherent relation between the second estimate and the gaps in
uSVP. Finally, it has been conjectured by Albrecht et al. that the second intersection
will not happen for large parameters. It is shown in this work that this is indeed the
case: there is no second intersection as β →∞.

5.5 Current results on cryptanalysis of NIST candidates

In 3 published papers, we propose cryptanalysis on some NIST candidates. As an
important start, the work [ACD+18] provides a cross comparison of all lattice-based
schemes submitted to the NIST PQC competition process under the assumptions in
the respective submissions. On the other hand, we investigate the security of speci�c
NIST candidates by exploiting their concrete structures, which eventually leads to
reparametrization of those schemes. The work [dBDJdW18] shows that the �rst-round
NIST candidate AJPS cryptosystem is not secure by proposing a quantum combinatorial
attack and a classical lattice attack. In [YD18], the authors give an attack on the �rst-
round NIST DRS signature scheme by exploiting the weakness of not having a Gaussian
sampling for its key generation.

Estimate all the {LWE, NTRU} schemes! In this work, all LWE- and NTRU-based
NIST PQC candidate schemes are considered, which include encryption, key encap-
sulation, and digital signature schemes. In particular, the impact is investigated that
di�erent estimates for the asymptotic runtime of (block-wise) lattice reduction have on
the predicted security of these schemes. Relying on the “LWE estimator” of Albrecht
et al., the cost is estimated for running primal and dual lattice attacks against every
LWE-based scheme, using every cost model proposed as part of a submission. Further-
more, the security of the proposed NTRU-based schemes is also estimated against the
same primal attack under all cost models for lattice reduction.

Attacks on the AJPS Mersenne-based cryptosystem. Aggarwal, Joux, Prakash
and Santha recently introduced a new potentially quantum-safe public-key cryptosys-
tem [AJPS18], and suggested that a brute-force attack is essentially optimal against it.
They consider but then dismiss both Meet-in-the-Middle attacks and LLL-based attacks.
Very soon after their paper appeared, Beunardeau et al. proposed a practical LLL-based
technique that seemed to signi�cantly reduce the security of the AJPS system.
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In this work, there are two main results. First, it is shown that a Meet-in-the-Middle
attack can also be made to work against the AJPS system, using locality-sensitive
hashing to overcome the di�culty that Aggarwal et al. saw for such attacks. A quantum
version of this attack is also provided. Second, a more precise analysis is given for the
attack of Beunardeau et al., con�rming and re�ning their results.

Learning Strikes Again: the Case of the DRS Signature Scheme. Lattice signa-
ture schemes generally require particular care when it comes to preventing secret
information from leaking through signature transcript. For example, the NTRUSign
scheme [HHP+03] and the Goldreich-Goldwasser-Halevi (GGH) signature scheme [GGH97]
were completely broken by the parallelepiped-learning attack of Nguyen and Regev [NR06].
Several heuristic countermeasures were also shown vulnerable to similar statistical
attacks. At PKC 2008, Plantard, Susilo and Win [PSW08] proposed a new variant
of GGH, informally arguing resistance to such attacks. Based on this variant, Plan-
tard, Sipasseuth, Dumondelle and Susilo proposed a concrete signature scheme, called
DRS [PSDS], that has been accepted in the round 1 of the NIST post-quantum compe-
tition.

In this work, another statistical attack is proposed to demonstrate a weakness of
the DRS scheme: one can recover some partial information of the secret key from
su�ciently many signatures. One di�culty is that, due to the DRS reduction algorithm,
the relation between the statistical leak and the secret seems more intricate. This
di�culty is worked around by training a statistical model, using a few features that
are designed according to a simple heuristic analysis. While partial information is
recovered on the secret key, this information is easily exploited by lattice attacks,
signi�cantly decreasing their complexity. Concretely, it is shown that, provided that
100 000 signatures are available, the secret key may be recovered using BKZ-138 for
the �rst set of DRS parameters submitted to the NIST. This puts the security level of
this parameter set below 80-bit (maybe even 70-bit), to be compared to an original
claim of 128 bits.

5.6 Conclusion

With respect to our concrete targets within TASK 3.3, we obtained numerous results.
Namely, we improved state-of-the-art algorithms under both classical and quantum
settings. First, we improved state-of-the-art quantum algorithms for both Euclidean and
ideal lattice and module lattice. These results can be used for selecting parameters given
concrete needs for security and e�ciency. Second, we have a better understanding on
some classical algorithms for solving lattice-based cryptosystems. These works will
help to determine parameters for being secure in a world without large-scale quantum
computers. Finally, we investigated the security of many lattice-based NIST candidates,
which we successfully produced an automated tool for generating parameters given
desirable security level and e�ciency.

6 TASK 3.4: Side-channel attacks

In the following, we will review our targets as well as summarize our results obtained
so far within TASK 3.4.
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6.1 Review of the targets

We �rst recall the targets of TASK 3.4 in Table 8. The main objective is to have a better
understanding of the impact of side-channel attacks on lattice-based cryptographic
implementations (both software and hardware). Then, we want to propose secure
implementations against side-channel attacks by using countermeasures. The �nal
target is to avoid insecure designs and to provide solutions for having secure imple-
mentation against side-channel attacks for the building blocks in WP4 as well as the
privacy-preserving protocols in WP5. On one hand, from the attack point of view,
we need to study and apply possible side-channel attacks on lattice-based schemes
by exploiting any side-channel leakage or fault attacks against them. Speci�cally, we
need to evaluate the resistance of the publicly proposed implementations of the NIST
candidates, as they are also potential candidates for the building blocks for designing
our privacy-preserving schemes in WP5. On the other hand, with respect to these
attacks, we aim at �nding e�cient countermeasures. Out of many issues, there are two
important questions: the �rst one is to improve the e�ciency of applying masking tools
to Gaussian sampling algorithm over lattices and the second one is to �nd e�cient
solutions to thwart cache attacks.

Targets Concrete contents

Investigate side-channel at-
tacks on software/hardware
implementation

Apply side-channel attacks (e.g., timing at-
tacks) and fault attacks etc
Evaluate the resistance of NIST candidates
against them

Study on the countermea-
sure

Apply masking tools e�ciently to sam-
pling algorithm over lattice
Resistance to cache attacks

Table 8: Concrete targets within TASK 3.4.

6.2 Overview of current results

An overview of the results obtained in TASK 3.4 can be found in Table 9.

6.3 Current results on side-channel attacks

For side-channel cryptanalysis, we have 5 publications: 4 in conferences, 1 in journal
and 1 in preprint. So far, we performed side-channel cryptanalysis on numerous ex-
istant lattice-based cryptographic schemes. In [EFGT18], the authors give a generic
security analysis of implementations for lattice-based cryptosystems. Namely, it is
shown that using fault attacks, one can break two main lattice-based signatures: GPV
and Fiat-Shamir with Aborts signature schemes, as well as some key encapsulation
mechanisms. Further in [ADP18], cold boot attacks on all RLWE/MLWE-based schemes
have been studied by exploiting the weakness of storing the secret key in NTT form
(number theoretic transform). On the other hand, we also look into the weakness of
speci�c schemes against side-channel leakage. The result [BDE+18] exposes a weak-
ness of the Fiat-Shamir type signature: BLISS signature against power analysis attacks
and timing attacks. Notably, this work proposes a secure constant-time implementa-
tion to thwart the attacks. Then for the �rst time, the work [FKT+19] analyzes the
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Category Work Status

Side-channel attacks

Loop-Abort Faults on Lattice-Based
Signature Schemes and Key Ex-
change Protocols [EFGT18]

IEEE TC

Cold Boot Attacks on Ring and
Module LWE Keys Under the
NTT [ADP18]

CHES 2019

LWE Without Modular Reduction
and Improved Side-Channel At-
tacks Against BLISS [BDE+18]

Asiacrypt 2018

Uprooting the Falcon
Tree? [FKT+19]

Preprint

Assessment of the Key-Reuse Re-
silience of NewHope [BGRR19]

CT-RSA 2019

Countermeasures

Masking the GLP Lattice-Based
Signature Scheme at Any Or-
der [BBE+18]

Eurocrypt 2018

Masking Dilithium: E�cient Imple-
mentation and Side-Channel Evalu-
ation [MGTF19]

ACNS 2019

An E�cient and Provable Masked
Implementation of qTESLA [GR19]

Preprint

Table 9: Current (intermediate) results on TASK 3.4.

security of hash-and-sign signature (e.g., GPV signature) under side-channel attacks.
It is shown that the implementation of the DLP scheme as proposed by its designers, a
predecessor of the second-round NIST candidate FALCON, is not secure, which also
draws attention on the similar security issue for FALCON. Recently in [BGRR19], the
authors show that the NewHope scheme with key reuse is not secure against side
channels attacks or fault attacks.

Loop-Abort Faults on Lattice-Based Signature Schemes and Key Exchange

Protocols. As the advent of general-purpose quantum computers appears to be
drawing closer, agencies and advisory bodies have started recommending that we
prepare the transition away from factoring and discrete logarithm-based cryptography,
and towards postquantum secure constructions, such as lattice- based schemes. Almost
all primitives of classical cryptography (and more!) can be realized with lattices, and
the e�ciency of primitives like encryption and signatures has gradually improved
to the point that key sizes are competitive with RSA at similar security levels, and
fast performance can be achieved both in soft- ware and hardware. However, little
research has been conducted on physical attacks targeting concrete implementations
of postquantum cryptography in general and lattice-based schemes in particular, and
such research is essential if lattices are going to replace RSA and elliptic curves in our
devices and smart cards. In this paper, we look in particular at fault attacks against
implementations of lattice-based signature schemes, looking both at Fiat-Shamir type
constructions (particularly BLISS, but also GLP, PASSSing and Ring-TESLA) and at hash-
and-sign schemes (particularly the GPV-based scheme of Ducas-Prest-Lyubashevsky).
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These schemes include essentially all practical lattice-based signatures, and achieve
the best e�ciency to date in both software and hardware. We present several fault
attacks against those schemes yielding a full key recovery with only a few or even a
single faulty signature, and discuss possible countermeasures to protect against these
attacks.

Cold Boot Attacks on Ring and Module LWE Keys Under the NTT. In this
work, cold boot attacks are investigated on cryptographic schemes based on the ring-
and module- variants of the LWE problem, wherein an attacker is faced with the
problem of recovering a scheme’s secret key from a noisy version of that key. The
leakage resilience of cryptography based on the LWE problem has been studied before,
but there are only limited results considering the parameters observed in cold boot
attack scenarios. There are two main encodings for storing ring- and module-LWE
keys, and, as shown in this work, the performance of cold boot attacks can be highly
sensitive to the exact encoding used. The �rst encoding stores polynomial coe�cients
directly in memory. The second encoding performs a number theoretic transform
(NTT) before storing the key, a commonly used method leading to more e�cient
implementations. First, estimates are given for a cold boot attack complexity on the
�rst encoding method based on standard algorithms; this analysis con�rms that this
encoding method is vulnerable to cold boot attacks only at very low bit-�ip rates.
Then, it is shown that, for the second encoding method, the structure introduced by
using an NTT is exploitable in the cold boot setting: a bespoke attack strategy can
be developed that is much cheaper than the estimates for the �rst encoding when
considering module-LWE keys. For example, at a 1% bit-�ip rate (which corresponds
roughly to what can be achieved in practice for cold boot attacks when applying
cooling), a cold boot attack on Kyber KEM parameters has a cost of 243 operations
when the secret key is stored in NTT enco�ng, compared to 270 operations with the
�rst encoding. On the other hand, in the case of the ring-LWE-based KEM, New Hope,
the cold boot attack complexities are similar for both encoding methods.

LWEWithoutModularReduction and Improved Side-ChannelAttacksAgainst

BLISS. This work is devoted to analyzing the variant of Regev’s LWE problem in
which modular reduction is omitted: namely, the problem (ILWE) of recovering a
vector s ∈ Zn given polynomially many samples of the form (a, 〈a, s〉+ e) ∈ Zn+1

where a and e follow �xed distributions. Unsurprisingly, this problem is much easier
than LWE: under mild conditions on the distributions.

In this work, it is shown that the problem can be solved e�ciently as long as the
variance of e is not super polynomially larger than that of a. An almost tight bounds is
provided on the number of samples needed to recover s. The interest in studying this
problem stems from the side-channel attack against the BLISS lattice-based signature
scheme described by Espitau et al. [EFGT17]. The attack targets a quadratic function
of the secret that leaks in the rejection sampling step of BLISS [DDLL13]. The same
part of the algorithm also su�ers from a linear leakage, but the authors claimed that
this leakage could not be exploited due to signature compression: the linear system
arising from it turns out to be noisy, and hence key recovery amounts to solving a high-
dimensional problem analogous to LWE, which seemed infeasible. However, this noisy
linear algebra problem does not involve any modular reduction: it is essentially an
instance of ILWE, and can therefore be solved e�ciently using the proposed techniques.
This allows us to obtain an improved side-channel attack on BLISS, which applies to
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100% of secret keys (as opposed to ≈ 7% in [EFGT17]), and is also considerably faster.

Uprooting the Falcon Tree? In this work, the study of side-channel leakage in
hash-and-sign lattice-based signatures is initiated, with particular emphasis on the two
e�cient implementations of the original GPV lattice trapdoor paradigm for signatures,
namely NIST second-round candidate FALCON [PFH+19] and its simpler predecessor
DLP [DLP14]. Both of these schemes implement the GPV signature scheme over NTRU
lattices, achieving great speed-ups over the general lattice case. There are mainly three
results as follows.

First, a speci�c source of side-channel leakage is identi�ed in most implementations
of those schemes. Signing in lattice-based hash-and-sign schemes involves sampling a
lattice point according to a Gaussian distribution. This reduces to sampling several
one-dimensional discrete Gaussian distributions with standard deviations determined
by the Gram-Schmidt norms of the secret lattice basis. The observation is that those
norms often leak through timing side-channels in the implementation of the one
dimensional Gaussian samplers.

Second, the link between this leakage and the secret key is elucidated, by showing
that the entire secret key can be e�ciently reconstructed solely from those Gram-
Schmidt norms. The result makes heavy use of the algebraic structure of the corre-
sponding schemes, which work over a power-of-two cyclotomic �eld. To establish it,
e�cient algorithms are proposed, which, given the leading principal minors of the
matrix associated to a totally positive �eld element (in the power basis for DLP and the
bit-reversed order basis for FALCON), recover the element up to conjugation. In the
case of those schemes, that element is ff̄ + gḡ, where (f, g) is the NTRU-style secret
key. Then it is shown that this element combined with the veri�cation key su�ces to
recover the entire secret e�ciently.

Third, the side-channel attack against DLP is concretely demonstrated. The chal-
lenge is that timing information only provides an approximation of the Gram-Schmidt
norms (with an accuracy increasing with the number of traces), and the proposed
algebraic recovery technique needs to be combined with pruned tree search in order
to apply it to approximated values. Experimentally, it is shown that around 235 DLP
traces are enough to reconstruct the entire key with good probability. Carrying out
a similar experiment against FALCON is left as an open problem, however, since the
recursive nature of our bit-reversed order recovery algorithm does not accommodate
approximate inputs easily. Nevertheless, our results do underscore the importance of
constant time implementations particularly for schemes using Gaussian sampling.

Assessment of the Key-Reuse Resilience of NewHope NewHope [ADPS16] is
a suite of two e�cient RLWE based key encapsulation mechanisms (KEMs) that has
been proposed to the NIST call for proposals for post-quantum standardization.

In this work, the security of NewHope is studied when an active adversary takes
part in a key establishment protocol and is given access to an oracle, called key
mismatch oracle, which indicates whether her guess of the shared key value derived
by the party targeted by the attack is correct or not. This attack model turns out
to be relevant in private key reuse situations since an attacker may then be able to
access such an oracle repeatedly – either directly or using faults or side channels,
depending on the considered instance of NewHope. Following this model, it is shown
that, by using NewHope recommended parameters, several thousands of queries are
su�cient to recover the full private key with high probability. This result has been
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experimentally con�rmed using Magma CAS implementation. While the presented
key mismatch oracle attacks do not break any of the designers’ security claims for the
NewHope KEMs, they provide better insight into the resilience of these KEMs against
key reuse. In the case of the CPA-KEM instance of NewHope, they con�rm that key
reuse (e.g. key caching at server side) should be strictly avoided, even for an extremely
short duration. In the case of the CCA-KEM instance of NewHope, they allow to point
out critical steps inside the CCA transform that should be carefully protected against
faults or side channels in case of potential key reuse.

6.4 Current results on Countermeasures

Within the works about countermeasures against side-channel attacks, we have 3
publications: 2 in conference and another preprint. There are not many works known so
far for securing lattice-based cryptographic schemes against side-channel attacks. We
started some of them. Concretely, the result [BBE+18] gives a masking solution for the
GLP lattice-based signature scheme [GLP12], which is an adaptation of Lyubashevsky’s
signature without trapdoor for embedded systems. The authors of [MGTF19] study
in practice the resilience of the Dilithium lattice-based signature using the masking
scheme proposed for GLP in the previous work. More recently the work [GR19]
further proposes a provable and e�cient masking for the second-round NIST candidate:
qTELSA signature scheme.

Masking the GLP Lattice-Based Signature Scheme at Any Order. Recently, nu-
merous physical attacks have been demonstrated against lattice-based schemes, often
exploiting their unique properties such as the reliance on Gaussian distributions,
rejection sampling and FFT-based polynomial multiplication. As the call for con-
crete implementations and deployment of postquantum cryptography becomes more
pressing, protecting against those attacks is an important problem. However, few
countermeasures have been proposed so far. In particular, masking has been applied
to the decryption procedure of some lattice-based encryption schemes, but the much
more di�cult case of signatures (which are highly non-linear and typically involve
randomness) has not been considered until now.

In this work, the �rst masked implementation of a lattice-based signature scheme is
proposed. Since masking Gaussian sampling and other procedures involving contrived
probability distribution would be prohibitively ine�cient, this work focuses on the
GLP scheme of Güneysu, Lyubashevsky and Pöppelmann [GLP12]. It is shown how
to provably mask it in the Ishai–Sahai–Wagner model [ISW03] at any order in a
relatively e�cient manner, using extensions of the techniques of Coron et al for
converting between arithmetic and Boolean masking. The proposed proof relies on
a mild generalization of probing security that supports the notion of public outputs.
Finally, a proof-of-concept implementation is also provided to assess the e�ciency of
the proposed countermeasure.

Although security against side-channel attacks is not an explicit design criterion
of the NIST postquantum standardization e�ort, it is certainly a major concern for
schemes that are meant for real-world deployment. In view of the numerous physical
attacks that have been proposed against postquantum schemes in recent literature, it
is in particular very important to evaluate the cost and e�ectiveness of side-channel
countermeasures in that setting.
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Masking Dilithium: E�cient Implementation and Side-Channel Evaluation.

For lattice-based signatures, this work was initiated by Barthe et al., who showed
at EUROCRYPT 2018 how to apply arbitrary order masking to the GLP signature
scheme presented at CHES 2012 by Güneysu, Lyubashevsky and Pöppelman. However,
although Barthe et al.’s paper provides detailed proofs of security in the probing model
of Ishai, Sahai and Wagner, it does not include practical side-channel evaluations, and
its proof-of-concept implementation has limited e�ciency. Moreover, the GLP scheme
has historical signi�cance but is not a NIST candidate, nor is it being considered for
concrete deployment.

In this paper, we look instead at Dilithium, one of the most promising NIST candi-
dates for postquantum signatures. This scheme, presented at CHES 2018 by Ducas et
al. and based on module lattices, can be seen as an updated variant of both GLP and
its more e�cient sibling BLISS; it comes, in particular, with a careful implementation
that is both e�cient and constant-time.

Our analysis of Dilithium from a side-channel perspective is threefold. We �rst
evaluate the side-channel resistance of an ARM Cortex M3 implementation of Dilithium
without masking, and identify exploitable side-channel leakage. We then describe
how to securely mask the scheme, and verify that the masked implementation no
longer leaks. Finally, we show how a simple tweak to Dilithium (namely, replacing the
prime modulus by a power of two) makes it possible to obtain a considerably more
e�cient masked scheme, by a factor of 7.3 to 9 for the most time-consuming masking
operations, without a�ecting security.

An E�cient and Provable Masked Implementation of qTESLA. Now that the
NIST’s post-quantum cryptography standardization has entered in its second phase,
the time has come to focus more closely on practical aspects of the candidates. While
e�cient implementations of the proposed schemes are somewhat included in the
submission packages, certain issues like the threat of side-channel attacks are often
lightly touched upon by the authors. Hence, the community is encouraged by the NIST
to join the war e�ort to treat those peripheral, but nonetheless crucial, topics.

In this work, the lattice-based signature scheme qTESLA [ABB+19] is studied in
the context of the masking countermeasure. Continuing a line of research opened
by Barthe et al. [BBE+18] with the masking of the GLP signature scheme, this work
extends and modi�es their work to mask the qTESLA scheme. Based on the work of
Migliore et al. [MGTF19], this work slightly modi�es the parameters to improve the
masked performance while keeping the same security. The masking can be done at any
order and specialized gadgets are used to get maximal e�ciency at order 1. Eventually,
an implementation of the proposed countermeasure is given in the original code of
the submission and performed tests at di�erent orders to assess the feasibility of the
proposed technique.

6.5 Conclusion

With respect to our concrete targets within TASK 3.4, we made substantial good
progress and numerous publications. Concretely, we performed extensive side-channel
cryptanalysis on existant lattice-based cryptographic schemes, especially on the NIST
candidates. This e�ort should help to avoid problematic software/hardware imple-
mentations. Further, we also had a valuable try on possible countermeasure (e.g.,
masking) against side-channels attacks. This branch of work can be used to design
a secure implementation of privacy-preserving scheme in work package 5. All the
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environment-relevant attacks and countermeasure shown here can also guide for the
design of use cases and demonstrators in work package 6.

7 Conclusion

We recall that the aims of WP3 in the PROMETHEUS project is to provide a �rm
support for subsequent work packages 4, 5 and 6. These mainly include providing:
1) reliable underlying algebraic structure, 2) reliable underlying hard problems, 3)
appropriate parameters for implementation and 4) countermeasures for thwarting
side-channel attacks. As presented in this report, we already made good contributions
on most of the tasks contained in this work package. We note that there are also some
works in progress on the rest of the tasks that we did not include in current report,
which is to be completed in the next WP3 deliverable D3.3 (due in December 2021).
Overall, works in this work package are progressing well so far and can assure its
assumed �rm support to other work packages.
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