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1 Introduction
Work package 4 (WP4) of the PROMETHEUS project pursues two main objectives: ex-
tending the reaches of practical lattice-based cryptography and exploring novel con-
structions with functionalities that are not currently present in any (not necessarily
lattice-based) primitive. As is well-known, there are very e�cient basic (lattice-based)
primitives such as public-key encryption, identity-based encryption and digital signa-
tures, but not as many e�cient constructions for practical, more advanced primitives.
This work package aims to provide better lattice-based signatures, pseudorandom
functions compatible with zero-knowledge proofs, and more e�cient realisations of
lattice-based homomorphic commitment schemes. It, further, plans to improve the
e�ciency of fully homomorphic encryption with post-quantum security guarantees
and also improve the solutions (in terms of e�ciency, expressiveness, and security) of
post-quantum access-control mechanisms such as threshold encryption and attribute-
based encryption.

The results in this work package do not merely try to translate the number-theoretic
constructions into lattice-based ones, as this approach may not result in e�cient con-
structions. In fact, the attempt is to illuminate which types of constructions can be
e�ciently built from lattices, and then try to design e�cient building blocks that
would facilitate constructing practical and advanced protocols in work packages 5
and 6. With this understanding in mind, the goal is to have novel protocol designs
that are based on the types of basic building blocks that can be built e�ciently from
lattices, by the end of the project. The January 2018 issue of the ERCIM NEWS mag-
azine, specially dedicated to the theme of ‘Quantum Computing’, published an article
([VAvHD18]) describing the threats the advent of quantum computers would pose
on the current communication and how PROMETHEUS aims to be ready with solu-
tions. Quote “In the post-quantum era, most of the currently used cryptography is
no longer secure due to quantum attacks. Cryptographers are working on several
new branches of cryptography that are expected to remain secure in the presence
of a universal quantum computer. Lattice-based cryptography is currently the most
promising of these branches. The new European PROMETHEUS project will develop
the most secure design and implementations of lattice-based cryptographic systems.
Exploitation of the project results will be stimulated by demonstrating and validat-
ing the techniques in industry-relevant environments.” Unquote. This deliverable is
evidence that PROMETHEUS is on the right track.

1.1 Progress towards objectives
Regarding the scienti�c achievements of WP4, the partners have pursued three dis-
tinct research directions in WP4. The �rst one relates to the design and the provable
security of lattice-based primitives that can serve as building blocks (Task 4.1 for sig-
natures and Task 4.2 for encryption) for higher-level privacy-preserving protocols (in
WP5 and 6). The second one focuses on zero-knowledge proofs (Task 4.3) allowing to
prove statements in lattice-related languages while preserving the secrecy of provers’
inputs (which is in particular necessary in most of privacy-preserving protocols). The
last one is about the implementation of quantum-safe cryptographic primitives and
their security (Task 4.4, which is a necessary input to WP6).
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1.1.1 Task 4.1 Lattice based signatures and other building blocks

The design of privacy-preserving protocols usually requires digital signatures that are
compatible with zero-knowledge proofs. E�cient lattice-based signature schemes ex-
ist, but only in the random oracle model. Such schemes are unfortunately not well-
suited for our applications because zero-knowledge proofs do not smoothly interact
with cryptographic hash functions such as SHA-256. The main reason for the latter is
that it is rather ine�cient to prove the knowledge of a pre-image of a hash function
that does not have some algebraic structure. We thus need signature schemes with
security proofs in the standard model. Moreover, applications like anonymous cre-
dentials or e-cash systems require a signature �avour called “signatures with e�cient
protocols” which supports e�cient two-party protocols, as explained in D4.1.

An important part of Task 4.1 is to come up with better realisations of secure
lattice-based signatures with e�cient protocols. Towards this end, work done in
[BBE+18] describes a modi�ed but much secure construction of the existing GLP sig-
nature scheme [GLP12]. More elaborately, the authors in this work show how to
e�ciently mask the (key generation and signing algorithm in the) GLP scheme at any
order so as to achieve security against power analysis and related attacks (both simple
power analysis and higher-order attacks like di�erential/correlation power analysis).
This work is the �rst instance of masking being applied to a lattice-based signature
scheme. The masked signature scheme is EUF-CMA (existential unforgeability un-
der chosen message attack) secure in the threshold probing model (ISW, [ISW03]),
wherein the adversary can read o� at most d wires in a circuit. This model is equiva-
lent [DDF14] to the more realistic noisy model where the adversary acquires leakage
on all variables, but that leakage is perturbed with some noise, as in the case of prac-
tical side-channel attacks.

As building blocks for the design of e-cash solutions in WP5, WP4 aims to build
better lattice-based pseudo-random functions (PRFs) that can be smoothly combined
with zero-knowledge proofs (see PROMETHEUS’ deliverable D4.1 but also D5.2). In
particular, a prover should be able to convince a veri�er that some value is the cor-
rect evaluation of a PRF for some committed (or encrypted) inputs and keys. While
such statements can be e�ciently handled under discrete logarithm assumptions, no
quantum-resistant solution were known so far. In the �rst of its kind, [LST18] con-
structs a non-interactive adaptively secure distributed PRF in the standard model. This
construction is secure under the LWE assumption with super-polynomial approxima-
tion factors against adversaries that may adaptively decide which servers to corrupt.
Also, as a by-product of work done in [Tsa19], we see a construction of a lattice-based,
fully secure single-key constrained PRF from OWF for a particular function class.

1.1.2 Task 4.2 Lattice-based encryption schemes with additional properties

This task aims to address the functionality advantages o�ered by lattice-based cryp-
tography in the context of encryption schemes with advanced properties, such as the
feasibility of computing over encrypted datasets. In addition, this task considers the
extent to which certain existing public-key functionalities can be adapted to the world
of lattices. Addressing privacy issues via encryption raises major challenges if we
want to maintain the ability to process encrypted data. Modern study shows that lat-
tices are promising tools for this purpose, as they enable cryptocomputing function-
alities such as fully homomorphic and functional encryption. Lattices thus provide
the double bene�t of increased security and enhanced functionality. In the setting
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of encryption schemes with advanced properties, [LT19] constructs a Multi-Client
Functional Encryption (MCFE) schemes for linear functions. A MCFE scheme sup-
ports the evaluation of multivariate functions over data coming from distinct sources.
This work gives the �rst construction of a standard-model MCFE scheme that is fully
secure in an adaptive corruption setting under the well-studied LWE assumption. It
also provides a decentralized variant of this scheme and shows that it is secure in
the static corruption setting, but for adaptively chosen messages. Both constructions
are proved secure under the LWE assumption with sub-exponential approximation
factors. Functional encryption is one possible primitive for PROMETHEUS’ Cyber
Threat Intelligence use case.

Further in this direction, [Tsa19] considers ciphertext-policy attribute-based en-
cryption (CP-ABE), where ciphertexts are labeled with an access policy and can only
be decrypted by keys associated with attributes that satisfy the access policy of the ci-
phertext. This work provides for the �rst time a lattice-based (ciphertext-policy) ABE
scheme for the function class t-CNF, which consists of CNF formulas where each
clause depends on at most t bits of the input, for any constant t. This class includes
NP-veri�cation policies, bit-�xing policies and t-threshold policies. Even if this re-
sult is not directly related to a PROMETHEUS use case, ABE has enough potential to
be a candidate for standardization (especially at the ETSI level, as closely related to
Identity Based Encryption).

One of the focal points of task 4.2 is better solutions for fully homomorphic en-
cryption (FHE), one of the triumphs of lattice-based cryptography, which turned from
fantasy into reality in under 10 years. FHE allows performing computation on en-
crypted data without decrypting it �rst, and is thus one of the basic desired tasks
in a world where computation is performed remotely. In addition, FHE is known to
imply short non-interactive zero-knowledge proofs for any NP statement (assuming
the existence of NIZK for simple statements): namely, the size of the proof only de-
pends on the length of the witness. As such, more e�cient FHE realisations are likely
to positively impact the protocols to be developed in WP5. Toward the objective of
achieving more e�cient FHE schemes, [BDGM19] constructs an optimal-rate (rate-1)
FHE scheme that is secure under the LWE assumption with polynomial modulus-
to-noise ratio. FHE is a primitive related to functional encryption and multi-party
computation, and then an important building block to the Cyber Threat Intelligence
use case.

1.1.3 Task 4.3 Lattice-based zero-knowledge proofs of knowledge

Zero-knowledge proofs are at the heart of every privacy-preserving protocol, as ex-
plained in several other PROMETHEUS’ deliverables, such as D4.1, D5.1 and D5.2.
Some examples of the types of things that often need to be proved are: the knowledge
that the public key is validly constructed; the knowledge of the plaintext encrypted in
the ciphertext (e.g., in anonymous credentials); knowledge of a signature of a message
(e.g., in anonymous credentials, e-cash and e-voting); proving that the plaintext is in a
certain range (e.g., in anonymous credentials, e-cash and e-voting); and proving that
mix-net shu�ing was correctly done (e.g., in e-voting). Such proof constructions have
been well studied for classical protocols and are very e�cient under assumptions like
RSA or Di�e-Hellman. While they have analogous realisations based on the hardness
of LWE and Ring-LWE problems, these are not so e�cient.

Work done in [LLNW18], constructs Zero-Knowledge arguments to prove integer-
relations among commitments. More precisely, this work gives statistical zero-knowledge
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arguments allowing a prover to convince a veri�er that x, y and z are commitments
to integers X , Y and Z , respectively that satisfy additive, multiplicative, order and
range relations. These arguments are secure under the standard (non-ideal) LWE as-
sumption with both polynomial moduli and approximation factors.

Further, work done in [LNTW19], constructs zero-knowledge proof techniques
allowing to protect the privacy of sensitive databases. In zero-knowledge databases, a
prover commits to an elementary database (i.e., a set of key-value pairs (x, y) where
each key x has at most one value y) and subsequently proves statements about the
committed database without even revealing the database size. Previously, all non- in-
teractive such protocols were limited to proving simple statements such as the mem-
bership or the non-membership of speci�c elements x. This work describes tech-
niques that allow a prover to prove more general statements, including range queries
(i.e., provably reveal all database keys in a speci�c range [a, b]). These arguments are
secure under standard lattice assumptions.

Finally, work done in [MM19] investigates the design of e�cient Zero-Knowledge
Proofs of Knowledge for linear and multiplicative relations among messages com-
mitted using a Ring Learning With Errors (RLWE) based commitment scheme. This
5-move protocol achieves perfect zero-knowledge, reduces the communication cost
from previous Stern-based schemes, but still incurs a soundness error of approxi-
mately 1/2. Reducing the soundness error to a negligible upper bound thus requires
parallel repetitions which seriously hurt the e�ciency.

1.1.4 Task 4.4 Implementation of building block

Besides suitable cryptographic properties another important aspect is the practica-
bility of the investigated lattice-based schemes. This needs to be evaluated by im-
plementation and by evaluating di�erent security levels for a range of di�erent tar-
get platforms. Primarily, this includes the reference implementation of the identi�ed
lattice-based schemes (WP4.1 to WP4.3) in software, to be operated and evaluated
on common processor platforms. In future applications for the Internet of Things
(IoT), however, a majority of devices will still be based on signi�cantly smaller proces-
sors that are often severely constrained in their features, including processing power,
memory or energy consumption. Based on the provided reference implementations, a
secondary goal of this WP is to evaluate the identi�ed schemes for such constraints for
low-cost embedded software devices. To this end, [AHH+19], implemented several
public-key encryption schemes based on the “Ring Learning-With-Errors” (RLWE)
assumption using an RSA co-processor. They notably report an implementation of
a module-LWE based key encapsulation scheme on a smart card which is equipped
with an RSA co-processor. The results demonstrate comparable performance to run-
ning RSA itself. In a similar �avour, authors of [MKLR18] provide a comparative
benchmark of the leading homomorphic encryption libraries HElib, FV- NFLlib, and
SEAL for large plaintext moduli of up to 2048 bits, and analyse their relative per-
formance. Further exploring secure parameters for implementing Homomorphic en-
cryption, [CP19] discusses the security of possible sparse-secret LWE parameter sets
against hybrid attacks. The authors in this work present a conservative analysis of
the hybrid attacks for parameter sets of varying sparsity, with the goal of balanc-
ing security requirements with bootstrapping e�ciency. They also argue that the
methodology in the Homomorphic Encryption Security Standard, as published by the
HomomorphicEncryption.org consortium, can be easily modi�ed to support dimen-
sions higher than the current (�xed) upper bound.
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Structure: In what follows, we broadly divide the work done under PROMETHEUS
until now into six sections; Signatures, Psuedorandom Functions, Functional Encryp-
tion, Homomorphic Encryption, Zero-Knowledge Proofs and Implementation. Each
section contains a brief technical overview of the relevant paper(s) and concludes with
a short discussion on open questions.

2 Signatures
Lattice-based cryptography is an attractive option in the post-quantum setting, as it
allows designing post-quantum implementations of a wide range of primitives with
strong security guarantees and a level of e�ciency comparable to currently deployed
RSA and elliptic curve-based schemes. However, it poses new sets of challenges as far
as side-channels and other physical attacks are concerned. For instance, as demon-
strated in [BHLY16], a cache attack targeting the Gaussian sampling of the random-
ness used in BLISS signatures can recover the entire secret key from the side-channel
leakage of a few thousand signature generations. This makes BLISS signatures un-
favourable for implementation even though their performance and key and signature
sizes are comparable to RSA and ECDSA signatures, as claimed in [DDLL13]. As the
call for concrete implementations and deployment of postquantum cryptography be-
comes more pressing, safe guarding against such attacks is a crucial issue to address.
To this end, a few countermeasures have been proposed. In particular, the powerful
technique of masking has been applied to the decryption procedure of some lattice-
based encryption schemes. Masking, a well-known technique introduced in [CRR02],
essentially consists of splitting a secret value into d + 1 values (d is the masking or-
der), using a secret sharing scheme. This forces an adversary to read many internal
variables if he wants to recover the secret value, and he will gain no information if he
observes fewer than d values.

However, it is not always easy to mask an implementation of a cryptographic
scheme. Some di�culties speci�c to attempting to mask the BLISS signatures, for
instance, are discussed in the paper [BBE+18]. Largely, it is the non-linearity and the
Gaussian randomness involved in most signature schemes that hinder masking their
protocols e�ciently. Although, there exist lattice-based signatures, for eg. the GLP
scheme [GLP12], that entirely avoid Gaussians and other distributions, and hence
seem to support masking in a more natural way.

2.1 Masking theGLPLattice-Based Signature Scheme [BBE+18]
In this paper, the authors show how to e�ciently mask the (key generation and sign-
ing algorithm in the) GLP scheme at any order so as to achieve security against power
analysis and related attacks (both simple power analysis and higher-order attacks like
di�erential/correlation power analysis). This work is the �rst instance of masking be-
ing applied to a lattice-based signature scheme. The masked signature scheme is EUF-
CMA (existential unforgeablitiy under chosen message attack) secure in the threshold
probing model (ISW, [ISW03]), wherein the adversary can read o� at most dwires in a
circuit. This model is equivalent [DDF14] to the more realistic noisy model where the
adversary acquires leakage on all variables, but that leakage is perturbed with some
noise, as in the case of practical side-channel attacks.
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We brie�y describe the original GLP protocol and its masked version. For the
setup, let n be a power of 2, p a prime congruent to 1 modulo 2n and the ring R :=
Zp[x]/ < xn + 1 >. The elements ofR can be represented by polynomials of degree
n−1 with coe�cients in the range [−(p−1)/2, (p−1)/2]. For an integer k such that
0 < k ≤ (p−1)/2, we denote byRk the elements ofRwith coe�cients in the range
[−k, k]. LetH : {0, 1} −→ Dnα be a particular cryptographic hash function. HereDnα
is the set of polynomials inR that have all zero coe�cients except for at most α = 32
coe�cients that are in {−1, 1}. The parameter k controls the trade-o� between the
security and the run time of the scheme. The smaller k gets, the more secure the
scheme becomes along with shorter signatures but the time to sign increases. For a
scheme of masking order d,
Key Generation: Outputs Signing key sk and veri�cation key pk as follows;

1. Generate secret keys s1 and s2 in R1 in their masked form (s1,i)0≤i≤d and
(s2,i)0≤i≤d, respectively.

2. Choose a
$← R

3. For 0 ≤ i ≤ d, compute ti = as1,i + s2,i and t =
∑d
i=0 ti

4. Return sk = ((s1,i)i, (s2,i)i) and pk = (a, t).

Signing: Given message m, pk and sk, output signature σ as follows;

1. Generate y1 and y2 inRk in their masked form (y1,i)0≤i≤q and (y2,i)0≤i≤q

2. For each 0 ≤ i ≤ d, compute ri = ay1,i + y2,i and r =
∑
i ri.

3. Compute c = H(r,m) and z1,i = cs1,i + y1,i and z2,i = cs2,i + y2,i, for
0 ≤ i ≤ q.

4. Run the masked version of rejection sampling to check if z1 =
∑
i z1,i and

z2 =
∑
i z2,i lie inRk−α. See BBE+18, Algorithm 16 for details.

5. Return σ = (z1, z2,m).

Veri�cation: Given m, σ, pk, accept if z1, z2 ∈ Rk−α and c = H(az1 + z2 − tc,m),
otherwise reject.

The above protocol reveals the value (r, c), even if the execution is rejected. In-
tuitively, this would pose a threat as a side-channel attacker can obtain information
about the secret from the values corresponding to the rejected samples. However,
this is common practice in Zero-Knowledge proofs, where the prover sends the com-
mitment r, then the veri�er samples and sends a challenge c and the prover �nally
computes the response z. Consequently, these values are public in authentication
schemes. In the case of Fiat-Shamir with Aborts, Vadim Lyubashevsky [Lyu09] has
proved that the output z is independent of the secret even though the values (r, c)
are revealed. The other solution is to use a commitment scheme to hide these values
before computing the response z. This, however, makes the scheme more complicate
to mask.

The masked signature scheme described above is EUF-CMA (existential unforge-
ablitiy under chosen message attack) secure in the threshold probing model (ISW,
[ISW03]), wherein the adversary can read o� at most d wires in a circuit. This model
is equivalent [DDF14] to the more realistic noisy model where the adversary acquires
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leakage on all variables, but that leakage is perturbed with some noise, as in the case
of practical side-channel attacks.

The authors implemented their results on an Intel Core CPU and it was observed
that, for order d = 1, 2, 3, the overhead in running time of the masked scheme was
around 15×, 30× and 73×, respectively. Even though the parameters chosen in the
paper are not optimized, these results are promising. The paper includes several sug-
gestions that could speed up implementation.

Open Problems: It would be a useful attempt to try and apply this method to other
lattice-based Fiat-Shamir type signature schemes that use uniform distributions in in-
tervals (as opposed to Gaussian distributions). On the other hand, developing such a
framework for schemes that involve Gaussian distributions still remains a formidable
challenge. Finally, it would be interesting to leverage recent advances in veri�cation
and synthesis of masked implementations in a more systematic way in the lattice-
based setting. For instance, the sheer size of the veri�cation algorithms involved poses
signi�cant challenges in terms of scalability; however, automated tool support would
be invaluable for the further development of masking in the postquantum setting.

3 Pseudorandom Functions
A pseudorandom function (PRF) family is a set F of keyed functions with common
domain Dom and range Rng such that no PPT adversary can distinguish a real ex-
periment, where it has oracle access to a random member f ←↩ F of the PRF fam-
ily, from an ideal experiment where it is interacting with a truly random function
R : Dom −→ Rng. To be useful, a PRF should be e�ciently computable - meaning
that Fs(x) must be deterministically computable in polynomial time given the key s
and the input x ∈ Dom - and the key size must be polynomial. The following work
deals with a variant of it, called distributed PRF.

3.1 Adaptively Secure Distributed PRFs from LWE [LST18]
In a (threshold) distributed PRF (DPRF), secret keys are broken intoN shares s1, . . . , sN ,
each of which is given to a di�erent server. Using its secret key share si, the i-th
server locally computes a partial evaluationFsi(x) of the function. A dedicated server
then gathers at least t ≤ N correct partial evaluations Fsi1 (x), ..., Fsit (x) and recon-
structs the evaluation Fs(x) for the long-term key s. DPRFs inherit the usual bene�ts
of threshold cryptography; when t < N , �rstly, they allow fault-tolerant systems
to keep running even when some of the servers crash, and secondly, the adversary
is forced to break into t servers to compromise the security of the whole scheme.
Here, we restrict our discussion to non-interactive constructions whose security in
the standard model is based on lattice assumptions. All such constructions known
thus far are secure in the static corruption setting, where the adversary chooses the
servers to corrupt at the beginning of the game, before any evaluation query.

For a polynomialN and when t ≈ N/2, proving adaptive security is considerably
more challenging as a trivial complexity leveraging argument (i.e., guessing the set
of corrupted servers upfront) makes the reduction super-polynomial. Moreover, as
shown in [LST18], allowing a single partial evaluation query before the �rst corrup-
tion query already results in a de�nition which is strictly stronger than that of static
security. In the adaptive corruption setting, the di�culty is that, by makingN partial
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evaluation queries before corrupting any server, the adversary basically commits the
challenger to all secret key shares. Hence, a reduction that only knows t− 1 ≈ N/2
shares is unlikely to work as it would have to make up its mind on which set of t− 1
shares it wants to know at the outset of the game. In particular, this hinders a generic
reduction from the security of an underlying key-homomorphic PRF. This suggests
to �nd a reduction that knows all shares of the secret key, making it easier to consis-
tently answer adaptive corruption queries.

To this end, the partners [LST18] turn to lossy trapdoor functions [PW08], which
are function families that contain both injective and lossy functions with compu-
tationally indistinguishable evaluation keys. The construction of [LST18] relies on
the fact that the LWE function and its deterministic LWR variant [BPR12] are both
lossy trapdoor functions (as shown in [GKPV10, BKPW12, AKPW13]). Namely, the
function that maps s ∈ Zn to1 bA · scp is injective when A ∈ Zm×nq is a random
matrix and becomes lossy when A is of the form Ā · C + E, where Ā ∈ Zm×n′

q ,
C ∈ Zn′×n

q are uniformly random and E ∈ Zm×n is a small-norm matrix. The idea
of Libert, Stehlé and Titiu [LST18] is to �rst construct a PRF which maps an input x to
bA(x) · scp, where s ∈ Zn is the secret key and A(x) ∈ Zm×nq is derived from public
matrices. The construction of [LST18] thus evaluates a lossy trapdoor function on an
input consisting of the secret key using a matrix that depends on the input. In the
security proof, [LST18] uses admissible hash functions [BB04] and techniques from
fully homomorphic encryption [GSW13a] to “program” A(x) in such a way that, with
non-negligible probability, it induces a lossy function in all evaluation queries and an
injective function in the challenge phase.2 (This use of lossy trapdoor functions is
somewhat unusual since their injective mode is usually used to handle adversarial
queries while the lossy mode comes into play in the challenge phase.) By choosing a
large enough ratio q/p, [LST18] can make sure that evaluation queries always reveal
the same information about the secret s. Since bA(x?) · scp is an injective function in
the challenge phase, the security proof of [LST18] argues that the secret key has high
min-entropy, even conditionally on responses to evaluation queries. At this point,
they can extract statistically uniform bits from bA(x?) · scp using a deterministic
randomness extractor: analogously to the deterministic encryption case [RSV13], the
proof of [LST18] needs to handle a source that may be correlated with the seed.

The above approach bears resemblance with key-homomorphic PRFs [BLMR13,
BP14] which also evaluate functions of the form bA(x) · scp. However, our proof
method is very di�erent in that it relies on the lossy mode of LWE and the homo-
morphic encryption scheme of [GSW13a]. The advantage of the approach taken in
[LST18] is that the challenger knows the secret key s at all steps of the security proof.
In the distributed setting, this makes it easier to handle adaptive adversaries because
the reduction can always correctly answer corruption queries. In order to share the
secret key s among N servers, the partners [LST18] rely on the Linear Integer Secret
Sharing (LISS) schemes of Damgård and Thorbek [DT06], which nicely �t the require-
ments of their security proof. Among other properties, they allow secret key shares
to remain small with respect to the modulus, which helps [LST18] make sure that
partial evaluations – as lossy functions of their share – always reveal the same infor-
mation about uncorrupted shares. Moreover, LISS also enable small reconstruction
constants: the secret s can be recovered as a linear combination of authorized shares

1Introduced in [BPR12], the notation bxcp stands for the rounded value b(p/q) · xc ∈ Zp, where
x ∈ Zq , and p < q.

2They use a “�nd-then-guess” security game where the adversary obtains correct evaluation for inputs
of its choice before trying to distinguish a real function evaluation from a random element of the range.
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with coe�cients in {−1, 0, 1}, which is useful to avoid blowing up error terms when
partial evaluations are combined together. A notable di�erence with [DT06] is that
the DPRF of [LST18] uses a LISS scheme with Gaussian entries (instead of uniform
ones), which makes it easier to analyze the remaining entropy of the key in the �nal
step of the security proof.

Open Problems: It remains an open problem to de�ne threshold PRFs under stan-
dard lattice assumptions with polynomial approximation factors. Another challeng-
ing open problem that would be very relevant to the current �avour of research is
to �nd pseudorandom functions that can smoothly interact with more e�cient zero-
knowledge protocols based on the ‘Fiat-Shamir with aborts’ technique. Currently, the
latter would not enable a knowledge extractor that really extracts witnesses contain-
ing the PRF seed and its input.

4 Functional Encryption
Functional encryption (FE) is a modern paradigm that overcomes the all or nothing
nature of ordinary encryption schemes. In FE, the master secret key msk allows de-
riving a sub-key dkf associated with a speci�c function f . When dkf is used to
decrypt a ciphertext C of a message X , the decryptor only obtains f(X) and learns
nothing else about X . In the case of FE for linear functions, the constructions de-
scribed in [ABCP15, ALS16] are secure under the LWE assumption, against adaptive
adversaries. Functional encryption is an extremely general concept as it subsumes
identity-based encryption, searchable encryption, attribute-based encryption, broad-
cast encryption and many others. We, particularly, discuss two variants of it here.

Many natural applications of FE require computing over data coming from mul-
tiple parties. In such a setup, ideally, the participants should be able to supply their
input without interacting with one another and go o�-line immediately after con-
tributing their share. This motivates the concept of multi-client functional encryption
(MCFE) as described in [GGJS13, GKL+13]. Section 4.1 describes a MCFE construc-
tion.

Section 4.2 describes an ABE construction. Attribute-based Encryption (ABE), is
a public key encryption system that can support multiple users with varying decryp-
tion permissions. In this work [Tsa19], the authors focus on ciphertext-policy ABE
schemes, where each ciphertext is associated with a public policy f and each de-
cryption key is associated with a public attribute x, such that decryption succeeds
conditioned on f(x) = 1.

4.1 Multi-Client Functional Encryption from LWE [LT19]
MCFE supports the evaluation of multivariate functions over data coming from dis-
tinct sources. More precisely, it allows ` clients to encrypt ciphertexts (Ct,1, · · · ,Ct,`)
under some label (or tag) t. These tags may correspond to time speci�c information or
a dataset name. Each client can encrypt his own data Xi for a label t using a private
encryption key si issued by a trusted authority in such a way that, as long as all Ct,i

share the same label t, an evaluator endowed with a functional key dkf can evalu-
ate f(X1, · · · , X`) without learning anything else on the underlying plaintexts Xi.
Functional decryption keys can be derived by the central authority using the master
secret key.
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In certain scenarios, where the clients may be reluctant to rely on a single party of
trust, a decentralized version of MCFE is used. Decentralized multi-client functional
encryption (DMCFE) obviates the need for a centralized authority by shifting the task
of generating functional secret keys to the clients themselves. In the setup phase, the
clients S1, · · · ,S` �rst generate public parameters by running an interactive protocol
but no further interaction is needed among clients when it comes to generating func-
tional secret keys later on. When a decryptor wishes to obtain a functional secret key
for an `-ary function f , it interacts with each client Si independently so as to obtain
partial functional decryption keys dkf,i. The decryptor can then fold {dkf,i}`i=1 into
a functional decryption key dkf for f . In this scenario, each client has full control
over his individual data and the functions for which secret keys are given out. Fur-
thermore, no interaction among senders is required beyond the setup phase, where
public parameters are generated.

A recent work, [CDG+18], describes an adaptively secure (D)MCFE scheme for
evaluating linear functions over integers. This construction is adaptively secure in
the random oracle model under the Decisional Di�e-Hellman (DDH) assumption. In
the standard model, the original MCFE construction [GKL+14] is only known to be
statically secure and relies on indistinguishability obfuscation.

In [LT19], the authors give the �rst construction of a standard-model MCFE scheme
that is fully secure in an adaptive corruption setting under the well-studied LWE as-
sumption. They also provide a decentralized variant of their scheme and show that
it is secure in the static corruption setting, but for adaptively chosen messages. Both
constructions are proved secure under the LWE assumption with sub-exponential ap-
proximation factors. This construction is inspired by but not an analogue of the MCFE
scheme of [CDG+18].

As de�ned in [SGGJ+14, GKL+14], multi-client functional encryption allows com-
puting over input vectors (X1, . . . , X`) where coordinate Xi may be sent by a di�er-
ent client. Each ciphertextCi is associated with a client index i and a tag t (also called
“label”). On input of ciphertexts (C1 = Encrypt(1, X1, t), . . . , C` = Encrypt(`,X`, t)),
where Ci is generated by client i using a secret encryption key eki for each i ∈ [`],
anyone holding a functional decryption key dkf for an `-ary function can compute
f(X1, . . . , X`) as long as all Ci are labeled with the same tag t (which may be a time-
speci�c information or a dataset name). No further information than f(X1, . . . , X`)
is revealed about individual inputs Xi and nothing can be inferred by combining ci-
phertexts generated for di�erent tags.

The construction of [LT19] computes linear combinations of vectors encrypted by
(C1 = Encrypt(1, X1, t), . . . , C` = Encrypt(`,X`, t)). It starts from the observation
that the DDH-based MCFE scheme of Chotard et al. [CSG+18] can be interpreted
as relying on (a variant of) the key-homomorphic pseudorandom function [BLMR13]
of Naor, Pinkas and Reingold [NPR99]. Namely, the scheme of [CSG+18] encrypts
xi ∈ Zq for the tag t by computing Ci = gxi · Hsi

t,1 · H
ti
t,2, where (si, ti) ∈ Z2

q is
the i-th sender’s secret key and (Ht,1, Ht,2) = H(t) ∈ G2 is derived from a random
oracle in a DDH-hard group G = 〈g〉.

The security proof of [CSG+18] crucially exploits the entropy of the secret key
(si, ti) in a hybrid argument over all encryption queries. To preserve this entropy,
they need to prevent the encryption oracle from leaking too much about uncorrupted
users’ secret keys {(si, ti)}i. For this purpose, they rely on the DDH assumption to
modify the random oracle H : {0, 1}∗ → G2 in such a way that, in all encryption
queries but one, the hash value H(t) ∈ G2 lives in a one-dimensional subspace.

A natural idea is to replace the random-oracle-based key-homomorphic PRF of
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[NPR99] by an LWE-based key-homomorphic PRF [BLMR13, BP14]. However, analo-
gously to Chotard et al. [CSG+18],3 the partners aim at an MCFE system that can be
proved secure in a game where the adversary is allowed to corrupt senders adaptively.
In order to deal with the adaptive corruption of senders, the scheme of [LT19] thus
relies on the adaptively secure distributed PRF proposed by Libert, Stehlé and Titiu
[LST18]. The latter can be seen as instantiating the programmable hash function
[HK08] of Freire et al. [FHPS13] in the context of homomorphic encryption (FHE).
Their PRF maps an input x to bA(x)> · scp, where s ∈ Zn is the secret key and
A(x) ∈ Zn×mq is derived from public matrices using the Gentry-Sahai-Waters FHE
[GSW13a]. More precisely, the matrixA(x) is obtained as the product of GSW cipher-
texts dictated by the output of an admissible hash function [BB04] applied to the PRF
input. The security proof of the distributed PRF in [LST18] uses the property that, with
noticeable probability, the input-dependent matrix A(x) is a GSW encryption of 1 for
the challenge input x?: namely, A(x?) is a matrix of of the form A(x?) = A·R?+G,
where G ∈ Zn×mq is the gadget matrix of Micciancio and Peikert and R? ∈ Zm×m
is a small-norm matrix. At the same time, all evaluation queries are associated with
a matrix A(x) consisting of a GSW encryption of 0 (i.e., a matrix A(x) = A · R,
for a small-norm R ∈ Zm×m). Then, the proof of [LST18] appeals to the lossy mode
of LWE [GKPV10] and replaces the uniform matrix A> ∈ Zm×nq by a lossy matrix
of the form Â> · C + E, where E ∈ Zm×n is a short integer matrix with Gaussian
entries, C ∈ Zn1×n

q is random, and Â ∈ Zn1×m
q has rank n1 � n. In all evaluation

queries, the smallness of s ∈ Zn then ensures that the values bA(x)> · scp always
reveal the same information about s, which amounts to the product C ·s ∈ Zn1

q . Since
A(x?) depends on G for the challenge input x?, the function bA(x?)> · scp is in fact
an injective function of s, meaning that it has high min-entropy.

The MCFE scheme of [LT19] relies on the lossy mode of LWE in a similar way
to [LST18], except that it adds a Gaussian noise instead of using the Learning-With-
Rounding technique [BPR12]. The i-th sender uses his secret key si ∈ Zn to encrypt
a short integer vector as ~xi ∈ Zn0 as Ci = G>0 · ~xi + A(t)> · si + noise ∈ Zmq ,
where A(t) ∈ Zn×mq is a tag-dependent matrix derived as a product of GSW ci-
phertexts indexed by the bits of t and G0 ∈ Zn0×m

q is a gadget matrix for which
the lattice Λ⊥(G0) has a short public basis. A functional secret key for the vec-
tor ~y = (y1, . . . , y`)

> consists of dk~y =
∑`
i=1 yi · si ∈ Zn and allows computing

G>0 · (
∑
i=1 yi ·~xi)+ small ∈ Zmq from

∑`
i=1 yi ·Ci ∈ Zmq and eventually recovering

the linear function
∑
i=1 yi · ~xi ∈ Zn0 of X = [~x1 | . . . | ~x`] ∈ Zn0×`

q .
The construction and proof of [LT19] are not merely obtained by plugging the

DPRF of [LST18] into the high-level design principle of [CSG+18]. Relying on the
DPRF of [LST18] in a modular way seems impossible as it would require a DPRF where
partial evaluations are themselves pseudorandom so long as the adversary does not
obtain the underlying secret key shares: in the MCFE setting, a challenge cipher-
text contains a bunch of partial evaluations (one for each message slot) rather than a
threshold recombination of such evaluations. One di�culty is that, in the LWE-based
DPRF of [LST18], partial evaluations are not proven pseudorandom: [LST18] only
proves – via a deterministic randomness extraction argument – the pseudorandom-
ness of the �nal PRF value obtained by combining partial evaluations. The proof of
[LST18] cannot apply a randomness extractor to individual partial DPRF evaluations
as it would destroy their key homomorphic property. Instead of relying on the pseu-

3While their decentralized scheme is only proved secure under static corruptions, its centralized version
is proved secure under adaptive corruptions.
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dorandomness of partial evaluations, the security proof of [LT19] actually proves a
milder indistinguishability property which su�ces for their purposes.

The �rst step is to make sure that all encryption queries will involve a lossy matrix
A(t)> = Rt · Â> · C + Et, for small-norm Rt ∈ Zm×m and Et ∈ Zm×n, so that
honest senders’ ciphertexts are of the form Ci = G>0 · ~xi + Rt · Â> ·C · si + noise
and thus leak nothing about si ∈ Zn beyond C · si ∈ Zn1

q . The di�culty arises
in the challenge queries (i, t?, ~x?0,i, ~x

?
1,i), where A(t?) ∈ Zn×mq is not a lossy ma-

trix and one must �nd a way to replace C?
i = G>0 · ~x?0,i + A(t?)> · si + noise by

C?
i = G>0 ·~x?1,i+A(t?)> ·si+noise without the adversary noticing. In the DPRF case

[LST18], the security proof relies on a deterministic randomness extraction4 argument
to extract statistically uniform bits from bA(x?)> · scp, which has high min-entropy
when A(x?) is of the form A ·R?+G. Here, it is not clear how to apply deterministic
extractors in the proof while preserving the functionality of the MCFE scheme.

The solution of [LT19] is to program the public parameters in such a way that, with
noticeable probability, the challenge ciphertexts are generated for a matrix A(t?) ∈
Zn×mq of the form

A(t?)> = R? ·A> + G>0 ·V = R? · Â> ·C + G>0 ·V + noise, (1)

for a statistically random matrix V ∈ Zn0×n
q included in the public parameters. In

the proof, the simulator generates a statistically uniform matrix U = [ VC ], where
C ∈ Zn1×n

q is used to build the lossy matrix A> = Â> · C + E, together with
a trapdoor TU for Λ⊥(U). Using TU, the simulator can sample a short matrix
T ∈ Zn×n0 satisfying U · T =

[
In0
0

]
mod q, allowing it to de�ne an alternative

secret key s′i = si + T · (~x?0,i − ~x?1,i) ∈ Zn. As long as si is sampled from a Gaus-
sian distribution with su�ciently large standard deviation, s′i and si are negligibly far
apart in terms of statistical distance (as in [Wee14, BBL17], the simulator can guess
~x?0,i − ~x?1,i upfront without a�ecting the polynomial running time of the reduction
since the argument is purely statistical). The alternative secret keys {s′i}`i=1 further
satisfy

∑`
i=1 yi ·s′i =

∑`
i=1 yi ·si for all legal functional key queries ~y = (y1, . . . , y`)

made by the adversary. The de�nition of s′i �nally ensures that C · s′i = C · si mod q,
meaning that s′i is compatible with all encryption queries for which A(t) is lossy.
From (1), the condition V ·T = In0 mod q then implies that the challenge ciphertext
can be interpreted as an encryption of ~x?1,i since C?

i = G>0 ·~x?1,i+A(t?)> ·s′i+noise

is statistically close to C?
i = G>0 · ~x?0,i + A(t?)> · si + noise.

In order to build a DMCFE system, the authors of [LT19] proceed analogously to
[CSG+18] and combine two instances of their centralized MCFE scheme. The �rst
one is only used to generate partial functional secret keys whereas the second one
is used exactly as in the centralized system. As in [CSG+18], the DMCFE scheme
of [LT19] �rst has the senders run an interactive protocol allowing them to jointly
generate public parameters for the two MCFE instances. At the end of this protocol
(which may involve costly multi-party computation operations, but is only executed
once), each sender holds an encryption key eki = (si, ti) consisting of encryption
keys for the two underlying instances. In order to have the i-th sender Si generate a
partial functional secret key dkf,i for a vector ~y = (y1, . . . , y`)

>, the DMCFE scheme
of [LT19] exploits the fact that their centralized scheme allows encrypting vectors.

4The standard Leftover Hash Lemma cannot be applied since the source bA(x?)>·scp is not guaranteed
to be independent of the seed. A deterministic extractor based on k-wise independent functions [Dod00]
is thus needed in [LST18].
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Namely, the decryptor obtains from Si an MCFE encryption of the vector yi · si ∈ Zn
under the encryption key ti of the �rst instance.

Open Problems: Constructing a MCFE scheme that is secure under an LWE assump-
tion with polynomial approximation factor still remains unresolved. Another natural
open question is the feasibility of (D)MCFE beyond linear functions under standard
assumptions.

4.2 Fully Secure ABE for t-CNF from LWE [Tsa19]
One of the main properties of an ABE scheme is the function class of policies that
can be attached to ciphertexts. In fact, ABE was originally suggested as a general-
ization of identity-based encryption (IBE), in which each ciphertext is destined to a
single attribute x (i.e. the policies are point functions). While there are fully secure
constructions from bilinear maps for a fairly large class of policies, the situation with
lattice-based constructions is less satisfactory and many e�orts were made to close
this gap. Prior to this work [Tsa19] the only known fully secure lattice construction
was for the class of point functions (also known as IBE). In this work, the author
constructs for the �rst time a lattice-based (ciphertext-policy) ABE scheme for the
function class t-CNF, which consists of CNF formulas where each clause depends on
at most t bits of the input, for any constant t. This class includes NP-veri�cation
policies, bit-�xing policies and t-threshold policies.

The starting point of this work is the selectively-secure ABE scheme for circuits
of [BGG+14]. We describe the di�erence between full security and selective security.
The former is modeled as a game between an adversary A and a challenger C as fol-
lows. At the beginning of the game, C publishes the public parameters of the scheme.
At any point of the game, A can query for multiple decryption keys to attributes x
of its choice. In the challenge phase, A chooses a challenge policy f∗ and C returns
a ciphertext respective to f∗. The goal of A is to determine whether this is an en-
cryption of 0 or 1, and the scheme is secure if it cannot do that as long as none of its
queried keys x are authorized by f∗. The selective security game is identical, except
that A has to announce the challenge policy f∗ before the game begins. In the latter
game, the security reduction has the opportunity to generate the public parameters
according to f∗. Selective security proofs usually follow a similar structure, where f∗
introduces a partitioning of the identity space. The public parameters are generated
in the security reduction such that for all x for which f∗(x) = 0 (i.e. not authorized
by f∗) it is possible to simulate a decryption key, and for all x for which f∗(x) = 1,
a key for x would allow breaking the hard problem. Since A can only query for keys
of the �rst type, the reduction can still answer all the queries appropriately.

The main idea that allows to go from selective to adaptive security of ABE in this
work relies on the tagging technique of [Gen06], where Gentry presented an adap-
tively secure IBE scheme as follows. In the real scheme, every ciphertext is associated
with a random tag rct and every key is associated with a random tag rsk. Decryption
works as long as the IBE condition is satis�ed and rct 6= rsk. The probability that de-
cryption fails is negligible since the tags are random. In the security proof, a random
degree-Q polynomial P is embedded into the public parameters, such that it is possi-
ble to generate a challenge ciphertext respective to any xwith the tag rct = P (x) and
similarly it is possible to generate a key respective to any x with the tag rsk = P (x).
That is, the security reduction can answer any key query and can generate a chal-
lenge ciphertext respective to any x. However, if it generates a ciphertext and a key
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for the same identity then the decryption fails because they both have the same tag.
Recall that in the security game A is not allowed to query for a challenge and a key
respective to the same attribute and therefore it cannot detect that case.

The main idea in this work [Tsa19] is to implement the tagging technique with
a constrained PRF instead of a random polynomial, which facilitates generalizing be-
yond point functions. The constrained PRF key for the function f is used as the “tag”
rct of the ciphertext, and decryption with a key for x tagged with rsk is allowed as
long as f(x) = 1 and PRF.Evalrct 6= rsk. In other words, the ciphertext correspond-
ing to f associates every authorized attribute x with the tag PRF.Evalrct . The author
uses the lattice techniques of [BGG+14] in order to implement this idea. As the con-
strained PRF needs to satisfy some special structural properties for this construction
to work, this work yields a constrained PRF of this form for the function class t-CNF.
This speci�c PRF may be of independent interest, outside the current setup.

• Setup(1λ): Sample (cPRF.msk, cPRF.pp) ← cPRF.Setup(1λ) and let σ =
cPRF.msk. Sample a matrix with its trapdoor (B,B−1τ )← TrapGen(1n,m′, q).
Sample uniformly a matrix A

$← Zn×m·λq and a vector v $← Znq . Output

pp = (B,A,v, cPRF.pp) and msk = (B−1τ , σ).

• Encpp(f, µ): Sample skf ← cPRF.KeySimcPRF.pp(f) and denote sf = skf .
Sample s

$← Znq , e0
$← χm, e1

$← χ̃m·`f , e2
$← χ, and output

ct = (sf ,u0,u1, u2)

such that

u0 = sTB+eT0 , u1 = sT [Af−sf⊗G]+eT1 , u2 = sTv+e2+µbq/2e ,

where Af = AHσ→f for Hσ→f ← EvalF(Uσ→f ,A).

• Keygenmsk(x): Compute the matrix Hσ→x ← EvalF(Uσ→x,A) and denote
Ax = AHσ→x. Compute r ← cPRF.Evalσ(x) and let Ir : {0, 1}k → {0, 1}
be the function that on input r′ returns 1 if and only if r = r′ . Compute Hr ←
EvalF(Ir,Ax), denote Ax,r = AxHr and use B−1τ to compute [B‖Ax,r]

−1
τ .

Sample k← [B‖Ax,r]
−1
τ (v) and output skx = (r,k).

• Decskx(ct, f): Parse skx = (r,k) and ct = (sf ,u0,u1, u2). Compute r′ ←
Uf→x(sf ) and if r = r′ then abort. Otherwise, compute Af and Ax as in
Enc,Keygen respectively, then compute

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ) and Ĥr,r′ ← EvalFX(Ir, r
′,Ax) .

Lastly, compute u = u2 − [u0‖u1Ĥsf→r′Ĥr,r′ ]k and output 1 if and only if
|u| ≥ q/4.

Open Problems. Constructing a lattice-based fully-secure ABE for broader classes
of functions still remains future work. This can be done either by relaxing the re-
quired structural properties of the cPRF (those requirements are inherent in the cur-
rent [BGG+14]-based techniques), or by coming up with other cPRF constructions
that satisfy those properties for new function classes.
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5 Homomorphic Encryption
Fully-homomorphic encryption (FHE) is an encryption scheme that allows anyone
to evaluate any function over encrypted data. Since the breakthrough result of Gen-
try [Gen09], the development of FHE schemes has seen a rapid surge [vGHV10, BV11,
BGV12a, GSW13b, BV14, AP14] and by now FHE has become a well-established cryp-
tographic primitive.

5.1 Rate-1 Fully-Homomorphic Encryption [BDGM19]
We provide an overview of the results and techniques from [BDGM19] that are rele-
vant to PROMETHEUS.5 The text in this section may be subject to copyright, please
refer to [BDGM19] for information on copyright holders.

Consider a scenario where a party Alice, who has some function f , wants to allow
anyone with an input x to learn the evaluation of f on their input, i.e. f(x). The com-
munication complexity of this general problem is well-understood in a model where
we do not require any security. In secure function evaluation (SFE), we aim to achieve
this functionality while providing security to one or both of the parties. Recall that
fully-homomorphic encryption immediately gives a two-round protocol for SFE, with
communication proportional to the size of the input and of the output, but does not
otherwise depend on the size of f . This distinguishing feature is essential for certain
applications, such as private information retrieval [CGKS95]. Despite that, known
FHE schemes introduce a polynomial blowup factor (in the security parameter) to
the length of encrypted messages, thereby a�ecting the overall communication com-
plexity of such a protocol and making it far from optimal. Thus, a natural approach
towards achieving optimal communication would be using FHE scheme with optimal
rate, i.e., with a message-to-ciphertext ratio approaching 1, which would immediately
give us a general-purpose tool to securely evaluate any function (with su�ciently
large inputs and outputs) with asymptotically optimal communication complexity.
Given the current state-of-the-art FHE schemes, the only class of functions we can
evaluate without communication blowup are linear functions [DJ01].

Motivated by this objective, this work [BDGM19] constructs an optimal-rate FHE
scheme. More speci�cally, the authors show that for any a-priori block size ` = poly,
an FHE scheme can be constructed, where the ciphertext length is at most ` + τ(λ),
where τ is a �xed polynomial that does not depend on `. The scheme is secure under
the Learning With Errors (LWE) [Reg05] assumption with polynomial modulus-to-
noise ratio.6

Apart from its application to SFE with optimal communication, rate-1 FHE es-
sentially improves the communication complexity of any known application of fully-
homomorphic encryption. Further, instantiating the generic compiler of Ostrovsky
et al. [OPP14] with rate-1 FHE gives the �rst maliciously circuit-private FHE scheme
with optimal rate.

On a technical level, the result relies on the idea of combining a FHE, with a lin-
ear decryption algorithm, with a linearly-homomorphic encryption of optimal rate.
The hybrid scheme inherits the best of both the worlds and gives us a rate-optimal
FHE scheme. The techniques are reminiscent of the chimeric scheme of Gentry and
Halevi [GH11], with a new twist on how to encode information without in�ating the

5Some of the results in the paper user number theoretic assumptions and are not relevant for the project,
we will only discuss the results that are based on lattice assumptions.

6The modulus-to-noise ratio depends linearly on `.
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size of the ciphertexts. Somewhat interestingly, this construction of rate-1 linearly
homomorphic encryption from LWE leverages ideas that were originally conceived
in the context of spooky FHE [DHRW16], homomorphic secret sharing [BKS19] and
private-information retrieval [DGI+19].

Technical Outline The focus of this work is on techniques that compress post-
evaluation ciphertexts. Compressed ciphertexts can be further expanded via standard
bootstrapping techniques.

Schematically, the method for achieving rate-1 FHE is as follows. Consider the
“batched-Regev” LWE based encryption scheme (see [PVW08, BGH13] for a detailed
description). This scheme has much better rate than “plain” Regev, but the rate is
still asymptotically 0 (i.e., o(1)). Note that it is possible to convert plain-Regev ci-
phertexts into batched-Regev, essentially by using the key-switching technique that
is frequently used in the FHE literature (see, e.g., [BV11]). The authors further com-
press batched-Regev ciphertexts in a way that increases the rate to 1 − o(1). This
is done by combining rounding techniques that appeared previously in the literature
[DHRW16, BKS19, DGI+19] with new techniques that they develop. These techniques
allow them to maintain a high rate, perfect correctness, and modest LWE modulus
simultaneously. However, since, in order to apply key-switching, batched-Regev ci-
phertexts need to be in the non-compressed form, compression techniques are applied
only after the switching is complete. This transformation, maintains decryptability
but loses homomorphic capabilities, which can be restored using bootstrapping in a
generic way.

Leveraging Linear Decryption. The starting point is the observation that in most
of the FHE constructions in the literature, decryption (or rather noisy decryption) is a
linear function Lc(s) in the secret key s. Typically, for correctly formed ciphertexts
c, this linear function satis�es Lc(s) = q

2 · m + e, where m is the plaintext and e is
a small noise term (say |e| < B for some bound B). One recovers m from Lc(s) via
rounding. The choice of the factor q/2 is not hardwired into the scheme. It can be
provided as an explicit input to the decryption function, in which case this (linear)
function looks like

Lα,c(s) = α ·m + e,

for a pre-speci�ed α. The authors call this operation linear decrypt-and-multiply.
The authors compose a FHE scheme that has a linear decrypt-and-multiply op-

eration with a rate-1 linearly homomorphic scheme HE to yield a rate-1 FHE. More
speci�cally, they consider a FHE scheme with a linear decrypt-and-multiply opera-
tion and where the secret keys are vectors over Zq . They further assume that there
exists a rate-1 linearly homomorphic scheme HE with plaintext space Zq . Then, given
a “compression key”, consisting of the encryption ck = Enc(pk, s) of the FHE secret
key s under the linearly homomorphic scheme HE, they compress an FHE ciphertext
c encrypting a message m ∈ {0, 1}, by transforming c into an encryption of m under
HE by homomorphically evaluating the linear function Lα,c(·) on ck. In other words,
they compute HE.Eval(Lα,c(·), ck). By homomorphic correctness, this results in an
encryption of α ·m + e under the linearly homomorphic scheme HE.

Rate-1 Linearly Homomorphic Encryption from Standard LWE. One could
proceed with the above outline using known rate-1 linearly homomorphic encryption
schemes, such as the Damgård-Jurik cryptosystem [DJ01] or a homomorphic variant
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of Regev encryption, where the LWE modulus-to-noise ratio is (sub-)exponential [PVW08].
However, in order to get a scheme from the standard LWE assumption, the authors
present new constructions of linearly homomorphic encryption schemes from LWE
which allow asymptotically optimal ciphertext sizes.

The starting point in this direction is Regev encryption and its variants7. Let q
be a modulus. A ciphertext c consists of two parts: a vector c1 ∈ Znq and a scalar
c2 ∈ Zq . The secret key is a vector s ∈ Znq . Decryption for this scheme is linear, and
it holds that

c2 − s> · c1 =
q

2
·m + e︸ ︷︷ ︸

m̂

,

where e with |e| < B, for some bound B, is a decryption noise term. By computing

dm̂c2 = dm̂ · 2/qc =
⌈(q

2
·m + e

)
· 2/q

⌋
= dm + 2e/qc = m,

one can recover the plaintext m, given that q > 4B.
The next goal is to shrink the component c2 of the ciphertext into a single bit.

One could think of a solution where the encrypter sends just the rounding of c2, i.e.
w = dc2c2. The decrypter would then recover the message by computing

m′ = (w − ds>c1c2) mod 2 = (dc2c2 − ds>c1c2) mod 2

Notice that, since c2 − e = s>c1 + m · q/2, decryption succeeds whenever dc2c2 =
dc2− ec2. However, although the error term e is small, one could not arbitrarily hope
that it does not a�ect the rounding result.

To guarantee a correct decryption, the decrypter is given an additional value
r ∈ Zq such that c2 + r /∈ [q/4 − B, q/4 + B] ∪ [3/4 · q − B, 3/4 · q + B]. The
shrunken ciphertext now consists of c̃ = (c1, r, w), where w = dc2 +rc2. Given such
a ciphertext c̃ and the secret key s, the decrypter computes

m′ = (dc2 + rc2 − ds>c1 + rc2) mod 2.

The careful choice of r insures that dc2+rc2 = dc2+r−ec2, and correctness follows.
What is left to be shown is how to amortize the cost of including r by shrinking

many c2 components for the same c1. To achieve this, instead of using basic Regev
encryption, the authors use batched Regev encryption where the ciphertext consists
of a vector c1 ∈ Znq and ring elements c2,i ∈ Zq , for i ∈ [`], each encrypting a
single bit mi (under a di�erent secret key si). They use the same shrinking strategy
as above for every c2,i. However, now each c2,i imposes a constraint on r for a correct
decryption. Fortunately, given that q is su�ciently large one can e�ciently compute
an r which ful�lls all constraints simultaneously. The rate of the resulting scheme is

`

(n+ 1) log(q) + `
= 1− (n+ 1) log(q)

(n+ 1) log(q) + `
.

For q ≈ 4`B and a su�ciently large ` = Ω(λ · (n+ 1) log(q)) = poly, they achieve
rate 1−O(1/λ).

Open Problems: This work presents asymptotically optimal schemes, but concrete
7While basic Regev encryption is only additively homomorphic, a simple modi�cation transforms it to

support evaluation of any linear function.
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e�ciency remains as a major open problem. In particular it is expected that e�ciency
gains can be achieved by porting the results to the ring-LWE setting. Steps along
these lines, especially in the context of private information retrieval (PIR), were made
in an independent work by Gentry and Halevi [GH19]. An additional problem with
great importance is to achieve similar rate gains in the context of attribute based en-
cryption (ABE) where the current state of the art is much worse. Note that in the ABE
context the rate refers to the ratio between the length of the attribute (as opposed
to the length of the message) and the length of the ciphertext. An additional line of
remaining directions is to explore the applicability of this result in the context of mul-
tiparty computation where minimizing the communication complexity also stands as
a major challenge.

6 Zero-knowledge
Lattices enable powerful functionalities that are exploited in the extremely active area
of lattice-based cryptography. However, they do not easily lend themselves to the
realization of certain fundamental tasks, like e�cient zero-knowledge proofs. Zero-
knowledge protocols ([GMR85]) make it possible to prove properties about certain
secret witnesses in order to have users demonstrate their correct behavior while pro-
tecting their privacy. For statements proving knowledge of a secret key, e�cient so-
lutions are known. See ([MV03],[Lyu08],[KTX08],[LNSW13]). To prove arithmetic
relations among committed values, the best known methods rely on the extra alge-
braic structure o�ered by ring-LWE or ring-SIS ([LPR10]). However, no truly e�cient
solution is known from standard (i.e., non-ideal) lattices assumptions. Moreover, the
most general zero-knowledge proof techniques can only handle arithmetic circuits in
the lattice setting, and adapting them to prove statements over the integers is non-
trivial.

6.1 Lattice-Based Zero-Knowledge Arguments [LLNW18]
The problem of constructing zero-knowledge arguments to prove integer-relations
among commitments is well-studied. Their importance emanates from the fact that
they can be used to prove modular relations when the modulus is unknown at the
time of generating the commitment key. The most e�cient solutions handling large
integers appeal to integer commitments [FO97, DF02] based on hidden-order groups
(e.g., RSA groups), which are vulnerable to quantum computing.

In [LLNW18], the authors give statistical zero-knowledge arguments allowing a
prover to convince a veri�er that x, y and z are commitments to L-bit integers X , Y
and Z , respectively that satisfy additive or multiplication relations. Here, the param-
eter L = poly(n), where n is the security parameter. Furthermore, the protocol to
prove the additive relation X + Y = Z is deployed to prove:

(i) that the committed integer X belongs to a publicly known range [α, β],

(ii) to prove that X does not belong to a public set, and

(iii) to prove order relations Y < X < Z between committed integers X , Y , and
Z .

This setting di�ers from the case of arithmetic circuits addressed in [BKLP15] since it
deals with proving statements that hold over integers. The non-triviality of this work
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stems from the fact that, even in ideal lattices, handling integers of polynomial length
L requires working with exponentially large moduli, which a�ects both the e�ciency
and the approximation factor of the lattice assumption. In contrast, the protocols
described in [LLNW18] use both polynomial moduli and approximation factors.

The protocol emulates integer commitments by means of bit commitments and
views integer addition as binary additions with carries. To commit to an L-bit integer
X in an all-in-one fashion, generate a KTX [KTX08] commitment

cx =

L−1∑
i=0

ai · xi + B · r ∈ Znq

to its binary expansion (xL−1, · · · , x0) using public matrices A = [a0| · · · |aL−1] ∈
Zn×Lq and B ∈ Zn×mq and randomness r ←↩ U({0, 1}m). The protocol for integer
additions has communication cost, roughly, Õ(n+L) · ω(log n). The prover and the
veri�er both perform O(L) simple operations. For proving integer multiplications,
this work provides two options. For practically interesting values of L, for instance,
L ≤ 8000, emulate the schoolbook multiplication algorithm by proving L additive
relations, and obtain communication cost Õ(n + L2) · ω(n) as well as computation
costs O(L2) for both parties. All known methods for proving integer multiplications
involve, sometimes implicitly, O(L2) computation and/or communication complex-
ities. This work breaks this quadratic barrier and as a theoretical contribution puts
forward the �rst protocol for multiplicative relations that does not incur any quadratic
costs. Speci�cally, by proving in zero-knowledge the correct execution of a Karatsuba
multiplication algorithm [KO63], the protocol obtains both computation and commu-
nication complexities of order O(Llog23).

Open Problems: One open problem is to achieve similar results using Σ-protocols
with large challenge space (possibly using ideal lattices) in order to dispense with the
need for Ω(n) parallel repetitions to achieve negligible soundness error in Stern-like
protocols. Indeed, the “Fiat-Shamir with abort” technique does not enable this while
guaranteeing the standard knowledge extraction properties.

6.2 Zero-Knowledge Elementary Databases [LNTW19]
Introduced in [MRK03], zero-knowledge sets are protocols that allow a prover P to
commit to a �nite set S without revealing its size. The commitments are generated ef-
�ciently and non-interactively and prove membership or non-membership of certain
elements x in the committed set S. Zero-knowledge elementary databases (ZK-EDBs)
generalize this notion to elementary databases (EDBs). An elementary database D is a
partial function; it is a set of key-value pairs (x, y), where each key x of the universe
occurs at most once and thus takes at most one value y = D(x). Keys x that are not
in D are assignedD(x) =⊥. Every query x obtains a response D(x) and a proof of its
correctness. These proofs strictly reveal the value D(x) and nothing else, specially not
the size of D. They are sound under the assumption that it is infeasible to �nd convinc-
ing proofs for two distinct values y 6= y′ for a given x. Micali et al. [MRK03] described
an elegant construction of ZK-EDB based on the discrete logarithm assumption. This
was generalized by Chase et al. [CHL+05, CHL+13] to a general design of ZK-EDBs
from a lower-level primitive called mercurial commitment. We describe this brie�y
later. While e�cient and based on standard assumptions, the ZK-EDB realizations
from these results have relatively limited expressivity; only simple statements like
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“x /∈ D” or “x ∈ D with value y = D(x)” can be proved. In [LNTW19], the authors
further exploit mercurial commitments in order to prove more involved statements
like range (of super-polynomial size) queries over keys and values as well as k-nearest
neighbour and k-minimum/maximum queries. Their techniques also make it possi-
ble to prove membership or non-membership over values, also something that was
not known to be possible earlier, without revealing the database size. As a result of
independent interest, they construct the ZK-EBD based on a standard quantum-safe
assumption in standard (i.e., non-structured) lattices.

There is vast body of work describing and achieving various results for variants of
Zero-knowledge databases. In [ORS04], the authors describe protocols for committed
databases that can handle orthogonal multi-dimensional range queries, thus allowing
for d-dimensional key spaces. While their protocols provide some privacy, they do not
hide the database size. There are other e�cient constructions known for statistically
hiding sets that do not aim at hiding the database size, ([PX09, KZG10]). Whereas
work done in [GOSV14] gives black-box constructions of size-hiding database com-
mitments supporting more general queries. Works in ([CFM08, CF13, LY10]) discuss
techniques for compressing proofs of membership and non-membership in ZK-EBD’s,
under standard number theoretic assumptions. In [GOT15], the authors formalize the
notion of ZK-lists and construct size-hiding protocols, in the random oracle, where
the prover can demonstrate the order in which elements appear in a committed list.

As mentioned earlier, the partners [LNTW19], construct a non-interactive ZK-
EBD protocol in the standard model from mercurial commitments. Brie�y, mercu-
rial commitments are commitment schemes that generate commitments in either a
hard or soft mode. Commitments in the hard mode satisfy the usual binding prop-
erty while the ones in soft mode allow the sender to create dummy commitments
that do not commit to any particular message. ZK-EDB constructions of ([CHL+05,
CHL+13, MRK03],[LNTW19]) combine mercurial commitments with a Merkle tree,
where each internal node contains a mercurial commitment to its two children. The
existence of dummy commitments is exactly what allows the sender to commit to the
database in polynomial time without revealing its size. The latter is hidden by having
a super-polynomial upper bound on the number of leaves in the Merkle tree. Each
leaf is assigned to a key x and contains a real commitment to the value y = D(x)
and every internal node contains a commitment to its two children. By storing a
dummy commitment at the root of each empty subtree, the sender is able to commit
to the entire D = {(x, y)} in polynomial time. This construction [LNTW19] allows
the prover to convincingly answer queries of the form “Give me all database records
(x, y) ∈ D whose keys x lie within the super-polynomial length range [ax, bx]”. Ex-
tending this technique also allows the prover to answer queries of the form “Send me
all records (x, y) ∈ D with values y in a super-polynomially large interval [ay, by]”
or prove that “No key x of the database is assigned the value y” or “y occurs in D
and the corresponding set of keys is D−1(y)”. All of prover’s responses are polyno-
mially sized. The last two queries are specially interesting as proving them via earlier
works would require revealing the size of the database. Integrating the two kinds of
queries described above, the construction is also capable of answering range queries
over records; given rectangles [ax, bx] × [ay, by] of polynomial width (by − ay) and
super-polynomial height [ax, bx], the prover yields all the tuples (x, y) in the rectan-
gle. In these instances, the proofs are linear in the size of the width and the number of
records in the rectangle. As a special case [x, x]× [y, y] of range query over records,
the construction e�ciently proves that speci�c records (x, y) do not belong to D,
which amounts to saying that “if x is in D at all, the corresponding value is not y”.
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Even though these constructions are instantiable with existing mercurial commit-
ments based on standard number theoretic assumptions, the authors in [LNTW19]
provide a new construction of trapdoor mercurial commitment (TMC) based on a
well-studied assumption in standard (i.e., non-ideal) lattices. In standard lattices, this
lattice-based trapdoor mercurial commitment is statistically hiding and computation-
ally binding under the Short-Integer-Solution (SIS) assumption. It performs better
than the TMC schemes implied by the generic construction of [CDV06] when the lat-
ter is instantiated under the same assumption. It builds on the lattice-based trapdoor
commitment (KTX) of Kawachi et al. ([KTX08]) and Micciancio-Peikert trapdoors
[MP12].

Open Problems: It would be interesting to see a ZK-EDB protocol that would ef-
�ciently answer multi-dimensional range queries without leaking the database size.
Even if we disregard quantum security, it would also be interesting to consider the
problem of proving statements involving multiple databases committed by the same
prover: for example, prove statements about their intersection (e.g., “databases A and
B have no more than k elements in common) without even revealing their size.

6.3 RLWE-based Zero-Knowledge Proofs [MM19]
In [Ste93], Stern proposed one of the �rst post-quantum protocols in his seminal paper
for a new identi�cation scheme based on coding theory. His identi�cation protocol
was a Zero-Knowledge Proof of Knowledge (ZKPoK) of a solution of an instance of the
Syndrome Decoding problem. He gave a 3-move protocol with a soundness error of
2/3. Many variants and applications have been published since, addressing this lack
of e�ciency and providing new features. In [KTX08], these techniques are adapted
to the setting of lattices still preserving binary secrets. In [JKPT12], Jain et. al, built a
commitment scheme based on the Learning Parity with Noise (LPN) problem, prov-
ing knowledge of opening and linear and multiplicative relations between committed
messages using 3-move and 2/3 soundness error Stern-based protocols. Exact Lattice-
Based ZKPoK is an active �eld of research, with very recent e�cient constructions for
some lattice statements; linear equations with short solutions and matrix-vector re-
lations by Yang et al. [YAZ+19], new techniques when a cyclotomic polynomial fully
splits in linear factors, by Bootle et al. [BLS19] and new recent Stern-based contribu-
tions for proving integer relations [LLNW18] and matrix-vector relations by Libert et
al. [LLM+19].

In this paper, [MM19], the authors present new and more e�cient ways of prov-
ing linear and multiplicative relations between elements hidden in lattice-based com-
mitment schemes, without revealing any additional information about the elements
themselves. To be precise, this lattice based commitment scheme encodes a message
m ∈ Rq as the coordinates of a point in an ideal lattice de�ned by a ∈ Rkq . To hide
this lattice point am, a RLWE sample br + e is added, where b ∈ Rkq generates a
lattice distinct from a, the randomness r $← Rq is chosen uniformly at random and
the error term e $← χnk is chosen from an appropriately bounded discrete Gaussian
distribution, and am+ br + e is the commitment outputted. To ascertain the claims
about e�ciently proving additive and multiplicative relations on messagesm, the au-
thors adapt Stern’s protocol to lattices, as in [LNSW13], modify the work of [CVA10]
to reduce the soundness error by increasing the number of rounds and improve on
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the results of [JKPT12, XXW13] proving linear and multiplicative relations. This 5-
move protocol achieves perfect Zero-knowledge with a soundness error q+1

2q , which
is slightly above 1/2, as q is usually a very large prime. Further, the commitment
scheme used in the protocol is perfectly binding with overwhelming probability over
the choice of the public key and is computationally hiding under the RLWE assump-
tion. Multiplication protocol works by masking the original messages and carefully
proving that the crossed terms obtained from the multiplication of the masked mes-
sages are well-formed.

Compared to previous Stern-based commitment scheme proofs, this construc-
tion yields lower computational complexity, improves size of parameters and lowers
soundness error for each round. This is justi�ed by the analysis in Fig 1 and Table 3
below. Fig 1 shows the size of the commitment of [XXW13], [BKLP15] and [MM19]
for polynomials of degree n − 1 where n = 210 and di�erent values of q given by
q ≥ nγ . Then Table 1 shows the communication cost of the proofs for multiplicative
relations of the three commitment schemes, where κ = log(n) and l · d ∈ O(n),
m/l ∈ O(k) for a similar level of security.

Figure 1: Commitment’s size of Xie et al. ( ), Benhamouda et al. ( ) and
Martínez et al. ( )
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Table 1: Communication cost (in bits)
Benhamouda et al. Xie et al. Martínez et al.

initial com. – md log3 q + 2md log2 q –

round cost (8k + 7)n log q (12κ+ 2)md log3 q + 8ld log3 q (3(κ+ 1)k + 1.5k + 4)n log q
+n/2 + 16κ/3− 8 +κ2+2κ+3

3 (14md log q) +6(κ+ 1)kn+ 2 log q + 1

aux. com. 1 3(log2 q + 1) 5

openings 1 2(log2 q + 1) 3

seeds – 2(κ log2 q + log2 q + κ) 3(κ+ 1)

The ideas used in proving multiplicative relations in this work can be easily adapted
to any scenario where messages are encoded as RLWE samples. For instance, replac-
ing the lattice-based ZK-PoK construction of [XXW13] in the Attributed Based Sig-
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nature scheme for unbounded circuits of [EK18], greatly improves the e�ciency of
the signature scheme.

Open Problems: This work represents a signi�cant improvement on constructions
based on Stern protocol and might be useful in applications that heavily require this
kind of proofs, for instance electronic voting. As exempli�ed above, the ideas in this
work are �exible enough to be applied as building blocks for other di�erent construc-
tions besides commitment schemes. Furthermore, it would also be interesting to see
an implementation of the protocol presented in this work.

7 Implementation
The development of an e�cient quantum order-�nding algorithm by Shor [Sho97]
invalidated the quantum hardness of factoring and discrete logarithms in Abelian
groups, the hardness assumptions in presently used protocols. Since then, there has
been a growing e�ort to develop new encryption algorithms that can resist cryptanal-
ysis using large-scale general quantum computers. Whatever we may think of the
timeline or even plausibility of the arrival of general quantum computers, developing
quantum-safe cryptography is imperative. From a practical perspective, two crucial
requirements are e�ciency and ease of deployment of newly proposed schemes. Al-
though, submissions to the NIST process are encouraged to provide optimised soft-
ware implementations aimed at general purpose microprocessors, implementations
of quantum-safe schemes are also required in constrained (often embedded) envi-
ronments such as micro-controllers or smart cards. These constrained devices are
mostly used in embedded applications where low energy consumption, reduced de-
vice costs, and other aspects like real-time capabilities are required. For instance in
electronic banking, secured identi�cation (passports or national ID cards), authenti-
cation, or transport and ticketing applications. The implementation of post-quantum
cryptography on constrained devices is an active research area. For instance, [BSJ15],
[OPG14], [AJS16], [BBE+18], to name a few.

7.1 Implementing RLWE-based Schemes [AHH+19]
In this work, [AHH+19], the authors re-purpose existing cryptographic coprocessors
to feasibly implement lattice-based cryptography in an accelerated manner. There-
fore, it would be safe to say that this work can be used by the industry for a possibly
smoother migration towards post-quantum cryptography. To be speci�c, a variant of
the Kyber Key Encapsulation Mechanism (KEM) with 161 bits of security is imple-
mented on a commercially available smart card, SLE 78 with 16 Kbyte RAM along
with its RSA, AES, and SHA-256 co-processor.

These results are compared with implementations of Kyber and NewHope (Google’s
�rst post-quantum at-scale test) on the same target device that does not utilise large
integer multiplication, implementations of RSA as well as related work on the co-
processor. This comparison makes it evident that lattice-based post-quantum cryp-
tography can be competitive with RSA on contactless high-security 16-bit smart cards
with only limited RAM when RSA, AES and SHA-2 co-processors are used. The target
chip is equipped with common peripherals (watchdog, timers), internal security func-
tions and encryption procedures, a True Random Number Generator (TRNG), as well
as a symmetric co- processor to accelerate AES, a co-processor to compute SHA-256
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and an asymmetric co-processor for RSA and ECC acceleration that also allows fast
basic long number calculations on integers of size ≈ 2048 bits.

The Kyber KEM scheme is obtained from the RLWE-based KYBER.CPA public en-
cryption scheme via a Fujisaki-Okamoto style transform [HHK17] using a couple of
Hash functions. The primary performance stages during implementation are gener-
ating the matrix A ∈ Rk×kq , sampling noise from a distribution on R and evaluating

MulAdd(a(x), b(x), c(x), xn + 1, q) := a(x) · b(x) + c(x) mod (xn + 1, q)

in the ring R := Z[x]/ < xn + 1 >, for n a power of 2 and a prime modulus q. The
e�ciency of generatingA and sampling noise is directly related to the performance of
PRNG() algorithm used to produce large number of psuedorandom data required. It is
the speeding up of the polynomial arithmetic that is the central topic of discussion in
this work. The original Kyber algorithm uses the Number Theoretic Transform (NTT)
for fast polynomial multiplication, which cannot be realized e�ciently in the variant
considered here. The authors realize this task by using a combination of (a variant of)
Kronecker substitution and low-degree polynomial arithmetic. For a large enough `,
they de�ne algorithms

SNORT(a(x), `) = a(2`) mod 22
`

+ 1

EVAL(a(2`), b(2`), c(2`), 22
`

+ 1) = a(2`) · b(2`) + c(2`) mod 22
`

+ 1

SNEEZE(D, `) = {di}n−1i=0 ∈ Z
FINALELL({di}i) = d(x) ∈ R

The table below speci�es the number of calls made to these subalgorithm when im-
plementing KYBER.CPA. Here k is the dimension of the secret and the error spaces
and MULADDSINGLE denotes big integer multiplication.

KeyGen Encrypt Decrypt
SNORT k2 + k k2 + 3k + 1 2k + 1

MULADDSINGLE k2 k2 + k k
SNEEZE k k + 1 1

FINALELL k k + 1 1

Kronecker substitution is implemented in two ways; using standard Kronecker
substitution (KS1) together with Karatsuba-based polynomial multiplication and
Compact Kronecker (KS2) [Har09] using schoolbook-based polynomial multiplica-
tion. Implementation with KS2 halves the bit size of the output integer at the cost
of doubling the number of multiplications. But when compared to RSA, this trade-o�
seems worthwhile as a decapsulation does 120 modular multiplications of 2049-bit
numbers, whereas decrypting 2048-bit RSA requires roughly 3072 multiplications of
1024-bit numbers.

The results show similar performance for the KS1 and KS2 approach in Ky-
ber.CPA.Imp with a small advantage for KS2, whereas Snort for KS1 is roughly
twice as fast than for KS2. However, these conclusions are based on the choice of
parameters for this speci�c co-processor. When compared to a Kyber768 implementa-
tion that uses NTT on the SLE78 in software, this approach of using the co-processor
to compute the KyberMulAdd gadget provides an advantage, thus showing that NTT
may not always be the superior polynomial multiplication algorithm. Finally, this
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Kyber variant, that uses the AES co-processor, when run on the target device with
an average clock frequency of 50 MHz, uses 72.5 ms to execute Kyber.CPA.Imp.Gen,
94.9 ms for Kyber.CPA.Imp.Enc and 28.4 ms for Kyber.CPA.Imp.Dec. When compared
to RSA that does not use CRT, Kyber encryption is slower that RSA encryption but
Kyber outperforms RSA in decryption.

Open Problems: These results show that the performance of lattice-based schemes
on particular embedded devices highly depends on the speed of the underlying Psuedo
Random Number Generator (PRNG). It might be worthwhile to consider constructions
that make use of PRNGs based on AES instead of SHA3 due to better availability of
(secured) AES hardware acceleration on smart cards or constrained devices in general.
The same argument applies to the instantiation of hash functions using SHA-256.

With regard to the optimisation of this particular Kyber implementation, a possi-
ble next step is an implementation on an ARM-based smart card or embedded secure
element equipped with an ECC/RSA co-processor. On such an architecture the com-
parison to standard microcontroller-based implementations of PQC would be much
easier. Additionally, how much speedup ECC/RSA co-processors will actually provide
on ARM platforms equipped with a single-cycle multiplier is still an open question .

In a more general direction it appears interesting to investigate whether a perfor-
mance advantage can be obtained with schemes speci�cally designed with the con-
straints of the big integer multiplier in mind. Although, these schemes use integer
sizes too large for direct handling with the current co-processor. In contrast, MLWE-
based schemes immediately allow for a piece-wise approach. Another future approach
would be a Kyber instantiation with a smaller prime modulus q since in view of the
approach described in this work, choice of q is independent of existence of a fast NTT.
Moreover, the given results naturally transfer over to the Dilithium signature scheme
and an implementation on the SLE 78 is a natural next step. However, parameters
have to be adapted for Dilithium. Another interesting question is whether it is pos-
sible to e�ciently use RSA/ECC co-processors to implement the NTT by treating the
big integer multiplier as a vector processor using smart packing of coe�cients or a
variant of Kronecker substitution.

7.2 A Comparison of the Homomorphic Encryption Libraries
[MKLR18]

A homomorphic encryption scheme is one that allows computing on encrypted data
without decrypting it �rst. In fully homomorphic encryption (FHE), it is possible
to apply any e�ciently computable function to encrypted data. Since the invention
of the �rst fully homomorphic encryption scheme, the landscape of FHE has under-
gone signi�cant changes. Prototypes demonstrating private health diagnosis, signal
processing, genomics statistics, and database queries spur hope on the practical de-
ployment of FHE in the near future.

On the technical side, most of the current applications only consider binary plain-
text spaces, and construct binary circuits to compute the desired functions over en-
crypted data. Although, the existing homomorphic encryption libraries like HElib
[HS14, HS15] or SEAL [CLP17] are well adapted to this setting, they also o�er the
possibility to choose a larger plaintext space, for situations where the function can
be evaluated more e�ciently when represented by a modular arithmetic circuit. But
since that isn’t the primary target for these libraries, feasibility remains unclear and
unevaluated. Exploring larger plaintext moduli could be interesting for a couple of
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more reasons. Firstly, it would make it possible to compute �xed-point high-precision
operations over real (truncated or rounded) data. In this case, the modulus bit size is
approximately the precision times the multiplicative depth of the circuit. Secondly,
outsourced operations over data encrypted using discrete logarithm and factorization-
based encryption can be conducted with moduli in the 256-2048 bit range.

In view of this, the authors in [MKLR18] consider the leading homomorphic en-
cryption libraries HElib(-MP), FV-NFLlib and SEAL. They provide a comparative bench-
mark for large plaintext moduli of up to 2048 bits, analyze their relative performance
and compare the impact on the overall performance of the di�erent strategies used
in these libraries to handle noise and representation changes. These experiments are
conducted on a single core of an Intel(R) Xeon(R) CPU and the parameters are chosen
to ensure at least 128 bits of security and at most 12 hour running time. For the readers
convenience, HElib implements the BGV homomorphic encryption scheme [BGV12b]
and both FV-NFLlib and SEAL implement the Fan-Veracauteren scheme [FV12].

We restrict our exposition to the results obtained when the plaintext modulus p
is set at 64 (or 256, or 2048) bit size. The authors provide a detailed analysis of the
noise growth with respect to the growing depth for each of the libraries. As the depth
grows, it turns out that the growth of the ciphertext modulus size (q), and hence the
noise, is comparable in SEAL and FV-NFLlib. Their growth rate is slower than that of
HElib by a big multiplicative factor. See �gure 2 below.
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Figure 2: Evolution of the noise as a function of the multiplying depth when log p =
64. For log p = 256 and log p = 2048, results are similar. Results for HElib-MP are
given twice, with and without the special primes used in the relinearization operation.

When comparing the computational costs, it is interesting to note that SEAL and
FV-NFLlib show almost exactly the same performance results. For HElib, the cost is
higher up to a depth of around 40 when log p = 64, and up to a depth of 7, when log
p = 256. After that HElib improves signi�cantly and for 2048 bit plaintexts, HElib is
better by a factor of 2.5. See �gure 3 and 4 below.

Finding the most e�cient representation for the plaintext and ciphertext as ring
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elements is also a matter of concern. In order to optimize performance, the best would
be to switch between DoubleCRT and CRT representations and to avoid lifting coe�-
cients from or projecting them onto their CRT representation, as the latter can become
quite expensive.

In conclusion, when log p = 60, FV-NFLlib and SEAL both outperform HElib for
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Figure 3: Average time for one multiplication as a function of the multiplying depth
when log p = 256.
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Figure 4: Average time for one multiplication as a function of the multiplying depth
when log p = 2048.
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all practical values (up to a depth slightly above 40). Given that FV-NFLlib and SEAL
result in similar performance and that SEAL is more actively developed and more user
friendly, in practice, the natural choice is SEAL. For plaintext modulus above 60, two
situations arise. If the plaintext modulus can be factorized into submoduli of 60 bits,
then the previous conclusion still applies by using a CRT approach on the plaintext
space. If not (for example if it is a cryptographic prime or a hard-to-factor modulus),
then SEAL cannot be used and FV-NFLlib gives the best results for log q < 2000, and
above that HElib-MP is the best choice.

Open problems: As the BGV homomorphic scheme seems more appropriate for very
large moduli, it would be interesting to see a simpler and more optimized implemen-
tation based on NFLlib and compare its performance to that of the FV scheme for
smaller ciphertext moduli. It would also be interesting to combine the specialized li-
braries NFLlib and the FullRNS to implement the FV scheme in order to fully exploit
its potential.

7.3 On Standardising Sparse-secret LWEParameter Sets forHo-
momorphic Encryption [CP19]

The Homomorphic Encryption Security Standard as published by the Homomorphi-
cEncryption.org consortium in 2018, recommends several sets of LWE parameters
that can be selected for application in order to achieve a target security level λ ∈
{128, 192, 256}. All these parameter sets involve a power-of-two dimension n ≤ 215,
an error distribution of standard deviation σ ≈ 3.19, and a secret whose coe�cients
are either chosen uniformly from Zq , chosen according to the error distribution, or
chosen uniformly in {−1, 0, 1}. However, these sets do not necessarily re�ect im-
plementation choices made in the most commonly used homomorphic libraries. For
instance, several libraries support dimensions that are not a power of two. Moreover,
all known implementations for bootstrapping for the CKKS, BFV and BGV schemes
use a sparse secret and a large ring dimension such as n ∈ {216, 217}. Also, advanced
applications such as logistic regression use equally large dimensions. It is for this
reason that the recommended parameter sets should be widened to include sets with
sparse secrets or larger dimension n > 215.

In this paper, [CP19], the authors explore the security of possible sparse-secret
LWE parameter sets, taking into account hybrid attacks, which are often the most
competitive in this regime. They present a conservative analysis of the hybrid decod-
ing and the hybrid dual attacks for parameter sets of varying sparsity, with the goal of
balancing security requirements with bootstrapping e�ciency. They also show how
the methodology in the Standard can be easily adapted to support parameter sets with
power-of-two dimension n ≥ 216.

The security of homomorphic encryption parameter sets is typically determined
by considering the best known attacks. Several tools are available to estimate the run-
ning time of algorithms for solving LWE. The current version of the Homomorphic
Encryption Security Standard uses the LWE Estimator to determine parameters based
on the running time of three attacks: usvp, dec and dual. In the setup of LWE with
sparse secrets, hybrid attacks ([CHK+18], [How07]) are among the most competi-
tive ones. This work analyzes the performance of the following four attacks; usvp,
hybrid-dec, dual and hybrid-dual. Brie�y, usvp solves LWE by �nding a unique
shortest vector in a lattice; hybrid-dec or hybrid-decoding solves LWE by decoding a
part of the secret and guessing the rest of it appropriately; and dual and hybrid-dual

PROMETHEUS-780701-WP4-D4.2.pdf Page 33/47



PROMETHEUS 780701 — D4.2: Intermediate results on building blocks for practical
advanced protocols (v1.0)

solve search-LWE by �nding short vectors in a dual lattice, with a guessing compo-
nent in the latter attack. In the currently standardized LWE parameters for security
parameter λ ∈ {128, 192, 256}, the usvp attack performs the best. Exploring pa-
rameter sets with sparser secrets, Figure 5 below shows that hybrid attacks are more
e�ective when the secret is chosen from a ternary set of low hamming weight.
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Figure 5: An estimate of the ring operations (rop) required to solve the LWE instances
parameterised by n = 1024, q = 240 and σ ≈ 3.2 and a sparse ternary secret with
hamming weight h ∈ {64, 128, 256, 512}, using the usvp, dual, hybrid-dual and
hybrid-dec attacks.

Interestingly, choosing a ternary secret of hamming weight h = 128 for the stan-
dard set of parameters (n, logq, α) results in a noticeable security loss. The security
drops by approximately 25 bits at the target 128-bit security level, by approximately
50 bits at the target 192-bit security level, and by approximately 85 bits at the target
256-bit security level. One of the main arguments not to standardise sparse secrets
is the wider range of attacks that can apply. Moreover, cryptanalysis in this space is
very fast-moving; the hybrid-dual attack due to Cheon et al. [CHK+18] was only an-
nounced recently. This serves to remind us that further away we move from LWE as
originally de�ned, the greater the potential for more e�cient attacks. However, the
LWE Estimator treats uniform ternary secrets as �xed weight ternary secrets with
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Figure 6: Required bitsize log q to achieve a security level of λ for an LWE instance
parameterised by dimension n, modulus q, error standard deviation σ = 3.19 and a
uniform ternary secret with hamming weight h = λ, under the lattice reduction cost
model TBKZ(β, d) = 20.292β+16.4+log(8d). The solid lines represent data points and
the dashed lines represent extrapolation to include n = 65536 and n = 131072.

Hamming weight h = b 2n3 c and the performance of the hybrid attacks suggests that
their future improvements could a�ect the currently standardized parameters as well.
The results further suggest that a Hamming weight h = λ, for target security level λ,
gives a reasonable trade-o� between performance and security.

The largest dimension that the existing standard parameter sets allow is n = 215.
With current progress in applied homomorphic encryption, the next natural step is
therefore to standardize parameter sets for dimension n = 2k , for some k ≥ 16. In
order to further generalize the dimension, i.e. to let n be not a power of two, choosing
an error distribution would become more complicated than the convenient coe�cient-
wise error sampling. As shown in Figure 6, for n = 216, it is straightforward to apply
the methodology in the current Homomorphic Encryption Security Standard to use
the LWE Estimator to �nd an appropriate log q to meet security requirements for
�xed σ = 3.19 and a currently standardised secret distribution.

The same is true in theory for the dimensions n ≥ 217, but it becomes cumber-
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some as the LWE Estimator takes hours to run. Therefore, for higher dimensions,
results are derived by extrapolating based on known data.

Open Problems: The methodology in the current Standard relies on the LWE Esti-
mator despite a number of limitations. For instance the dec estimates output from the
Estimator are known to be inaccurate, even though, any standardised parameter sets
should be shown to be secure against a state-of-the-art primal decoding attack. More-
over, hybrid attacks are not currently included in the LWE Estimator. Continuing to
maintain and improve the LWE Estimator remains important future work.

Another possible direction is revising the methodology used in the Standard: at
present, speci�c sets of parameters are standardised, but it could be more useful to
standardise instead the process of using the Estimator itself. This would allow im-
plementors, for example, to use a di�erent error distribution that σ = 3.19 (with
appropriate choices for other parameters) while still conforming to the standard.

8 Conclusion
PROMETHEUS set a goal to produce novel tools for post-quantum cryptographic ob-
jects, and WP4 is aimed at developing building blocks that will allow to develop the
required cryptographic protocols and applications. In the �rst half of PROMETHEUS
the partners developed a multitude of new tools in the areas that were identi�ed and
speci�ed as areas of interest in the grant agreement. These include:

1. Improved quantum resilient versions of basic primitives such as signature sche-
mes, encryption schemes and zero knowledge protocols.

2. Developing novel abilities and functionalities for more advanced cryptographic
primitives, that will allow to not only mimic pre-quantum abilities but actually
go beyond them. This includes advances in functional encryption, attribute
based encryption, homomorphic encryption and advanced signature schemes.

3. To address and promote the practical standpoint of existing and new develop-
ment, and asses the maturity and readiness for deployment of various solutions.

As outlined throughout this document, the expected progress (as envisioned in
the grant agreement) indeed took place via e�ort by all partners – many times in
synergy. This e�ort produced a high volume of publications in various leading venues,
acknowledging the impact that PROMETHEUS is making on research in the studied
domains. This state of a�airs is in line with our projected goals and appears quite
satisfactory (especially given that we are only at the half-way point).

The challenges that WP4 faces in the remainder of the project is to continue de-
veloping new cryptographic abilities, and improve the existing ones, to an extent that
will allow them to be integrated into the protocols developed in further work pack-
ages. This will allow PROMETHEUS and the scienti�c community as a whole to make
use of the advances of PROMETHEUS to bene�t society as intended. Speci�c open
problems on each one of the threads of this work package appear in the relevant sec-
tion.
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