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1 Introduction
This deliverable gives a survey of the cryptographic building blocks that can be used to
build advanced privacy-preserving protocols under lattice assumptions. These include
non-interactive cryptographic commitment schemes, digital signatures, public-key
encryption, homomorphic encryption and pseudorandom functions.

In order to be useful in the protection of users’ privacy, these building blocks
have to be compatible with existing zero-knowledge proof systems for lattice-related
languages. For example, anonymity primitives like anonymous credentials [Cha85]
make use of lattice-based signature schemes that make it possible for a prover to
demonstrate possession of a message-signature pair (Msg, sig) while revealing neither
Msg nor sig. In e-cash systems like [CHL05], digital coins contain a serial number
consisting of a pseudorandom function (PRF) evaluation. Namely, using a digital wallet
containing a certi�ed PRF secret key k, a user can spend a coin by computing a serial
number S = Fk(J) which is nothing but the evaluation of the PRF for the key k and
some counter J . In order to prove the validity of his coin, the spender has to create
a zero-knowledge proof that S is indeed the correct evaluation of the PRF for some
committed input J and the secret key k for which he possesses a valid certi�cate.

Other protocols require a prover to guarantee properties about encrypted data. For
example, the widely used design principle of group signatures [CVH91] proceeds by
having group members veri�ably encrypt their group membership certi�cate under the
public key of a tracing authority. This requires a method of e�ciently proving that the
encrypted value is indeed a valid signature. In group encryption schemes [KTY07], the
sender of a ciphertext has to prove that an encrypted message is the witness of some
relation. Other similar examples include e-voting protocols, where each voter should
provide evidence that he encrypted a valid vote (e.g., a 0 or 1 vote in a referendum).
Voting protocols also require additional mechanisms such as distributed threshold
decryption procedures [DF89]. Namely, decryption keys are split into N shares given
to distinct trustees in such a way that none of these can decrypt individual ballots.
Yet, a quorum of at least t-out-of-N trustees should be able to jointly decrypt the �nal
election result (i.e., the “tally” obtained by aggregating individual encrypted votes)
without learning individual votes.

In other advanced privacy protocols, it is useful to have encryption schemes
endowed with advanced properties that come in handy to protect users’ privacy. For
example, fully homomorphic encryption (FHE) [RAD78, Gen09] enables the design
of multi-party computation (MPC) protocols with a small number of rounds. Namely,
assuming a set of trusted public parameters, recent works have shown that FHE
makes it possible to realize secure MPC protocols in 3 [AJLA+12] or even 2 rounds
[MW16, BP16]. In the plain model (i.e., without assuming a common reference string
generated by a trusted entity), secure MPC is known to be possible in 4 rounds [BHP17].

The forthcoming sections will provide an overview of the various lattice-based
primitives that have been used so far as building blocks for privacy-enhancing cryptog-
raphy in the post-quantum setting. Section 2 recalls the lattice assumptions on which
the security of these protocols usually relies. Lattice-based cryptographic commitment
schemes are discussed in Section 3. The two main families of zero-knowledge proof
systems that have been employed in structured/standard lattices are recalled in Section
4. Section 5 provides a succinct state of the art of lattice-based pseudorandom functions
as well as extensions (e.g., key-homomorphic or constrained PRFs) thereof. Section 6 is
devoted to lattice-based signature schemes that can interact with zero-knowledge pro-
tocols for lattice-related statements. It notably discusses signature schemes endowed
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with so-called “e�cient protocols” [CL02], which allow a user to interact with a signer
so as to obtain a signature on a committed message. In Section 7, this deliverable
�nally presents an overview of lattice-based public-key encryption schemes that can
lend themselves to the design of anonymity protocols. In particular, it will cover
schemes that either: (i) make it possible to prove properties about encrypted data
[Reg05, GPV08]; (ii) enable computations over encrypted data [Gen09]; (iii) support
e�cient distributed decryption mechanisms [BD10].

2 Background
Vectors are denoted in bold lower-case letters and bold upper-case letters will denote
matrices. The Euclidean and in�nity norm of any vector b ∈ Rm will be denoted
by ‖b‖ and ‖b‖∞, respectively. The Euclidean norm of matrix B ∈ Rm×n with
columns (bi)i≤n is ‖B‖ = maxi≤n ‖bi‖. When B has full column-rank, we let B̃
denote its Gram-Schmidt orthogonalization.

When S is a �nite set, we denote by U(S) the uniform distribution over S, and
by x ←↩ U(S) the action of sampling x according to this distribution. Finally, for
any integers A,B,N ∈ Z, we let [N ] and [A,B] denote the sets {1, . . . , N} and
{A,A+ 1, . . . , B}, respectively. Finally, SN denotes the set of all permutations σ over
[N ] for any given integer N .

2.1 Lattices
A lattice L is the set of integer linear combinations of linearly independent basis
vectors (bi)i≤n living in Zm. We work with q-ary lattices, for some prime q.

De�nition 1 Letm ≥ n ≥ 1, a prime q ≥ 2 and A ∈ Zn×mq and u ∈ Znq , de�ne the
lattice Λq(A) := {e ∈ Zm | ∃s ∈ Znq s.t. A> · s = e mod q} as well as

Λ⊥q (A) := {e ∈ Zm | A · e = 0n mod q},

as well as

Λu
q (A) := {e ∈ Zm | A · e = u mod q}.,

which is a shift of the lattice Λ⊥q (A) since, for any arbitrary t ∈ Λu
q (A), we have

Λu
q (A) = Λ⊥q (A) + t.

For a lattice L, let ρσ,c(x) = exp(−π‖x− c‖2/σ2) for x ∈ L, a vector c ∈ Zm and a
real σ > 0. The discrete Gaussian of support L, center c and parameter σ is

DL,σ,c(y) = ρσ,c(y)/ρσ,c(L)

for any y ∈ L, where ρσ,c(L) =
∑

x∈L ρσ,c(x). The distribution centered in c = 0 is
denoted by DL,σ(y).

It is well-known that one can e�ciently sample from a Gaussian distribution with
lattice support given a su�ciently short basis of the lattice.

Lemma 2.1 ([BLP+13, Le. 2.3]) There exists a PPT algorithm GPVSample that takes
as inputs a basisB of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(

√
log n), and outputs

vectors b ∈ L with distribution DL,σ .
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We also rely on the trapdoor generation algorithm of Alwen and Peikert [AP09],
which re�nes the technique of Gentry et al. [GPV08].

Lemma 2.2 ([AP09, Th. 3.2]) There is a PPT algorithm TrapGen that takes as inputs
1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Zn×mq

and a basisTA of Λ⊥q (A) such thatA is within statistical distance 2−Ω(n) to U(Zn×mq ),
and ‖T̃A‖ ≤ O(

√
n log q).

We use the basis delegation algorithm [CHKP10] that inputs a trapdoor for A ∈ Zn×mq

and produces a trapdoor for any B ∈ Zn×m′q containing A as a submatrix. A technique
from Agrawal et al. [ABB10] is sometimes used in some proofs.

Lemma 2.3 ([CHKP10, Le. 3.2]) There is a PPT algorithm ExtBasis that inputs B ∈
Zn×m′q whose �rstm columns span Znq , and a basis TA of Λ⊥q (A) where A ∈ Zn×mq is
a submatrix of B, and outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

Lemma 2.4 ([ABB10, Th. 19]) There is a PPT algorithm SampleRight that inputs
A,C ∈ Zn×mq , a small-norm R ∈ Zm×m, a short basis TC ∈ Zm×m of Λ⊥q (C), a
vector u ∈ Znq and a rational σ such that σ ≥ ‖T̃C‖ ·Ω(

√
log n), and outputs b ∈ Z2m

such that
[
A A ·R + C

]
· b = u mod q and with distribution statistically close

to DL,σ where L = {x ∈ Z2m :
[
A A ·R + C

]
· x = u mod q}.

2.2 Hardness Assumptions in Standard Lattices
De�nition 2 Let n,m, q, β be functions of λ ∈ N. The Short Integer Solution problem
SISn,m,q,β is, given A←↩ U(Zn×mq ), �nd x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.

The SIS∞n,m,q,β is de�ned in the same way with the di�erence that the Euclidean norm
‖x‖ is replaced by the in�nity norm ‖x‖∞.

If q ≥
√
nβ and m,β ≤ poly(n), then standard worst-case lattice problems with

approximation factors γ = Õ(β
√
n) reduce to SISn,m,q,β (see, e.g., [GPV08, Se. 9]).

De�nition 3 Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z. For
s ∈ Znq , let As,χ be the distribution obtained by sampling a←↩ U(Znq ) and e←↩ χ, and
outputting (a,aT · s+ e) ∈ Znq ×Zq . The Learning With Errors problem LWEn,q,χ asks
to distinguishm samples chosen accordingly to As,χ (for s←↩ U(Znq )) andm samples
chosen accordingly to U(Znq × Zq).

If q is a prime power, B ≥
√
nω(log n), γ = Õ(nq/B), then there exists an

e�cient sampleable B-bounded distribution χ (i.e., χ outputs samples with norm
at most B with overwhelming probability) such that LWEn,q,χ is at least as hard
as SIVPγ (see, e.g., [Reg05, BLP+13]). Similarly, if αq = Ω(

√
n), standard worst-

case lattice problems with approximation factors γ = O(α/n) reduce to LWEn,q,α
[Reg05, BLP+13].

2.3 Hardness Assumptions in Ideal Lattices
The ring of polynomials over the integers is denoted Z[X]. For a degree-N polynomial
f(X), the notation Z[X]/〈f(X)〉 stands for the ring of all polynomials modulo f(X).
Likewise, the ring of all polynomials with coe�cients in Zq is denoted Zq[X] while
the ring Zq[X]/〈f(X)〉 is de�ned analogously to Z[X]/〈f(X)〉.
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Letting q be a prime and N = 2r for some r ∈ N+, we consider the polynomial
rings R = Z[X]/〈XN + 1〉 and Rq = Zq[X]/〈XN + 1〉. Each ring element f ∈ R
(resp. f ∈ Rq) is thus a polynomial f =

∑N−1
i=0 fiX

i of degree at most N − 1 in Z[X]
(resp. Zq[X]). Each f ∈ R can be associated with the vector (f0, f1, . . . , fN−1) ∈ ZN
containing its coe�cients. When speaking of the norm of a polynomial f ∈ R, we
mean the norm of its coe�cient vector. We thus use the standard norm de�nitions
‖f‖1 =

∑N−1
i=0 |fi|, ‖f‖2 = (

∑N−1
i=0 f2

i )1/2 and ‖f‖∞ = maxi |fi|.
For any g ∈ Rq and g =

∑
i ḡiX

i, we identify each ḡi with an element gi ∈
[− q−1

2 , q−1
2 ] such that ḡi = gi mod q. For a positive integer α > 0, Sα = {a ∈ R |

‖a‖∞ ≤ α} denotes the set of all elements in R with `∞-norm at most α.

De�nition 4 ([LS15]) Let n,m be positive integers and let a real β > 0. TheModule-
SIS (M-SISq,n,m,β) problem is, given A ←↩ U(Rn×mq ), to �nd a non-zero z ∈ R such
thatA · z = 0 and 0 ≤ ‖z‖ ≤ β.

De�nition 5 ([LS15]) Let n,m be positive integers and letχ a distribution overRq . The
Module-LWE (M-LWEq,n,m,χ) problem is to distinguish betweenm uniform samples
(ai, bi)←↩ U(Rnq ×Rq) andm samples (ai, bi) ∈ Rnq ×Rq , where ai ←↩ U(Rnq ) and
bi = a>i s + ei for each i ∈ [m], with s←↩ χn.

Some applications of Module-LWE [DPLS18] use a distribution χ which is simply the
uniform distribution over S1 = {a ∈ Rq | ‖a‖∞ ≤ 1}, in which case M-LWE retains
its hardness as long as the number of samples is not too large.

We now recall assumptions that generalize the Module-SIS and Module-LWE
assumptions. The Search Knapsack problem in the `2-norm (DSK2

n,k,β) is exactly the
Module-SIS problem in Hermite Normal form.

De�nition 6 The DSK2
n,k,β problem is, given a uniform A′ ∈ R

n×(k−n)
q , to �nd a

short vector y satisfying [In | A′] · y = 0n. An algorithm A has advantage ε in solving
DSK2

n,k,β if

Adv(A) = Pr
[
y 6= 0n ∧ ‖y‖2 ≤ β ∧ [In |A′] · y = 0n |

A′ ←↩ U(Rn×(k−n)
q );y← A(A′)

]
≥ ε

Baum et al. [BDL+18, Lemma 5] gave parameter choices under which DSK2
n,k,β is

unconditionally hard, which is useful to construct statistically binding commitment
schemes. It was shown in [BDL+18] that, if q is a prime congruent to 2d+ 1(mod4d)
for some power of two d ∈ {1, . . . , N} such that

β < q1/d

β <
√
N/(2πe) · qn/k · 2−128/(k·N) −

√
N/2,

even an all-powerful algorithm A has advantage at most 2−128 in solving DSK2
n,k,β .

In `∞ norm, the Decisional Knapsack problem is a generalization of the Module-
LWE problem.

De�nition 7 The DSK∞n,k,β problem is to distinguish the distribution [In | A′] ·y, for a
short y and a uniformA′, from the uniform distribution. An algorithm A has advantage
ε in solving DSK∞n,k,β if the function

Adv(A) = |Pr[b = 1 | A′ ←↩ U(Rn×(k−n)
q );y←↩ U(Skβ); b← A(A′, [In |A′]·y)]

− Pr[b = 1 | A′ ←↩ U(Rn×(k−n)
q );u←↩ U(Rnq ); b← A(A′,u)]| ≥ ε.
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The DSK∞n,k,β is equivalent to the Module-LWE problem when the number of
samples is limited.

For applications requiring statistically-hiding commitments, Baum et al. [BDL+18,
Lemma 4] showed that DSK∞n,k,β can be made unconditionally hard for an appropriate
choice of parameters. They showed that, if q is a prime congruent to 2d+ 1(mod4d)
for some power of two d ∈ {1, . . . , N} such that

qn/k · 2256/(k·N) ≤ 2β <
1√
d
· q1/d,

even an all-powerful algorithm A has advantage at most 2−128 in solving DSK2
n,k,β .

2.4 Vector Decompositions
The decomposition technique from [LNSW13, LLM+16a] is sometimes employed,
which allows transforming vectors with in�nity norm larger than 1 into vectors with
in�nity norm 1. We recall this technique below.

For any B ∈ Z+, de�ne the number δB := blog2Bc + 1 = dlog2(B + 1)e
and the sequence B1, . . . , BδB , where Bj = bB+2j−1

2j c, ∀j ∈ [1, δB ]. This se-
quence satis�es

∑δB
j=1Bj = B and any integer v ∈ [0, B] can be decomposed to

idecB(v) = (v(1), . . . , v(δB))> ∈ {0, 1}δB such that
∑δB
j=1Bj · v(j) = v. We describe

this decomposition procedure in a deterministic manner as follows:

1. Set v′ := v; For j = 1 to δB do:

If v′ ≥ Bj then v(j) := 1, else v(j) := 0; v′ := v′ −Bj · v(j).

2. Output idecB(v) = (v(1), . . . , v(δB))>.

For any positive integers m, B, we de�ne Hm,B := Im ⊗ [B1| . . . |BδB ] ∈ Zm×mδB

and the following injective functions:

(i) vdecm,B : [0, B]m → {0, 1}mδB that maps vector v = (v1, . . . , vm) to vector(
idecB(v1)>‖ . . . ‖idecB(vm)>

)>. Note that Hm,B · vdecm,B(v) = v.

(ii) vdec′m,B : [−B,B]m → {−1, 0, 1}mδB that maps vector w = (w1, . . . , wm)

to vector
(
σ(w1) · idecB(|w1|)>‖ . . . ‖σ(wm) · idecB(|wm|)>

)>, where for each
i = 1, . . . ,m: σ(wi) = 0 if wi = 0; σ(wi) = −1 if wi < 0; σ(wi) = 1 if wi > 0.
Note that Hm,B · vdec′m,B(w) = w.

We also need to de�ne the two following sets, which are left invariant under
any permutation and are used in the decomposition-extension framework described in
Section 4.3.1:

• B2
m: the set of vectors in {0, 1}2m with Hamming weight m;

• B3
m: the set of vectors in {−1, 0, 1}3m which has exactly m coordinates equal to

j for each j ∈ {−1, 0, 1}.
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3 Lattice-Based Commitment Schemes
Commitment schemes [Blu82] are a key tool in the design of cryptographic protocols
and have numerous applications (e.g., threshold cryptosystems [DF89] or e-voting
[CFSY96]). In particular, combining commitment schemes and zero-knowledge proofs
is a standard technique that prevents malicious parties from signi�cantly deviating
from the speci�cation of a protocol.

This section reviews the main commitment schemes based on the hardness of
the SIS and LWE assumptions. We begin with the commitment scheme of Kawachi,
Tanaka and Xagawa [KTX08] (KTX), which is statistically hiding and computationally
binding under the SIS assumption.

3.1 The KTX Commitment Scheme
For a security parameter λ, the commitment scheme of Kawachi et al. [KTX08] uses
a dimension n(λ), a prime modulus q = O(

√
L · n), where L is the number of bits

to commit, and an integer m = n(dlog2 qe + 3). We describe several �avors of the
scheme.

We �rst describe the variant that allows committing to L ≤ poly(n) bits at once. In
this variant, the commitment key is (a0, . . . ,aL−1,B)←↩ U(Zn×(m+L)

q ). To commit
to an L-bit message x = (x0, . . . , xL−1) ∈ {0, 1}L, the committer samples a random
m-bit string r and outputs

c =

L−1∑
i=0

ai · xi + B · r mod q.

In order to open the commitment, the committer simply reveals the underlying message
(x0, . . . , xL−1) ∈ {0, 1}L and the randomness r ∈ {0, 1}m.

Keygen(1λ, 1L): Given a security parameter λ and the desired message length
1L, choose uniformly random matrices A = [a0 | . . . | aL−1] ←↩ U(Zn×Lq ),
B←↩ U(Zn×mq ). Output the commitment key

ck = {A,B}

Commit(ck,x): In order to commit to x = (x0, . . . , xL−1)> ∈ {0, 1}L, choose
r←↩ U({0, 1}m) and compute

c = A · x + B · r ∈ Znq . (1)

Output the commitment string c ∈ Znq and retain r ∈ {0, 1}m as a state
information allowing to open the commitment.

Open(c,x, r): To open a commitment c ∈ Znq , the committer simply reveals the
randomness r ∈ {0, 1}m that was used to compute (1). The veri�er accepts
(x, r) as a valid opening of c if (x, r) ∈ {0, 1}L × {0, 1}m and if (1) is satis�ed.
Otherwise, the veri�er rejects the pair (x, r).

If a dishonest committer can come up with a commitment c ∈ Znq for which it
can provide compute two valid openings (x′0, . . . , x

′
L−1, r

′) and (x′′0 , . . . , x
′′
L−1, r

′′)
for two distinct messages

x′ = (x′0, . . . , x
′
L−1) 6= (x′′0 , . . . , x

′′
L−1) = x′′,
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then a simple reduction can compute a solution to the SIS∞n,m+L,q,1 problem associated
with the uniformly random matrix Ā = [A | B] ∈ Zn×(m+L)

q . The scheme is thus
computationally binding, assuming the worst-case hardness of SIVPÕ(

√
L·n). On the

other hand, by the Leftover Hash Lemma (see, e.g., the variant stated in [GTKPV10]),
the distribution of a commitment c is statistically close to the uniform distribution
over Znq . This implies that the scheme is statistically hiding.

In the special case when L = 1, the scheme becomes a bit commitment scheme, in
which case it can use a small modulus q = Õ(n) and rely on a weak SIVP assumption
with γ = Õ(n).

In the above description, each KTX commitment is computed using a random
vector r which is sampled from a uniform binary distribution. Alternatively, r ∈ Zn
could be sampled from a discrete Gaussian distribution DZm,σ for a large enough
standard deviation σ > 0. In this case, the scheme can be modi�ed to become a
trapdoor commitment, where a trapdoor equivocation key (which is only known to a
simulator in security proofs of cryptographic protocols) makes it possible to open a
given commitment to any desired message. To do this, we need to increase m to make
it as large as m = Ω(n · dlog qe), in such a way that the matrix B ∈ Zn×mq can be
generated with a trapdoor TB for the lattice Λ⊥q (B), which can be used as a trapdoor
for the commitment scheme.

The KTX scheme allows commitment strings c ∈ Znq to be shorter than the
underlying messages x. On the other hand, these messages are restricted to consist of
binary vectors, or at least small-norm integer vectors. Indeed, the binding property is
lost if the scheme is used to commit to arbitrary vectors over ZLq . As a consequence,
the KTX commitment is not a homomorphic commitment scheme over the message
space ZLq , making it unsuitable for speci�c applications that require homomorphic
commitments over large message spaces. In the following subsection, we recall how
this problem can be addressed by commitment schemes in structured lattices.

3.2 Commitment Schemes in Ideal Lattices
In [BKLP15], Benhamouda et al. described a statistically-binding commitment scheme
which is computationally-hiding under the ring LWE assumption. Their scheme al-
lows committing to arbitrary messages in the ring Rq = Zq[X]/〈XN + 1〉 and is also
additively homomorphic over Rq . Benhamouda et al. [BKLP15, Section 4] also provide
zero-knowledge proofs allowing a committer to prove knowledge of an opening of
a commitment. They also provide protocols allowing to prove that committed ring
elements satisfy linear and multiplicative relations. In particular, they can prove that
committed witnesses satisfy an algebraic circuit. Using the additional structure o�ered
by ideal lattices, their zero-knowledge protocols achieve negligible soundness errors
after a single execution.

The commitment scheme of [BKLP15] is only computationally hiding. In the fol-
lowing, we will recall a commitment scheme proposed by Baum et al. [BDL+18] which
can be tuned to be either statistically-hiding or statistically-binding. The commitment
scheme of [BDL+18] further retains the useful properties of [BKLP15] in that: (i) It
remains additively homomorphic over Rq ; (ii) It enables e�cient zero-knowledge
protocols that achieve negligible soundness error in one execution.

We now recall the commitment scheme described in [BDL+18]. The table below
summarizes the parameters used by the scheme.

Keygen(1λ, q, 1`): Given a security parameter λ and the desired message space
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R = Z[X]/〈XN + 1〉 The ring over which the norm of vectors is de�ned
Rq = Zq[X]/〈XN + 1〉 The ring over which the computations take place

q The prime modulus de�ning Rq
k Width (over Rq) of the commitment matrices
n Height (over Rq) of the commitment matrix A1

` Dimension (over Rq) of the message space
β Norm bound of the committer’s randomness in `∞-norm
C A subset of S1 from which challenges are sampled

C̄ The set of non-zero di�erences C − C

κ The maximum `1 norm of any element in C
σ = 11κβ

√
kN Standard deviation used in the ZK proof

R`q , choose random matrices A′1 ←↩ U(R
n×(k−n)
q ), A′2 ←↩ U(R

`×(k−n−`)
q ) and

de�ne

A1 = [In | A′1] ∈ Rn×kq

A2 = [0`×n | I` | A′2] ∈ R`×kq

Output the commitment key

ck = {A1,A2}

Commit(ck,x): In order to commit to x ∈ R`q , choose r←↩ U(Skβ) and compute

c =

[
c1

c2

]
=

[
A1

A2

]
· r +

[
0n

x

]
∈ Rn+`

q . (2)

Output the commitment string c ∈ Rn+`
q and retain r as a state information

allowing to open the commitment.

Open(c,x, r): To open a commitment c ∈ Rn+`
q , the committer reveals r that

was used to compute (2). According to a function f ∈ C̄ (see below), the veri�er

accepts a triple (f,x, r) ∈ C̄ × R`q × Rkq as a valid opening of c if r =

r1

. . .
rk


satis�es ‖ri‖2 ≤ 4σ

√
N for all i ∈ [k] and

f ·
[
c1

c2

]
=

[
A1

A2

]
· r + f ·

[
0n

x

]
. (3)

Otherwise, the veri�er rejects the opening (f,x, r).

In the scheme, the opening does not only consist of the randomness r and message
x, but also includes a polynomial f ∈ C̄. The reason is that, in the zero-knowledge
proofs of knowledge of r and x satisfying (3), the knowledge extractor does not
guarantee the extraction of f = 1 from the prover. If the prover is honest, then the
extractor will exactly recover (r,x) satisfying (3) with f = 1. Moreover, if an honest
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committer only wants to open the commitment without giving a zero-knowledge proof,
he can reveal (r,x) and f = 1. We also note that the randomness in the commitment
is generated according to a distribution using the `∞-norm while the opening is using
the `2-norm. The reason for this is that the most e�cient lattice-based zero-knowledge
proofs prove the knowledge of small vectors in the `2-norm.

From a security point of view, Baum et al. proved [BDL+18, Section 4.2] that their
commitment scheme is binding under the DSK2

n,k,β assumption for β = 16σ
√
κN .

They also proved its hiding property under the DSK∞n+`,k,β assumption.
As explained in Section 2.3, the parameters can be tuned so as to make the scheme

statistically-hiding and computationally binding or the other way around. In the
statistically-hiding case, security can entirely rely on the SKS2 (equivalently, M-SIS)
problem. In the statistically-binding case, security relies on the DKS∞ (and thus
M-LWE) problem. In the most e�cient instantiation, however, the scheme is neither
statistically-hiding nor statistically-binding (i.e., it is only computationally hiding and
computationally binding). Such a parameter choice was recently used in a construction
of group signatures from the Module-LWE assumption [DPLS18].

Open problems. In the context of lattice-based commitment schemes, an important
open problem is to come up with a statistically hiding scheme which is simultaneously
homomorphic modulo an odd prime and length-reducing (i.e., the commitment string
is shorter than the committed message).

4 Zero-Knowledge Proofs
A Zero-Knowledge proof [GMR85] (or ZK proofs) is an interactive proof between a
prover and a veri�er at the end of which the veri�er should be convinced of the truth
of a statement (within some probability, called soundness error), while the prover is
guaranteed that the veri�er learns nothing more that the authenticity of the statement.

One of the early applications of ZK proofs in cryptography was the design of
identi�cation systems [FS87]. The goal is for a user A to prove the knowledge of
a secret (such as a password) to user B without revealing any piece of information
about the secret, otherwise user B would be able to impersonate A. Since then, the
use of zero-knowledge proofs is now widespread in privacy-preserving protocols like
anonymous credentials [Cha85, CL01], (revocable) group signatures [CVH91, NFHF09],
e-cash [CHL05], oblivious transfer [CDN09] . . .

If these primitives �ourish in the context of number-theory-based cryptography
(such as RSA or pairing groups), they are still elusive in the lattice world. In this
section, we �rst present Σ-protocols, which can be used to design those ZK proof
systems. Then, we will describe two families of ZK proofs that may prove useful in
the context of pairing-based and lattice-based cryptography. Namely, Schnorr-like
proofs and Stern-like proofs.

4.1 Σ-protocols
A way to construct zero-knowledge proofs – that will be described with more details
in Section 4.2 – is a black-box transformation from a Σ-protocol and a commitment
scheme. The resulting proof system remains secure against malicious veri�ers.
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P (x,w) V (x)
(cmt, stP )← P1(x,w)

cmt

(chall, stV )← V1(x, cmt)

chall

response← P2(x,w, chall, stP )

response

return

b = V2(x, chall, response, stV )

Figure 1: Abstract description of a Σ-protocol.

De�nition 8 (Σ-protocol [Cra96]) Let R = {(x,w)} be a binary relation. A Σ-
protocol is a 3-move interactive protocol between P and V that follows Figure 1 and
veri�es the following properties.

Completeness. For any (x,w) ∈ R, P (x,w) and V (x) that follows the protocol,
the veri�er always accepts.

2-Special soundness. For any x and any pair of accepting transcripts on input x
of the form (cmt, chall, response) and (cmt, chall′, response′), there exists a PPT
algorithm extract that inputs the two aforementioned transcripts and outputs an
element w such that (x,w) ∈ R.

Honest-Veri�er Zero-Knowledge. There exists a PPT simulator S, such that the
two probability distributions {trans(P (x,w), V (x))} and {S(x)} with honest P
and V are statistically indistinguishable.

An example of Σ-protocol is given in Section 4.2, as well as its transformation into
a Zero-Knowledge proof using a commitment scheme.

4.2 Schnorr Proofs
Schnorr’s methodology [Sch96] to construct proof systems relies on the aforemen-
tioned Σ-protocol technique to design zero-knowledge proofs. Its intuition follows:
given a commitment scheme (Setup,Commit,Verify), where the randomness r used
in Commit is made explicit, the �rst move of the prover P consists in binding the ran-
domness used in the commitment scheme r using the transmitted value ρ = gr , then
the veri�er asks the prover to commit to a challenge message c using the randomness
carried by ρ, and the prover sends the opening for this commitment open. Finally, the
veri�er accepts if and only if the commitments opens to its challenge message.

This methodology has been adapted to ideal lattices by Lyubashevsky [Lyu08,
Lyu09] along with a technique called rejection sampling in order to construct ZK
proofs from ideal lattice assumptions and is described in Figure 2. In this description
Dy and Dc are the distributions from which y and c have to be sampled respectively,
and G describes the set of good responses z in order not to leak information about s.
The part between brackets is called the rejection phase, and ensures that the transmitted
z1, z2 will not leak any information about s1, s2 to V. This part induced a noticeable
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Common input: A public element a ∈ R where R = Zp[x]/〈xn + 1〉.

Schnorr’s Protocol for Ring-SIS

P (t = a · s, s) V (t)

y←↩ Dy ∈ R
w = a · y ∈ R

w

c←↩ Dc ∈ R (small)

c

z← sc + y ∈ R[
if z /∈ G then

z← ⊥
]

z

if z ∈ G∧
a · z = tc + w then

return 1

else

return 0

Figure 2: The Schnorr Σ-protocol for Ring-SIS.

error-rate where the prover aborts the proof. As the protocol is proven witness indis-
tinguishable [Lyu09], one can run the protocol multiple times in parallel and hope that
one of them will not abort [FS90].

One can notice that this is not a Σ-protocol in the strict sense as the knowledge
extractor outputs witnesses that can be up to Õ(n) larger than the actual witness in
in�nity norm. This behavior is sometimes called “imperfect soundness” or “soundness
slack”.

Open problems. However, this method su�ers from limited expressiveness: the
relations that can be proved with this proof system are essentially restricted to be
knowledge of a Ring-LWE secret (or adapted to Ring-SIS), which is not su�cient to
prove, for instance, the knowledge of a signature on a committed message. Moreover,
the gap in the extraction makes it hard, although, to prove that an underlying message
under an encryption is binary [DPLNS17]. Still, using some more structures on the way
the ring is constructed allows using this proof system for advanced privacy-preserving
primitives such as group signatures, as did del Pino, Lyubashevsky and Seiler [DPLS18].

4.3 Stern-like Proofs
Stern’s protocol has originally been introduced in the context of code-base cryptogra-
phy [Ste96]. Initially, it was designed for Syndrome Decoding Problem (SDP): given a
matrix M ∈ Fn×m2 and a syndrome v ∈ Fn2 , the goal is to �nd a binary vector w ∈ Fm2
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with �xed hamming weight w such that M ·w = v mod 2.
After the initial work of Kawachi, Tanaka and Xagawa [KTX08] to extend Stern’s

proofs to statements modq, the results of Ling, Nguyen, Stehlé and Wang [LNSW13]
enable the use of Stern’s protocol to prove general SIS or LWE statements (meaning
proving knowledge of a solution to these problems). These advances in the expres-
siveness of Stern-like protocols have been used to further improve them and there-
fore enable privacy-based primitives for which no constructions previously existed
from lattice assumptions, such as dynamic group signatures [LLM+16a], group en-
cryption [LLM+16b], electronic cash [LLNW17], etc. In section 6.2.4, we describe a
signature with e�cient protocols and its companion protocols which rely on Stern-like
proof systems which are described in Section 6.2.4.

Unlike Schnorr-like proofs that we described in the previous section, Stern-like
proofs are mainly combinatorial and rely on the fact that every permutation on a
binary vector w ∈ {0, 1}m leaves its Hamming weight w invariant. As a consequence,
for π ∈ Sm, w satis�es these conditions if and only if π(x) also does. Therefore, the
randomness of π is used to verify these two constraints (being binary and having
�xed Hamming weight) in a zero-knowledge fashion. We can notice that this can be
extended to vectors w ∈ {−1, 0, 1}m having �xed numbers of−1 and 1. This property
allowed [LNSW13] to propose the generalization of this protocol to any ISISn,m,q,β
statements. In Section 4.3.2, we describe these permutations while abstracting the set
of ZK-provable statements as the set VALID that satis�es conditions (6).

In this Section, we describe in a high-level manner the behavior of Stern-like
protocols before detailing it.

4.3.1 The Decomposition-Extension Framework

The original Stern protocol was designed to prove knowledge of an SDP preimage.
That is, to prove the knowledge of a vector w ∈ {0, 1}m that veri�es

M ·w = v mod 2. (4)

A �rst improvement by [KTX08] was to extend this protocol using a statistically
hiding SIS-based commitment scheme as described in Figure 3 to prove in (statistical)
zero-knowledge that

M ·w = v mod q. (5)
The details of this proof is given in Section 4.3.2, but it can be summarized in the

following Lemma.

Lemma 4.1 ([KTX08, Se. 4]) There exists a statistical ZKAoK with perfect complete-
ness and soundness error 2/3 to prove the knowledge of a secret vector w ∈ {0, 1}m that
veri�es relation (5) for public input (M,v) ∈ Zn×mq × Znq .

Ling, Nguyen, Stehlé and Wang [LNSW13] noticed that the ZKAoK of Lemma 4.1
works in a straightforward manner to prove knowledge of a vector in {−1, 0, 1}m.

To prove the knowledge of an ISIS preimage, i.e. the knowledge of a bounded vector
w ∈ [−B,B]m that satis�es relation (5), the goal is to rewrite w as w̄ = K ·w mod q
with a public transformation matrix K such that w̄ ∈ {−1, 0, 1}m′ and of known
numbers of elements equal to j for each j ∈ {−1, 0, 1}. This reduces to use Lemma 4.1
to prove the knowledge of w̄ ∈ {−1, 0, 1}m′ for public input (M ·K,v).

To construct such a transfer matrixK, [LNSW13] showed that decomposing a vector
x ∈ [−B,B]m as a vector x̃ ∈ {−1, 0, 1}m·δB and extending the resulting vector into
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1. Commitment: Prover samples rw ← U(ZDq ), φ← U(S) and randomnesses ρ1, ρ2, ρ3
for COM. Then, he sends CMT =

(
C1, C2, C3

)
to the veri�er, where

C1 = COM(φ,M · rw mod q; ρ1), C2 = COM(Γφ(rw); ρ2),

C3 = COM(Γφ(w + rw mod q); ρ3).

2. Challenge: The veri�er sends a challenge Ch←↩ U({1, 2, 3}) to the prover.
3. Response: Depending on Ch, the prover sends RSP computed as follows:

• Ch = 1: Let tw = Γφ(w), tr = Γφ(rw), and RSP = (tw, tr, ρ2, ρ3).

• Ch = 2: Let φ2 = φ, w2 = w + rw mod q, and RSP = (φ2,w2, ρ1, ρ3).

• Ch = 3: Let φ3 = φ, w3 = rw , and RSP = (φ3,w3, ρ1, ρ2).

Veri�cation: Receiving RSP, the veri�er proceeds as follows:

• Ch = 1: Check that

tw ∈ VALID,

C2 = COM(tr; ρ2), C3 = COM(tw + tr mod q; ρ3).

• Ch = 2: Check that

C1 = COM(φ2,M ·w2 − v mod q; ρ1), C3 = COM(Γφ2(w2); ρ3).

• Ch = 3: Check that

C1 = COM(φ3,M ·w3; ρ1), C2 = COM(Γφ3(w3); ρ2).

In each case, the veri�er outputs 1 if and only if all the conditions hold.
Figure 3: Stern-like ZKAoK for the relation Rabstract.

x̄ ∈ B3
mδB

leads to a new statement that can be proven using the variant of Stern’s
protocol described in [KTX08]. The resulting matrix K =

[
Km,B | 0m×2mδB

]
∈

Zm×3mδB , where Km,B is the {−1, 0, 1}-decomposition matrix Km,B = Im ⊗
[B1 | · · · | BδB ] with Bj =

⌊
B+2j−1

2j

⌋
, for all j ∈ {1, . . . , j}, can be computed from

public parameters.

4.3.2 Abstraction of Stern’s Protocol

Let K , D, q be positive integers with D ≥ K and q ≥ 2, and let VALID be a subset of
ZD . Suppose that S is a �nite set such that every element φ ∈ S can be associated
with a permutation Γφ ∈ SD satisfying the following conditions:{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(6)

We aim to construct a statistical Zero-Knowledge Argument of Knowledge (ZKAoK)
for the following abstract relation:

Rabstract =
{(

(M,v),w
)
∈ ZK×Dq × ZKq × VALID : M ·w = v mod q.

}
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Note that, Stern’s original protocol corresponds to the special case when the set
VALID = {w ∈ {0, 1}D : wt(w) = k}, where wt(·) denotes the Hamming weight
and k < D is a given integer, S = SD is the set of all permutations of D elements and
Γφ(w) = φ(w).

The conditions in (6) play a crucial role to prove in zero-knowledge thatw ∈ VALID.
To this end, the prover samples a random φ←↩ U(S) and lets the veri�er check that
Γφ(w) ∈ VALID without learning any additional information about w due to the
randomness of φ. Furthermore, to prove in a zero-knowledge manner that the linear
equation is satis�ed, the prover samples a masking vector rw ←↩ U(ZDq ), and convinces
the veri�er instead that M · (w + rw) = M · rw + v mod q.

The interaction between prover P and veri�er V is described in Figure 3. The
protocol uses a statistically hiding and computationally binding string commitment
scheme COM (e.g., the SIS-based scheme from [KTX08]). As described in Figure 3,
the basic protocol uses a ternary challenge space and has soundness error 2/3. Hence,
O(λ) iterations of this basic protocols are necessary (about 200 to achieve 128-bit
security) to make the soundness error negligible.

Theorem 4.1 The protocol in Figure 3 is a statistical ZKAoK with perfect completeness,
soundness error 2/3, and communication cost O(D · log q). Namely:

• There exists a polynomial-time simulator that, on input (M,v), outputs an accepted
transcript statistically close to that produced by the real prover.

• There exists a polynomial-time knowledge extractor that, on input a commitment
CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values of the
challenge Ch, outputs w′ ∈ VALID such thatM ·w′ = v mod q.

The proof of the theorem relies on standard simulation and extraction techniques for
Stern-like protocols [KTX08, LNSW13, LLM+16a].

Open problems. In the context of zero-knowledge proofs, a major open problem
is to �nd a way to combine the expressiveness of Stern-like proofs and the e�ciency
Schnorr-like proofs. While the former makes it possible to prove relatively expressive
statements, it su�ers from a signi�cant lack of e�ciency induced by the 2/3-soundness
error of the basic protocol. In order to make the soundness error negligible, this basic
protocol thus has to be repeated O(λ) times, which blows up its communication and
computational complexity by a similar factor. The “Fiat-Shamir with aborts” technique
[Lyu09] can achieve a negligible soundness error in one short (i.e., without repeating
the basic protocol O(λ) times) but it currently remains an open problem to use it in
order to prove expressive statements (at least without decomposing them into a circuit
as in [BKLP15]).

Another major open problem in theoretical cryptography is to determine whether
general non-interactive zero-knowledge proofs [BFM88] (in the common reference
string model and without relying on the random oracle methodology [BR93]) can
solely rely on quantum-resistant assumptions. While initial steps have been taken
in this direction (e.g., [PW08, RSS19, KW18, CLW]), it remains a long-standing open
problem whether NIZK proofs can rely on the LWE assumption alone.
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5 Lattice-Based Pseudorandom Functions
A pseudorandom function (PRF) family [GGM86] is a set F of keyed functions with
common domain Dom and range Rng such that no PPT adversary can distinguish a
real experiment, where it has oracle access to a random member f ←↩ F of the PRF
family, from an ideal experiment where it is interacting with a truly random function
R : Dom→ Rng. To be useful, a PRF should be e�ciently computable – meaning that
Fs(x) must be deterministically computable in polynomial time given the key s and
the input x ∈ Dom – and the key size must be polynomial.

PRFs are fundamental objects in cryptography as most central tasks of symmetric
cryptography (like secret-key encryption or message authentication) can be e�ciently
realized from a secure PRF family. Moreover, algebraic pseudorandom functions
(e.g., [NR97]) come in handy to build privacy-preserving cryptographic protocols,
like e-cash systems [CHL05], as they are easier to combine with zero-knowledge
protocols. Algebraic PRFs naturally appear in many protocols where a prover has
to deterministically generate a random-looking value without revealing his identity
while proving that this value has been correctly evaluated.

Goldreich, Goldwasser and Micali (GGM) [GGM86] showed how to build a PRF
from any length-doubling pseudorandom generator (PRG). In turn, PRGs are known
[HILL99] to exist under the sole assumption that one-way functions exist. However,
much more e�cient constructions can be obtained by relying on speci�c number
theoretic assumptions like the Decision Di�e-Hellman assumption [NR97].

In lattice-based cryptography, the noisy nature of LWE makes it non-trivial to
design e�cient PRF families. In order to design PRFs with small-depth evaluation
circuits, several works [BPR12, BLMR13, BP14] rely on the Learning-With-Rounding
(LWR) technique [BPR12], which is a “de-randomization” of LWE where noisy vectors
A·s+e are replaced by rounded vectors bA·scp = b(p/q)·(A·s)c ∈ Zmp for a smaller
modulus p < q. For suitable parameters (e.g., q = p2 and m = 4n), the LWR problem
immediately implies a length-doubling PRG G : Znq → Z4n

p where G(s) = bA · scp.
This provides a PRF based on the LWR problem via the GGM construction [GGM86].
In turn, this implies an LWE-based PRF via the results of Banerjee et al. [BPR12] who
showed the polynomial hardness of LWR when q/p is super-polynomial.

The PRF constructions of [BPR12, BLMR13, BP14] all rely on lattice assumptions
with super-polynomial approximation factors. To our knowledge, the only lattice-based
PRF with a security proof under a standard assumption with polynomial approximation
factor is the GGM-based construction implied by the LWE-to-LWR reduction of Alwen
et al. [AKPW13], which works for polynomial moduli and inverse-error rates. This
construction, however, inherits the disadvantage of all GGM-based constructions as
its evaluation depth is linear in the input length. So far, it remains an open problem to
come up with a lattice-based PRF that simultaneously features a small-depth (e.g., NC1
or even NC2) evaluation circuit and a security proof under standard lattice assumptions
with polynomial approximation factors. Indeed, the NC1-circuit construction of Baner-
jee et al. [BPR12] requires an exponential approximation factor in the input length.
Subsequent works [DS15, JKP18] gave variants under weaker lattice assumptions, but
they still need super-polynomial moduli and inverse-error rates.

An appealing advantage of lattice-based techniques is that they enable the design
of key-homomorphic PRF families in the standard model [BLMR13, BP14].1 Namely, as-

1In the random oracle model, key-homomorphic PRFs were already known to exist under the Decision
Di�e-Hellman assumption [NPR99].
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suming that their range and key space form an additive group, for any input x and keys
s, t, we have Fs+t(x) ≈ Fs(x) + Ft(x). In turn, key-homomorphic PRFs provide sim-
ple and non-interactive constructions of distributed pseudorandom functions [NPR99].
Lattices actually enable the design of PRFs with other advanced properties, such as
constrained pseudorandom functions [BW13, KPTTZ13, BGI14], key-homomorphic
constrained PRFs [BFP+15, BV15] or watermarkable PRFs [KW17]. Constrained PRFs
(CPRFs) are relevant to this project as they can be used in the design of divisible e-cash
protocols [Oka95, CG07]. In short, CPRFs are pseudorandom functions where the
secret key SK allows deriving sub-keys that can be used to evaluate the function on
a restricted portion of its domain. The LWE assumption enables CPRF constructions
[BV15, BTVW17, PS18a] for arbitrary circuits: namely, a sub-key SKC corresponds
to a Boolean circuit C and allows evaluating the function on any input x such that
C(x) = 1. Some LWE-based CPRFs [CC17, BKM17, BTVW17, PS18a] additionally
support sub-keys SKC that hide the underlying constraint C . One caveat is that all
known LWE-based constructions (with or without constraint privacy) are only secure
in the single-key setting: namely, security is only guaranteed as long as the adversary
obtains a single sub-key SKC for a circuit C of its choice. It remains an open problem
to build CPRFs that remain secure under standard assumptions when the adversary
obtains a polynomial number of sub-keys SKC .

In order to lend themselves to the design of privacy-preserving protocols, PRFs
often need to be compatible with zero-knowledge protocols. This is the reason why e-
cash systems [CHL05], for example, appeal to algebraic pseudorandom functions (e.g.,
[NR97]) which make it easier to prove that a given value is the correct PRF evaluation
for committed inputs and keys. It was shown in [LLNW17] that the GGM-based PRF
of Banerjee, Peikert and Rosen [BPR12] can be combined with Stern-like protocols to
construct anonymous e-cash systems by adapting the design principle of Camenisch
et al. [CHL05].

Open problems. One problem is that the many parallel repetitions of Stern-like
proof (which are necessary to achieve negligible soundness error) make the construc-
tions of [LLNW17] really far from being practical. It thus remains a challenging open
problem to �nd pseudorandom functions that can smoothly interact with more e�cient
zero-knowledge protocols based on the “Fiat-Shamir with aborts” technique [Lyu09].

6 Signatures Schemes
Signature schemes have been initially designed to provide message authenticity, mes-
sage integrity and signer’s non repudiation. But for a number of new usages, it is
necessary to add some extensions to basic signature schemes. This is typically the case
in a privacy-preserving setting. In this setting, we review some of these extensions,
but we �rst give some words about basic signatures.

6.1 Basic Signature Schemes
Formally speaking, a signature scheme is composed of three PPT algorithms, namely,
Keygen to generate the key pair, Sign to provide a signature on a message under a
private key, and Verify to verify the previously computed signature, given the message
and the veri�cation public key.
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A lot of basic signature schemes based on lattices now exist. Among them, several
ones have been submitted to the NIST call for proposal and after the end of the �rst
round, it remains three of them:

• CRYSTALS-DILITHIUM [DKL+18], based on the Fiat-Shamir paradigm and the
module SIS/LWE problem;

• FALCON [FHK+17], based on the hash and sign paradigm and the SIS problem
over NTRU lattices;

• qTESLA [ABB+19], based on the Fiat-Shamir paradigm and the ring SIS/LWE
problem.

As our �rst purpose is to work on privacy-preserving cryptographic protocols, one
option can be to use or to transform those signatures to �t our needs.

6.2 Signature Schemes with E�cient Protocols
To be meaningful in privacy-preserving cryptography, signatures have to interact with
other cryptographic building blocks. For these signatures to be meaningful, it is crucial
to be able to prove relations between a message and its signature. Many solutions
exist, for instance, in the pairing setting there are the so-called structure-preserving
signatures [AFG+10], and Camenisch and Lysyanskaya [CL01] formalized signature
with e�cient protocols. This primitive is a signature scheme empowered with two
companion protocols allowing: (i) A user to obtain a signature on a committed value;
(ii) To prove in a zero-knowledge manner the possession of a message-signature pair.
This building block basically captures most of the usage where a signature is needed
for in privacy-preserving cryptography and this is supported by several applications
in privacy-preserving cryptography, as in e-cash [Cha82a], group signatures [CVH91]
and anonymous credentials [Cha85].

More formally, a signature with e�cient protocols is a triple of PPT algorithms
(Keygen,Sign,Verify) which goes along with two companion (interactive) protocols
(Issue↔ Obtain,Prove) that respectively allow obtaining a signature on a committed
message, and proving the knowledge of a message-signature pair in a zero-knowledge
fashion.

A list of signature schemes is given in Table 1 and some of them are detailed in the
following sections.

6.2.1 Gentry-Peikert-Vaikuntanathan Signature Scheme

Gentry, Peikert and Vaikuntanathan introduced in [GPV08] a lattice-based signature
scheme in the random oracle model, which is fairly e�cient and serves as a basis
for the other lattice-based signature schemes. This construction is presented in this
section.

Keygen(1λ): Given a security parameter λ, this algorithm selects parameters
n,m and q ∈ N as well as a hash function H : {0, 1}? → Znq . Then it runs
TrapGen(1n, 1m, q) to obtain A ∈ Zn×mq and a short basis TA of Λ⊥q (A) with
a Gaussian parameter σ that de�nes the bound B = Ω(σ

√
n). Finally, it sets

PK := (A, H) and SK := TA.
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Scheme Pub key Secret key Signature SIS
R1×k
q mat. Rk×kq mat. Rkq vec. param β

[LM08] 1 1 log n Ω̃(n2)

[CHKP10] n n n Ω̃(n3/2)

[Boy10, MP12] n n 1 Ω̃(n7/2), Ω̃(n5/2)

[BHJ+15] 1 1 d Ω̃(n5/2)

[DM14] d 1 1 Ω̃(n7/2)

[AS15] 1 1 1 Ω̃(d2d · n11/2)

The comparison is made in the ring setting as some of the above schemes ([LM08,
DM14]) have no realization in the general lattice setting. For schemes using the con�ned
guessing technique in their security proof, d is a value satisfying 2Q2/ε < 2bc

dc for
an arbitrary constant c > 1 (which controls the trade-o� between public key size and
the reduction loss).

Table 1: Comparison table between standard model lattice-based signature schemes in
the ring setting

Sign
(
SK,Msg

)
: Given a secret key SK parsed as TA and a message Msg ∈

{0, 1}?, �rst check if m have already been signed. If so, then return the corre-
sponding signature Sig. Else, run the GPVSample algorithm using the trapdoor
TA to get a vector u ∈ Zm such that:

A · u = H(Msg) mod q

Output the signature sig := u.

Verify
(
PK,Msg, sig

)
: To verify a signature sig ∈ Zm on a message Msg, this

algorithm accepts if and only if ‖sig‖ ≤ B and A · u = H(Msg) mod q.

6.2.2 Boyen’s Lattice-Based Signature Scheme

We �rst recall a signature scheme proposed by Boyen [Boy10], which was used as a
building block for several group signatures. In this section, we present the improved
variant due to Micciancio and Peikert [MP12].

Keygen(1λ, 1L): On input of a security parameter λ > 0 and a message length
` = O(λ), choose n = O(λ), a prime modulus q = poly(λ), a dimension
m > 2ndlog qe; and parameters σ = Ω(

√
`n log q log n). De�ne the message

space asM = {0, 1}`.

1. RunTrapGen(1n, 1m, q) to getA ∈ Zn×mq and a short basisTA of Λ⊥q (A).

This basis allows computing short vectors in Λ⊥q (A) with a Gaussian
parameter σ. Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).

2. Choose a random vector u←↩ U(Znq ).

The private signing key consists of SK := TA while the public key is comprised
of PK :=

(
A, {Aj}`j=0,u

)
.

Sign
(
SK,Msg

)
: To sign a message Msg = Msg[1] . . .Msg[`] ∈ {0, 1}`,
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1. Compute a short basis TMsg ∈ Z2m×2m for the lattice Λ⊥q (AMsg), where

AMsg = [A | A0 +
∑̀
j=1

Msg[j] ·Aj ] ∈ Zn×2m
q . (7)

2. Using the delegated basis TMsg ∈ Z2m×2m, sample a vector v ∈ Z2m in
DΛu

q (AMsg),σ .

Output the signature sig = v ∈ Z2m.

Verify
(
PK,Msg, sig

)
: Given a message Msg ∈ {0, 1}` and a purported signature

sig = v ∈ Z2m, compute the matrix AMsg ∈ Zn×2m
q as per (7). Then, return 1

if ‖v‖ < σ
√

2m and

AMsg · v = u mod q. (8)

The scheme initially proposed by Boyen [Boy10] is identical to the above construc-
tion with two di�erences. First, the vector u ∈ Znq was initially chosen to be the zero
vector u = 0n. However, choosing u 6= 0n has the advantage of making the scheme
strongly unforgeable (whereas, in the original system [Boy10], any valid signature
v ∈ Z2m allows publicly computing −v ∈ Z2m, which is also a valid signature on
the same message). The second di�erence is that, in [Boy10], messages were initially
encoded as Msg ∈ {−1, 1}` instead of Msg ∈ {0, 1}`.

Micciancio and Peikert [MP12] proved that the above variant of Boyen’s signature
is unforgeable under adaptive chosen-message attacks if the SISn,m,q,β′ problem is
hard, for a SIS parameter β′ = Ω̃(n5/2).

The main disadvantage of Boyen’s signature is its large public key, which has to
contain O(λ) matrices in Zn×mq . Böhl et al. [BHJ+15] described a variant that only
requires a constant number of matrices in the public key at the expense of increasing
the signature length: in [BHJ+15], each signature contains O(log λ) vectors. Using
ideal lattices, Ducas and Micciancio [DM14] decreased the signature length to O(1)
vectors while retaining relatively short public keys comprised of a logarithmic number
of vectors containing ring elements. Alperin-Sheri� [AS15] subsequently showed how
to simultaneously obtain signatures made of O(1) vectors and public keys containing
O(1) matrices. However, the security proof of [AS15] requires a stronger SISn,m,q,β
assumption, where β = Ω̃(d2d ·n5.5), where d = log n. Katsumata and Yamada [KY16]
described a signature scheme with shorter public keys and proved it secure under
the ring-SIS assumption in the standard model. Subsequently, Yamada gave a similar
construction [Yam17] using standard lattices. He notably described signature schemes
based on the SIS assumption where each signature consists of one vector and public
keys only contain O(log2 λ) matrices.

The signature schemes [BHJ+15, AS15] do not appear to interact well with existing
zero-knowledge proof systems in the lattice setting. Ling et al. [LNWX18] showed
how to prove knowledge of a Ducas-Micciancio signature [DM14] using Stern-like
protocols. One of the constructions proposed by Yamada [Yam17] may be compatible
with Stern-like zero-knowledge proofs depending on which error correcting code is
used to encode the message in the construction of [Yam17].
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6.2.3 Ducas-Micciancio ring-based signature scheme

In this section, we recall the Micciancio-Ducas [DM14] signature scheme based on
ideal lattices. The notations are similar to those of Section 3.

Similarly, to the general lattice setting as reminded in Lemma 2.2, there is a PPT
algorithm TrapGenR [MP12] that takes as input an integer w, a tag H ∈ Rq and a
parameter s > ω(

√
lnnw) and outputs a matrix A ∈ R1×k

q along with a trapdoor
R ∈ Rw×kq , such that its spectral norm s1(R) := supx ‖A/x‖/‖x‖ = s · O(

√
w +√

k + ω(
√

log n)), for it. This algorithm is usually accompanied by a PPT algorithm
SamplePre which is similar to the GPVSample algorithm from Lemma 2.1. Namely,
SamplePre takes as input a matrix A ∈ R1×(w+k)

q , a syndrome u ∈ Rq , a trapdoor
R ∈ Rw×kq and an invertible tag H ∈ Rq and a parameter s > ω(

√
log n) · s1(R) and

outputs a sample statistically close to DΛ⊥u (A),s.

Keygen(1λ): On input of a security parameter λ > 0, select an integer n = O(λ)
which is a power of 2 and a modulus q assumed to be a power of 3, which de�nes
the ring Rq = Zq[X]/〈Xn + 1〉 (as n is a power of two, Xn + 1 coincide with
Φ2n(X)). Also select w = 2dlog2 qe + 2, m = w + k, s = n3/2ω(log n)3/2,
d = log n, σ = ω(

√
log n) and a collection of tags. Then:

1. Run TrapGenR(w, I, σ) to get A ∈ R1×k
q and a trapdoor R ∈ Rw×kq .

This trapdoor allows computing short vectors in Λ⊥u (A) with a Gaussian
parameterσ. Next choose d+2 matricesA0, . . . ,Ad,U ∈ R1×k

q uniformly
at random.

2. Choose a random element v←↩ U(Rq).

The private signing key consists of SK := R while the public key is comprised
of PK :=

(
A, {Aj}dj=0,U,v

)
. This public key implicitly de�nes a collection

of matrices Aτ = [A | A0 +
∑d
i=1 τi ·Ai] indexed by the tags τ ∈ T .

Sign
(
SK,Msg

)
: To sign a message Msg ∈ {0, 1}nk ( Rkq , �rst parse the message

as a vector of Rkq splitting the nk bits into k binary polynomials.

1. Sample a uniformly random tag τ ←↩ U(T ) and compute a matrix Aτ and
the ring element uMsg = U ·Msg + v.

2. With trapdoor R, sample a short vector s← SamplePre(Aτ ,uMsg,R, σ).

Output the signature sig = (τ, s) ∈ T × Zk .

Verify
(
PK,Msg, sig

)
: Given a message Msg ∈ {0, 1}nk and a signature sig =

(τ, s) ∈ T × Zk, compute the matrix Aτ ∈ R2×k
q and the ring element uMsg.

Then, return 1 if and only if ‖s‖ < σ
√
nm and

Aτ · s = uMsg. (9)

6.2.4 The LLMNW Signature Scheme

We now describe a signature scheme proposed by Libert, Ling, Mouhartem, Nguyen
and Wang [LLM+16a] who extended the Böhl et al. signature [BHJ+15] in order to
sign messages comprised of multiple blocks while keeping the scheme compatible
with zero-knowledge proofs.

PROMETHEUS-WP4-D4.1.pdf Page 23/44



PROMETHEUS 780701 — D4.1: Survey of existing building blocks for practical
advanced protocols (v1.0)

Keygen(1λ, 1Nb): Given a security parameter λ > 0 and the number of blocks
Nb = poly(λ), choose n = O(λ), a prime modulus q = Õ(N · n4), a di-
mension m = 2ndlog qe; an integer ` = poly(n) and Gaussian parameters
σ = Ω(

√
n log q log n). De�ne the message space asM = ({0, 1}mI )Nb .

1. RunTrapGen(1n, 1m, q) to getA ∈ Zn×mq and a short basisTA of Λ⊥q (A).

This basis allows computing short vectors in Λ⊥q (A) with a Gaussian
parameter σ. Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).

2. Choose random D←↩ U(Zn×m/2q ), D0 ←↩ U(Zn×mq ),Dj ←↩ U(Zn×mIq )
for j ∈ {1, . . . , Nb}, as well as a random vector u←↩ U(Znq ).

The private signing key consists of SK := TA while the public key is comprised
of PK :=

(
A, {Aj}`j=0,D, {Dk}Nbk=0,u

)
.

Sign
(
SK,Msg

)
: To sign an Nb-block Msg = (m1, . . . ,mNb) ∈ ({0, 1}mI )Nb ,

1. Choose a random string τ ←↩ U({0, 1}`). Using SK := TA, compute a
short basis Tτ ∈ Z2m×2m for the lattice Λ⊥q (Aτ ), where

Aτ = [A | A0 +
∑̀
j=1

τ [j]Aj ] ∈ Zn×2m
q . (10)

2. Sample r←↩ DZm,σ . Compute the vector cM ∈ Znq as a chameleon hash
of (m1, . . . ,mNb). Namely, compute cM = D0 · r+

∑Nb
k=1 Dk ·mk ∈ Znq ,

which is used to de�ne uM = u + D · vdecn,q−1(cM ) ∈ Znq . Using the
delegated basis Tτ ∈ Z2m×2m, sample a vector v ∈ Z2m in DΛ

uM
q (Aτ ),σ .

Output the signature sig = (τ,v, r) ∈ {0, 1}` × Z2m × Zm.

Verify
(
PK,Msg, sig

)
: Given Msg = (m1, . . . ,mNb) ∈ ({0, 1}mI )Nb and

sig = (τ,v, r) ∈ {0, 1}` × Z2m × Zm,

return 1 if ‖v‖ < σ
√

2m, ‖r‖ < σ
√
m and

Aτ · v = u + D · vdecn,q−1(D0 · r +

Nb∑
k=1

Dk ·mk) mod q. (11)

In [LLM+16a], the authors also presents two companion protocols for signing a
committed value and proving possession of a signature in the Camenisch and Lysyan-
skaya fashion [CL02]. These protocols are described below.

Companion Protocols for Signing a Committed Value and Proving Possession
of a Signature. We now show a two-party protocol whereby a user can interact
with the signer in order to obtain a signature on a committed message.

In order to prove that the scheme still guarantees unforgeability for obliviously
signed messages, we will assume that each message block mk ∈ {0, 1}2m is ob-
tained by encoding the actual message Mk = Mk[1] . . .Mk[m] ∈ {0, 1}m as mk =
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Encode(Mk) = (M̄k[1],Mk[1], . . . , M̄k[m],Mk[m]). Namely, each 0 (respectively
each 1) is encoded as a pair (1, 0) (resp. (0, 1)). The correctness of this encoding can
be e�ciently proved using Stern-like [Ste96] protocols.

To make this construction usable in the de�nitional framework of Camenisch et al.
[CKL+15], we assume common public parameters (i.e., a common reference string) and
encrypt all witnesses of which knowledge is being proved under a public key included
in the common reference string. The resulting ciphertexts thus serve as statistically
binding commitments to the witnesses. To enable this, the common public parameters
comprise public keys G0 ∈ Zn×`q , G1 ∈ Zn×2m

q for multi-bit variants of the dual
Regev cryptosystem [GPV08] and all parties are denied access to the underlying private
keys. The �exibility of Stern-like protocols allows us to prove that the content of a
perfectly hiding commitment cm is consistent with encrypted values.

Global-Setup: Let B =
√
nω(log n) and let χ be a B-bounded distribution. Let

p = σ · ω(
√
m) upper-bound entries of vectors sampled from the distribu-

tion DZ2m,σ . Generate two public keys for the dual Regev encryption scheme in
its multi-bit variant. These keys consist of a public random matrix B←↩ (Zn×mq )

and random matrices G0 = B · E0 ∈ Zn×`q , G1 = B · E1 ∈ Zn×2m
q , where

E0 ∈ Zm×` and E1 ∈ Zm×2m are short Gaussian matrices with columns
sampled from DZm,σ . These matrices will be used to encrypt integer vec-
tors of dimension ` and 2m, respectively. Finally, generate public parameters
CK := {Dk}Nk=0 consisting of uniformly random matrices Dk ←↩ (Z2n×2m

q )

for a statistically hiding commitment to vectors in ({0, 1}2m)N . Return public
parameters consisting of

par := {B ∈ Zn×mq ,G0 ∈ Zn×`q ,G1 ∈ Zn×2m
q , CK}.

Issue↔ Obtain : The signerS, who holds a key pairPK := {A, {Aj}`j=0, D, u},
SK := TA, interacts with the user U who has a message (m1, . . . ,mN ), in the
following interactive protocol.

1. U samples s′ ←↩ DZ2m,σ and computes cm = D0·s′+
∑N
k=1 Dk·mk ∈ Z2n

q

which is sent to S as a commitment to (m1, . . . ,mN ). In addition, U
encrypts {mk}Nk=1 and s′ under the dual-Regev public key (B,G1) by
computing for all k ∈ {1, . . . , N}:

ck = (ck,1, ck,2)

=
(
BT · sk + ek,1, G

T
1 · sk + ek,2 + mk · bq/2c

)
∈ Zmq × Z2m

q

(12)

for randomly chosen sk ←↩ χn, ek,1 ←↩ χm, ek,2 ←↩ χ2m, and

cs′ = (cs′,1, cs′,2)

=
(
BT · s0 + e0,1, G

T
1 · s0 + e0,2 + s′ · bq/pc

)
∈ Zmq × Z2m

q (13)

where s0 ←↩ χn, e0,1 ←↩ χm, e0,2 ←↩ χ2m. The ciphertexts {ck}Nk=1 and
cs′ are sent to S along with cm.
Then, U generates an interactive zero-knowledge argument to convince S
that cm is a commitment to (m1, . . . ,mN ) with the randomness s′ such
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that {mk}Nk=1 and s′ were honestly encrypted to {ck}Ni=1 and cs′ , as in (12)
and (13). The complete argument system is described in [LLM+16a], where
it is demonstrated that, together with other zero-knowledge protocols, it
can be derived from a Stern-like [Ste96] protocol.

2. If the argument of step 1 properly veri�es, S samples s′′ ←↩ DZ2m,σ0
and

computes a vector um = u + D · {0, 1}
(
cm + D0 · s′′

)
∈ Znq . Next, S

randomly picks τ ←↩ {0, 1}` and uses TA to compute a delegated basis
Tτ ∈ Z2m×2m for the matrix Aτ ∈ Zn×2m

q of (10). Using Tτ ∈ Z2m×2m,
S samples a short vector v ∈ Z2m in DuM

Λ⊥(Aτ ),σ
. It returns the vector

(τ,v, s′′) ∈ {0, 1}` × Z2m × Z2m to U .
3. U computes s = s′ + s′′ over Z and veri�es that

Aτ · v = u + D · {0, 1}
(
D0 · s +

N∑
k=1

Dk ·mk
)

mod q.

If so, it outputs (τ,v, s). Otherwise, it outputs ⊥.

Note that, if both parties faithfully run the protocol, the user obtains a valid signature
(τ,v, s) for which the distribution of s is DZ2m,σ1

, where σ1 =
√
σ2 + σ2

0 .

The following protocol allows proving possession of a message-signature pair.
Prove: On input of a signature (τ,v = (vT1 | vT2 )T , s) ∈ {0, 1}` × Z2m × Z2m

on the message (m1, . . . ,mN ), the user does the following.

1. Using (B,G0) and (B,G1) generate perfectly binding commitments to
τ ∈ {0, 1}`, {mk}Nk=1, v1,v2 ∈ Zm and s ∈ Z2m. Namely, compute

cτ = (cτ,1, cτ,2)

=
(
BT · sτ + eτ,1, G

T
0 · sτ + eτ,2 + τ · bq/2c

)
∈ Zmq × Z`q,

ck = (ck,1, ck,2)

=
(
BT · sk + ek,1, G

T
1 · sk + ek,2 + mk · bq/2c

)
∈ Zmq × Z2m

q

∀k ∈ {1, . . . , N}

where sτ , sk ←↩ χn, eτ,1, ek,1 ←↩ χm, eτ,2 ←↩ χ`, ek,2 ←↩ χ2m, as well as

cv = (cv,1, cv,2)

=
(
BT · sv + ev,1, G

T
1 · sv + ev,2 + v · bq/pc

)
∈ Zmq × Z2m

q

cs = (cs,1, cs,2)

=
(
BT · s0 + e0,1, G

T
1 · s0 + e0,2 + s · bq/pc

)
∈ Zmq × Z2m

q ,

where sv, s0 ←↩ χn, ev,1, e0,1 ←↩ χm, ev,2, e0,2 ←↩ χ2m.
2. Prove in zero-knowledge that cτ , cs, cv, {ck}Nk=1 encrypt a valid message-

signature pair. In [LLM+16a], the authors show that this involved zero-
knowledge protocol can be derived from the statistical zero-knowledge
argument of knowledge for a simpler, but more general relation. The proof
system can be made statistically ZK for a malicious veri�er using standard
techniques (assuming a common reference string, we can use [Dam00]).
In the random oracle model, it can be made non-interactive using the
Fiat-Shamir heuristic [FS87].
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The above construction is proven secure under the SISn,2m,q,β̂ assumption, where
β̂ = Nσ(2m)3/2 + 4σ1m

3/2, and the protocols are secure for obtaining a signature
on a committed message and proving possession of a valid message-signature pair.

Open problems. However, it remains some work to do to obtain the same �exibility
as pairing-based constructions for signature schemes with e�cient protocols. For
example, in the e-cash setting, or to design some group signature schemes, recent
constructions [PST17, CS18] are based on the randomization property of some pairing
based signature schemes [CL04, PS18b]. In the lattice-based setting, some components
of existing signatures have (Gaussian) distributions on integers, which makes it less
trivial to randomize than working modulo q. It is then currently necessary to perform
some �ooding, which implies a larger modulus and a�ects the e�ciency. It thus
remains an open problem to �nd such kind of e�cient construction in lattices.

6.3 Leveled Homomorphic Signatures
In ordinary signature schemes, a message-signature pair (M, sig) becomes invalid
if the message M is modi�ed by a single bit. In some applications [Des93, JMSW02],
it may be useful to tolerate speci�c public modi�cations on signed data. In network
coding, for example, it is useful to have linearly homomorphic signatures [BFKW09]
that enable linear transformations over authenticated data. Other applications (see
[ABC+12, ALP12, ALP13] and references therein) may require di�erent kinds of trans-
formations, such as extracting a substring of a signed message together with a valid
signature on it.

In the context of lattice-based cryptography, the �rst homomorphic signature
schemes were put forth by Boneh and Freeman [BF11b, BF11a]. Their �rst solution
[BF11b] was a linearly homomorphic scheme allowing signing messages in binary
�elds (while earlier constructions were limited to sign vectors over large prime �elds).
In [BF11a], they used ideal lattices to construct a scheme allowing evaluating small-
degree polynomials over signed data.

The construction of Boneh and Freeman [BF11a] was limited to the evaluation of
small-depth circuits (in fact, constant-degree polynomials). Gorbunov, Vaikuntanathan
and Wichs [GVW15b] showed how to remove the latter restriction. Using standard
lattices, they described a leveled fully homomorphic signature scheme, which makes
it possible to evaluate circuits of any (a priori bounded) polynomial depth using a
given evaluation key. Namely, given original signatures on some data set M , a cloud
server can publicly evaluate a circuit C(M) on the dataset and derive a signature
that authenticates the evaluation result C(M) (importantly, the veri�er is able to
verify the derived signature on C(M) without knowing the original dataset M ). In
particular, their scheme allows a cloud server to authenticate the evaluation of any
polynomial-depth circuit in order to convince a client that a given circuit was correctly
evaluated over the client’s data. The construction of [GVW15b] is actually based on the
ideas of the Gentry-Sahai-Waters homomorphic encryption scheme [GSW13], which
is recalled in Section 7.4.2.

Open problems. In this context, a major open problem left is to turn the scheme of
[GVW15b] into a truly fully homomorphic signature, where a given evaluation key
does not a priori restrict the depth of circuits that can be evaluated over signed data.
Another open problem is to base the security of (leveled) homomorphic signatures
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on lattice assumptions with smaller approximation factors without decreasing the
homomorphic capabilities of [GVW15b].

6.4 Blind Signatures
A blind signature scheme [Cha82b] permits a user to obtain from a signer a signature
on a message of his choice. The main property is that the signer cannot later recognize
the signature he has provided nor the message he has signed. This way, the user
publishing the message signature pair is anonymous among the set of users having
obtained a signature from this signer, this protecting this way his privacy.

More formally, a blind signature scheme consists of three algorithms (Keygen, Sign,
Verify) but in which Sign is now an interactive protocol between a signer S and a user
U . More precisely,

• Keygen outputs a private signing key sk and a public veri�cation key pk;

• Sign describes a joint execution between S (with signing key sk) and U (qith
private message m) and where the user �nally outputs a signature σ on the
message m;

• Verify is the veri�cation algorithm outputting 1 if σ is a valid signature on m
under pk and 0 otherwise.

Such signature scheme should provide blindness (the authority cannot make the link
between a (message,signature) pair and its transcript of the signing protocol) and
one-more unforgeability (a user cannot output more valid (message,signature) pairs
than the number of times he has interacted with the authority).

A variant of blind signatures, called partially blind signatures, has also been in-
troduced. In this variant, the two parties agree on a common and public information
added to the message during the blind signature process.

Relying on standard assumptions, there exists a lot of blind signature schemes,
e.g., taking as a basis RSA-based blind signatures or Schnorr-based blind signatures.
In [AO00], Abe and Okamoto have moreover proposed a generic transformation from
a basic blind signature scheme to a partially blind one. But the result necessitates to
increase the number of elements exchanged between the user and the authority to
include a common information. In the lattice-based cryptography setting, the literature
is much less rich. To the best of our knowledge, there exists one single proposal due
to Rückert [Rüc10], later improved in [ZJZ+18]. Finally, a partially blind variant has
been proposed in [TZW16].

Open problems. All existing lattice-based blind signature schemes include some
trigger restarts in their protocol, making the result quite unpractical. Moreover the
partially blind construction given in [TZW16] is adapted from [AO00], with the same
disadvantages.

7 Public-Key Encryption SchemesUsable in Privacy-
Preserving Protocols

The well-known purpose of an encryption scheme is to protect the con�dentiality of a
message to be transmitted to the legitimate reader. Formally speaking, it is composed
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of three PPT algorithms, namely, Keygen to generate the key pair, Enc to encrypt a
message under the public key of the legitimate receiver, and Dec which, on input the
corresponding private key outputs the initial message.

Several lattice-based encryption signature schemes have been proposed and we
will not review all of them in this document. Among them, nine schemes have
passed the �rst round of the NIST call for proposal on Key Encapsulation Message,
either based on the standard LWE problem (FrodoKEM), the module LWE problem
(CRYSTALS-KYBER), the module LWR problem (SABER), the ring LWE one (Round5,
LAC, NewHope), the NTRU lattices (NTRU, NTRU Prime) or some other problems
(Three Bears).

In the sequel, we focus on some scheme that are suitable in the privacy context
since they are suitable with zero-knowledge proofs. We then give some words about
advanced encryption tools such as identity-based encryption or homomorphic encryp-
tion.

7.1 Public-Key Encryption Schemes from the LWE Assumption
In this section, we �rst recall Regev’s public-key encryption scheme [Reg05] and
its dual variant suggested by Gentry, Peikert and Vaikuntanathan [GPV08]. Regev’s
cryptosystem and its dual variant can be combined with Stern-like zero-knowledge
proofs [Ste96] to construct privacy-preserving protocols. For example, they were used
in [LLNW16, LLM+16a] to build lattice-based group signatures in standard lattices.

We start by recalling the multi-bit variant of Regev suggested by Peikert, Vaikun-
tanathan and Waters [PVW08].

Keygen(1λ, 1L): On input of a security parameter λ and the desired message
length L, the key generation algorithm samples a uniformly random matrix
A←↩ U(Zn×mq ) with n ∈ poly(λ) and m ≥ 2ndlog qe. It chooses a uniformly
random matrix S ←↩ U(Zn×Lq ) and computes P = A> · S + E, where E ←↩
χm×L is sampled from a noise distribution χ. It de�nes the public key

pk :=
(
A ∈ Zn×mq , P ∈ Zm×Lq

)
and the corresponding secret key sk := S ∈ Zn×Lq .

Encrypt(pk, µ): In order to encrypt an L-bit message µ ∈ {0, 1}L, the encryption
algorithm samples a uniform vector r←↩ U({0, 1}m) and computes

c0 = A · r ∈ Znq ,

c1 = P> · r + µ · bq/2c ∈ ZLq .

Then, it outputs the ciphertext c = (c0, c1) ∈ Znq × ZLq .

Decrypt(sk, c): On input of c = (c0, c1) ∈ Znq × ZLq and sk := S ∈ Zn×Lq , do
the following:

1. Compute w = (w[1], . . . ,w[L])> = c1 − S>c0 ∈ ZLq .
2. For each i ∈ [L], if |w[i]| is closer to 0 than to b q2c, de�ne µi = 0. Other-

wise, set µi = 1.

Finally, output µ = µ1 . . . µL ∈ {0, 1}L.
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In the special case where L = 1 (i.e., for one-bit messages), the above scheme
is identical to Regev’s cryptosystem [Reg05]. We note that, in both variants, the
randomness r of the encryption algorithm is sampled uniformly in {0, 1}m. In a
variant suggested in [GPV08, Section 8.1], the vector r is sampled from a discrete
Gaussian distribution DZm,σ with a suitable standard deviation σ.

We now recall the dual Regev cryptosystem due to Gentry, Peikert and Vaikun-
tanathan [GPV08, Section 7.1]. As for the primal Regev case, we describe the “packed”
variant that allows encrypting L bits at once. The scheme is parameterized by a
Gaussian parameter σ > 0 and an error distribution χ.

Keygen(1λ, 1L): On input of a security parameter λ and the desired message
length L, the key generation algorithm samples a uniformly random matrix
A←↩ U(Zn×mq ) with n ∈ poly(λ) and m ≥ 2ndlog qe. It samples a small-norm
matrix V ←↩ (DZm,σ)L whose columns are independently sampled from the
discrete Gaussian distribution DZm,σ . Then, it computes U = A ·V ∈ Zn×Lq .
It de�nes the public key

pk :=
(
A ∈ Zn×mq , U ∈ Zn×Lq

)
and the corresponding secret key sk := V ∈ Zm×L.

Encrypt(pk, µ): In order to encrypt an L-bit message µ ∈ {0, 1}L, the encryption
algorithm samples a uniform vector s ←↩ U(Znq ) and noise terms e0 ←↩ χm,
e1 ←↩ χL. Then, it computes

c0 = A>s + e0 ∈ Zmq ,

c1 = U>s + µ · bq/2c+ e1 ∈ ZLq .

Then, it outputs the ciphertext c = (c0, c1) ∈ Zmq × ZLq .

Decrypt(sk, c): On input of c = (c0, c1) ∈ Zmq × ZLq and sk := V ∈ Zm×L, do
the following:

1. Compute w = (w[1], . . . ,w[L])> = c1 −V>c0 ∈ ZLq .
2. For each i ∈ [L], if |w[i]| is closer to 0 than to b q2c, de�ne µi = 0. Other-

wise, set µi = 1.

Output µ = µ1 . . . µL ∈ {0, 1}L.

7.2 Identity-Based Encryption
Unlike the primal Regev scheme, the dual Regev system of [GPV08] features a “dense”
public key space. Namely, the distribution of its public keys U is statistically close
to the uniform distribution over Zn×Lq . This property was used in [GPV08, Section
7.2] to build an identity-based encryption (IBE) scheme under the LWE assumption
(in the random oracle model). In order to construct an IBE system, the idea is to
involve a trusted authority that generates a statistically uniform matrix A ∈ Zn×mq

together with a trapdoor TA for the lattice Λ⊥(A). The authority can derive a secret
key skid for any identity id by computing Uid = H(id) ∈ Zn×Lq using a random
oracle H : {0, 1}∗ → Zn×Lq and using the trapdoor TA to sample a small-norm
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matrix skid = Vid ∈ Zm×L with Gaussian entries such that A ·Vid = Uid mod q.
Ciphertexts can then be encrypted under the identity id by computing

c0 = A> · s + e0 ∈ Zmq ,

c1 = U>id · s + µ · bq/2c+ e1 ∈ ZLq .

in such a way that the receiver can decrypt by computing w = c1 −V>id · c0.
Interestingly, the resulting IBE scheme is simultaneously semantically secure

and anonymous in that the ciphertext (c0, c1) computationally hides the message
µ ∈ {0, 1}L and the receiver’s identity id. In particular, it is computationally infeasible
to distinguish a ciphertext encrypted under the identity id from a random element of the
ciphertext space Zmq ×ZLq . This property is useful in the design of searchable public key
encryption (a.k.a. “public-key encryption with keyword search”, or PEKS) [BDCOP04].
In short, PEKS is a public-key encryption primitive where a keyword-speci�c trapdoor
tdW makes it possible to e�ciently recognize any encryption of a particular keyword
W without learning anything else. It was actually shown [BDCOP04, ABC+05] that
any anonymous IBE scheme can be used to generically construct a PEKS system. The
scheme of [GPV08] thus implies a PEKS scheme under the LWE assumption in the
random oracle model.

Later on, the dual Regev cryptosystem [GPV08] was used to construct anonymous
IBE schemes in the standard model (see, e.g., [CHKP10, ABB10, Yam17] and refer-
ences therein), which also imply PEKS constructions that provably rely on the LWE
assumption in the standard model.

7.3 Attribute-Based Encryption
The dual Regev system also enabled the realization of attribute-based encryption (ABE)
schemes for circuits [BGG+14]. Attribute-based encryption [SW05, GPSW06] is a
powerful generalization of identity-based encryption where ciphertexts are labeled
with an attribute set S and secret keys skP correspond to Boolean predicates P : the
ABE functionality allows the decryptor to obtain the plaintext µ as long as his secret
key skP corresponds to a predicate P such that P (S) = 1. Until 2013, all known ABE
schemes were limited to access policies consisting of special cases of NC1 circuits. This
situation changed when Gorbunov, Vaikuntanathan and Wee [GVW13] used the LWE
assumption (with subexponential approximation factors) to construct an ABE system
where policies may be arbitrary circuits. In 2014, Boneh et al. [BGG+14] described an
improved ABE scheme for all circuits, where the secret key size |skP | only depends on
the depth (rather than its size) of the circuit P . On the other hand, their scheme still
relies on a strong LWE assumption with subexponential approximation factor.

Open problems. It still remains an open problem to construct an ABE system for all
circuits under an LWE assumption with polynomial approximation factors. So far, the
only known lattice-based ABE schemes that rely on such a mild assumption [GV15]
are restricted to predicates P that can be described as branching programs of (a priori
bounded) polynomial length.

7.4 Homomorphic Encryption
A fully homomorphic encryption (FHE) scheme is an encryption scheme that enables
the evaluation of arbitrarily complex functions on encrypted data. In compact FHE
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schemes, the ciphertexts do not grow in size with each homomorphic operation. This
section summarizes the main achievements in the area since Gentry’s result [Gen09].

7.4.1 Brief Overview

The problem of designing compact FHE schemes was �rst suggested by Rivest, Adle-
man and Dertouzos [RAD78] in 1978. Still, the �rst plausible candidate was only
given in 2009 by Gentry [Gen09]. His scheme involved new and relatively untested
cryptographic assumptions in ideal lattices. Improved solutions with a better e�ciency
were suggested by Smart and Vercauteren [SV10] and by Stehlé and Steinfeld [SS10].

The main building block in Gentry’s construction was a so-called “somewhat”
homomorphic encryption scheme which enables the homomorphic evaluation of any
function whose polynomial representation has bounded degree. Ciphertexts actually
contain a noise that grows importantly during homomorphic multiplications, thus re-
stricting the scheme to the evaluation of low-degree polynomials. Gentry showed that,
as long as a leveled FHE scheme2 can homomorphically evaluate its own decryption
circuit, it can be bootstrapped (by publicizing encryptions of the secret key bits) into a
fully homomorphic system where arbitrary circuits may be evaluated using a �xed-size
evaluation key. In order to obtain a leveled scheme of which the decryption circuit �ts
within its homomorphic capabilities, Gentry used “squashing step” which decreases
the depth of the decryption circuit at the cost of making an additional very strong
hardness assumption: namely, the hardness of the (average-case) sparse subset-sum
problem. Brakerski and Vaikuntanathan [BV11b] subsequently gave a much simpler
somewhat homomorphic construction under the ring-LWE assumption.

In independent works, Gentry and Halevi [GH11] and Brakerski and Vaikun-
tanathan [BV11a] described di�erent techniques to avoid the squashing step and the
sparse subset sum assumption. Brakerski and Vaikuntanathan [BV11a] managed to
base the security of their leveled FHE scheme entirely on the hardness of the LWE
problem (for sub-exponential approximation factors) in standard (i.e., non-ideal) lat-
tices. Starting with the results of Brakerski, Gentry and Vaikuntanathan [BGV12],
several works using di�erent approaches [Bra12, GSW13] have reduced the required
factor of approximation to quasi-polynomial approximation factors.

Many FHE schemes make use of a relatively involved multiplication procedure.
In the LWE-based schemes of [BV11a, BGV12], the ciphertext c and secret key s are
n-dimensional vectors whose inner product 〈c, s〉 equals the plaintext µ up to some
small error term that is removed by rounding. Multiplication proceeds by tensoring
ciphertexts c1⊗c2 in such a way that a tensor product s⊗s of the secret key with itself
can be used to decrypt c1⊗ c2 to µ1 ·µ2. Since tensoring blows up the ciphertexts size
from O(n) to O(n2) elements, the evaluator must relinearize [BV11a] the ciphertext
via a procedure that takes the long ciphertext that encrypts µ1 · µ2 under the long key
s⊗s and compresses it into a normal-sized n-dimensional ciphertext encrypting µ1 ·µ2

under some n-dimensional key t. To relinearize, the evaluator multiplies the long
ciphertext vector by a special relinearization matrix, which is part of the homomorphic
evaluation key. While ingenious, the relinearization step is somewhat expensive as it
requires Ω(n3) operations, each of which has complexity polynomial in L. Also, each
relinearization matrix has size Ω(n3) and the public key must contain L of them to
evaluate circuits of multiplicative depth L. Gentry, Sahai and Waters [GSW13] (GSW)
described a scheme with a much simpler multiplication procedure which eliminates the

2A leveled FHE scheme is one that can evaluate Boolean circuits of bounded depth with an evaluation
key of linear size in the maximal depth.
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need for a relinearization step and does not require any dimension/modulus-switching.
In their scheme, each ciphertext is an n×m matrix and their multiplication algorithm
computes a product of two matrices. The Gentry-Sahai-Waters scheme turns out to
be quite powerful as it was used as a crucial building block in a number of advanced
cryptographic constructions (see, e.g., [BGG+14, BV15, GVW15a, GVW15b, Yam16,
MW16, BV16, BP16, KW17, Yam17, PS18a, BGG+18]). Since it is also the simplest
known FHE system to date, we recall its description in the next subsection.

7.4.2 The GSW FHE

This section recalls the leveled homomorphic encryption scheme of Gentry, Sahai and
Waters [GSW13] in its simpli�ed variant described in [ASP14]. The description makes
use of the “gadget matrix” introduced by Micciancio and Peikert [MP12].

Micciancio and Peikert [MP12] proved that, for any m ≥ ndlog qe, there exists an
e�ciently computable matrix G ∈ Zn×mq and an e�ciently computable deterministic
“short preimage” function G−1(·) with the following property: on input of a matrix
M ∈ Zn×m′q , for any integer m′ > 0, the function G−1(M) outputs a binary matrix
G−1(M) ∈ {0, 1}m×m′ such that GG−1(M) = M. Note that G−1(·) is not a matrix
itself but rather a function.

We can think of G as a special matrix with a “public trapdoor” that allows sampling
short integer vectors v ∈ Zm such that G · v = 0n. For example, by de�ning

G =
[
In ⊗ (1, 2, 4, . . . , 2dlog qe)> | 0n×dlog qe

]
∈ Zn×mq ,

where m = 2ndlog qe, we can de�ne G−1(·) to be the entry-wise binary decompo-
sition function whose outputs are padded with zeroes until they reach the desired
dimension.

Keygen(1λ, 1d): On input of a security parameter λ and a maximal circuit depth,
the key generation algorithm samples the following elements:

- A uniformly random matrix Ā ←↩ U(Z(n−1)×m
q ) with n ∈ poly(λ) and

m = 2ndlog qe;
- A uniformly random vector s←↩ U(Zn−1

q );
- A small-norm vector e←↩ χm, which is sampled from the error distribution
χ.

It de�nes the public key

pk := A =

(
Ā

s> · Ā + e>

)
∈ Zn×mq

and the corresponding secret key sk := t =

(
−s
1

)
∈ Znq .

Encrypt(pk, µ): In order to encrypt a bit µ ∈ {0, 1}, the encryption algorithm
samples a uniform matrix R←↩ U({0, 1}m×m) and computes

C = A ·R + µ ·G ∈ Zn×mq ,

where G ∈ Zn×mq is the gadget matrix of [MP12].
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Decrypt(sk,C): On input of a ciphertext C ∈ Zn×mq and sk := t ∈ Znq , do the
following:

1. De�ne w = (0, . . . , 0, bq/2c)> ∈ Znq and compute

v = C ·G−1(w) ∈ Znq .

2. If |t>v| is close to 0, output µ = 0. If |t>v| is close to bq/2c, output µ = 1.

Eval(pk,C1,C2, op): Given two ciphertexts C1,C2 ∈ Zn×mq and an operation
op ∈ {+,×} to be evaluated over C1 and C2, do the following:

- If op = “ + ”, output C+ := C1 + C2 ∈ Zn×mq .
- If op = “× ”, output C× := C1 ·G−1(C2).

If two fresh ciphertexts C1 = A ·R1 +µ1 ·G and C2 = A ·R2 +µ2 ·G encrypt
µ1 ∈ {0, 1} and µ2 ∈ {0, 1}, respectively, then

C× = C1 ·G−1(C2) = A ·
(
R1 ·G−1(C2) + µ1 ·R2

)
+ µ1 · µ2 ·G

= A ·R× + µ1 · µ2 ·G

is indeed an encryption of µ1 · µ2 ∈ {0, 1} with the small-norm matrix

R× = R1 ·G−1(C2) + µ1 ·R2. (14)

Unlike C×, the sum of two ciphertexts C+ = A · (R1 + R2) + (µ1 + µ2) ·G may
not be an encryption of a bit since we may have µ1 + µ2 = 2. However, it is not a
problem since we can still evaluate a circuit composed of NAND gates by computing

CNAND = G−C1 ·G−1(C2) = A(−R×) + (µ1 NAND µ2) ·G,

which allows evaluating any Boolean circuit of a priori bounded depth and still end
up with an encryption of a Boolean value. Using Gentry’s bootstrapping technique
[Gen09], the GSW scheme can be modi�ed to enable the evaluation of any Boolean
circuit with a given choice of public parameters.

As the matrix R× inevitably has larger entries than R1 and R2, the modulus q
should be large enough to maintain the property that evaluated ciphertexts correctly
decrypt with high probability. In its basic variant, the somewhat homomorphic scheme
thus requires q to be exponentially large in the depth d of the considered circuit.
Brakerski and Vaikuntanathan [BV14] suggested a technique to prevent the noise
matrix R× from growing too large. They observed from (14) that the magnitude of
R× can be minimized by evaluating “sequentialized” circuits, in such a way that R1

is always the noise matrix of a fresh GSW ciphertext. In particular, if the circuit to
be evaluated is a branching program of polynomial length L, the noise matrices only
increase by a factor L · poly(n). By combining this observation with Barrington’s
theorem [Bar86] and other ideas, Brakerski and Vaikuntanathan [BV14] showed how
to evaluate any NC1 circuit using a polynomial-size modulus q = poly(n). Since the
decryption circuit of the scheme is itself in NC1, Gentry’s bootstrapping theorem
[Gen09] could be applied in [BV14] to construct an FHE scheme with q = poly(n)
under lattice assumptions with polynomial approximation factors.
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7.5 Threshold Cryptosystems
In threshold cryptosystems, secret keys are broken into N shares s1, . . . , sN , each of
which is given to a di�erent server. Using its secret key share si, the i-th server can
locally compute a partial secret-key operation (e.g., a partial decryption or a partial
signature). A dedicated server can then gather at least t ≤ N correct partial results in
order to reconstruct the �nal result of the secret-key operation. In some applications,
it is desirable to have non-interactive threshold protocols where servers should be able
to generate their partial evaluations without interacting with one another.

The bene�t of threshold cryptography [DF89] is that setting t < N (a common
scenario is t = N/2−1, when an honest majority is assumed) allows for fault-tolerant
systems which can keep running when some server crashes. Second, the adversary is
forced to break into t servers to compromise the security of the whole scheme.

A typical application of threshold cryptosystems is the design of e-voting protocols.
They prevent individual shareholders from decrypting individual votes. At the same
time, a quorum of at least t-out-of-N trustees should be able to jointly decrypt the
�nal result of an election without a�ecting the privacy of individual votes.

Lattice-based threshold protocols were studied by Bendlin and Damgård back in
2010 [BD10]. They gave a threshold variant of Regev’s CPA-secure encryption scheme
and Myers et al. [MSs11] applied the technique to fully homomorphic encryption. N -
out-of N threshold FHE systems were used in the context of multiparty computation
protocols [AJLA+12, MW16] but they only considered the case t = N rather than
arbitrary thresholds. Xie et al. [XXZ11] put forth a chosen-ciphertext-secure threshold
cryptosystem using lossy trapdoor functions. Their scheme can be instantiated under
the LWE [PW08] but the size of ciphertexts is at least linear in the number of servers.
Bendlin et al. described threshold Gaussian sampling protocols [BKP13] which can be
used to realize threshold signatures and IBE schemes where the public key and the
size of the signatures are all independent of the number of servers. A limitation of
their schemes is that the servers can only carry out an a priori bounded number of
online non-interactive private key operations before they must perform an interactive
protocol.

Boneh et al. [BGGK17, BGG+18] showed how to generically compile crypto-
graphic functionalities into threshold functionalities using distributed FHE schemes as
a building block. In particular, they obtain non-interactive threshold signatures and
chosen-ciphertext-secure [RS91] public-key encryption schemes with non-interactive
threshold decryption protocols. As a consequence of relying on FHE, their construc-
tions require strong LWE assumptions with subexponential approximation factors.

Several other works considered threshold systems from lattice assumptions. In
the context of pseudorandom functions, Boneh et al. [BLMR13] obtained threshold
distributed PRFs from key-homomorphic PRFs [BLMR13, BP14], where the key sizes
are independent of the number of evaluators and the evaluation process is also non-
interactive. A recent work by Boneh et al. [BGG+18] described a generic method
allowing to thresholdize several cryptographic functionalities, including pseudorandom
functions, digital signatures and chosen-ciphertext-secure public-key encryption. They
also gave a t-out-of-N threshold decryption mechanism in the Gentry-Sahai-Waters
FHE.

Open problems. To our knowledge, for arbitrary thresholds 1 < t < N (the most
interesting case being t ≈ N/2), it remains an open problem to come up with non-
interactive threshold signatures, threshold cryptosystems or threshold PRFs under
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standard lattice assumptions with polynomial approximation factors.

8 Conclusion
In the context of cryptographic building blocks for practical advanced protocols, a
lot of work has already been done in the lattice setting, as shown in this document.
But it remains several important open problems to solve. Within WP4 of the project,
the purpose of PROMETHEUS is then to design and implement better lattice-based
signatures, encryption, commitment schemes and zero-knowledge proof systems that
can easily be combined altogether in higher-level protocols, and prove their security
even against side-channel attacks.
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