
Isochronous Gaussian Sampling:
From Inception to Implementation

With Applications to the Falcon Signature Scheme

James Howe1, Thomas Prest1, Thomas Ricosset2, and Mélissa Rossi2,3,4,5(B)

1 PQShield, Oxford, UK
{james.howe,thomas.prest}@pqshield.com

2 Thales, Gennevilliers, France
thomas.ricosset@thalesgroup.com

3 ANSSI, Paris, France
4 École normale supérieure, CNRS, PSL University, Paris, France

melissa.rossi@ens.fr
5 Inria, Paris, France

Abstract. Gaussian sampling over the integers is a crucial tool in
lattice-based cryptography, but has proven over the recent years to be
surprisingly challenging to perform in a generic, efficient and provable
secure manner. In this work, we present a modular framework for gen-
erating discrete Gaussians with arbitrary center and standard deviation.
Our framework is extremely simple, and it is precisely this simplicity
that allowed us to make it easy to implement, provably secure, portable,
efficient, and provably resistant against timing attacks. Our sampler is
a good candidate for any trapdoor sampling and it is actually the one
that has been recently implemented in the Falcon signature scheme. Our
second contribution aims at systematizing the detection of implementa-
tion errors in Gaussian samplers. We provide a statistical testing suite
for discrete Gaussians called SAGA (Statistically Acceptable GAussian).
In a nutshell, our two contributions take a step towards trustable and
robust Gaussian sampling real-world implementations.

Keywords: Lattice based cryptography · Gaussian sampling ·
Isochrony · Statistical verification tools

1 Introduction

Gaussian sampling over the integers is a central building block of lattice-based
cryptography, in theory as well as in practice. It is also notoriously difficult
to perform efficiently and securely, as illustrated by numerous side-channel
attacks exploiting BLISS’ Gaussian sampler [9,21,49,56]. For this reason, some
schemes limit or proscribe the use of Gaussians [6,36]. However, in some sit-
uations, Gaussians are unavoidable. The most prominent example is trapdoor
sampling [26,40,48]: performing it with other distributions is an open question,

c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 53–71, 2020.
https://doi.org/10.1007/978-3-030-44223-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44223-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-44223-1_4

54 J. Howe et al.

except in limited cases [37] which entail a growth O(
√

n) to O(n) of the out-
put, resulting in dwindling security levels. Given the countless applications of
trapdoor sampling (full-domain hash signatures [26,53], identity-based encryp-
tion (or IBE) [18,26], hierarchical IBE [1,11], etc.), it is important to come up
with Gaussian samplers over the integers which are not only efficient, but also
provably secure, resistant to timing attacks, and in general easy to deploy.

Our first contribution is to propose a Gaussian sampler over the integers with
all the properties which are expected of a sampler for widespread deployment.
It is simple and modular, making analysis and subsequent improvements easy.
It is efficient and portable, making it amenable to a variety of scenarios. Finally,
we formally prove its security and resistance against timing attacks. We detail
below different aspects of our sampler:

– Simplicity and Modularity. At a high level, our framework only requires
two ingredients (a base sampler and a rejection sampler) and combines them
in a simple and black-box way. Not only does it make the description of our
sampler modular (as one can replace any of the ingredients), this simplicity
and modularity also infuses all aspects of its analysis.

– Genericity. Our sampler is fully generic as it works with arbitrary center μ
and standard deviation σ. In addition, it does not incur hidden precompu-
tation costs: given a fixed base sampler of parameter σmax, our framework
allows to sample from DZ,σ,μ for any ηε(Zn) ≤ σ ≤ σmax. In comparison, [42]
implicity requires a different base sampler for each different value of σ; this
limits its applicability for use cases such as Falcon [53], which has up to 2048
different σ’s, all computed at key generation.

– Efficiency and Portability. Our sampler is instantiated with competitive
parameters which make it very efficient in time and memory usage. For
σmax = 1.8205 and SHAKE256 used as PRNG, our sampler uses only 512
bytes of memory and achieved 1,848,428 samples per second on an Intel i7-
6500U clocked at 2.5 GHz. Moreover, our sampler can be instantiated in a
way that uses only integer operations, making it highly portable.

– Provable Security. A security analysis based on the statistical distance
would either provide very weak security guarantees or require to increase
the running time by an order of magnitude. We instead rely on the Rényi
divergence, a tool which in the recent years has allowed dramatic efficiency
gains for lattice-based schemes [3,52]. We carefully selected our parameters
as to make them as amenable to a Rényi divergence-based analysis.

– Isochrony. We formally show that our sampler is isochronous: its running
time is independent of the inputs σ, μ and of the output z. Isochrony is
weaker than being constant-time, but it nevertheless suffices to argue secu-
rity against timing attacks. Interestingly, our proof of isochrony relies on
techniques and notions that are common in lattice-based cryptography: the
smoothing parameter, the Rényi divergence, etc. In particular, the isochrony
of our sampler is implied by parameters dictated by the current state of the
art for black-box security of lattice-based schemes.

Isochronous Gaussian Sampling 55

One second contribution stems from a simple observation: implementations of
otherwise perfectly secure schemes have failed in spectacular ways by introduc-
ing weaknesses, a common one being randomness failure: this is epitomized by
nonce reuses in ECDSA, leading to jailbreaking Sony PS3 consoles1 and exposing
Bitcoin wallets [8]. The post-quantum community is aware of this point of failure
but does not seem to have converged on a systematic way to mitigate it [46]. Ran-
domness failures have been manually discovered and fixed in implementations of
Dilithium [45], Falcon [47,51] and other schemes; the case of Falcon is particu-
larly relevant to us because the sampler implemented was the one described in
this document!

Our second contribution is a first step at systematically detecting such fail-
ures: we propose a statistical test suite called SAGA for validating discrete Gaus-
sians. This test suite can check univariate samples; we therefore use it to validate
our own implementation of our sampler. In addition, our test suite can check mul-
tivariate Gaussians as well; this enables validation at a higher level: if the base
sampler over the integers is validated, but the output of the high-level scheme
does not behave like a multivariate Gaussian even though the theory predicts it
should, then this is indicative of an implementation mistake somewhere else in
the implementation (or, at the worst case, that the theory is deficient). We illus-
trate that with a simple example of a (purportedly) deficient implementation of
Falcon [53], however it can be used for any other scheme sampling multivariate
discrete Gaussians, including but not limited to [5,12,18,25,40]. The test suite
is publicly available at: https://github.com/PQShield/SAGA.

2 Related Works

In the recent years, there has been a surge of works related to Gaussian sampling
over the integers. Building on convolution techniques from [42,50] proposed an
arbitrary-center Gaussian sampler base, as well as a statistical tool (the max-log
distance) to analyse it. [3,39,52] revisited classical techniques with the Rényi
divergence. Polynomial-based methods were further studied by [4,52,60]. The
use of rounded Gaussians was proposed in [31]. Knuth-Yao’s DDG trees have
been considered in [20,32].2 Lazy floating-point precision was studied in [16,19].
We note that techniques dating back to von Neumann [57] allow to generate
(continuous) Gaussians elegantly using finite automata [2,24,33]. While these
have been considered in the context of lattice-based cryptography [15,17] they
are also notoriously hard to make isochronous. Finally, [58] studied previously
cited techniques with the goal of minimizing their relative error.

1 https://media.ccc.de/v/27c3-4087-en-console hacking 2010.
2 We note that one could use [32] to speed up our base sampler; however this results in

a huge code size (more than 50 kB). Since the running time of the base sampler was
not a bottleneck for the usecase we considered, we instead relied on a straightforward,
slightly less efficient CDT-based method.

https://github.com/PQShield/SAGA
https://media.ccc.de/v/27c3-4087-en-console_hacking_2010

56 J. Howe et al.

3 Preliminaries

3.1 Gaussians

For σ, μ ∈ R with σ > 0, we call Gaussian function of parameters σ, μ and
denote by ρσ,μ the function defined over R as ρσ,μ(x) = exp

(
− (x−μ)2

2σ2

)
. Note

that when μ = 0 we omit it in index notation, e.g. ρσ(x) = ρσ,0(x). The param-
eter σ (resp. μ) is often called the standard deviation (resp. center) of the Gaus-
sian. In addition, for any countable set S � R we abusively denote by ρσ,μ(S)
the sum

∑
z∈S ρσ,μ(z). When

∑
z∈S ρσ,μ(z) is finite, we denote by DS,σ,μ and

call Gaussian distribution of parameters σ, μ the distribution over S defined by
DS,σ,μ(z) = ρσ,μ(z)/ρσ,μ(S). Here too, when μ = 0 we omit it in index nota-
tion, e.g. DS,σ,μ(z) = DS,σ(z). We use the notation Bp to denote the Bernoulli
distribution of parameter p.

3.2 Renyi Divergence

We recall the definition of the Rényi divergence, which we will use massively in
our security proofs.

Definition 1 (Rényi Divergence). Let P, Q be two distributions such that
Supp(P) ⊆ Supp(Q). For a ∈ (1,+∞), we define the Rényi divergence of order
a by

Ra(P,Q) =

⎛
⎝ ∑

x∈Supp(P)

P(x)a

Q(x)a−1

⎞
⎠

1
a−1

.

In addition, we define the Rényi divergence of order +∞ by

R∞(P,Q) = max
x∈Supp(P)

P(x)
Q(x)

.

The Rényi divergence is not a distance; for example, it is neither symmetric
nor does it verify the triangle inequality, which makes it less convenient than the
statistical distance. On the other hand, it does verify cryptographically useful
properties, including a few listed below.

Lemma 1 ([3]). For two distributions P,Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies these properties:

– Data processing inequality. For any function f , Ra(f(P), f(Q)) ≤
Ra(P,Q).

– Multiplicativity. Ra(
∏

i Pi,
∏

i Qi) =
∏

i Ra(Pi,Qi).
– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)
a

a−1 /Ra(P,Q), (1)
Q(E) ≥ P(E)/R∞(P,Q). (2)

Isochronous Gaussian Sampling 57

The following lemma shows that a bound of δ on the relative error between
two distributions implies a bound O(aδ2) on the log of the Rényi divergence (as
opposed to a bound O(δ) on the statistical distance).

Lemma 2 (Lemma 3 of [52]). Let P,Q be two distributions of same support
Ω. Suppose that the relative error between P and Q is bounded: ∃δ > 0 such that∣∣P
Q − 1

∣∣ ≤ δ over Ω. Then, for a ∈ (1,+∞):

Ra(P,Q) ≤
(

1 +
a(a − 1)δ2

2(1 − δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2

3.3 Smoothing Parameter

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the smallest value
σ > 0 such that ρ 1

σ
√

2π
(Λ�\{0}) ≤ ε, where Λ� denotes the dual of Λ. In the

literature, some definitions of the smoothing parameter scale our definition by a
factor

√
2π. It is shown in [41] that ηε(Zn) ≤ η+

ε (Zn), where:

η+
ε (Zn) =

1
π

√
1
2

log
(

2n

(
1 +

1
ε

))
. (3)

3.4 Isochronous Algorithms

We now give a semi-formal definition of isochronous algorithms.

Definition 2. Let A be a (probabilistic or deterministic) algorithm with set of
input variables I, set of output variables O, and let S ⊆ I ∪ O be the set of
sensitive variables. We say that A is perfectly isochronous with respect to S if
its running time is independent of any variable in S.

In addition, we say that A statistically isochronous with respect to S if there
exists a distribution D independent of all the variables in S, such that the running
time of A is statistically close (for a clearly identified divergence) to D.

We note that we can define a notion of computationally isochronous algo-
rithm. For such an algorithm, it is computationally it hard to recover the sensi-
tive variables even given the distribution of the running time of the algorithm.
We can even come up with a contrived example of such an algorithm: let A()
select in an isochronous manner an x uniformly in a space of min-entropy ≥ λ,
compute y = H(x) and wait a time y before outputting x. One can show that
recovering x given the running time of A is hard if H is a one-way function.

4 The Sampler

In this section, we describe our new sampler with arbitrary standard devia-
tion and center. The main assumption of our setting is to consider that all

58 J. Howe et al.

Algorithm 1. SamplerZ(σ, μ)
Require: μ ∈ [0, 1], σ ≤ σmax

Ensure: z ∼ DZ,σ,μ

1: while True do
2: z0 ← BaseSampler()
3: b ← {0, 1} uniformly
4: z := (2b − 1) · z0 + b

5: x :=
z2
0

2σ2
max

− (z−μ)2

2σ2

6: if AcceptSample(σ, x) then
7: return z

Algorithm 2. AcceptSample(σ, x)
Require: σmin ≤ σ ≤ σmax, x < 0
Ensure: b ∼ B σmin

σ
·exp(x)

1: p := σmin
σ

· ApproxExp(x)
Lazy Bernoulli sampling
2: i := 1
3: do
4: i := i · 28

5: u ← �0, 28 − 1� uniformly
6: v := �p · i� & 0xff

7: while u = v
8: return (u < v)

the standard deviations are bounded and that the center is in [0, 1]. In other
words, denoting the upper bound and lower bound on the standard deviation as
σmax > σmin > 0, we present an algorithm that samples the distribution DZ,σ,μ

for any μ ∈ [0, 1] and σmin ≤ σ ≤ σmax.
Our sampling algorithm is called SamplerZ and is described in Algorithm1.

We denote by BaseSampler an algorithm that samples an element with the fixed
half Gaussian distribution DZ+,σmax . The first step consists in using BaseSampler.
The obtained z0 sample is then transformed into z := (2b − 1) · z0 + b where b
is a bit drawn uniformly in {0, 1}. Let us denote by BGσmax the distribution of
z. The distribution of z is a discrete bimodal half-Gaussian of centers 0 and 1.
More formally,

BGσmax(z) =
1
2

{
DZ+,σmax(−z) if z ≤ 0
DZ+,σmax(z − 1) if z ≥ 1.

(4)

Then, to recover the desired distribution DZ,σ,μ for the inputs (σ, μ), one
might want to apply the classical rejection sampling technique applied to lattice
based schemes [35] and accept z with probability

DZ,σ,μ(z)
BGσmax(z)

=

⎧
⎨
⎩

exp
(

z2

2σ2
max

− (z−μ)2

2σ2

)
if z ≤ 0

exp
(

(z−1)2

2σ2
max

− (z−μ)2

2σ2

)
if z ≥ 1

= exp
(

z20
2σ2

max

− (z − μ)2

2σ2

)
.

The element inside the exp is computed in step 5. Next, we also introduce
an algorithm denoted AcceptSample. The latter performs the rejection sampling
(Algorithm 2): using ApproxExp an algorithm that returns exp(·), it returns a
Bernoulli sample with the according probability. Actually, for isochrony matters,
detailed in Sect. 6, the latter acceptance probability is rescaled by a factor σmin

σ .
As z follows the BGσmax distribution, after the rejection sampling, the final
distribution of SamplerZ(σ, μ) is then proportional to σmin

σ ·DZ,σ,μ which is, after

Isochronous Gaussian Sampling 59

Table 1. Number of calls to SamplerZ, BaseSampler and ApproxExp

Notation Value for Falcon

Calls to sign (as per NIST) Qs ≤ 264

Calls to SamplerZ QsamplZ Qs · 2 · n ≤ 275

Calls to BaseSampler Qbs Niter · QsamplZ ≤ 276

Calls to ApproxExp Qexp Qbs ≤ 276

normalization exactly equal to DZ,σ,μ. Thus, with this construction, one can
derive the following proposition.

Proposition 1 (Correctness). Assume that all the uniform distributions are
perfect and that BaseSampler = DZ+,σmax and ApproxExp = exp, then the con-
struction of SamplerZ (in Algorithms 1 and 2) is such that SamplerZ(σ, μ) =
DZ,σ,μ.

In practical implementations, one cannot achieve perfect distributions. Only
achieving BaseSampler ≈ DZ+,σmax and ApproxExp ≈ exp is possible. Section 6
proves that, under certain conditions on BaseSampler and ApproxExp and on the
number of sampling queries, the final distribution remains indistinguishable from
DZ,σ,μ.

5 Proof of Security

Table 1 gives the notations for the number of calls to SamplerZ, BaseSampler
and ApproxExp and the considered values when the sampler is instanciated for
Falcon. Due to the rejection sampling in step 6, there will be a (potentially
infinite) number of iterations of the while loop. We will show later in Lemma 3,
that the number of iterations follows a geometric law of parameter ≈ σmin·√2π

2·ρσmax (Z
+) .

We note Niter a heuristic considered maximum number of iterations. By a central
limit argument, Niter will only be marginally higher than the expected number of
iterations. To instantiate the values Qexp = Qbs = Niter ·QsamplZ for the example
of Falcon, we take Niter = 2. In fact, σmin·√2π

2·ρσmax (Z
+) ≤ 2 for Falcon’s parameters.

The following Theorem estimates the security of SamplerZ, it is independant
of the chosen values for the number of calls.

Theorem 1 (Security of SamplerZ). Let λIdeal (resp. λReal) be the security
parameter of an implementation using the perfect distribution DZ,σ,μ (resp. the
real distribution SamplerZ). If both following conditions are respected, at most
two bits of security are lost. In other words, Δλ := λIdeal − λReal ≤ 2.

∀x < 0,

∣∣∣∣
ApproxExp(x) − exp(x)

exp(x)

∣∣∣∣ ≤
√

2 · λReal

2 · (2 · λReal + 1)2 · Qexp

(Cond. (1))

R2·λReal+1

(
BaseSampler,DZ+,σmax

) ≤ 1 +
1

4 · Qbs
(Cond. (2))

60 J. Howe et al.

The proof of this Theorem is given in the full version of our paper [30].
To get concrete numerical values, we assume that 256 bits are claimed on the

original scheme, thus 254 bits of security are claimed for the real implementation.
Then for an implementation of Falcon, the numerical values are

√
2 · λReal

2 · (2 · λReal + 1)2 · Qexp

≈ 2−43 and
1

4 · Qbs
≈ 2−78.

5.1 Instanciating the ApproxExp

To achieve condition (1) with ApproxExp, we use a polynomial approximation of
the exponential on [− ln(2), 0]. In fact, one can reduce the parameter x modulo
ln(2) such that x = −r − s ln(2). Compute the exponential remains to compute
exp(x) = 2−s exp(−r). Noting that s ≥ 64 happen very rarely, thus s can be
saturated at 63 to avoid overflow without loss in precision.

We use the polynomial approximation tool provided in GALACTICS [4].
This tool generates polynomial approximations that allow a computation in fixed
precision with chosen size of coefficients and degree. As an example, for 32-bit
coefficients and a degree 10, we obtain a polynomial Pgal(x) :=

∑10
i=0 ai ·xi, with:

◦ a0 = 1;
◦ a1 = 1;
◦ a2 = 2−1;
◦ a3 = 2863311530 · 2−34;
◦ a4 = 2863311481 · 2−36;
◦ a5 = 2290647631 · 2−38;

◦ a6 = 3054141714 · 2−41;
◦ a7 = 3489252544 · 2−44;
◦ a8 = 3473028713 · 2−47;
◦ a9 = 2952269371 · 2−50;
◦ a10 = 3466184740 · 2−54.

For any x ∈ [− ln(2), 0], Pgal verifies
∣∣∣Pgal(x)−exp(x)

exp(x)

∣∣∣ ≤ 2−47, which is suffi-
cient to verify condition (1) for Falcon implementation.

Flexibility on the Implementation of the Polynomial. Depending on the
platform and the requirement for the signature, one can adapt the polynomial
to fit their constraints. For example, if one wants to minimize the number of
multiplications, implementing the polynomial with Horner’s form is the best
option. The polynomial is written in the following form:

Pgal(x) = a0+x(a1+x(a2+x(a3+x(a4+x(a5+x(a6+x(a7+x(a8+x(a9+xa10))))))))).

Evaluating Pgal is then done serially as follows:

y ← a10
y ← a9 + y × x

...
y ← a1 + y × x
y ← a0 + y × x

Isochronous Gaussian Sampling 61

Some architectures with small register sizes may be faster if the size of the
coefficients of the polynomial is minimized, thus GALACTICS tool can be used
to generate a polynomial with smaller coefficients. For example, we propose an
alternative polynomial approximation on [0, ln(2)

64] with 25 bits coefficients.

P = 1 + x + 2−1x2 + 699051 · 2−22 · x3 + 699299 · 2−24 · x4 + 605552 · 2−26 · x5

To recover the polynomial approximation on [0, ln(2)], we compute P (x
64)64.

Some architectures enjoy some level of parallelism, in which case it is desirable
to minimise the depth of the circuit computing the polynomial3. Writing Pgal in
Estrin’s form [22] is helpful in this regard.

x2 ← x × x

x4 ← x2 × x2
Pgal(x) ← (x4 × x4) × ((a8 + a9 × x) + x2 × a10)

+ (((a0 + a1 × x) + x2 × (a2 + a3 × x)) + x4 × ((a4 + a5 × x) + x2 × (a6 + a7 × x)))

5.2 Instanciating the BaseSampler

To achieve condition (2) with BaseSampler, we rely on a cumulative distribution
table (CDT). We precompute a table of the cumulative distribution function
of DZ+,σmax with a certain precision; then, to produce a sample, we generate
a random value in [0, 1] with the same precision, and return the index of the
last entry in the table that is greater than that value. In variable time, the
sampling can be done rather efficiently with a binary search, but a constant-
time implementation has essentially no choice but to read the entire table each
time and carry out each comparison. This process is summed up in Algorithm3.
The parameters w and θ are respectively the number of elements of the CDT and
the precision of its coefficients. Let a = 2 · λReal + 1. To derive the parameters
w and θ we use a simple script that, given σmax and θ as inputs:

1. Computes the smallest tailcut w such that the Renyi divergence Ra between
the ideal distribution DZ+,σmax and its restriction to {0, . . . , w} (noted
D[w],σmax) verifies Ra(D[w],σmax ,DZ+,σmax) ≤ 1 + 1/(4Qbs);

2. Rounds the probability density table (PDT) of D[w],σmax with θ bits of abso-
lute precision. This rounding is done “cleverly” by truncating all the PDT
values except the largest:

◦ for z ≥ 1, the value D[w],σmax(z) is truncated: PDT (z) = 2−θ⌊
2θD[w],σmax(z)

⌋
.

◦ in order to have a probability distribution, PDT (0) = 1 − ∑
z≥1

PDT (z).
3. Derives the CDT from the PDT and computes the final

Ra(SampleCDTw=19,θ=72,DZ+,σmax).

3 We are thankful to Thomas Pornin for bringing up this fact.

62 J. Howe et al.

Algorithm 3. SampleCDT: full-table access CDT
z ← 0
u ← [0, 1) uniformly with θ bits of absolute precision
for 0 ≤ i ≤ w do

b ← (CDT[w] ≥ u) � b = 1 if it is true and 0 otherwise
z ← z + b

return z

Taking σmax = 1.8205 and θ = 72 as inputs, we found w = 19.

◦ PDT(0) = 2−72 × 1697680241746640300030

◦ PDT(1) = 2−72 × 1459943456642912959616

◦PDT(2) = 2−72 × 928488355018011056515

◦ PDT(3) = 2−72 × 436693944817054414619

◦ PDT(4) = 2−72 × 151893140790369201013

◦ PDT(5) = 2−72 × 39071441848292237840

◦ PDT(6) = 2−72 × 7432604049020375675

◦ PDT(7) = 2−72 × 1045641569992574730

◦ PDT(8) = 2−72 × 108788995549429682

◦ PDT(9) = 2−72 × 8370422445201343

◦ PDT(10) = 2−72 × 476288472308334

◦ PDT(11) = 2−72 × 20042553305308

◦ PDT(12) = 2−72 × 623729532807

◦ PDT(13) = 2−72 × 14354889437

◦ PDT(14) = 2−72 × 244322621

◦ PDT(15) = 2−72 × 3075302

◦ PDT(16) = 2−72 × 28626

◦ PDT(17) = 2−72 × 197

◦ PDT(18) = 2−72 × 1

Our experiment showed that for any a ≥ 509, Ra(SampleCDTw=19,θ=72,

DZ+,σmax) ≤ 1 + 2−80 ≤ 1 + 1
4Qbs

, which validates condition (2) for Falcon
implementation.

6 Analysis of Resistance Against Timing Attacks

In this section, we show that Algorithm 1 is impervious against timing attacks.
We formally prove that it is isochronous with respect to σ, μ and the output z (in
the sense of Definition 2). We first prove a technical lemma which shows that the
number of iterations in the while loop of Algorithm 1 is (almost) independent
of σ, μ, z.

Lemma 3. Let ε ∈ (0, 1), μ ∈ [0, 1] and let σmin, σ, σ0 be standard deviations
such that η+

ε (Zn) = σmin ≤ σ ≤ σ0. Let p = σmin·√2π
2·ρσmax (Z

+) . The number of itera-
tions of the while loop in SamplerZ(σ, μ) follows a geometric law of parameter

Ptrue(σ, μ) ∈ p ·
[
1, 1 +

(1 + 2−80)ε
n

]
.

The proof of Lemma 3 can be found in the full version of our paper [30].
Next, we show that Algorithm 1 is perfectly isochronous with respect to z

and statistically isochronous (for the Rényi divergence) with respect to σ, μ.

Theorem 2. Let ε ∈ (0, 1), μ ∈ R, let σmin, σ, σ0 be standard deviations such
that η+

ε (Zn) = σmin ≤ σ ≤ σ0, and let p = σmin·√2π
2·ρσmax (Z

+) be a constant in (0, 1).

Isochronous Gaussian Sampling 63

Suppose that the elementary operations {+,−,×, /} over integer and floating-
point numbers are isochronous. The running time of Algorithm1 follows a dis-
tribution Tσ,μ such that:

Ra(Tσ,μ‖T) � 1 +
aε2 max(1, 1−p

p)2

n2(1 − p)
= 1 + O

(
aε2

n2

)

for some distribution T independent of its inputs σ, μ and its output z.

Finally, we leverage Theorem 2 to prove that the running time of
SamplerZ(σ, μ) does not help an adversary to break a cryptographic scheme.
We consider that the adversary has access to some function g(SamplerZ(σ, μ))
as well as the running time of SamplerZ(σ, μ): this is intended to capture the
fact that in practice the output of SamplerZ(σ, μ) is not given directly to the
adversary, but processed by some function before. For example, in the signature
scheme Falcon, samples are processed by algorithms depending on the signer’s
private key. On the other hand, we consider that the adversary has powerful
timing attack capabilities by allowing him to learn the exact runtime of each
call to SamplerZ(σ, μ).

Corollary 1. Consider an adversary A making Qs queries to g(SamplerZ(σ, μ))
for some randomized function g, and solving a search problem with success prob-
ability 2−λ for some λ ≥ 1. With the notations of Theorem 2, suppose that
max(1, 1−p

p)2 ≤ n(1 − p) and ε ≤ 1√
λQs

. Learning the running time of each call
to SamplerZ(σ, μ) does not increase the success probability of A by more than a
constant factor.

The proof of Corollary 1 can be found in the full version of our paper [30]. A
nice thing about Corollary 1 is that the conditions required to make it effective
are already met in practice since they are also required for black-box security of
cryptographic schemes. For example, it is systematic to set σ ≥ η+

ε (Zn).

Impact of the Scaling Factor. The scaling factor σmin
σ ≤ σmin

σmax
is crucial in

making our sampler isochronous, as it decorrelates the running time Tσ,μ from σ.
However, it also impacts the Tσ,μ, as one can easily show that Tσ,μ is proportional
to the scaling factor. It is therefore desirable to make it as small as possible. The
maximal value of the scaling factor is actually dependent on the cryptographic
scheme in which our sampler is used. In the full version of our paper [30], we
show that for the case of the signature scheme Falcon, σmin

σmax
≤ 1.17−2 ≈ 0.73 and

the impact of the scaling factor is limited. Moreover, one can easily show that
for Peikert’s sampler [48], the scaling factor is equal to 1 and has no impact.

7 “Err on the Side of Gaussian”

This section focuses on ensuring correct and verified implementations of our pro-
posed isochronous Gaussian sampler. The motivation for this section is to min-
imize implementation bugs, such as implementation issues with Falcon [47,51]

64 J. Howe et al.

or the famous Heartbleed (CVE-2014-0160) or ROCA vulnerabilities [44] (CVE-
2017-15361). We propose a test suite named SAGA (Statistically Acceptable
GAussians) in order to verify correct univariate or multivariate Gaussian vari-
ables. At the very least, SAGA can act as a “sanity check” for implementers and
practitioners. Furthermore, SAGA is designed to run in a generic fashion, agnos-
tic to the technique used, by only requiring as input a list of univariate (i.e.,
outputs of SamplerZ) or multivariate (i.e. a set of signatures) Gaussian samples.
Although we evaluate SAGA by applying it to Falcon, SAGA is applicable to any
lattice-based cryptographic scheme requiring Gaussian sampling, such as other
GPV-based signatures [5,12], FrodoKEM [43], identity-based encryption [10,18],
and in fully homomorphic encryption [54].

7.1 Univariate Tests

The statistical tests we implement here are inspired by a previous test suite pro-
posal called GLITCH [29]. We use standard statistical tools to validate a Gaussian
sampler is operating with the correct mean, standard deviation, skewness, and
kurtosis, and finally we check whether it passes a chi-square normality test.
Skewness and kurtosis are descriptors of a normal distribution that respectively
measure the symmetry and peakedness of a distribution. To view the full sta-
tistical analysis of these tests we created a Python class, UnivariateSamples,
which take as initialization arguments the expected mean (mu), expected stan-
dard deviation (sigma), and the list of observed univariate Gaussian samples
(data). An example of how this works, as well as its output, is shown in the full
version of our paper [30].

7.2 Multivariate Tests

This section details multivariate normality tests. The motivation for these tests
is to detect situations where the base Gaussian sampler over the integers is
correctly implemented, yet the high-level scheme (e.g. a signature scheme) uses
it incorrectly way and ends up with a defective multivariate Gaussian.

Multivariate Normality. There are a number of statistical tests which eval-
uate the normality of multivariate distributions. We found that multivariate
normality tests predominantly used in other fields [13,28,38] suffer with size
and scaling issues. That is, the large sample sizes we expect to use and the poor
power properties of these tests will make a type II error highly likely4. In fact, we
implemented the Mardia [38] and Henze-Zirkler [28] tests and found, although
they worked for small sample sizes, they diverged to produce false negatives for
sample sizes ≥ 50 even in small dimensions n = 64.

However, the Doornik-Hansen test [14] minimises these issues by using trans-
formed versions of the skewness and kurtosis of the multivariate data, increasing

4 Type I and type II errors are, respectively, rejection of a true null hypothesis and
the non-rejection of a false null hypothesis.

Isochronous Gaussian Sampling 65

the test’s power. We also note that it is much faster (essentially linear in the
sample size) than [28,38] (essentially quadratic in the sample size). As with
the univariate tests, we created a Python class, denoted MultivariateSamples,
which outputs four results; two based on the covariance matrix, and two based
on the data’s normality. An example of how this works, as well as its output, is
shown in the full version of our paper [30].

A Glitch in the (Covariance) Matrix. Our second multivariate test asks the
following question: how could someone implement correctly the base sampler, yet
subsequently fail to use it properly? There is no universal answer to that, and
one usually has to rely on context, experience and common sense to establish
the most likely way this could happen.

For example, in Falcon, univariate samples are linearly combined according
to node values of a balanced binary tree computed at key generation (the Falcon
tree). If there is an implementation mistake in the procedure computing the
tree (during key generation) or when combining the samples (during signing),
this effectively results in nodes of the Falcon tree being incorrect or omitted.
Such mistakes have a very recognizable effect on the empiric covariance matrix
of Falcon signatures: they make them look like block Toeplitz matrices (Fig. 1a)
instead of (scaled) identity matrices in the nominal case (Fig. 1b).

We devised a test which discriminates block Toeplitz covariance matrices
against the ones expected from spherical Gaussians. The key idea is rather sim-
ple: when adding O(n) coefficients over a (block-)subdiagonal of the empiric
covariance matrix, the absolute value of the sum will grow in O(

√
n) if the

empiric covariance matrix converges to a scaled identity matrix, and in O(n) if
it is block Toeplitz. We use this difference in growth to detect defective Gaus-
sians. While we do not provide a formal proof of our test, in practice it detects
reasonably well Gaussians induced by defective Falcon trees. We see proving
our test and providing analogues for other GPV-based schemes as interesting
questions.

Supplementary Tests. In the case where normality has been rejected, SAGA
also provides a number of extra tests to aid in finding the issues. More details
for this can be found in the full version of our paper [30].

8 Application and Limitations

Our sampler has been implemented by Pornin as part of the new isochronous
implementation of Falcon [51]. This implementation can use floating-point hard-
ware or AVX2 instructions when available, but also includes floating-point
emulation code that uses only usual integer operations. On ARM Cortex M4
CPUs, which can only support single-precision floating-point instructions, this
implementation provides assembly implementations for the core double-precision
floating-point operations more than twice faster than the generic emulation. As
a result, our sampler can be efficiently implemented on embedded platforms as

66 J. Howe et al.

(a) Nominal case (b) Defective Gaussian

Fig. 1. Empiric covariance matrices of Falcon signatures. Figure 1a corresponds to a
correct implementation of Falcon. Figure 1b corresponds to an implementation where
there is a mistake when constructing the Falcon tree.

Table 2. Number of samples per second at 2.5 GHz for our sampler and [59].

Algorithm Number of samples

This worka 1.84 × 106/sec

This work (AVX2)b 7.74 × 106/sec

[59] (AVX2)c 5.43 × 106/sec
a[51] standard double-precision floating-
point (IEEE 754) with SHAKE256.
b[51] AVX2 implementation with eight
ChaCha20 instances in parallel (AVX2).
c[59] constant-time implementation with
hardware AES256 (AES-NI).

limited as Cortex M4 CPUs, while some other samplers (e.g. [32] due to a huge
code size) are not compact enough to fit embedded platforms.

We perform benchmarks of this sampler implementation on a single Intel
Core i7-6500U CPU core clocked at 2.5 GHz. In Table 2 we present the running
times of our isochronous sampler. To compare with [59], we scale the numbers
to be based on 2.5 GHz. Note that for our sampler the number of samples per
second is on average for 1.2915 < σ ≤ 1.8502 while for [59] σ = 2 is fixed.

In Table 3 we present the running times of the Falcon isochronous imple-
mentation [51] that contains our sampler and compare it with a second non-
isochronous implementation nearly identical excepting the base sampler which
is a faster lazy CDT sampler, and the rejection sampling which is not scaled by
a constant. Compared to the non-isochronous implementation, the isochronous
one is about 22% slower, but remains very competitive speed-wise.

Isochronous Gaussian Sampling 67

Table 3. Falcon signature generation time at 2.5 GHz.

Degree Non-isochronous (using AVX2) isochronous (using AVX2)

512 210.88 µs (153.64 µs) 257.33 µs (180.04 µs)

1024 418.76 µs (311.33 µs) 515.28 µs (361.39 µs)

Cache-Timing Protection. Following this implementation of the proposed
sampler also ensures cache-timing protection [23], as the design should5 bypass
conditional branches by using a consistant access pattern (using linear searching
of the table) and have isochronous runtime. This has been shown to be sufficient
in implementations of Gaussian samplers in Frodo [7,43].

Adapting to Other Schemes. A natural question is how our algorithms could
be adapted for other schemes than Falcon, for example [5,12,18,25,40]. An obvi-
ous bottleneck seems to be the size of the CDT used in SampleCDT, which is
linear in the standard deviation. For larger standard deviations, where linear
searching becomes impractical, convolutions can be used to reduce σ, and thus
the runtime of the search algorithm [34,50]. It would also be interesting to see if
the DDG tree-based method of [32] has better scalability than our CDT-based
method, in which case we would recommend it for larger standard deviations.
On the other hand, once the base sampler is implemented, we do not see any
obvious obstacle for implementing our whole framework. For example, [12] or
using Peikert’s sampler [48] (in Falcon) entail a small constant number of stan-
dard deviations, therefore the rejection step would be very efficient once a base
sampler for each standard deviation is implemented.

Advantages and Limitations. Our sampler has an acceptance rate ≈ σmin
σmax+0.4

making it especially suitable when σmin and σmax are close. In particular, our
sampler is, so far, the fastest isochronous sampler for the parameters in Falcon.
However, the larger the gap between σmin and σmax, the lower the acceptance
rate. In addition, our sampler uses a cummulative distribution table (CDT)
which is accessed in an isochronous way. This table grows when σmax grows,
while making both running time and memory usage larger. When σmax is large
or far from σmin, there exist faster isochronous samplers based on convolution [42]
and rejection sampling [59]6 techniques.

Acknowledgements. We thank Léo Ducas for helpful suggestions. We also thank
Thomas Pornin and Mehdi Tibouchi for useful discussions. The first and second authors
were supported by the project PQ Cybersecurity (Innovate UK research grant 104423).
The third and fourth authors were supported by BPI-France in the context of the
national project RISQ (P141580), and by the European Union PROMETHEUS project
(Horizon 2020 Research and Innovation Program, grant 780701). The fourth author was
also supported by ANRT under the program CIFRE N2016/1583.

5 Compilers may alter the design, thus one should always verify the design post-
compilation.

6 The constant-time sampler in [59] may still reveal σ.

68 J. Howe et al.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ahrens, J., Dieter, U.: Extension of Forsythe’s method for random sampling from
the normal distribution. Math. Comput. 27, 927–937 (1973)

3. Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: using the Rényi divergence rather than the statistical
distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, vol. 9452. LNCS,
pp. 3–24. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 1

4. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.: GALAC-
TICS: Gaussian sampling for lattice-based constant-time implementation of cryp-
tographic signatures, revisited. Cryptology ePrint Archive, Report 2019/511 (2019)

5. Bert, P., Fouque, P.-A., Roux-Langlois, A., Sabt, M.: Practical implementation
of ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.)
Post-Quantum Cryptography - 9th International Conference. PQCrypto 2018, pp.
271–291. Springer, Heidelberg (2018)

6. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

7. Bos, J.W., et al.: Frodo: take off the ring! Practical, quantum-secure key exchange
from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 2016, pp. 1006–1018. ACM Press, October 2016

8. Breitner, J., Heninger, N.: Biased nonce sense: lattice attacks against weak ECDSA
signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32101-7 1

9. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

10. Campbell, P., Groves, M.: Practical post-quantum hierarchical identity-based
encryption. In: 16th IMA International Conference on Cryptography and Coding
(2017)

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

12. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices
and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34618-8 1

13. Cox, D.R., Small, N.J.H.: Testing multivariate normality. Biometrika 65(2), 263–
272 (1978)

14. Doornik, J.A., Hansen, H.: An omnibus test for univariate and multivariate nor-
mality. Oxford Bull. Econ. Stat. 70, 927–939 (2008)

15. Yusong, D., Wei, B., Zhang, H.: A rejection sampling algorithm for off-centered
discrete Gaussian distributions over the integers. Sci. China Inf. Sci. 62(3), 39103
(2018)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-662-48797-6_1
https://doi.org/10.1007/978-3-662-48797-6_1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-34618-8_1

Isochronous Gaussian Sampling 69

16. Ducas, L.: Signatures fondées sur les réseaux euclidiens: attaques, analyses et opti-
misations. Theses, École Normale Supérieure (2013)

17. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

18. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

19. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
415–432. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 26

20. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014)

21. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures: exploiting branch tracing against strongSwan and electro-
magnetic emanations in microcontrollers. In: Thuraisingham et al. [56], pp. 1857–
1874 (2017)

22. Estrin, G.: Organization of computer systems: the fixed plus variable structure
computer. In: Western Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-
ACM 1960 (Western), 3–5 May 1960, pp. 33–40. ACM, New York (1960)

23. Facon, A., Guilley, S., Lec’Hvien, M., Schaub, A., Souissi, Y.: Detecting cache-
timing vulnerabilities in post-quantum cryptography algorithms. In: 2018 IEEE
3rd International Verification and Security Workshop (IVSW), pp. 7–12. IEEE
(2018)

24. Forsythe, G.E.: Von Neumann’s comparison method for random sampling from the
normal and other distributions. Math. Comput. 26(120), 817–826 (1972)

25. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

26. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

27. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5

28. Henze, N., Zirkler, B.: A class of invariant consistent tests for multivariate normal-
ity. Commun. Stat.-Theory Methods 19(10), 3595–3617 (1990)

29. Howe, J., O’Neill, M.: GLITCH: a discrete gaussian testing suite for lattice-based
cryptography. In: Proceedings of the 14th International Joint Conference on e-
Business and Telecommunications (ICETE 2017), SECRYPT, Madrid, Spain, 24–
26 July 2017, vol. 4, pp. 413–419 (2017)

30. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous Gaussian sampling: From
inception to implementation. Cryptology ePrint Archive, Report 2019/1411 (2019)

31. Hülsing, A., Lange, T., Smeets, K.: Rounded Gaussians - fast and secure constant-
time sampling for lattice-based crypto. In: Abdalla, M., Dahab, R. (eds.) PKC
2018. LNCS, vol. 10770, pp. 728–757. Springer, Heidelberg (2018)

https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-642-13190-5

70 J. Howe et al.

32. Karmakar, A., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Pushing the speed limit
of constant-time discrete Gaussian sampling. A case study on the Falcon signature
scheme. In: Proceedings of the 56th Annual Design Automation Conference, pp.
1–6 (2019)

33. Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math.
Softw. 42(1), 3:1–3:14 (2016)

34. Khalid, A., Howe, J., Rafferty, C., Regazzoni, F., O’Neill, M.: Compact, scalable,
and efficient discrete Gaussian samplers for lattice-based cryptography. In: 2018
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE
(2018)

35. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

36. Lyubashevsky, V., et al.: Crystals-dilithium. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

37. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class
of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 32

38. Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications.
Biometrika 57(3), 519–530 (1970)

39. Melchor, C.A., Ricosset, T.: CDT-based Gaussian sampling: from multi to double
precision. IEEE Trans. Comput. 67(11), 1610–1621 (2018)

40. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

41. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

42. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402,
pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-
0 16

43. Naehrig, M., et al.: FrodoKEM. Technical report, National Institute of Stan-
dards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-crypto
graphy/round-2-submissions

44. Nemec, M., Sý, M., Svenda, P., Klinec, D., Matyas, V.: The return of coppersmith’s
attack: practical factorization of widely used RSA moduli. In: Thuraisingham et al.
[56], pp. 1631–1648 (2017)

45. NIST et al.: Official Comment: Crystals-dilithium (2018). https://groups.google.
com/a/list.nist.gov/d/msg/pqc-forum/aWxC2ynJDLE/YOsMJ2ewAAAJ

46. NIST et al.: Footguns as an axis for security analysis (2019). https://groups.google.
com/a/list.nist.gov/forum/#!topic/pqc-forum/l2iYk-8sGnI. Accessed 23 Oct 2019

47. NIST et al.: Official Comment: Falcon (bug & fixes) (2019). https://groups.google.
com/a/list.nist.gov/forum/#!topic/pqc-forum/7Z8x5AMXy8s. Accessed 23 Oct
2019

48. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-662-46447-2_32
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/aWxC2ynJDLE/YOsMJ2ewAAAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/aWxC2ynJDLE/YOsMJ2ewAAAJ
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/l2iYk-8sGnI
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/l2iYk-8sGnI
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/7Z8x5AMXy8s
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/7Z8x5AMXy8s
https://doi.org/10.1007/978-3-642-14623-7_5

Isochronous Gaussian Sampling 71

49. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: attacking
strongSwan’s implementation of post-quantum signatures. In: Thuraisingham et al.
[56], pp. 1843–1855 (2017)

50. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

51. Pornin, T.: New Efficient, Constant-Time Implementations of Falcon. Cryptology
ePrint Archive, Report 2019/893 (2019)

52. Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi diver-
gence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp.
347–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 13

53. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

54. Microsoft SEAL (release 3.4), October 2019. Microsoft Research, Redmond, WA.
https://github.com/Microsoft/SEAL

55. Thuraisingham, B.M., Evans, D., Malkin, T., Dongyan, X. (eds.): ACM CCS 2017.
ACM Press, New York (2017)

56. Tibouchi, M., Wallet, A.: One bit is all it takes: a devastating timing attack on
BLISS’s non-constant time sign flips. In: MathCrypt 2019 (2019)

57. von Neumann, J.: Various techniques used in connection with random digits. Natl.
Bureau Standards Appl. Math Ser. 12, 36–38 (1950)

58. Walter, M.: Sampling the integers with low relative error. In: Buchmann, J., Nitaj,
A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 157–180.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0 9

59. Zhao, R.K., Steinfeld, R., Sakzad, A.: Compact and scalable arbitrary-centered
discrete Gaussian sampling over integers. Cryptology ePrint Archive, Report
2019/1011 (2019)

60. Zhao, R.K., Steinfeld, R., Sakzad, A.: Facct: fast, compact, and constant-time
discrete Gaussian sampler over integers. IEEE Trans. Comput. (2019)

https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-319-70694-8_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/Microsoft/SEAL
https://doi.org/10.1007/978-3-030-23696-0_9

	Isochronous Gaussian Sampling: From Inception to Implementation
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Gaussians
	3.2 Renyi Divergence
	3.3 Smoothing Parameter
	3.4 Isochronous Algorithms

	4 The Sampler
	5 Proof of Security
	5.1 Instanciating the ApproxExp
	5.2 Instanciating the BaseSampler

	6 Analysis of Resistance Against Timing Attacks
	7 ``Err on the Side of Gaussian''
	7.1 Univariate Tests
	7.2 Multivariate Tests

	8 Application and Limitations
	References

