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Abstract. We propose FOAKE, a generic construction of two-message
authenticated key exchange (AKE) from any passively secure public
key encryption (PKE) in the quantum random oracle model (QROM).
Whereas previous AKE constructions relied on a Diffie-Hellman key
exchange or required the underlying PKE scheme to be perfectly cor-
rect, our transformation allows arbitrary PKE schemes with non-perfect
correctness. Dealing with imperfect schemes is one of the major diffi-
culties in a setting involving active attacks. Our direct construction,
when applied to schemes such as the submissions to the recent NIST
post-quantum competition, is more natural than previous AKE trans-
formations. Furthermore, we avoid the use of (quantum-secure) digital
signature schemes which are considerably less efficient than their PKE
counterparts. As a consequence, we can instantiate our AKE transfor-
mation with any of the submissions to the recent NIST competition, e.g.,
ones based on codes and lattices.

FOAKE can be seen as a generalisation of the well known Fujisaki-
Okamoto transformation (for building actively secure PKE from pas-
sively secure PKE) to the AKE setting. As a helper result, we also provide
a security proof for the Fujisaki-Okamoto transformation in the QROM
for PKE with non-perfect correctness which is tighter and tolerates a
larger correctness error than previous proofs.

Keywords: Authenticated key exchange · Quantum random oracle
model · NIST · Fujisaki-Okamoto

1 Introduction

Authenticated Key Exchange. Besides public key encryption (PKE) and
digital signatures, authenticated key exchange (AKE) is arguably one of the
most important cryptographic building blocks in modern security systems.
In the last two decades, research on AKE protocols has made tremendous
progress in developing more solid theoretical foundations [10,19,31,38] as well
as increasingly efficient designs of AKE protocols [37,44,47]. Most AKE pro-
tocols rely on constructions based on an ad-hoc Diffie-Hellman key exchange
that is authenticated either via digital signatures, non-interactive key exchange
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(usually a Diffie-Hellman key exchange performed on long-term Diffie-Hellman
keys), or public key encryption. While in the literature one can find many pro-
tocols that use one of the two former building blocks, results for PKE-based
authentication are rather rare [8,17]. Even rarer are constructions that only rely
on PKE, discarding Diffie-Hellman key exchanges entirely. Notable recent excep-
tions are [23,24] and the protocol in [2], the latter of which has been criticised
for having a flawed security proof and a weak security model [39,46].

The NIST Post-Quantum Competition. Recently, some of the above men-
tioned designs have gathered renewed interest in the quest of finding AKE proto-
cols that are secure against quantum adversaries, i.e., adversaries equipped with
a quantum computer. In particular, the National Institute of Standards and
Technology (NIST) announced a competition with the goal to standardise new
PKE and signature algorithms [41] with security against quantum adversaries.
With the understanding that an AKE protocol can be constructed from low level
primitives such as quantum-secure PKE and signature schemes, the NIST did
not require the submissions to describe a concrete AKE protocol. Many PKE and
signature candidates base their security on the hardness of certain problems over
lattices and codes, which are generally believed to resist quantum adversaries.

The quantum ROM. Quantum computers may execute all “offline primitives”
such as hash functions on arbitrary superpositions, which motivated the intro-
duction of the quantum (accessible) random oracle model (QROM) [14]. While
the adversary’s capability to issue quantum queries to the random oracle ren-
ders many proof strategies significantly more complicated, it is nowadays gener-
ally believed that only proofs in the QROM imply provable security guarantees
against quantum adversaries.

AKE and Quantum-Secure Signatures. Digital signatures are useful for the
“authentication” part in AKE, but unfortunately all known quantum-secure con-
structions would add a considerable overhead to the AKE protocol. Therefore, if
at all possible, we prefer to build AKE protocols only from PKE schemes, with-
out using signatures.1 Our ultimate goal is to build a system that remains secure
in the presence of quantum computers, meaning that even currently employed
(very fast) signatures schemes based on elliptic curves are not an option.

Central Research Question for Quantum-Secure AKE. In summary,
motivated by post-quantum secure cryptography and the NIST competition, we
are interested in the following question:

How to build an actively secure AKE protocol from any passively
secure PKE in the quantum random oracle model, without using
signatures?

(The terms “actively secure AKE” and “passively secure PKE” will be made
more precise later.) Surprisingly, one of the main technical difficulties is that
1 Clearly, PKE requires a working public-key infrastructure (PKI) which in turn

requires signatures to certify the public-key. However, a user only has to verify a
given certificate once and for all, which means the overhead of a quantum-secure
signature can be neglected.
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the underlying PKE scheme might come with a small probability of decryption
failure, i.e., first encrypting and then decrypting does not yield the original
message. This property is called non-perfect correctness, and it is common for
quantum-secure schemes from lattices and codes, rendering them useless for all
previous constructions that relied on perfect correctness.2

Previous Constructions of AKE from public-key primitives. The
generic AKE protocol of Fujioka et al. [23] (itself based on [17]) transforms
a passively secure PKE scheme PKE and an actively (i.e., IND-CCA) secure
PKE scheme PKEcca into an AKE protocol. We will refer to this transforma-
tion as FSXY[PKE,PKEcca]. Since the FSXY transformation is in the standard
model, it is likely to be secure with the same proof in the post-quantum set-
ting and thus also in the QROM. The standard way to obtain actively secure
encryption from passively secure ones is the Fujisaki-Okamoto transformation
PKEcca = FO[PKE,G,H] [25,26]. In its “implicit rejection” variant [28], it comes
with a recently discovered security proof [43] that models the hash functions G
and H as quantum random oracles. Indeed, the combined AKE transformation
FSXY[PKE,FO[PKE,G,H]] transforms passively secure encryption into AKE that
is very likely to be secure in the QROM, without using digital signatures, hence
giving a first answer to our above question. It has, however, two main drawbacks.

– Perfect correctness requirement. Transformation FSXY is not known to
have a security proof if the underlying scheme does not satisfy perfect correct-
ness. Likewise, the relatively tight QROM proof for FO that was given in [43]
requires the underlying scheme to be perfectly correct, and a generalisation
of the proof for schemes with non-perfect correctness is not straightforward.
Hence, it is unclear whether FSXY[PKE,FO[PKE,G,H]] can be instantiated
with lattice- or code-based encryption schemes.

– Lack of simplicity. The Fujisaki-Okamoto transformation already involves
hashing the key using hash function H, and FSXY involves even more (poten-
tially redundant) hashing of the (already hashed) session key. Overall, the
combined transformation seems overly complicated and hence impractical.

In [24], a transformation was given that started from oneway-secure KEMs,
but its security proof was given in the ROM, and its generalisation to the QROM
was explicitly left as an open problem. Furthermore, it involves more hashing,
similar to transformation FSXY.

Hence, it seems desirable to provide a simplified transformation that gets rid
of unnecessary hashing steps, and that can be proven secure in the QROM even

2 There exist generic transformations that can immunise against decryption errors
(e.g., [22]). Even though they are quite efficient in theory, the induced overhead is
still not acceptable for practical purposes. While lattice schemes could be rendered
perfectly correct by putting a limit on the noise, and setting the modulus of the LWE
instance large enough (see, e.g., [12,29]), the security level cannot be maintained
without increasing the problem’s dimension, accordingly. Since this modification
would lead to increased public-key and ciphertext length, many NIST submissions
deliberately made the design choice of having imperfect correctness.
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if the underlying scheme does not satisfy perfect correctness. As a motivating
example, note that the Kyber AKE protocol [16] can be seen as a result of
applying such a simplified transformation to the Kyber PKE scheme, although
coming without a formal security proof.

1.1 Our Contributions

Our main contribution is a transformation, FOAKE[PKE,G,H] (“Fujisaki-Okamoto
for AKE”) that converts any passively secure encryption scheme into an actively
secure AKE protocol, with provable security in the quantum random oracle
model. It can deal with non-perfect correctness and does not use digital signa-
tures. Our transformation FOAKE can be viewed as a modification of the trans-
formation given in [24]. Furthermore, we provide a precise game-based security
definition for two-message AKE protocols. As a side result, we also give a security
proof for the Fujisaki-Okamoto transformation in the QROM in Sect. 3 that deals
with correctness errors. It can be seen as the KEM analogue of our main result,
the AKE proof. Our proof strategy differs from and improves on the bounds of
a previously published proof of the Fujisaki-Okamoto transformation for KEMs
in the QROM [32].

FO Transformation for KEMs. To simplify the presentation of FOAKE, we first
give some background on the Fujisaki-Okamoto transformation for KEMs. In its
original form [25,26], FO yields an encryption scheme that is IND-CCA secure
in the random oracle model [9] from combining any One-Way secure asymmet-
ric encryption scheme with any one-time secure symmetric encryption scheme.
In “A Designer’s Guide to KEMs”, Dent [21] provided FO-like IND-CCA secure
KEMs. (Recall that any IND-CCA secure Key Encapsulation Mechanism can be
combined with any (one-time) chosen-ciphertext secure symmetric encryption
scheme to obtain a IND-CCA secure PKE scheme [20].) Since all of the transfor-
mations mentioned above required the underlying PKE scheme to be perfectly
correct, and due to the increased popularity of lattice-based schemes with non-
perfect correctness, [28] gave several modularisations of FO-like transformations
and proved them robust against correctness errors. The key observation was
that FO-like transformations essentially consists of two separate steps and can
be dissected into two transformations, as sketched in the introduction of [28]:

– Transformation T: “Derandomise” and “re-encrypt”. Starting from an encryp-
tion scheme PKE and a hash function G, encryption of PKE′ = T[PKE,G] is
defined by

Enc′(pk ,m) := Enc(pk ,m;G(m)),

where G(m) is used as the random coins for Enc, rendering Enc′ deterministic.
Dec′(sk , c) first decrypts c into m′ and rejects if Enc(pk ,m′;G(m′)) �= c (“re-
encryption”).

– Transformation U�⊥
m : “Hashing”. Starting from an encryption scheme PKE′ and

a hash function H, key encapsulation mechanism KEM �⊥
m = U�⊥

m [PKE′,H] with
“implicit rejection” is defined by
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Fig. 1. Comparison of [43]’s modular transformation (green) with ours. Solid arrows
indicate tight reductions, dashed arrows indicate non-tight reductions. (Color figure
online)

Encaps(pk) := (c ← Enc′(pk ,m),K := H(m)), (1)

where m is picked at random from the message space, and

Decaps(sk , c) =

{
H(m) m �= ⊥
H(s, c) m = ⊥ ,

where m := Dec(sk , c) and s is a random seed which is contained in sk . In
the context of the FO transformation, implicit rejection was first introduced
by Persichetti [42, Sec. 5.3].

Transformation T was proven secure both in the (classical) ROM and the
QROM, and U�⊥

m was proven secure in the ROM. To achieve QROM security,
[28] gave a modification of U�⊥

m , called QU�⊥
m , but its security proof in the QROM

suffered from a quartic3 loss in tightness, and furthermore, most real-world pro-
posals are designed such that they fit the framework of FO �⊥

m = U�⊥
m ◦ T, not

QU�⊥
m ◦ T.
A slightly different modularisation was introduced in [43]: they gave transfor-

mations TPunc (“Puncturing and Encrypt-with-Hash”) and SXY (“Hashing with
implicit reject and reencryption”). SXY differs from U�⊥

m in that it reencrypts
during decryption. Hence, it can only be applied to deterministic schemes. Even
in the QROM, its CCA security tightly reduces to an intermediate notion called
Disjoint Simulatability (DS) of ciphertexts. Intuitively, disjoint simulatability
means that we can efficiently sample “fake ciphertexts” that are computation-
ally indistinguishable from real PKE ciphertexts (“simulatability”), while the set
of possible fake ciphertexts is required to be (almost) disjoint from the set of
real ciphertexts. DS is naturally satisfied by many code/lattice-based encryption
schemes. Additionally, it can be achieved using transformation Punc, i.e., by
puncturing the underlying schemes’ message space at one point and using this
message to sample fake encryptions. Deterministic DS can be achieved by using
transformation TPunc, albeit non-tightly: the reduction suffers from quadratic
loss in security and an additional factor of q, the number of the adversary’s hash
queries.

3 Not just quadratic, but indeed quartic.
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However, the reduction that is given in [43] requires the underlying encryption
scheme to be perfectly correct. Later, [32] gave non-modular security proofs
for the transformations FO �⊥

m and FO �⊥ as well as a security proof for SXY4

for schemes with correctness errors, which still suffered from quadratic loss in
security and an additional factor of q, the latter of which this work improves
to √

q.
Our transformation FO �⊥

m can be applied to any PKE scheme that is both
IND-CPA and DS secure. The reduction is tighter than the one that results from
combining those of TPunc and SXY in [43], and also than the reduction given in
[33]. This is due to our use of the improved Oneway-to-Hiding lemma [3, Thm. 1:
“Semi-classical O2H”]. Furthermore, we achieve a better correctness bound (the
square of the bound given in [33]) due to a better bound for the generic distin-
guishing problem. In cases where PKE is not already DS, this requirement can be
waived with negligible loss of efficiency: To rely on IND-CPA alone, all that has
to be done is to plug in transformation Punc. A visualisation is given in Fig. 1.

Security Model for Two-Message Authenticated Key Exchange. We
introduce a simple game-based security model for (non-parallel) two-message
AKE protocols, i.e., protocols where the responder sends his message only after
having received the initiator’s message. Technically, in our model, and similar
to previous literature, we define several oracles that the attacker has access
to. However, in contrast to most other security models, the inner workings of
these oracles and their management via the challenger are precisely defined with
pseudo-code.

Details on our Models. We define two security notions for two-message
AKEs: key indistinguishability against active attacks (IND-AA) and the weaker
notion of indistinguishability against active attacks without state reveal in the
test session (IND-StAA). IND-AA captures the classical notion of key indistin-
guishability (as introduced by Bellare and Rogaway [10]) as well as security
against reflection attacks, key compromise impersonation (KCI) attacks, and
weak forward secrecy (wFS) [37]. It is based on the Canetti-Krawczyk (CK)
model and allows the attacker to reveal (all) secret state information as com-
pared to only ephemeral keys. As already pointed out by [17], this makes our
model incomparable to the eCK model [38] but strictly stronger than the CK
model. Essentially, the IND-AA model states that the session key remains indis-
tinguishable from a random one even if

1. the attacker knows either the long-term secret key or the secret state infor-
mation (but not both) of both parties involved in the test session, as long as
it did not modify the message received by the test session,

2. and also if the attacker modified the message received by the test session, as
long as it did not obtain the long-term secret key of the test session’s peer.

4 Note that nomenclature of [33] is a bit misleading: while the respective KEM is
called U�⊥

m , it is actually transformation SXY (it reencrypts during decryption, which
U�⊥

m does not).
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We also consider the slightly weaker model IND-StAA (in which we will prove
the security of our AKE protocols), where 2. is substituted by

2’. and also if the attacker modified the message received by the test session,
as long as it did neither obtain the long-term secret key of the test session’s
peer nor the test session’s state. The latter strategy, we will call a state
attack.

We remark that IND-StAA security is essentially the same notion that was
achieved by the FSXY transformation [23].5 In the full version we provide a
more general perspective on how our model compares to existing ones.

Our Authenticated Key-Exchange Protocol. Our transformation FOAKE

transforms any passively secure PKE (with potential non-perfect correctness)
into an IND-StAA secure AKE. FOAKE is a simplification of the transformation
FSXY[PKE,FO[PKE,G,H]] mentioned above, where the derivation of the session
key K uses only one single hash function H. FOAKE can be regarded as the AKE
analogue of the Fujisaki-Okamoto transformation.

Transformation FOAKE[PKE,G,H] is described in Fig. 2 and uses transform
PKE′ = T[PKE,G] as a building block. (The full construction is given in Fig. 15,
see Sect. 5.) Our main security result (Theorem 3) states that FOAKE[PKE,G,H]
is an IND-StAA-secure AKE if the underlying probabilistic PKE is DS as well as
IND-CPA secure and has negligible correctness error, and furthermore G and H
are modeled as quantum random oracles.

The proof essentially is the AKE analogue to the security proof of FO �⊥
m we

give in Sect. 3.2: By definition of our security model, it always holds that at
least one of the messages mi, mj and m̃ is hidden from the adversary (unless it
loses trivially) since it may not reveal a party’s secret key and its session state
at the same time. Adapting the simulation technique in [43], we can simulate
the session keys even if we do not know the corresponding secret key ski (skj ,
s̃k). Assuming that PKE is DS, we can replace the corresponding ciphertext ci

(cj , c̃) of the test session with a fake ciphertext, rendering the test session’s key
completely random from the adversary’s view due to PKE’s disjointness.

Let us add two remarks. Firstly, we cannot prove the security of
FOAKE[PKE,G,H] in the stronger sense of IND-AA and actually, it is not secure
against state attacks. Secondly, note that our security statement involves the
probabilistic scheme PKE rather than PKE′. Unfortunately, we were not able to
provide a modular proof of AKE solely based on reasonable security properties
of PKE′ = T[PKE,G]. The reason for this is indeed the non-perfect correctness
of PKE. This difficulty corresponds to the difficulty to generalise [43]’s result for
deterministic encryption schemes with correctness errors discussed above.

5 The difference is that the model from [23] furthermore allows a “partial reveal” of
the test session’s state. For simplicity and due to their little practical relevance, we
decided not to include such partial session reveal queries in our model. We remark
that, however, our protocol could be proven secure in this slightly stronger model.



396 K. Hövelmanns et al.

Fig. 2. A visualisation of our authenticated key-exchange protocol FOAKE. We make
the convention that, in case any of the Dec′ algorithms returns ⊥, the session key
K is derived deterministically and pseudorandomly from the player’s state (“implicit
rejection”).

Concrete Applications. Our transformation can be applied to any scheme
that is IND-CPA secure with post-quantum security, e.g., Frodo [40], Kyber [16],
and Lizard [5]. Recall that the additional requirement of DS can be achieved with
negligible loss of efficiency. However, in many applications even this negligible
loss is inexistent since most of the aforementioned schemes can already be proven
DS under the same assumption that their IND-CPA security is based upon.

Subsequent Work. Since this paper was published on eprint, there has been
more work on CCA security of FO in the QROM ([13,35]), essentially achieving
the same level of tightness as this work. [13] achieves more modularity, and
covers a class of schemes that is both less and more restrictive at the same time:
They only require schemes to be oneway-secure (instead of CPA, as required in
this work), but the schemes have to meet an additional injectivity requirement
(specified below).

Tightness for FO. Reductions from CCA security to CPA security in the
QROM usually suffer from tightness loss in two separate ways: The best known
bounds for probabilistic schemes to this date are essentially of the form √

q
√

ε,
where q is the number of the adversary’s hash queries, and ε is the reduc-
tion’s CPA advantage. Hence, the loss consists of both a loss regarding q (q-
nontightness), and worse, a quadratic loss regarding the level of CPA security
(root-nontightness). For the general setting where one starts from a probabilistic
scheme, there have not been tightness improvements since this work:

Essentially, [35] is an update of [32] that makes use of the improved Oneway-
to-Hiding bounds given in [3], thereby improving [32]’s bound q

√
ε to √

q
√

ε,
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with the security requirement switching from onewayness to IND-CPA. The result
seems to differ from this work solely in its (nonmodular) proof structure.

In [13], a new modular proof for FO was given by starting from probabilistic
onewayness and choosing deterministic oneway-security as their intermediate6
notion, opposed to our (strictly stronger) intermediate notion of deterministic
DS. This approach matches the observation that if one can start from a scheme
that already is deterministically oneway-secure (like [12]), derandomisation step
T is superfluous. In this case, only transformation U has to be applied, which is
proven secure q-tightly. The weaker intermediate notion, however, shifts the root-
nontightness to second transformation U. Therefore, the result still is heavily
non-tight, even if derandomising via T is skipped. Furthermore, no tightness
improvements whatsoever are achieved if the underlying scheme is not already
deterministic, and thus has to be derandomised using T first.

Modularity. The modular proof of [13] is achieved by introducing an addi-
tional notion for the intermediate scheme that deals with correctness errors.
Unfortunately, the possibility of correctness errors complicate modular attempts
on analysing FO: For underlying probabilistic schemes, [13] requires more than
this work since its approach only is applicable if the “intermediate” scheme is
injective with overwhelming probability. It is very likely that the modular app-
roach of [13] could be generalised to an AKE proof that similarly is modular and
hence, conceptually nicer. But this gain in modularity would come at a cost: The
approach only is applicable if the derandomised scheme is essentially injective.
We would, therefore, add an unnecessary restriction on the class of schemes that
AKE can be based upon.

Open Problems. In the literature, one can find several Diffie-Hellman based
protocols that achieve IND-AA security, for example HMQV [37]. However, none
of them provides security against quantum computers. We leave as an interesting
open problem to design a generic and efficient two-message AKE protocol in
our stronger IND-AA model, preferably with a security proof in the QROM to
guarantee its security even in the presence of quantum adversaries.

While [13] gave a proof of CCA security that is conceptually cleaner, it still is
heavily non-tight due to its root-nontightness, with the root-nontightness stem-
ming from its usage of a standard Oneway-to-Hiding strategy. Recent work [34]
proved that for reductions using this standard approach, suffering from quadratic
security loss is inevitable. We would like to point out, however, that we do not
view this result as an impossibility result7. It rather proves impossibility of root-
tightness for a certain type of reduction, and thereby informs us how to adapt
possible future proof strategies: A root-tight proof of CCA security still might

6 By “intermediate”, we mean the deterministic scheme that is to be plugged into
one of the U-transforms. In most cases, it is derived by starting from a probabilistic
scheme and first applying derandomisation transformation T.

7 A strict impossibility result would have to consist of a concrete scheme as well as a
concrete attack, with the latter matching the given upper bound.
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be achievable, but the respective reduction would have to be more sophisticated
than extracting oneway solutions for the underlying scheme by simply applying
Oneway-to-Hiding.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. For a set S, |S| denotes the cardinality of S.
For a finite set S, we denote the sampling of a uniform random element x by
x ←$ S, while we denote the sampling according to some distribution D by
x ← D. By �B� we denote the bit that is 1 if the boolean Statement B is true,
and otherwise 0.

Algorithms. We denote deterministic computation of an algorithm A on input
x by y := A(x). We denote algorithms with access to an oracle O by AO. Unless
stated otherwise, we assume all our algorithms to be probabilistic and denote
the computation by y ← A(x).

Games. Following [11,45], we use code-based games. We implicitly assume
boolean flags to be initialised to false, numerical types to 0, sets to ∅, and strings
to the empty string ε. We make the convention that a procedure terminates once
it has returned an output.

2.1 Public-Key Encryption

Syntax. A public-key encryption scheme PKE = (KG,Enc,Dec) consists of
three algorithms, and a finite message space M which we assume to be efficiently
recognisable. The key generation algorithm KG outputs a key pair (pk , sk), where
pk also defines a finite randomness space R = R(pk) as well as a ciphertext space
C. The encryption algorithm Enc, on input pk and a message m ∈ M, outputs
an encryption c ← Enc(pk ,m) of m under the public key pk . If necessary, we
make the used randomness of encryption explicit by writing c := Enc(pk ,m; r),
where r ←$ R. The decryption algorithm Dec, on input sk and a ciphertext c,
outputs either a message m = Dec(sk , c) ∈ M or a special symbol ⊥ /∈ M to
indicate that c is not a valid ciphertext.

Definition 1 (Collision probability of key generation). We define

μ(KG) := Pr[(pk , sk) ← KG, (pk ′, sk ′) ← KG : pk = pk′].

Definition 2 (Collision probability of ciphertexts). We define

μ(Enc) := Pr[(pk , sk) ← KG, m, m′ ←$ M, c ← Enc(pk , m), c′ ← Enc(pk , m′) : c = c′].

Definition 3 (γ-Spreadness). [25] We say that PKE is γ-spread iff for all key
pairs (pk , sk) ∈ supp(KG) and all messages m ∈ M it holds that

max
c∈C

Pr[r ←$ R : Enc(pk ,m; r) = c] ≤ 2−γ .
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Fig. 3. Games IND-CPAb for PKE (b ∈ F2) and game IND-CCA for KEM.

Definition 4 (Correctness). [28] We define δ := E[maxm∈M Pr[c ←
Enc(pk ,m) : Dec(sk , c) �= m]], where the expectation is taken over (pk , sk) ← KG.

Security. We now define the notion of Indistinguishability under Chosen
Plaintext Attacks (IND-CPA) for public-key encryption.

Definition 5 (IND-CPA). Let PKE = (KG,Enc,Dec) be a public-key encryption
scheme. We define game IND-CPA game as in Fig. 3, and the IND-CPA advantage
function of a quantum adversary A = (A1,A2) against PKE (such that A2 has
binary output) as

AdvIND-CPA
PKE (A) := |Pr[IND-CPAA

1 ⇒ 1] − Pr[IND-CPAA
0 ⇒ 1]|.

We also define IND-CPA security in the random oracle model model, where PKE
and adversary A are given access to a random oracle.

Disjoint simulatability. Following [43], we consider PKE where it is possi-
ble to efficiently sample fake ciphertexts that are indistinguishable from proper
encryptions, while the probability that the sampling algorithm hits a proper
encryption is small.

Definition 6. (DS) Let PKE = (KG,Enc,Dec) be a PKE scheme with mes-
sage space M and ciphertext space C, coming with an additional PPT algorithm
Enc. For quantum adversaries A, we define the advantage against PKE’s disjoint
simulatability as

AdvDS
PKE,Enc

(A) :=|Pr[pk ← KG,m ←$ M, c ← Enc(pk ,m) : 1 ← A(pk , c)]

− Pr[pk ← KG, c ← Enc(pk) : 1 ← A(pk , c)]|.

When there is no chance of confusion, we will drop Enc from the advantage’s
subscript for convenience.

We call PKE εdis-disjoint if for all pk ∈ supp(KG), Pr[c ← Enc(pk) : c ∈
Enc(pk ,M;R)] ≤ εdis.
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2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (KG,Encaps,Decaps) consists
of three algorithms. The key generation algorithm KG outputs a key pair (pk , sk),
where pk also defines a finite key space K. The encapsulation algorithm Encaps,
on input pk , outputs a tuple (K, c) where c is said to be an encapsulation of
the key K which is contained in key space K. The deterministic decapsulation
algorithm Decaps, on input sk and an encapsulation c, outputs either a key
K := Decaps(sk , c) ∈ K or a special symbol ⊥ /∈ K to indicate that c is not a
valid encapsulation.

We call KEM δ-correct if

Pr [Decaps(sk , c) �= K | (pk , sk) ← KG; (K, c) ← Encaps(pk)] ≤ δ.

Note that the above definition also makes sense in the random oracle model since
KEM ciphertexts do not depend on messages.

Security. We now define a security notion for key encapsulation:
Indistinguishbility under Chosen Ciphertext Attacks (IND-CCA).

Definition 7 (IND-CCA). We define the IND-CCA game as in Fig. 3 and the
IND-CCA advantage function of an adversary A (with binary output) against
KEM as

AdvIND-CCA
KEM (A) := |Pr[IND-CCAA ⇒ 1] − 1/2|.

2.3 Quantum Computation

Qubits. For simplicity, we will treat a qubit as a vector |ϕ〉 ∈ C
2, i.e., a linear

combination |ϕ〉 = α · |0〉 + β · |1〉 of the two basis states (vectors) |0〉 and |1〉
with the additional requirement to the probability amplitudes α, β ∈ C that
|α|2+ |β|2 = 1. The basis {|0〉, |1〉} is called standard orthonormal computational
basis. The qubit |ϕ〉 is said to be in superposition. Classical bits can be interpreted
as quantum bits via the mapping (b �→ 1 · |b〉 + 0 · |1 − b〉).
Quantum Registers. We will treat a quantum register as a collection of mul-
tiple qubits, i.e. a linear combination |ϕ〉 := ∑

x∈F
n
2

αx · |x〉, where αx ∈ C, with
the additional restriction that

∑
x∈F

n
2

|αx|2 = 1. As in the one-dimensional case,
we call the basis {|x〉}x∈F

n
2

the standard orthonormal computational basis. We
say that |ϕ〉 = ∑

x∈F
n
2

αx · |x〉 contains the classical query x if αx �= 0.

Measurements. Qubits can be measured with respect to a basis. In this paper,
we will only consider measurements in the standard orthonormal computational
basis, and denote this measurement by Measure(·), where the outcome of
Measure(|ϕ〉) for a single qubit |ϕ〉 = α · |0〉+ β · |1〉 will be 0 with probability
|α|2 and 1 with probability |β|2, and the outcome of measuring a qubit register
|ϕ〉 = ∑

x∈F
n
2

αx · |x〉 will be x with probability |αx|2. Note that the amplitudes
collapse during a measurement, this means that by measuring α · |0〉+ β · |1〉, α
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and β are switched to one of the combinations in {±(1, 0), ±(0, 1)}. Likewise,
in the n-dimensional case, all amplitudes are switched to 0 except for the one
that belongs to the measurement outcome and which will be switched to 1.

Quantum oracles and quantum Adversaries. Following [6,14], we view a
quantum oracle |O〉 as a mapping

|x〉|y〉 �→ |x〉|y ⊕ O(x)〉,
where O : F

n
2 → F

m
2 , and model quantum adversaries A with access to O by a

sequence U1, |O〉, U2, · · · , |O〉, UN of unitary transformations. We write A|O〉 to
indicate that the oracles are quantum-accessible (contrary to oracles which can
only process classical bits).

Quantum random oracle model. We consider security games in the quan-
tum random oracle model (QROM) as their counterparts in the classical random
oracle model, with the difference that we consider quantum adversaries that are
given quantum access to the (offline) random oracles involved, and classical
access to all other (online) oracles. For example, in the IND-CPA game, the adver-
sary only obtains a classical encryption, like in [18], and unlike in [15]. In the
IND-CCA game, the adversary only has access to a classical decryption oracle,
unlike in [27] and [1].

Zhandry [48] proved that no quantum algorithm A|O〉, issuing at most q
quantum queries to |O〉, can distinguish between a random function O : F

m
2 → F

n
2

and a 2q-wise independent function f2q. For concreteness, we view f2q : F
m
2 → F

n
2

as a random polynomial of degree 2q over the finite field F2n . The running time
to evaluate f2q is linear in q. In this article, we will use this observation in the
context of security reductions, where quantum adversary B simulates quantum
adversary A|O〉 issuing at most q queries to |O〉. Hence, the running time of B
is Time(B) = Time(A) + q · Time(O), where Time(O) denotes the time it takes
to simulate |O〉. Using the observation above, B can use a 2q-wise independent
function in order to (information-theoretically) simulate |O〉, and we obtain that
the running time of B is Time(B) = Time(A) + q · Time(f2q), and the time
Time(f2q) to evaluate f2q is linear in q. Following [43] and [36], we make use
of the fact that the second term of this running time (quadratic in q) can be
further reduced to linear in q in the quantum random-oracle model where B
can simply use another random oracle to simulate |O〉. Assuming evaluating the
random oracle takes one time unit, we write Time(B) = Time(A) + q, which is
approximately Time(A).

Oneway to Hiding with semi-classical oracles. In [3], Ambainis et al.
defined semi-classical oracles that return a state that was measured with respect
to one of the input registers. In particular, to any subset S ⊂ X, they associated
the following semi-classical oracle OSC

S : Algorithm OSC
S , when queried on |ψ, 0〉,

measures with respect to the projectors M1 and M0, where M1 :=
∑

x∈S |x〉〈x|
and M0 :=

∑
x/∈S |x〉〈x|. The oracle then initialises the second register to |b〉 for

the measured bit b. This means that |ψ, 0〉 collapses to either a state |ψ′, 0〉 such
that |ψ′〉 only contains elements of X \ S or to a state |ψ′, 1〉 such that |ψ′〉 only
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contains elements of S. Let FIND denote the event that the latter ever is the
case, i.e., that OSC

S ever answers with |ψ′, 1〉 for some ψ′. To a quantum-accessible
oracle G and a subset S ⊂ X, Ambainis et al. associate the following punctured
oracle G \ S that removes S from the domain of G unless FIND occurs (Fig. 4).

Fig. 4. Punctured oracle G\S for O2H.

The following theorem is a simplification of statement (2) given in [3, Thm. 1:
“Semi-classical O2H”], and of [3, Cor. 1]. It differs in the following way: While [3]
consider adversaries that might execute parallel oracle invocations and therefore
differentiate between query depth d and number of queries q, we use the upper
bound q ≥ d for simplicity.

Theorem 1. Let S ⊂ X be random. Let G,H ∈ Y X be random functions such
that G|X\S = H|X\S, and let z be a random bitstring. (S, G, H, and z may have
an arbitrary joint distribution.) Then, for all quantum algorithms A issuing at
most q queries that, on input z, output either 0 or 1,

|Pr[1 ← A|G〉(z)] − Pr[1 ← A|H〉(z)]| ≤ 2 ·
√

qPr[b ← A|G\S〉(z) : FIND].

If furthermore S := {x} for x ←$ X, and x and z are independent,

Pr[b ← A|G\S〉(z) : FIND] ≤ 4q
|X| .

Generic quantum Distinguishing Problem with bounded probabili-

ties. For λ ∈ [0, 1], let Bλ be the Bernoulli distribution, i.e., Pr[b = 1] = λ for
the bit b ← Bλ. Let X be some finite set. The generic quantum distinguishing
problem ([4, Lemma 37], [30, Lem. 3]) is to distinguish quantum access to an
oracle F : X → F2, such that for each x ∈ X, F (x) is distributed according to
Bλ, from quantum access to the zero function. We will need the following slight
variation. The Gequantum Distinguishing Problem with Bounded probabilities
GDPB is like the quantum distinguishing problem with the difference that the
Bernoulli parameter λx may depend on x, but still is upper bounded by a global
λ. The upper bound we give is the same as in [30, Lem. 3]. It is proven in the
full version.

Lemma 1 (Generic Distinguishing Problem with Bounded Probabili-
ties). [Generic Distinguishing Problem with Bounded Probabilities] Let X be a
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finite set, and let λ ∈ [0, 1]. Then, for any (unbounded, quantum) algorithm A
issuing at most q quantum queries,

|Pr[GDPBA
λ,0 ⇒ 1] − Pr[GDPBA

λ,1 ⇒ 1]| ≤ 8(q + 1)2 · λ,

where games GDPBA
λ,b (for bit b ∈ F2) are defined as follows:

GAME GDPBλ,b

01 (λx)x∈X ← A1

02 if ∃x ∈ X s.t. λx > λ return 0
03 if b = 0
04 F := 0
05 else for all x ∈ X
06 F (x) ← Bλx

07 b′ ← A
|F 〉
2

08 return b′

3 The FO Transformation: QROM Security
with Correctness Errors

In Sect. 3.1, we modularise transformation TPunc that was given in [43] and
that turns any public key encryption scheme that is IND-CPA secure into a
deterministic one that is DS. Transformation TPunc essentially consists of first
puncturing the message space at one point (transformation Punc, to achieve
probabilistic DS), and then applying transformation T. Next, in Sect. 3.2, we
show that transformation U�⊥

m , when applied to T, transforms any encryption
scheme that is DS as well as IND-CPA into a KEM that is IND-CCA secure. We
believe that many lattice-based schemes fulfill DS in a natural way,8 but for the
sake of completeness, we will show in the full version how transformation Punc
can be used to waive the requirement of DS with negligible loss of efficiency.

3.1 Modularisation of TPunc

We modularise transformation TPunc (“Puncturing and Encrypt-with-Hash”)
that was given in [43], and that turns any IND-CPA secure PKE scheme into a
deterministic one that is DS. Note that apart from reencryption, TPunc[PKE0,G]
given in [43] and our modularisation T[Punc[PKE0],G] are equal. We first give
transformation Punc that turns any IND-CPA secure scheme into a scheme that

8 Fake encryptions could be sampled uniformly random. DS would follow from the
LWE assumption, and since LWE samples are relatively sparse, uniform sampling
should be disjoint.



404 K. Hövelmanns et al.

Fig. 5. Encryption and fake encryption sampling of PKE = Punc[PKE0].

is both DS and IND-CPA. We show that transformation T turns any scheme that
is DS as well as IND-CPA secure into a deterministic scheme that is DS.

Transformation Punc: From IND-CPA to probabilistic DS security
Transformation Punc turns any IND-CPA secure public-key encryption scheme
into a DS secure one by puncturing the message space at one message and sam-
pling encryptions of this message as fake encryptions.

The Construction. To a public-key encryption scheme PKE0 = (KG0,
Enc0,Dec0) with message space M0, we associate PKE := Punc[PKE0, m̂] :=
(KG := KG0,Enc,Dec := Dec0) with message space M := M0 \ {m̂} for some
message m̂ ∈ M. Encryption and fake encryption sampling of PKE are defined in
Fig. 5. Note that transformation Punc will only be used as a helper transforma-
tion to achieve DS, generically. We prove that Punc achieves DS from IND-CPA
security in the full version.

Transformation T: From probabilistic to deterministic DS security
Transformation T [7] turns any probabilistic public-key encryption scheme into
a deterministic one. The transformed scheme is DS, given that PKE is DS as well
as IND-CPA secure. Our security proof is tighter than the proof given for TPunc
(see [43, Theorem 3.3]) due to our use of the semi-classical O2H theorem.

The Construction. Take an encryption scheme PKE = (KG,Enc,Dec) with
message space M and randomness space R. Assume PKE to be additionally
endowed with a sampling algorithm Enc (see Definition 6). To PKE and random
oracle G : M → R, we associate PKE′ = T[PKE,G], where the algorithms of
PKE′ = (KG′ := KG,Enc′,Dec′,Enc

′
:= Enc) are defined in Fig. 6. Note that Enc′

deterministically computes the ciphertext as c := Enc(pk ,m;G(m)).

Fig. 6. Deterministic encryption scheme PKE′ = T[PKE,G].

The following lemma states that combined IND-CPA and DS security of PKE
imply the DS security of PKE′.
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Fig. 7. Games G0 - G5 for the proof of Lemma2.

Lemma 2 (DS security of PKE′). If PKE is ε-disjoint, so is PKE′. For all
adversaries A issuing at most qG (quantum) queries to G, there exist an adversary
BIND and an adversary BDS such that

AdvDS
PKE′(A) ≤ AdvDS

PKE(BDS) + 2 ·
√

qG · AdvIND-CPA
PKE (BIND) +

4q2G
|M|

≤ AdvDS
PKE(BDS) + 2 ·

√
qG · AdvIND-CPA

PKE (BIND) +
4qG√|M| ,

and the running time of each adversary is about that of B.

Proof. It is straightforward to prove disjointness since Enc′(pk ,M) is subset of
Enc(pk ,M;R). Let A be a DS adversary against PKE′. Consider the sequence
of games given in Fig. 7. Per definition,

AdvDS
PKE′(A) = |Pr[GA

0 ⇒ 1] − Pr[GA
1 ⇒ 1]|

≤ |Pr[GA
0 ⇒ 1] − Pr[GA

3 ⇒ 1]| + |Pr[GA
1 ⇒ 1] − Pr[GA

3 ⇒ 1]|.

To upper bound |Pr[GA
0 ⇒ 1]−Pr[GA

3 ⇒ 1]|, consider adversary BDS against
the disjoint simulatability of the underlying scheme PKE, given in Fig. 8. BDS

runs in the time that is required to run A and to simulate G for qG queries. Since
BDS perfectly simulates game G0 if run with a fake ciphertext as input, and game
G3 if run with a random encryption c ← Enc(pk ,m∗),

|Pr[GA
0 ⇒ 1] − Pr[GA

3 ⇒ 1]| = AdvDS
PKE(BDS).

It remains to upper bound |Pr[GA
1 ⇒ 1]−Pr[GA

3 ⇒ 1]|. We claim that there
exists an adversary BIND such that

|Pr[GA
1 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ 2

√
qG · AdvIND-CPA

PKE (BIND) +
4q2G
|M| .
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Fig. 8. Adversaries BDS and BIND- for the proof of Lemma2.

Game G2. In game G2, we replace oracle access to G with oracle acces to H in
line 08, where H is defined as follows: we pick a uniformly random r∗ in line 08
and let H(m) := G(m) for all m �= m∗, and H(m∗) := r∗. Note that this change
also affects the challenge ciphertext c∗ since it is now defined relative to this new
r∗, i.e., we now have c∗ = Enc(pk ,m∗;H(m∗)). Since r∗ is uniformly random and
G is a random oracle, so is H, and since we kept c∗ consistent, this change is
purely conceptual and

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1].

Game G3. In game G3, we switch back to oracle access to G, but keep c∗ unaf-
fected by this change. We now are ready to use Oneway to Hiding with semi-
classical oracles. Intuitively, the first part of O2H states that if oracles G and H
only differ on point m∗, the probability of an adversary being able to tell G and
H apart is directly related to m∗ being detectable in its random oracle queries.
Detecting m∗ is formalised by game G4, in which each of the random oracle
queries of A is measured with respect to projector |m∗〉〈m∗|, thereby collapsing
the query to either m∗ (and switching flag FIND to true) or a superposition
that does not contain m∗ at all. Following the notation of [3], we denote this
process by a call to oracle OSC

{m∗}, see line 08. Applying the first statement of
Theorem 1 for S := {m∗}, and z := (pk , c∗ := Enc(pk ,m∗; r∗)), we obtain

|Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ 2 ·
√

qG · Pr[GA
4 ⇒ 1].

Game G5. In game G5, c∗ ← Enc(pk ,m∗) is replaced with an encryption of
0. Since in game G5, (pk , c∗) is independent of m∗, we can apply the second
statement of O2H that upper bounds the probability of finding an independent
point m∗, relative to the number of queries and the size of the search space M.
We obtain

Pr[GA
5 ⇒ 1] ≤ 4qG

|M| .

To upper bound |Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]|, consider adversary BIND against
the IND-CPA security of PKE, also given in Fig. 8. BIND runs in the time that
is required to run A and to simulate the measured version of oracle G for qG
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Fig. 9. Key encapsulation mechanism KEM = FO�⊥
m [PKE,G,H] = U�⊥

m [T[PKE,G],H].
Oracle Hr is used to generate random values whenever reencryption fails. This strategy
is called implicit reject. Amongst others, it is used in [28,43], and [32]. For simplicity of
the proof, Hr is modelled as an internal random oracle that cannot be accessed directly.
For implementation, it would be sufficient to use a PRF.

queries. BIND perfectly simulates game G4 if run in game IND-CPA0 and game
G5 if run in game IND-CPA1, therefore,

|Pr[GA
4 ⇒ 1] − Pr[GA

5 ⇒ 1]| = AdvIND-CPA
PKE (BIND).

Collecting the probabilities yields

Pr[GA
4 ⇒ 1] ≤ AdvIND-CPA

PKE (BIND) +
4qG
|M| .

��

3.2 Transformation FO�⊥
m and Correctness Errors

Transformation SXY [43] got rid of the additional hash (sometimes called key
confirmation) that was included in [28]’s quantum transformation QU�⊥

m . SXY
is essentially the (classical) transformation U�⊥

m that was also given in [28], and
apart from doing without the additional hash, it comes with a tight security
reduction in the QROM. SXY differs from the (classical) transformation U�⊥

m

only in the regard that it reencrypts during decapsulation. (In [28], reencryption
is done during decryption of T.)

The security proof given in [43] requires the underlying encryption scheme
to be perfectly correct, and it turned out that their analysis cannot be trivially
adapted to take possible decryption failures into account in a generic setting. A
discussion of this matter is given in the full version. What we show instead is
that the combined transformation FO �⊥

m = U�⊥
m [T[−,G],H] turns any encryption

scheme that is DS as well as IND-CPA into a KEM that is IND-CCA secure in the
QROM, even if the underlying encryption scheme comes with a small probability
of decryption failure. Our reduction is tighter as the (combined) reduction in [43]
due to our tighter security proof for T.

The Construction. To PKE = (KG,Enc,Dec) with message space M and
randomness space R, and random oracles H : M → K, G : M → R, and an
additional internal random oracle Hr : C → K that can not be directly accessed,
we associate KEM = FO �⊥

m [PKE,G,H] := U�⊥
m [T[PKE,G],H], where the algorithms

of KEM = (KG,Encaps,Decaps) are given in Fig. 9.
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Fig. 10. Games G0 – G6 for the proof of Lemma2. f (lines 04 and 26) is an internal 2q-
wise independent hash function, where q := qG+qH+2 ·qD +1, that cannot be accessed
by A. Sample(Y ) is a probabilistic algorithm that returns a uniformly distributed y ←$

Y . Sample(Y ; f(m)) denotes the deterministic execution of Sample(Y ) using explicitly
given randomness f(m).

Security of KEM. The following theorem (whose proof is essentially the same
as in [43] except for the consideration of possible decryption failure) establishes
that IND-CCA security of KEM reduces to DS and IND-CPA security of PKE, in
the quantum random oracle model.

Theorem 2 (PKE DS + IND-CPA QROM⇒ KEM IND-CCA). Assume PKE to be
δ-correct, and to come with a fake sampling algorithm Enc such that PKE is
εdis-disjoint. Then, for any (quantum) IND-CCA adversary A issuing at most
qD (classical) queries to the decapsulation oracle Decaps, at most qH quan-
tum queries to H, and at most qG quantum queries to G, there exist (quantum)
adversaries BDS and BIND such that

AdvIND-CCA
KEM (A) ≤ 8 · (2 · qG + qH + qD + 4)2 · δ +AdvDS

PKE(BDS)

+ 2 ·
√
(qG + qH) · AdvIND-CPA

PKE (BIND) +
4(qG + qH)2

|M| + εdis,

and the running time of BDS and BIND is about that of A.

Proof. Let A be an adversary against the IND-CCA security of KEM, issuing at
most qD queries to Decaps, at most qH queries to the quantum random oracle H,
and at most qG queries to the quantum random oracle G. Consider the sequence
of games given in Fig. 10.
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Game G0. Since game G0 is the original IND-CCA game,

AdvIND-CCA
KEM (A) = |Pr[GA

0 ⇒ 1] − 1/2|.

Game G1. In game G1, we enforce that no decryption failure will occur: For
fixed (pk , sk) and message m ∈ M, let

Rbad(pk , sk ,m) := {r ∈ R | Dec(sk ,Enc(pk ,m; r)) �= m}

denote the set of “bad” randomness. We replace random oracle G in line 05 with
Gpk ,sk that only samples from good randomness. Further, define

δ(pk , sk ,m) := |Rbad(pk ,sk ,m)|/|R| (2)

as the fraction of bad randomness, and δ(pk , sk) := maxm∈M δ(pk , sk ,m). With
this notation, δ = E[maxm∈M δ(pk , sk ,m)], where the expectation is taken over
(pk , sk) ← KG.

To upper bound |Pr[GA
0 = 1] − Pr[GA

1 = 1]|, we construct an (unbounded,
quantum) adversary B against the generic distinguishing problem with bounded
probabilities GDPB (see Lemma 1) in Fig. 11, issuing qG + qD +1 queries to F. B
draws a key pair (pk , sk) ← KG and computes the parameters λ(m) of the generic
distinguishing problem as λ(m) := δ(pk , sk ,m), which are bounded by λ :=
δ(pk , sk). To analyze B, we first fix (pk , sk). For each m ∈ M, by the definition
of game GDPBλ,1, the random variable F(m) is bernoulli-distributed according to
Bλ(m) = Bδ(pk ,sk ,m). By construction, the random variable G(m) defined in line
28 if F(m) = 0 and in line 30 if F(m) = 1 is uniformly distributed in R. Therefore,
G is a (quantum-accessible) random oracle, and B|F〉 perfectly simulates game
G0 if executed in game GDPBλ,1. Since B|F〉 also perfectly simulates game G1 if
executed in game GDPBλ,0,

|Pr[GA
0 = 1] − Pr[GA

1 = 1]| = |Pr[GDPBB
λ,1 = 1] − Pr[GDPBB

λ,0 = 1]|,

and according to Lemma 1,

|Pr[GDPBB
λ,1 = 1] − Pr[GDPBB

λ,0 = 1]| ≤ 8 · (qG + qD + 2)2 · δ.

Game G2. In game G2, we prepare getting rid of the secret key by plugging in
encryption into random oracle H: Instead of drawing H ←$ KM, we draw Hq ←$

KC in line 07 and define H := Hq(Enc(pk ,−;G(−))) in line 08. For consistency,
we also change key K∗

0 in line 14 from letting K∗
0 := H(m∗) to letting K∗

0 :=
Hq(c∗), which is a purely conceptual change since c∗ = Enc(pk ,m∗;G(m∗)).
Additionally, we make the change of H explicit in oracle Decaps, i.e., we change
oracle Decaps in line 14 such that it returns K := Hq(c) whenever Enc(pk ,m′;
G(m′)) = c. Since G only samples from good randomness, encryption is rendered
perfectly correct and hence, injective. Since encryption is injective, H still is
uniformly random. Furthermore, since we only change Decaps for ciphertexts



410 K. Hövelmanns et al.

Fig. 11. Adversaries B and B′ executed in game GDPBδ(pk,sk) with access to F (and
additional oracles Hr and H or Hq, respectively) for the proof of Theorem 2. Parameters
δ(pk , sk , m) are defined in Eq. (2). Function f (lines 28 and 30) is an internal 2q-wise
independent hash function, where q := qG + qD + 1 for B, and qG + qH + 1 for B′, that
cannot be accessed by A.

c where c = Enc(pk ,m′;G(m′)), we maintain consistency of H and Decaps. In
conclusion, A’s view is identical in both games and

Pr[GA
1 = 1] = Pr[GA

2 = 1].

Game G3. In game G3, we change oracle Decaps such that it always returns
K := Hq(c), as opposed to returning K := Hr(c) as in game G2 whenever
decryption or reencryption fails (see line 21). We argue that this change does not
affect A’s view: If there exists no message m such that c = Enc(pk ,m;G(m)),
oracle Decaps(c) returns a random value (that can not possibly correlate to
any random oracle query to H) in both games, therefore Decaps(c) is a random
value independent of all other input to A in both games. And if there exists some
message m such that c = Enc(pk ,m;G(m)), Decaps(c) would have returned
Hq(c) in both games, anyway: Since G(m) ∈ R\Rbad(pk , sk ,m) for all messages



Generic AKE in the QROM 411

m, it holds that m′ := Dec(sk , c) = m �= ⊥ and that Enc(pk ,m′;G(m′)) = c.
Hence, A’s view is identical in both games and

Pr[GA
2 = 1] = Pr[GA

3 = 1].

Game G4. In game G4, we switch back to using G ←$ RM instead of Gpk ,sk .
With the same reasoning as for the gamehop from game G0 to G1,

|Pr[GA
3 = 1] − Pr[GA

4 = 1]| = |Pr[GDPBB′
λ,1 = 1] − Pr[GDPBB′

λ,0 = 1]|
≤ 8 · (qG + qH + 2)2 · δ,

where adversary B′ (that issues at most issuing qG + qH + 1 queries to F) is also
given in Fig. 11.

So far, we established

AdvIND-CCA
KEM (A) ≤ |Pr[GA

4 ⇒ 1] − 1/2| + 8 · (2 · qG + qH + qD + 4)2 · δ.

The rest of the proof proceeds similar to the proof in [43], aside from the fact
that we consider the particular scheme T[PKE,G] instead of a generic encryption
scheme that is deterministically DS.

Game G5. In game G5, the challenge ciphertext c∗ gets decoupled from
message m∗ by sampling c∗ ← Enc(pk) in line 12 instead of letting c∗ :=
Enc(pk ,m∗;G(m∗)). Consider the adversary CDS against the disjoint simulata-
bility of T[PKE,G] given in Fig. 12. Since CDS perfectly simulates game G4 if run
with deterministic encryption c∗ := Enc(pk ,m∗;G(m∗)) of a random message
m∗, and game G5 if run with a fake ciphertext,

|Pr[GA
4 = 1] − Pr[GA

5 = 1]| = AdvDS
T[PKE,G](CDS),

and according to Lemma 2, there exist an adversary BDS and an adversary BIND

with roughly the same running time such that

AdvDS
T[PKE,G](CDS) ≤AdvDS

PKE(BDS) + 2 ·
√

(qG + qH) · AdvIND-CPA
PKE (BIND) +

4(qG + qH)2

|M| .

Game G6. In game G6, the game is changed in line 15 such that it always uses
a randomly picked challenge key. Since both K∗

0 and K∗
1 are independent of all

other input to A in game G6,

Pr[GA
6 ⇒ 1] = 1/2.

It remains to upper bound |Pr[GA
5 = 1] − Pr[GA

6 = 1]|. To this end, it is suffi-
cient to upper bound the probability that any of the queries to Hq could possibly
contain c∗. Each query to Hq is either a classical query, triggered by A query-
ing Decaps on some ciphertext c, or a query in superposition, triggered by A
querying H. Since queries to Decaps on c∗ are explicitly forbidden, the only
possibility would be one of A’s queries to H. A’s queries to H trigger queries
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Fig. 12. Adversary CDS (with access to additional oracles Hr and Hq) against the disjoint
simulatability of T[PKE,G] for the proof of Theorem 2.

to Hq that are of the form
∑

m αm|Enc(pk ,m;G(m))〉. They cannot contain c∗

unless there exists some message m such that Enc(pk ,m;G(m)) = c∗. Since we
assume PKE to be εdis-disjoint,

|Pr[GA
5 = 1] − Pr[GA

6 = 1]| ≤ εdis.

3.3 CCA Security Without Disjoint Simulatability

In the full version we show that transformation Punc can be used to waive the
requirement of DS: Plugging in transformation Punc (before using FO �⊥

m) achieves
IND-CCA security from IND-CPA security alone, as long as PKE is γ-spread (see
Definition 3).

4 Two-Message Authenticated Key Exchange

A two-message key exchange protocol AKE = (KG, Init,Derinit,Derresp) consists
of four algorithms. Given the security parameter, the key generation algorithm
KG outputs a key pair (pk , sk). The initialisation algorithm Init, on input sk and
pk ′, outputs a message M and a state st. The responder’s derivation algorithm
Derresp, on input sk ′, pk and M , outputs a key K, and also a message M ′. The
initiator’s derivation algorithm Derinit, on input sk , pk ′, M ′ and st, outputs a
key K.

Running a Key Exchange Protocol between two Parties. To run a
two-message key exchange protocol, the algorithms KG, Init, Derinit, and Derresp
are executed in an interactive manner between two parties Pi and Pj with key
pairs (sk i, pk i), (sk j , pk j) ← KG. To execute the protocol, the parties call the
algorithms in the following way:

1. Pi computes (M, st) ← Init(sk i, pk j) and sends M to Pj .
2. Pj computes (M ′,K ′) ← Derresp(sk j , pk i,M) and sends M ′ to Pi.
3. Pi computes K := Derinit(ski, pkj ,M

′, st).
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Note that in contrast to the holder Pi, the peer Pj will not be required to
save any (secret) state information besides the key K ′.

Our Security Model. We consider N parties P1, . . . ,PN , each holding a key
pair (sk i, pk i), and possibly having several sessions at once. The sessions run
the protocol with access to the party’s long-term key material, while also having
their own set of (session-specific) local variables. The local variables of each
session, identified by the integer sID, are the following:

Party Pi (pk i, sk i) Party Pj (pk j , sk j)

(M, st) ← Init(sk i, pk j)

(M ′, K′) ← Derresp(sk j , pk i, M)

K := Derinit(ski, pkj , M
′, st)

M

M ′

1. An integer holder ∈ [N ] that points to the party running the session.
2. An integer peer ∈ [N ] that points to the party the session is communicating

with.
3. A string sent that holds the message sent by the session.
4. A string received that holds the message received by the session.
5. A string st that holds (secret) internal state values and intermediary results

required by the session.
6. A string role that holds the information whether the session’s key was derived

by Derinit or Derresp.
7. The session key K.

In our security model, the adversary A is given black-box access to the set
of processes Init, Derresp and Derinit that execute the AKE algorithms. To model
the attacker’s control of the network, we allow A to establish new sessions via
EST, to call either INIT and DERinit or DERresp, each at most once per session
(see Fig. 13, page 23). Since both derivation processes can be called on arbitrary
input, A may relay their input faithfully as well as modify the data on transit.
Moreover, the attacker is additionally granted queries to reveal both secret pro-
cess data, namely using oracles REVEAL, REV-STATE and CORRUPT (see
Fig. 14, page 24). Oracles REVEAL and REV-STATE both can be queried on
an arbitrary session ID, with oracle REVEAL revealing the respective session’s
key (if already defined), and oracle REV-STATE revealing the respective ses-
sion’s internal state. Oracle CORRUPT can be queried on an arbitrary number
i ∈ [N ] to reveal the respective party’s long-term key material. Usage of this ora-
cle allows the attacker to corrupt the test session’s holder, the oracle therefore
models the possibility of KCI attacks. Combined usage of oracles REV-STATE

and CORRUPT allows the attacker to obtain the state as well as the long-term
secret key on both sides of the session, the oracles therefore model the possi-
bility of MEX attacks. After choosing a test session, either the session’s key or
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Fig. 13. Games IND-AAb and IND-StAAb for AKE, where b ∈ F2. The collection of
oracles O used in lines 05 and 27 is defined by O := {EST, INIT, DERresp, DERinit,
REVEAL, REV-STATE, CORRUPT,TEST}. Oracles REVEAL, REV-STATE,
CORRUPT, and TEST are given in Fig. 14. Game IND-StAAb only differs from
IND-AAb in ruling out one more kind of attack: A’s bit b′ does not count in games
IND-AAb if helper procedure Trivial returns true, see line 06. In games IND-StAAb,
A’s bit b′ does not count already if procedure ATTACK (that includes Trivial and
additionally checks for state-attacks on the test session) returns true, see line 28.

a uniformly random key is returned. The attacker’s task is to distinguish these
two cases, to this end it outputs a bit.

Definition 8 (Key Indistinguishability of AKE). We define games
IND-AAb and IND-StAAb for b ∈ F2 as in Figs. 13 and 14.

We define the IND-AA advantage function of an adversary A against AKE as

AdvIND-AA
AKE (A) := |Pr[IND-AAA

1 ⇒ 1] − Pr[IND-AAA
0 ⇒ 1]|,

and the IND-StAA advantage function of an adversary A against AKE excluding
test-state-attacks as

AdvIND-StAA
AKE (A) := |Pr[IND-StAAA

1 ⇒ 1] − Pr[IND-StAAA
0 ⇒ 1]|.
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Fig. 14. Helper procedures Trivial and ATTACK and oracles REVEAL,
REV-STATE, CORRUPT, and TEST of games IND-AA and IND-StAA defined in
Fig. 13.

We call a session completed iff sKey[sID] �= ⊥, which implies that either
DERresp(sID,m) or DERinit(sID,m) was queried for some message m. We
say that a completed session sID was recreated iff there exists a session
sID′ �= sID such that (holder[sID],peer[sID]) = (holder[sID′],peer[sID′]),
role[sID] = role[sID′], sent[sID] = sent[sID′], received[sID] = received[sID′]
and state[sID] = state[sID′]. We say that two completed sessions sID1

and sID2 match iff (holder[sID1],peer[sID1]) = (peer[sID2], holder[sID2]),
(sent[sID1], received[sID1]) = (received[sID2], sent[sID2]), and role[sID1] �=
role[sID2]. We say that A tampered with the test session sID∗ if at the end
of the security game, there exists no matching session for sID∗ Nonexistence of
a matching session implies that A must have called the derivation process on a
message of its own choosing.

Helper procedure Trivial (Fig. 14 ) is used in all games to exclude the possibil-
ity of trivial attacks, and helper procedure ATTACK (also Fig. 14) is defined in
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games IND-StAAb to exclude the possibility of trivial attacks as well as one non-
trivial attack that we will discuss below. During execution of Trivial, the game
creates list M(sID∗) of all matching sessions that were executed throughout the
game (see line 55), and A’s output bit b′ counts in games IND-AAb only if Trivial
returns false, i.e., if test session sID∗ was completed and all of the following
conditions hold:

1. A did not obtain the key of sID∗ by querying REVEAL on sID∗ or any
matching session, see lines 49 and 56.

2. A did not obtain both the holder i’s secret key sk i and the test session’s
internal state, see line 51. We enforce that ¬corrupted[i] or ¬revState[sID∗]
since otherwise, A is allowed to obtain all information required to trivially
compute Der(sk i, pk j , received[sID∗], state[sID∗]).

3. A did not obtain both the peer’s secret key sk j and the internal state of any
matching session, see line 58. We enforce that ¬corrupted[j] or ¬revState[sID]
for all sID s. th. sID ∈ M(sID∗) for the same reason as discussed in 2: A could
trivially compute Der(sk j , pk i, received[sID], state[sID]) for some matching
session sID.

4. A did not both tamper with the test session and obtain the peer j’s secret key
sk j , see line 61. We enforce that M(sID∗) �= ∅ or ¬corrupted[j] to exclude
the following trivial attack: A could learn the peer’s secret key sk j via query
CORRUPT[j] and either

– receive a message M by querying INIT on sID∗, compute (M ′,K ′) ←
Derresp(sk j , pk i,M) without having to call DERresp, and then call
DERinit(sID∗,M ′), thereby ensuring that sKey[sID∗] = K ′,

– or compute (M, st) ← Init(sk j , pk i) without having to call INIT, receive
a message M ′ by querying DERresp(sID∗,M), and trivially compute
Derinit(sk j , pk i,M

′, st).

A’s output bit b′ only counts in games IND-StAAb if ATTACK returns false,
i.e., if both of the following conditions hold:

1. Trivial returns false
2. A did not both tamper with the test session and obtain its internal state, see

line 64. We enforce that M(sID∗) �= ∅ or ¬revState[sID∗] in game IND-StAA
for the following reason: In an active attack, given that the test session’s
internal state got leaked, it is possible for some protocols to choose a message
M ′ such that the result of algorithm Derinit(sk i, pk j ,M

′, st) can be computed
without knowledge of any of the long-term keys sk i or sk j . In this setting, an
adversary might query INIT on sID∗, learn the internal state st by querying
REV-STATE on sID∗, choose its own message M ′ without a call to DERresp
and finally call DERinit(sID∗,M ′), thereby being enabled to anticipate the
resulting key.
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Fig. 15. IND-StAA secure AKE protocol AKE = FOAKE[PKE,G,H]. Oracles H′
R and

H′
L1, H

′
L2 and H′

L3 are used to generate random values whenever reencryption fails. (For
encryption, this strategy is called implicit reject Amongst others, it is used in [28], [43]
and [32].) For simplicity of the proof, H′

R and H′
L1, H

′
L2 and H′

L3 are internal random
oracles that cannot be accessed directly. For implementation, it would be sufficient to
use a PRF.

5 Transformation from PKE to AKE

Transformation FOAKE constructs a IND-StAA-secure AKE protocol from a PKE
scheme that is both DS and IND-CPA secure. If we plug in transformation Punc
before applying FOAKE, we achieve IND-StAA-security from CPA security alone.

The Construction. To a PKE scheme PKE = (KG,Enc,Dec) with message
space M, and random oracles G and H, we associate

AKE = FOAKE[PKE,G,H] = (KG, Init,Derresp,Derinit).

The algorithms of AKE are defined in Fig. 15.

IND-StAA Security of FOAKE. The following theorem establishes that
IND-StAA security of AKE reduces to DS and IND-CPA security of PKE (see
Definition 6).

Theorem 3 (PKE DS + IND-CPA ⇒ AKE IND-StAA). Assume PKE to be δ-
correct, and to come with a sampling algorithm Enc such that it is ε-disjoint.
Then, for any IND-StAA adversary B that establishes S sessions and issues at
most qR (classical) queries to REVEAL, at most qG (quantum) queries to ran-
dom oracle G and at most qH (quantum) queries to random oracle H, there exists
an adversary ADS against the disjoint simulatability of T[PKE,G] issuing at most
qG + 2qH + 3S queries to G such that

AdvIND-StAA
AKE (B) ≤ 2 · S · (S + 3 · N) · AdvDS

T[PKE,G](ADS) + 32 · (S + 3 · N) · (qG + 2qH + 4S)2 · δ

+ 4 · S · (S + N) · εdis + S2 · (N + 1) · μ(KG) · μ(Enc) + 2 · S2 · μ(KG),
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and the running time of ADS is about that of B. Due to Lemma2, there exist
adversaries CDS and CIND against PKE such that

Adv
IND-StAA
AKE (B) ≤ 2 · S · (S + 3 · N) · Adv

DS
PKE(CDS)

+ 4 · S · (S + 3 · N) ·
√

(qG + 2qH + 3S) · AdvIND-CPA
PKE (CIND) +

4(qG + 2qH + 3S)2

|M|
+ 32 · (S + 3 · N) · (qG + 2qH + 3S)

2 · δ + 4 · S · (S + N) · εdis

+ S
2 · (N + 1) · μ(KG) · μ(Enc) + 2 · S

2 · μ(KG),

and the running times of CDS and CIND is about that of B.

Proof Sketch. To prove IND-StAA security of FOAKE[PKE,G,H], we consider
an adversary B with black-box access to the protocols’ algorithms and to oracles
that reveal keys of completed sessions, internal states, and long-term secret keys
of participating parties as specified in game IND-StAA (see Fig. 13). Intuitively,
B will always be able to obtain all-but-one of the three secret messages mi, mj

and m̃ that are picked during execution of the test session between Pi and Pj :

1. We first consider the case that B executed the test session honestly. Note that
on the right-hand side of the protocol there exists no state. We assume that
B has learned the secret key of party Pj and hence knows mj . Additionally, B
could either learn the secret key of party Pi and thereby, compute mi, or the
state on the left-hand side of the protocol including s̃k , and thereby, compute
m̃, but not both.

2. In the case that B did not execute the test session honestly, B is not only for-
bidden to obtain the long-term secret key of the test session’s peer, but also to
obtain the test session’s state due to our restriction in game IND-StAA. Given
that B modified the exchanged messages, the test session’s side is decoupled
from the other side. If the test session is on the right-hand side, messages mj

and m̃ can be obtained, but message mi can not because we forbid to learn
peer i’s secret key. If the test session is on the left-hand side, messages mi

and m̃ can be obtained, but message mj can not because we forbid both to
learn the test session’s state and to learn peer j’s secret key.

In every possible scenario of game IND-StAA, at least one message can not be
obtained trivially and is still protected by PKE’s IND-CPA security, and the
respective ciphertext can be replaced with fake encryptions due to PKE’s disjoint
simulatability. Consequently, the session key K is pseudorandom. A detailed,
game-based proof is given in the full version.

So far we have ignored the fact that B has access to an oracle that reveals
the keys of completed sessions. This implicitly provides B a decryption oracle
with respect to the secret keys sk i and sk j . In our proof, we want to make
use of the technique from [43] to simulate the decryption oracles by patching
encryption into the random oracle H. In order to extend their technique to PKE
schemes with non-perfect correctness, during the security proof we also need to
patch random oracle G in a way that (Enc′,Dec′) (relative to the patched G)
provides perfect correctness. This strategy is the AKE analogue to the technique



Generic AKE in the QROM 419

used in our analysis of the Fujisaki-Okamoto transformation given in Sect. 3,
in particular, during our proof of Theorem2. The latter also explains why our
transformation does not work with any deterministic encryption scheme, but
only with the ones that are derived by using transformation T. For more details
on this issue, we also refer to the full version.

5.1 IND-StAA Security Without Disjoint Simulatability

In the full version we show that transformation Punc can be used to waive the
requirement of DS: Plugging in transformation Punc before using FOAKE achieves
IND-StAA security from IND-CPA security alone, as long as PKE is γ-spread.
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