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Abstract. Now that the NIST’s post-quantum cryptography competi-
tion has entered in its second phase, the time has come to focus more
closely on practical aspects of the candidates. While efficient implemen-
tations of the proposed schemes are somewhat included in the submission
packages, certain issues like the threat of side-channel attacks are often
lightly touched upon by the authors. Hence, the community is encour-
aged by the NIST to join the war effort to treat those peripheral, but
nonetheless crucial, topics. In this paper, we study the lattice-based sig-
nature scheme qTESLA in the context of the masking countermeasure.
Continuing a line of research opened by Barthe et al. at Eurocrypt 2018
with the masking of the GLP signature scheme, we extend and modify
their work to mask qTESLA. Based on the work of Migliore et al. in ACNS
2019, we slightly modify the parameters to improve the masked perfor-
mance while keeping the same security. The masking can be done at any
order and specialized gadgets are used to get maximal efficiency at order
1. We implemented our countermeasure in the original code of the sub-
mission and performed tests at different orders to assess the feasibility
of our technique.

Keywords: Lattice based signatures · Side-channels · Masking

1 Introduction

Following NIST’s call for proposals a few years ago, the practical aspects of
post-quantum cryptography have lately been studied more closely in the scien-
tific literature. Many researchers tried to optimize parameters of cryptosystems
to achieve reasonable practicality while still resisting state-of-the-art cryptanal-
ysis. Once the design phase was over, a lot of implementations flourished on
various platforms, proving that those cryptosystems can hope to achieve some-
thing useful outside of academia. Nevertheless, everyone is now well aware that
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having a fast and correct implementation of some functionality is seldom suf-
ficient to get a secure system. In practice, side-channel attacks should not be
overlooked and the capability of a cryptosystem to be easily protected against
this kind of threats may be a strong argument to decide what will be the reigning
algorithm in a post-quantum world.

In this work, we focus on applying the masking countermeasure to qTESLA [1],
a Fiat-Shamir lattice-based signature derived from the original work of Lyuba-
shevsky [22]. This signature is, with Dilithium [14], one of the most recent itera-
tion of this line of research and a candidate for the NIST’s competition. In 2018,
Barthe et al. [3] described and implemented a proof of concept for a masked
version of an ancestor of Dilithium/qTESLA called GLP [18]. Their goal was to
prove that it is possible to mask the signature procedure at any order. This
work led to a concrete masked implementation of Dilithium with experimental
leakage tests [23]. In the latter, Migliore et al. noticed that replacing the prime
modulus by a power of two allows to obtain a considerably more efficient masked
scheme, by a factor of 7.3 to 9 for the most timeconsuming masking operations.
Our work is in the same spirit. Similarly, we slightly modify the signature and
parameters to ease the addition of the countermeasure while keeping the original
security. In addition, we provide a detailed proof of masking for the whole signa-
ture process taking public outputs into account. Indeed, similarly to the masking
of GLP in [3], several elements of qTESLA may be securely unmasked, like, for
example, the number of rejections. Besides, we propose an implementation for
which we have focused on performance and reusability. Our masked signature
implementation still keeps the property of being compatible with the original
verifying procedure of qTESLA and has been directly implemented within the
code of the submission. Even if we target high order masking, we also imple-
mented specialized gadgets for order 1 masking to provide a lightweight version
of the masking scheme with reasonable performance fitting nicely on embedded
systems. We finally provide extensive performance data and show that the cost
of provable masking can be reasonable at least for small orders. Our code is
publicly available at https://github.com/fragerar/Masked qTESLA.

Parameter Sets Removal. While this paper was under peer review, the heuris-
tic parameter sets on which our experiments are based were removed by the
qTESLA team. We emphasis that the parameters we use were not broken but are
not part of the standardization process anymore. Furthermore, our theoretical
work is somewhat oblivious to the underlying parameter set used to instanciate
the signature and the code can be adapted to implement the provably-secure
sets as well.

2 Preliminaries

2.1 Notations

For any integers q, n and Zq = Z/qZ, we denote by Rq the ring Zq[X]/(Xn +1).
Polynomials are written with bold lower case, e.g. y ∈ Rq. Note that, in our
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study, we do not need to introduce a notation for vectors of polynomials. Let B
be an integer, we write Rq,[B] to denote the subset of polynomials in Rq with
coefficients in [−B,B]. The usual norm operators are extended to polynomials by
interpreting them as a vector of their coefficients. For a polynomial v =

∑n−1
i=0 vi ·

xi, ||v||1 =
∑n−1

i=0 |vi| and ||v||∞ = maxi|vi|. For a modulus q and an integer x,
we write x mod q to denote the unique integer xcn ∈ [0, . . . , q − 1] such that
xcn ≡ x (mod q). We call this integer the canonical representative of x modulo
q. We also write x mod±q to denote the unique integer xct ∈ (−q/2, . . . , q/2]
(where the lower bound is included if q is odd) such that xct ≡ x (mod q). We
call this integer the centered representative of x modulo q. For integers w, d, the
function [·]L : Z → Z, w �→ w mod±2d denotes the signed extraction of the d last
bits of w. We use this function to define [·]M : Z → Z, w �→ (w mod±q−[w]L)/2d.
Those two functions are extended to polynomials by applying them separately
on each coefficient.

2.2 Masking

Side channel attacks are a family of cryptanalytic attacks where the adversary
is able access several physical parameters of the device running the algorithm.
These physical attacks include, for instance, cache attacks, simple and correla-
tion electromagnetic analysis or fault injections. Modelling and protecting the
information leaked though physical parameters has been an important research
challenge since the original attack warning in [20].

The probing model or ISW model from its inventors [19] is the most stud-
ied leakage model. It has been introduced in order to theoretically define the
vulnerability of implementations exposed to side-channel attacks. In a nutshell,
a cryptographic implementation is N -probing secure iff any set of at most N
intermediate variables is statisctically independent of the secrets. This model
can be applied to practical leakages with the reduction established in [13] and
tightened in [17]. The masking countermeasure performs computations on secret-
shared data. It is the most deployed countermeasure in this landscape. Basically,
each input secret x is split into N + 1 variables (xi)0≤i≤N referred to as shares.
N of them are generated uniformly at random whereas the last one is com-
puted such that their combination reveals the secret value x. The integer N is
called masking order and represents the security level of an implementation with
respect to side channels. Let us introduce two types of additive combination in
the following definition.

Definition 1 (Arithmetic and Boolean Masking). A sensitive value x is
shared with mod q arithmetic masking if it is split into N + 1 shares (xi)0≤i≤N

such that

x = x0 + · · · + xN (mod q). (Arithmetic masking mod q)

It is shared with Boolean masking if it is split into N + 1 shares (xi)0≤i≤N such
that

x = x0 ⊕ · · · ⊕ xN . (Boolean masking)
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For lattice-based cryptography where most operations are linear for mod q
addition, arithmetic masking seems the best choice. However, for certain opera-
tions like the randomness generation and comparisons, Boolean masking is bet-
ter fit. Fortunately, some conversions exist [3,9,11] and allow to switch from one
masking to another.

Proofs by Composition. To achieve N -probing security, Barthe et al. for-
mally defined two security properties in [4], namely non-interference and strong
non-interference, which (1) ease the security proofs for small gadgets (see Defi-
nition 2), and (2) allows to securely combine secure gadgets together.

Definition 2. A (u, v)-gadget is a probabilistic algorithm that takes as inputs u
shared values, and returns distributions over v-tuples of shared values.

Definition 3. A gadget is N -non-interfering (N -NI) iff any set of at most N
observations can be perfectly simulated from at most N shares of each input.

Definition 4. A gadget is N -strong non-interfering (N -SNI) iff any set of at
most N observations whose Nint observations on the internal data and Nout

observations on the outputs can be perfectly simulated from at most Nint shares
of each input.

It is easy to check that N -SNI implies N -NI which implies N -probing security.
The strong non-interference only appears in the proofs for subgadgets inside the
signature and key generation algorithm. An additional notion was introduced
in [3] to reason on the security of lattice-based schemes in which some interme-
diate variables may be revealed to the adversary.

Definition 5. A gadget with public outputs X is N -non-interfering with public
outputs (N -NIo) iff every set of at most N intermediate variables can be perfectly
simulated with the public outputs and at most N shares of each input.

Table 1. Parameters for qTESLA-I and qTESLA-III

Parameters qTESLA-I qTESLA-III Description

n 512 1024 Dimension of the ring

q 4 205 569 ≈ 222 8 404 993 ≈ 223 Modulus

σ 22.93 10.2 Standard deviation

h 30 48 Nonzero entries of c

E 1586 1147 Rejection parameter

S 1586 1233 Rejection parameter

B 220 − 1 221 − 1 Bound for y

d 21 22 Bits dropped in [·]M
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2.3 The qTESLA Signature

Let us now describe qTESLA [1], a (family of) lattice-based signature based on
the RLWE problem and round 2 candidate for the NIST’s post-quantum com-
petition. The signature stems from several iterations of improvements over the
original scheme of Lyubashevsky [22]. It is in fact a concrete instantiation of the
scheme of Bai and Galbraith [2] over ideal lattices. Its direct contender in the
competition is Dilithium [14] which is also based on this same idea of having a
lattice variant of Schnorr signature. The security of Dilithium rely on problems
over module lattices instead of ideal lattices, in the hope of increasing security
by reducing algebraic structure, at the cost of a slight performance penalty.

To avoid overloading the paper, we will not describe in details all the sub-
routines and subtleties of qTESLA and sometimes simplify some aspects of the
signature not required to understand our work.

Parameters
We store in Table 1 the set of selected parameters that are relevant for the rest
of the paper. For the sake of practicability, we focus on the heuristic version
of qTESLA in this work. More specifically, we implement our countermeasure in
qTESLA-I and qTESLA-III even though the techniques we used are not specific
to any parameter set.

Scheme
The key generation and signature procedures are formally recalled in Algo-
rithms 1 and 2. They are similar to the corresponding ones in other Fiat-Shamir
lattice-based signatures. We redirect the interested reader to [1] or the NIST
submission [5] for a detailed description. In the following, PRF is a pseudoran-
dom function, GenA generates a uniformly random polynomial, GaussSampler
samples a polynomial according to a Gaussian distribution, CheckS and CheckE
verifies that a secret polynomial does not have too large coefficients, ySampler
samples a uniformly random polynomial y ∈ Rq,[B], H is a collision resistant
hash function and Enc encodes a bitstring into a sparse polynomial c ∈ Rq,[1]

with ||c||1 = h.

3 Masked qTESLA

3.1 Masking-Friendly Design

In the process of masking qTESLA, we decided to make slight modifications in the
signing procedure in order to facilitate masking. The idea is that some design
elements providing small efficiency gains may be really hard to carry on to
the masked version and actually do even more harm than good. Our two main
modifications are the modulus which is chosen as the closest power of two of the
original parameter set and the removal of the PRF to generate the polynomial y.

Power of Two Modulus. Modular arithmetic is one of the core component of
plenty of cryptographic schemes. While, in general, it is reasonably fast for any
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Algorithm 1. qTESLA key generation
Result: sk = (s, e, seeda, seedy),
pk = (seeda, t)

1: counter ← 1
2: pre-seed

r←− {0, 1}κ

3: seeds,e,a,y ← PRF(pre-seed)
4: a ← GenA(seeda)
5: do
6: s ← GaussSampler(seeds,counter)
7: counter ← counter + 1
8: while (CheckS(s) �= 0)
9: do

10: e ← GaussSampler(seede,counter)
11: counter ← counter + 1
12: while (CheckE(e) �= 0)
13: t ← a · s + e mod q
14: sk ← (s, e, seeda, seedy)
15: pk ← (seeda, t)
16: return sk, pk

Algorithm 2. qTESLA sign
Data: sk = (s, e, seeda, seedy)
Result: Σ = (z, c)

1: counter ← 1
2: r

r←− {0, 1}κ

3: rand ← PRF(seedy, r,H(m))
4: y ← ySampler(rand, counter)
5: a ← GenA(seeda)
6: v ← a · y mod±q
7: c ← Enc(H([v]M , m))
8: z ← y + s · c
9: if z �∈ Rq,[B−S] then

10: counter ← counter + 1
11: goto 4
12: end if
13: w ← v − e · c mod±q
14: if ||[w]L||∞ ≥ 2d−1 − E
15: or ||w||∞ ≥ �q/2� − E then
16: counter ← counter + 1
17: goto 4
18: end if
19: return (z, c)

modulus (but not necessarily straightforward to do in constant time), modular
arithmetic in masked form is very inefficient and it is often one of the bottle-
necks in terms of running time. In [3], a gadget SecAddModp is defined to add two
integers in boolean masked form modulo p. The idea is to naively perform the
addition over the integers and to subtract p if the value is larger than p. While
this works completely fine, the computational overhead is large in practice and
avoiding those reductions would drastically enhance execution time. The ideal
case is to work over Z2n . In this case, almost no reductions are needed through-
out the execution of the algorithm and, when needed, can be simply performed
by applying a mask on boolean shares. The reason why working with a power of
two modulus is not the standard way to instanciate lattice-based cryptography is
that it removes the possibility to use the number theoretic transform (NTT) to
perform efficient polynomial multiplication in O(n log n). Instead, multiplication
of polynomial has to be computed using the Karatsuba/Toom-Cook algorithm
which is slower for parameters used in state-of-the-art algorithms. Nevertheless,
in our case, not having to use the heavy SecAddModp gadget largely overshad-
ows the penalty of switching from NTT to Karatsuba. Since modulus for both
parameter sets were already close to a power of two, we rounded to the closest
one, i.e. 222 for qTESLA-I and 223 for qTESLA-III. This modification does not
change the security of the scheme. Indeed, security-wise, for the heuristic version
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of the scheme that we study, we need a q such that q > 4B1 and the correspond-
ing decisional LWE instance is still hard. Yet, the form of q does not impact
the hardness of the problem as shown in [21] and, since q was already extremely
close to a power of two for both parameters sets, the practical bit hardness of
the corresponding instance is not sensibly changed.

Removal of the PRF. It is well known that in Schnorr-like signatures, a dev-
astating attack is possible if the adversary gets two different signatures using
the same y. Indeed, they can simply compute the secret s = z−z′

c−c′ . While such
a situation is very unlikely due to the large size of y, a technique to create a
deterministic version of the signature was introduced in [24]. The idea is to com-
pute y as PRF(secret seed,m) such that each message will have a different value
for y unless a collision is found in PRF. This modification acts as a protection
against very weak entropy sources but is not necessary to the security of the sig-
nature and was not present in ancestors of qTESLA. Unfortunately, adding this
determinism also enabled some side-channel attacks [8,25]. Hence, the authors
of qTESLA decided to take the middle ground by keeping the deterministic design
but also seeding the oracle with a fresh random value r2.

While those small safety measures certainly make sense if they do not incur
a significant performance penalty, we decided to drop it and simply sample y
at random at the beginning of the signing procedure. The reason is twofold.
First, keeping deterministic generation of y implied masking the hash function
evaluation itself which is really inefficient if not needed and would unnecessarily
complicate the masking scheme. Second, implementing a masking countermea-
sure is, in general, making the hypothesis that a reasonable source of randomness
(or at least not weak to the point of having a nonce reuse on something as large
as y) is available to generate shares and thus can be also used for the signature
itself.

3.2 Existing Gadgets

First, let us describe gadgets already existing in the literature. Since they are not
part of our contribution, we decided to only recall their functionalities without
formally describing them.

– SecAnd: Computes the logical and between two values given in boolean masked
form, output also in boolean masked form. Order 1 algorithm: [12]. Order n
algorithm [3].

– SecAdd: Computes the arithmetic add between two values given in boolean
masked form, output also in boolean masked form. Order 1 algorithm: [12].
Order n algorithm [3].

– SecArithBoolModq: Converts a value in arithmetic masked form to a value
in boolean masked form. Order 1 algorithm: [16]. Order n: [11]. We slightly

1 The other condition on q in the parameters table of the submission is to enable the
NTT.

2 Note that the fault attacks is still possible in case of failure of the RNG picking r.
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Algorithm 3. Absolute Value - AbsVal
Data: A boolean masking (xi)0≤i≤N of some integer x and an integer k
Result: A boolean masking (|x|i)0≤i≤N corresponding to the absolute value of
x mod±2k

1: (maski)0≤i≤N ← ((xi)0≤i≤N << (RADIX − k)) >> (RADIX − 1))
2: (x′

i)0≤i≤N ← Refresh((xi)0≤i≤N )
3: (xi)0≤i≤N ← SecAdd((x′

i)0≤i≤N , (maski)0≤i≤N ))
4: (|x|i)0≤i≤N ← ((xi)0≤i≤N ⊕ (maski)0≤i≤N ) ∧ (2k − 1)

modify it to an algorithm denoted GenSecArithBoolModq taking into account
non power of two number of shares.

– SecBoolArith: Converts a value in boolean masked form to a value in arith-
metic masked form. Order 1 algorithm: [16]. Order n algorithm: [9]. This
gadget does not explicitly appear in the following but is used inside DataGen.

– DataGen: Takes as input an integer B and outputs a polynomial y ∈ Rq,[B]

in arithmetic masked form. Uses the boolean to arithmetic conversion.
– FullXor: Merges shares of a value in boolean masked form and output the

unmasked value.
– FullAdd: Merges shares of a value in arithmetic masked form and output the

unmasked value.
– Refresh: Refreshes a boolean sharing using fresh randomness [19]. We use its

N -SNI version, sometimes denoted FullRefresh ([10] Algorithm 4), which is
made of a succession of N + 1 linear refresh operations.

3.3 New Gadgets

To comply with the specifications of qTESLA, our signature scheme includes new
components to be masked that were not covered or different than in [3,23]. In
all the following, RADIX refers to the size of the integer datatype used to store
the shares.

Absolute Value (Algorithm 3): The three checks during the signing procedure
are: z �∈ Rq,[B−S], ||[w]L||∞ ≥ 2d−1 − E and ||w||∞ ≥ 	q/2
 − E. They all
involve going through individual coefficients (or their low bits) of a polynomial
and checking a bound on their absolute value. In the first version of our work, we
were actually making two comparisons on each signed coefficients before realizing
that it was actually less intensive to explicitly compute the absolute value and
do only one comparison. The gadget takes as input any integer x masked in
boolean form and outputs |x mod±2k|. Since computers are performing two’s
complement arithmetic, the absolute value of x can be computed as follows:

1. m ← x � RADIX − 1
2. |x| ← (x + m) ⊕ m
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Algorithm 4. Masked rounding - MaskedRound

Data: An arithmetic masking (ai)0≤i≤N of some integer a
Result: An integer r corresponding to the modular rounding of a

1: (MINUS Q HALFi)0≤i≤N ← (−q/2 − 1, 0, ..., 0)
2: (CONSTi)0≤i≤N ← (2d−1 − 1, 0, ..., 0)
3: (a′

i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N

4: (bi)0≤i≤N ← SecAdd((a′
i)0≤i≤N , (MINUS Q HALFi)0≤i≤N )

5: b0 = ¬b0
6: (bi)0≤i≤N ← ((bi)0≤i≤N >> RADIX − 1) << log2 q
7: (a′

i)0≤i≤N ← (a′
i)0≤i≤N ⊕ (bi)0≤i≤N

8: (a′
i)0≤i≤N ← SecAdd((a′

i)0≤i≤N , (CONSTi)0≤i≤N )
9: (a′

i)0≤i≤N ← (a′
i)0≤i≤N >> d

10: return t := FullXor((a′
i)0≤i≤N )

As we work on signed integers, one can note that the � in the first step is an
arithmetic shift and actually writes the sign bit in the whole register. If x is
negative then m = −1 (all ones in the register) and if x is positive then m = 0.
The gadget AbsVal is using the same technique to compute |x mod±2k|. The
small difference is that the sign bit is in position k instead of position RADIX.
This is why line 1 is moving the sign bit (modulo 2k) in first position before
extending it to the whole register to compute the mask.

Masked Rounding (Algorithm 4): In [2], a compression technique was intro-
duced to reduce the size of the signature. It implies rounding coefficients of a
polynomial. Revealing the polynomial before rounding would allow an adver-
sary to get extra information on secret values and thus, this operation has to
be done on the masked polynomial. Recall that the operation to compute is
[v]M = (v mod±q − [v]L)/2d.

The first step is to compute the centered representative of v, i.e. subtract q
from v if v > q/2. Taking advantage of our power of two modulus, this operation
would be really easy to do if the centered representative was defined as the
integer congruent to v in the range [−q/2, q/2) since it would be equivalent to
copying the qth bit of v in the most significant part, which can be performed
with simple shift operations on shares. Unfortunately, the rounding function of
qTESLA works with representatives in (−q/2, q/2]. As we wanted compatibility
with the original scheme, we decided to stick with their design. Nevertheless,
we were still able to exploit our power of two modulus. Indeed, in this context,
switching from positive to negative representative modulo q is merely setting all
the high bits to one. Hence, we subtract q/2 + 1 from v, extract the sign bit b
and copy ¬b to all the high bits of v.

The second step is the computation of (v − [v]L)/2d. We used a small trick
here. Subtracting the centered representative modulo 2d is actually equivalent
to the application of a rounding to the closest multiple of 2d with ties rounded
down. Hence we first computed v + 2d−1 − 1 and dropped the d least significant
bits. This is analogous to computing 	x = 	x + 0.499 . . . 
 to find the closest
integer to a real value.
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Algorithm 5. Masked well-rounded - MaskedWR

Data: Integer a ∈ Zq in arithmetic masked form (ai)0≤i≤N

Result: A boolean masking r of (‖a‖ ≤ q/2 − E) ∧ (‖[a]L‖ ≤ 2d−1 − E)

1: (SUP Qi)0≤i≤N ← (−q/2 + E, 0, ..., 0)
2: (SUP Di)0≤i≤N ← (−2d−1 + E, 0, ..., 0)
3: (a′

i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N

4: (xi)0≤i≤N ← AbsVal((a′
i)0≤i≤N , log2 q)

5: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUP Qi)0≤i≤N ))
6: (bi)0≤i≤N ← (xi)0≤i≤N >> (RADIX − 1)
7: (a′

i)0≤i≤N ← Refresh((a′
i)0≤i≤N )

8: (a′
i)0≤i≤N ← (a′

i)0≤i≤N ∧ 2d − 1
9: (yi)0≤i≤N ← AbsVal((a′

i)0≤i≤N , d)
10: (yi)0≤i≤N ← SecAdd((yi)0≤i≤N , (SUP Di)0≤i≤N ))
11: (b′

i)0≤i≤N ← (yi)0≤i≤N >> (RADIX − 1)
12: (bi)0≤i≤N ← SecAnd((bi)0≤i≤N , (b′

i)0≤i≤N )
13: return r := FullXor((bi)0≤i≤N )

Algorithm 6. Rejection Sampling - MaskedRS

Data: A value a to check, in arithmetic masked form (ai)0≤i≤N

Result: 1 if |a| ≤ B − S else 0

1: (SUPi)0≤i≤N ← (−B + S − 1, 0, ..., 0)
2: (a′

i)0≤i≤N ← GenSecArithBoolModq((ai)0≤i≤N )
3: (xi)0≤i≤N ← AbsVal((a′

i)0≤i≤N , log2 q)
4: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUPi)0≤i≤N )
5: (bi)0≤i≤N ← ((xi)0≤i≤N >> RADIX − 1)
6: return rs := FullXor((bi)0≤i≤N )

Masked Well-Rounded (Algorithm 5): Unlike GLP, the signature scheme
can fail to verify and may have to be restarted even if the rejection sampling
test has been successful. This results from the fact that the signature acts as a
proof of knowledge only on the s part of the secret key and not on the error e.
Nonetheless, thanks to rounding, the verifier will be able to feed correct input to
the hash function if the commitment is so called ‘well-rounded’. Since not well-
rounded signatures would leak information on the secret key, this verification
has to be performed in masked form.

The MaskedWR gadget has to perform the two checks ||[w]L||∞ < 2d−1 −
E and ||w||∞ < 	q/2
 − E. While the cost of this rather simple operation is
negligible compared to polynomial multiplication in the unprotected signature,
this test is fairly expensive in masked form. Indeed, it requires four comparisons
in addition to the extraction of the low bits of w.

After trying the four comparisons method, we realized that the best strategy
was actually to compute both absolute values with the AbsVal gadget. While
comparisons only require one SecAdd and one shift, which is less than AbsVal,
the cost of all SecAnd operations between the results of those comparisons makes
our approach of computing the absolute value slightly better.
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Rejection Sampling (Algorithm 6): The rejection sampling procedure con-
sists in ensuring that the absolute value of all coefficients of a polynomial z
are smaller than a bound B. In [3], a gadget verifying that the centered rep-
resentative of a masked integer is greater than −B was applied to both z and
−z. In [23], a less computationally intensive approach was taken: their rejection
sampling gadget takes as input an arithmetic masking of a coefficient a ∈ Zq

identified by its canonical representative and check directly that either a − B is
negative or a − q + B is positive. This can be easily done using precomputed
constants (−B −1, 0, ..., 0) and (−q +B, 0, ..., 0). Our approach is similar but we
use instead the same technique as in the MaskedWR algorithm, that is to first
compute the absolute value of a and perform the masked test ||a|| ≤ B. This
saves the need for a masked operation to aggregate both tests.

Algorithm 7. Masked signature
Data: message m, secret key sk = ((si)0≤i≤N , (ei)0≤i≤N ), seed sd
Result: Signature (zunmasked, c)

1: Let t be a byte array of size n
2: a ← GenA(sd)
3: (yi)0≤i≤N ← DataGen(B)
4: for i = 0, . . . , N do
5: vi ← a · yi

6: end for
7: u ← FullRound((vi)0≤i≤N )
8: c ← Encode(H(u, m))
9: for i = 0, . . . , N do

10: zi ← yi + si · c
11: end for
12: if rs := FullRS((zi)0≤i≤N ) = 0 then
13: goto 3
14: end if
15: for i = 0, . . . , N do
16: wi ← vi − ei · c
17: end for
18: if r := FullWR((wi)0≤i≤N ) = 0 then
19: goto 3
20: end if
21: zunmasked ← FullAdd((zi)0≤i≤N )
22: return (zunmasked, c)

3.4 Masked Scheme

In all signature schemes, two algorithms can leak the secret key through side
channels: the key generation algorithm and the signing algorithm.

Masked Sign: The masked signature can be found in Algorithm7. It uses the
gadgets described in Sect. 3.3: the gadgets FullRS, FullWR and FullRound denote
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the extension of MaskedRS, MaskedWR and MaskedRound to all coefficients j ∈
[0, n − 1] of their input polynomial. Beside the removal of the PRF for y, its
structure follows closely the unmasked version of the signature.

Masked Key Generation: As the number of signature queries per private
key can be high (up to 264 as required by the NIST competition), whereas
the key generation algorithm is typically only executed once per private key,
the vulnerability of the key generation to side channel attacks is therefore less
critical. We nevertheless masked the key generation algorithm using a CDT
sampling. The detailed gadgets and proofs can be found in the full version of
our paper [15]. The final algorithm is pretty inefficient because many comparisons
are needed.

4 Proof of Masking

We first list in Table 2 all the known gadgets and new gadgets introduced
together with their security properties. The techniques for proving the secu-
rity properties are similar to the proof of Theorem6. They can be found in the
full version of our paper [15].

Table 2. Security properties of the known and new gadgets.

Existing gadgets New gadgets (proofs in [15])

Name Property Reference Name Property

SecAnd N -NI [3,12] GenSecArithBoolModq N -NI

SecAdd N -NI [3,12] AbsVal N -NI

SecArithBoolModq N -SNI [11,16] MaskedRound N -NIo

SecBoolArith N -NI [11,16] FullRound N -NIo

FullXor N -NIo [3] MaskedWR N -NIo

FullAdd N -NIo [3] FullWR N -NIo

DataGen N -NIo [3] MaskedRS N -NIo

MultAdd N -NI [3], denoted H1 FullRS N -NIo

Refresh N -SNI [19]

4.1 Main Masking Theorem

In the following, we introduce a theorem that proves the N -NIo property of our
masked signature algorithm. For simplicity and without losing generality, the
theorem only considers one iteration for the signature: the signing algorithm
outputs ⊥ if one of the tests in Steps 13 or 19 in Algorithm7 has failed. We also
assume the security properties of Table 2. We denote by

(
r(j)

)
0≤j<n

,
(
rs(j)

)
0≤j<n

and
(
u(j)

)
0≤j<n

the outputs of FullRS, FullWR and FullRound (the values for each
coefficient j ∈ [0, n − 1]).
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Theorem 6. Each iteration of the masked signature in Algorithm7 is N -NIo
secure with public outputs3

{(
r(j)

)

0≤j<n
,
(
rs(j)

)

0≤j<n
,
(
u(j)

)

0≤j<n

}

(and the signature if returned).

Fig. 1. Masked signature structure (The white (resp. blue, red) gadgets are proved
N -NI (resp. N -NIo, unmasked)). The non sensitive element sd is ommited for clarity.
(Color figure online)

Proof. The overall gadget decomposition of the signature is in Fig. 1.

Gadgets. The gadget ×a multiplies each share of the polynomial y by the
public value a. By linearity, it is N -NI. The gadget FullRound denotes the
extension of the MaskedRound to all coefficients of v and is N -NIo. The gad-
get MultAdd takes (yi)0≤i≤N , (si)0≤i≤N and c (resp. (vi)0≤i≤N , (ei)0≤i≤N and
c) and computes (zi)0≤i≤N = (yi)0≤i≤N − c · (si)0≤i≤N (resp. (wi)0≤i≤N =
(vi)0≤i≤N−c(ei)0≤i≤N ). The gadget End simply outputs (FullAdd((zi)0≤i≤N ), c)
if rs and r are true; and ⊥ otherwise. By the N -NIo security of FullAdd, this
gadget is also N -NIo secure.

Thus, all the subgadgets involved are either N -NI secure, N -SNI secure, N -
NIo secure or they do not manipulate sensitive data (see Table 2 for the recap.
We prove that the final composition of all gadgets is N -NIo. We assume that an
attacker has access to δ ≤ N observations. Our goal is to prove that all these δ
observations can be perfectly simulated with at most δ shares of (si)0≤i≤N and
(ei)0≤i≤N and the knowledge of the outputs.
In the following, we consider the following distribution of the attacker’s δ obser-
vations:
3 Here too, the number of iterations of the gadget DG is ommited as a public output.
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– δ1 observed during the computations of DG that produces shares of (yi)0≤i≤N ,
– δ2 observed during the computations of the gadget ×a that produces the

shares of (vi)0≤i≤N ,
– δ3 observed during the computations of FullRound,
– δ4 observed during the computations of the upper MultAdd gadget that pro-

duces (zi)0≤i≤N ,
– δ5 observed during the computations of the lower MultAdd gadget that pro-

duces (wi)0≤i≤N ,
– δ6 observed during the FullRS,
– δ7 observed during the FullWR,
– δ8 observed during the End.

Some observations may be done on the unmasked gadgets (GenA, Hash and Enc)
but their amount will not matter during the proof. Finally, we have

∑8
i=1 δi ≤ δ.

We build the proof from right to left. The gadgets End, FullRS, FullRound
and FullWR are N -NIo secure with the output (z, c) or ⊥ (resp.

(
rs(j)

)
0≤j<n

,
(
u(j)

)
0≤j<n

,
(
r(j)

)
0≤j<n

). As a consequence, all the observations from their call
can be perfectly simulated with at most δ8 (resp. δ6, δ7) shares of z (resp. z, w).
For the upper MultAdd gadget, there are at most δ8 + δ6 observations on the
outputs and δ4 local observations. The total is still lower than δ and thus they
can be simulated with at most δ4 + δ6 + δ8 ≤ δ shares of y and s.

Concerning the lower MultAdd gadget, there are at most δ7 observations on
w and δ5 made locally. Thus they can be simulated with at most δ5 + δ7 ≤ δ
shares of v and e.

The gadget FullRound is N -NIo so all the observations from its call can be
simulated with at most δ3 shares of v. Thus, there are δ3 + δ5 + δ7 observations
on the output of gadget ×a. And then, they can be simulated with at most
δ3 + δ5 + δ7 + δ2 shares of y. Summing up all the observations of y gives (δ3 +
δ5 + δ7 + δ2) + (δ4 + δ6 + δ8) ≤ δ. This allows to conclude the proof by applying
the N -NIo security of DG. All the observations on the algorithm can be perfectly
simulated with at most δ4 + δ6 + δ8 ≤ δ shares of s, δ5 + δ7 ≤ δ shares of e and
the knowledge of the public outputs. ��

4.2 EUF-CMA Security in the N-probing Model

We recall the EUF-CMA security in the N -probing model. For the complete
game description, we refer to [3].

Definition 7. A signature scheme is EUF-CMA-secure in the N -probing model
if any PPT adversary has a negligible probability to forge a signature after a
polynomial number of queries to a leaky signature oracle. By leaky signature
oracle, we mean that the signature oracle will (1) update the shares of the secret
key with a refresh algorithm (2) output a signature together with the leakage of
the signature computation.
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Definition 8. We denote by (r, rs, u)-qTESLA a variant of qTESLA where all the
values {(

r(j)
)

0≤j<n
,
(
rs(j)

)

0≤j<n
,
(
u(j)

)

0≤j<n

}

are outputted for each iteration during the signing algorithm.

Theorem 6 allows to reduce the EUF-CMA security in the N -probing model
of our masked qTESLA signature at order N to the EUF-CMA security of
(r, rs, u)-qTESLA. The security of (r, rs, u)-qTESLA is actually not fully sup-
ported by the security proof of qTESLA because the adversary is not sup-
posed to see these values for the failed attempts of signing. However, based
on the work of [3], we can prove that, under some computational assump-
tions, outputting

(
u(j)

)
0≤j<n

for each iteration does not affect the security.
We redirect the reader to [3] for further discussions on this issue. The values{(

r(j)
)
0≤j<n

,
(
rs(j)

)
0≤j<n

}
correspond to the conditions of rejection, and more

precisely, the positions of the coefficients of the polynomials that do not pass the
rejections. Such a knowledge do not impact the security of the scheme because
the rejection probability does not depend on the position of the coefficients
(Table 3).

5 Practical Aspects

Our masking scheme has been implemented inside the reference code of qTESLA
available on the repository of their project [26]. We performed benchmarks for
the two parameters sets qTESLA-I and qTESLA-III on a desktop computer with
and without the random number generator activated (in gadgets). The reason
why we decided to switch off the RNG4 is to show how masking schemes of this
magnitude are sensitive to the speed at which the device is capable of retrieving
randomness. We also tested the smaller parameter set at order 1 on a Cortex-M4
microcontroller to see how it performs on a device more realistically vulnerable
to side-channel attacks. We speculate that the scaling difference between the
microcontroller and the computer is due to the fact that architectural differences
matter less for the masking code than for the base signature code.

Our tests with the randomness enabled were performed using xoshiro128**
[6], a really fast PRNG that has been recently used to speed-up public parameters
generation in a lattice-based cryptosystem [7]. One looking for real life applica-
tion of our technique and believing that masking needs strong randomness would
maybe want to use a cryptographically secure PRNG instead. Another option
could be to expand a seed with the already available cSHAKE function but as we
will see in the sequel, it might be pretty expensive as the number of random
bytes required grows very fast with the number of shares.

The results for all individual gadgets, both parameters sets as well as number
of calls to the random number generator lead to interesting considerations. We

4 To switch the RNG off, we just set the rand uint32() function to return 0.
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refer to the full version of our paper [15] for more details. Our general conclusion
of all these tests is that beside our much needed design change, the performances
are largely dictated by the randomness generation speed and that the bottleneck
gadget is the arithmetic to boolean conversion.

Table 3. Median speed of masked signature in clock cycles over 10000 executions for
qTESLA-I on Intel Core i7-6700HQ running at 2.60 GHz

Masking order Unmasked Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I (RNG off) 645 673 2 394 085 7 000 117 9 219 826 16 577 823 24 375 359

qTESLA-I (RNG on) 671 169 2 504 204 13 878 830 24 582 943 39 967 191 59 551 027

qTESLA-I (RNG on) Scaling 1 ×4 ×21 ×37 ×60 ×89

Table 4. Median speed of masked signature in clock cycles over 1000 executions for
qTESLA-I on cortex-M4 microcontroller

Masking order Unmasked Order 1

qTESLA-I CortexM4 11 304 025 23 519 583

As noted in [23], the power of two modulus allows to get a reasonable penalty
factor for low masking orders. Without such a modification, the scheme would
have been way slower. Besides, our implementation seems to outperform the
masked implementation of Dilithium as given in [23]. The timing of our order 1
masking for qTESLA-I is around 1.3 ms, and our order 2 is around 7.1 ms. This
result comes with no surprise because the unmasked version of qTESLA already
outperformed Dilithium. However, we do not know if our optimizations on the
gadgets could lead to a better performance for a masked Dilithium (Table 4).
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