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Abstract. In this paper we present the first fully post-quantum proof of
a shuffle for RLWE encryption schemes. Shuffles are commonly used to
construct mixing networks (mix-nets), a key element to ensure anonymity
in many applications such as electronic voting systems. They should pre-
serve anonymity even against an attack using quantum computers in
order to guarantee long-term privacy. The proof presented in this paper
is built over RLWE commitments which are perfectly binding and com-
putationally hiding under the RLWE assumption, thus achieving security
in a post-quantum scenario. Furthermore we provide a new definition for
a secure mixing node (mix-node) and prove that our construction satis-
fies this definition.

Keywords: Mix-nets + E-voting * Post-quantum + RLWE encryption -
RLWE commitment + Proof of a shuffle

1 Introduction

In the last years, several countries have been introducing electronic voting sys-
tems to improve their democratic processes, in particular, they provide voters
with the chance to cast their votes from anywhere. Anonymity and verifiabil-
ity are two fundamental requirements for internet voting systems that seem to
be contradictory. Anonymity requires that the link between the vote and the
voter who has cast it must remain secret during the whole process, while veri-
fiability requires that all the steps of the electoral process - vote casting, vote
storage and vote counting - can be checked by the voters, the auditors or exter-
nal observers. One of the resources used by the actual internet voting systems to
achieve anonymity are mixing networks (mix-nets). Informally we can define a
mix-net as a multiparty protocol that, given a number of encrypted messages at
the input, performs a permutation over them followed by a cryptographic trans-
formation using a re-encryption and/or a decryption algorithm. This operation
is called a shuffle [9] and it is done in such a way that the correlation between
the input and the output of the process is hidden, and it is not possible to trace
it back. The proof of the shuffle guarantees that the ciphertexts at the output of
the mix-net are those at its input permuted and re-encrypted/decrypted, with-
out revealing any secret information. One way to construct a mix-net is to define
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several mixing nodes (mix-nodes) each one performing in turns this operation.
It is clear that if at least one of the nodes is honest, unlinkability is preserved.

On the other hand, in order to build verifiable systems one key instrument is
the Bulletin Board: a public place where all the audit information of the election
(encrypted votes, election configuration, proof of a shuffle, ...) is published by
authorized parties and can be verified by anyone: voters, auditors or third parties.
However, once published in the Bulletin Board anyone can save a copy, and
long-term privacy may not be ensured by encryption algorithms used nowadays,
for example due to the efficient quantum algorithm given by Shor [29] that
breaks computational problems such as the discrete logarithm (DL) or the integer
factorization problems. Learning how a person voted some years ago may have
political, as well as personal implications.

Some cryptosystems have appeared in the last years that are believed to
be secure against quantum attacks: hash-based, code-based, lattice-based or
multivariate-quadratic-equations. Lattice-based cryptography is a great promise
to get cryptosystems that will remain secure in the post-quantum era [23]. These
ones enjoy strong security guarantees from worst-case hardness, meaning that
breaking their security implies finding an efficient algorithm for solving any
instance of the underlying lattice problem, e.g., the Shortest Vector Problem
(SVP) or the Closest Vector Problem (CVP). Furthermore, these constructions
mainly involve linear operations such as matrix and vector sum or multiplica-
tion modulo relatively small integers, which make them highly parallelizable and
consequently faster in certain contexts. Given the interest aroused by this type
of cryptography, several lattice-based protocols have been proposed like public
key encryption schemes, digital signatures schemes, hash functions, identity-
based encryption schemes or Zero-Knowledge Proofs of Knowledge (ZKPoK).
Our contribution increases the literature of the latter, providing a fully lattice-
based proof of a shuffle that will remain secure in a post-quantum scenario.

To the best of our knowledge there are two proposed e-voting schemes [10, 15]
that are constructed using lattices. They both follow an alternative approach
without shuffling, making use of the homomorphic property of their encryption
schemes to compute the tally. However mix-net based schemes are more flexible
and provide a better support for complex electoral processes.

On the other hand [11] and [31] give proofs of a shuffle for lattice-based cryp-
tography. The first requires Pedersen commitments (based on the DL problem).
The latter requires a Fully Homomorphic Encryption scheme, and works with
any homomorphic commitment scheme, that is, using the lattice-based commit-
ment scheme presented in [4] their proof is fully post-quantum.

We propose a proof of a shuffle that is fully constructed over lattice-based
cryptography and the first for RLWE encryption schemes, which makes it secure
in a post-quantum scenario. The proof uses a commitment scheme which is
perfectly binding and computationally hiding under the Learning With Errors
over Rings (RLWE) assumption. This lattice computational problem has been
shown to be as hard as certain worst-case problems in ideal lattices (such as
SVP and CVP in ideal lattices) and thus resistant to quantum attacks. We also
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provide a formal definition for security of a mix-node and prove security of our
proposal using the sequence of games approach.

1.1 Previous Work

After the introduction of the idea of a shuffle by Chaum in 1981 [9], several
schemes have been proposed. The first universally verifiable mix-net is presented
in [28] and gives a proof to check the correctness of the shuffle. Later, several
solutions for an efficient universally verifiable mix-net are proposed [1-3,22] and
in [17] Furukawa and Sako suggest a paradigm based on permutation matrices
in the common reference string model (CRS) for proving the correctness of a
shuffle, that was improved in [16,20]. The latest proposal for a CRS based proof
of a shuffle is [8] by Biinz et al. Wikstrom also uses this idea of the permutation
matrix and presents in [36] a proof of a shuffle that can be split in an offline and
online phase in order to reduce the computational complexity in the online part.

On the other hand, Neff [24] proposes another paradigm based on polynomials
being identical under permutation of their roots, obtaining Honest Verifier Zero-
Knowledge (HVZK) proof and improved later in [18,25] with the drawback that
these constructions are 7-move proofs. Unlike previous proposals, Groth and
Ishai [19] and Bayer and Groth [6] give a practical shuffle argument with sub-
linear communication complexity.

The proof of a shuffle presented in this paper requires lattice-based ZKPoK to
prove that some hidden elements have small norm and also that several commit-
ted elements satisfy a polynomial relation. As these proofs are generally costly
we are going to use amortized protocols to reduce the communication cost. The
first amortized protocol is presented in [12] by Cramer et al., it is improved first
by del Pino and Lyubashevsky [14] and later by Baum and Lyubashevsky in [5].

Recently, Costa et al. [11] have presented a proof of a shuffle based on lat-
tices but it cannot be considered fully post-quantum since they use Pedersen
commitments, whose binding property relies on the DL problem. Moreover in
[11] there is no formal definition of security, necessary to precisely know how it
can be embedded in a larger construction. Strand [31] presents a verifiable shuf-
fle for the GSW cryptosystem using homomorphic commitment schemes. Using
the lattice-based commitment scheme [4] makes the proof fully post-quantum.
Additionally, there have been some proposals for a lattice-based universal re-
encryption for mix-nets [30] but none of them give a proof of a shuffle.

In [35] Wikstrém provides a definition of security for a single re-encryption
mix-node. It is important to note that as Wikstrom remarks this is not enough
to completely ensure privacy since a definition of security of a complete mix-net
must involve several other aspects, regarding validity of the input messages or
decryption proofs.

1.2 Our Contribution

We propose a proof of a shuffle fully constructed over lattices. It is based on the
technique introduced by Bayer and Groth in [6] to construct a shuffle argument;
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nevertheless it is not a direct adaptation of it since working with lattices requires
different techniques to be applied.

The first step of the proof, that is also the first difference with [6], consists on
committing the re-encryption parameters in order to demonstrate that they meet
certain constraints. This is done using the commitment scheme and the ZKPoK
proposed by Benhamouda et al. [7] which are perfectly binding and computa-
tionally hiding under the RLWE assumption and satisfy special soundness and
special HVZK. The next step consists on proving knowledge of the permutation.
The general idea here is to prove that two sets contain the same elements. This is
done by computing two polynomials, each of them having as roots the elements
of each set, and proving that both polynomials are equal.

The last step will prove knowledge of the re-encryption parameters, and
this introduces another difference between Bayer and Groth’s protocol and ours.
While they demonstrate that there exists a linear combination of the parameters
such that an equality holds, we have to use a different technique, since the
re-encryption parameters in a RLWE re-encryption scheme are taken from an
error distribution and a linear combination of them would imply the error grows
uncontrollably, causing decryption errors.

Finally, we give a definition of security, based on the one proposed by Wik-
strom in [35], and we provide a proof of security for our mix-node. His proposal
implies that no adversary can properly compute two indices for the input and
the output respectively such that the messages encrypted in the correspond-
ing ciphertexts are the same, except with a probability negligibly close to the
probability given by a random guess. In his definition the adversary might have
some knowledge of correlations between the input messages. We provide a def-
inition of security allowing the adversary to have full control over the input of
the mix-node, and we prove that our construction meets this definition.

Organization of the Paper. In Sect.2 we introduce some notation and give
some cryptographic background necessary to understand the proof presented in
Sect. 4. In Sect. 3 we describe the computational problem on which the security of
our scheme is based and we also give a description of a RLWE-based commitment
scheme. Finally in Sect.4 we present our fully post-quantum proof of a shuffle
and the results about the security of the mix-node. We briefly conclude in Sect. 5.

2 Preliminaries

We denote column vectors by boldface lower-case roman letters, v or w. Matrices
are represented by boldface upper-case roman letters, M or A. Given two vectors
v, W E Zév, we define the standard inner product in Zé\’ as (v, w) = Zfil viw;,
the I norm as [lv, = maxi<;<n[v;| and the general norm [, as [[v[|, =

(320 [ol?) /7 for p > 1.
We let | z] denote the largest integer not greater than z, and |z] := |z+1/2]
denote the integer closest to x, with ties broken upward.

We write @ < A when a is sampled uniformly at random from a set A, and

a <& D if it is drawn according to the distribution D.
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Finally, in order to avoid confusions we are going to identify the ciphertexts’
elements with the subscript E, and those corresponding to the commitments
with subscript C. When working with lattices we are going to follow the notation
proposed in [21].

The ZKPoK between a prover P and a verifier V constructed in this paper
satisfies the properties of completeness, special soundness and special HVZK as
they are defined in [13]. We will use them to prove knowledge of valid openings
of commitments that satisfy several polynomial relations.

2.1 Generalized Schwartz—Zippel Lemma

The proof of a shuffle presented in this paper uses a generalized version of the
Schwartz-Zippel lemma to prove polynomial equalities. This lemma works in gen-
eral commutative rings that are not necessarily integral domains. Unlike Bayer
and Groth we need the generalized version since we work with polynomials whose
coefficients belong to another ring of polynomials.

Lemma 1. Let p € R[xy,x2,...,%,] be a non-zero polynomial of total degree
d > 0 over a commutative ring R. Let S be a finite subset of R such that none of
the differences between two elements of S is a divisor of 0 and let r1,72,...,7Tn
be selected at random independently and uniformly from S. Then:
Prip(ri,ra,...,m) =0] < %.

We will use this lemma to prove that two polynomials, p; and po, are equal
with overwhelming probability if pi(r1,re,...,r,) — p2(ri,ra,...,m) = 0 for

71,72, -, Tn & 5. The proof of this generalization directly follows from the
original proof of the lemma. We have included it in a full version of this paper
for the reader interested on it.

3 Ideal Lattices

A lattice is a set of points in an n-dimensional space with a periodic structure. We
are going to work with ideal lattices that have some extra algebraic structure
and introduce some redundancy allowing a more compact representation and
thus reducing significantly the storage space. We refer the interested reader to
[26] for a survey on lattices.

Let R, = Z4[z]/{f(x)) be the ring of polynomials modulo f(z) = z™ + 1 for
n a power of 2, which makes the polynomial irreducible over the rationals. The
ideal lattice £(a) generated by a(z) = a; +asx +...+a,z" " € R, is the set of
polynomials v(z) obtained as v(z) = a(z) - p(z) mod ™ + 1, where p(x) € Ry.

There is currently no known way to take a significant advantage of this
extra structure introduced in this class of ideal lattices, and the running time
required to solve lattice problems on such lattices is comparable to that for
general lattices.
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3.1 RLWE Problem

The security of lattice-based cryptosystems relies on the hardness of solving some
computational problems on lattices, such as the Learning With Errors (LWE).

Lyubashevsky et al. [21] introduced in 2010 the ideal lattice based variant of
LWE, called Ring Learning With Errors (RLWE). This was motivated by the
necessity of constructing efficient LWE-based cryptosystems.

Definition 1 (RLWE Distribution). For a secret s € R,, the RLWE dis-
tribution Agy over Ry x Rq is sampled choosing a € Ry uniformly at random,

e & X" (that is, e € R, with its coefficients drawn from x), and outputting
samples of the form (a,b=a-s+e mod ¢q) € R, x R,.

Analogously to LWE [27], the goal will be either to distinguish random linear
equations, perturbed by a small amount of noise, from truly uniform pairs, or
recover the secret s € R, from arbitrarily many noisy products. Usually the error
distribution x is a discrete Gaussian distribution on Z, that is x = D,, where o
is the standard deviation.

Hardness of RLWE . Certain instantiations of RLWE are supported by worst-
case hardness theorems [21], related to the Shortest Vector Problem (SVP). For
the error distribution y where o > w(y/logn), and for any ring, there exist a
quantum reduction from the (n)-SVP problem to the RLWE problem to within
~v(n) = O(v/n - q/c). Additionally, RLWE becomes no easier to solve even if the
secret s is chosen from the error distribution, rather than uniformly [21].

3.2 RLWE Encryption Scheme

The additive homomorphic RLWE encryption scheme proposed in [21] consists
of three algorithms (KeyGeng, Encrypt, Decrypt) defined below. We denote the
security parameter as .

— KeyGeng(1%): Given a uniformly random ag € R, and two small elements
s,e € Ry drawn from the error distribution x"”, the public key is an RLWE
sample (ag,bg) = (ag,ae - s + €) € Ry x Ry and the secret key is s.

— Encrypt((ag, be), e, €g,u; €E.v, 2): Given three random small elements 7g, eg 4,
egn € Ry drawn from the error distribution x", the encryption of an n-bit
message z € {0,1}" (identified as a polynomial of degree n—1 with coefficients
0or 1) is (u,v) = (ag - 7e + eg,u, be - TE + €g,0 + [2]2) € Ry X Ry.

— Decrypt(s,(u,v)): Given the secret key and the ciphertext this algorithm com-
putes: v —u-s = (rg-e—5-€gu + €eo) + [2]2 mod g. Then recovers each

q

bit of z by rounding each coefficient to 0 or |[Z].

Correctness. Notice that in case of lack of error the decryption would always
be correct since the algorithm will return directly 0 or |Z] depending on the
encrypted bit. Given that, a decryption error will occur if the coefficients of
(re-e—s-egq + €g,p) have magnitude greater than ¢/4.
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As the messages encrypted using this scheme will pass through a mixing
process we will need to also re-encrypt them. Due to the homomorphic property
of the scheme we can compute the re-encryption just adding to the original
ciphertext the encryption of the element 0.

— Re-encrypt((u, v), (ag, be), 7E, €g s € ,): Given the small elements rg,eg
e’Ew drawn from the error distribution x", the re-encryption of a ciphertext
(u,v) is (v',v") = (u,v) + Encrypt((ag, b), Tg; € s € 1, 0) € Ry X Ry.

Security. RLWE encryption scheme and consequently the RLWE re-encryption
scheme are semantically secure based on the RLWE assumption. It is demon-
strated that if there exists a polynomial-time algorithm that distinguishes
between two encryptions then there exists another algorithm able to distinguish
between A, and a uniformly random distribution over R, for a non-negligible
fraction of all possible s. Notice that, even though these schemes do not achieve
circuit privacy, the secrecy of the shuffle is not affected since the randomness
used during the encryption and re-encryption procedures is never revealed. In
order to demonstrate that the random values are of the right form, that is, that
they are small enough, we use zero-knowledge proofs.

3.3 Commitments from RLWE

The commitment scheme used to build our proof of a shuffle is that described
by Benhamouda et al. in [7] and consists of the following three algorithms:

— KeyGenc(1%): given as input the security parameter k£ (we omit the details
about k here and we refer the reader to [7]) this algorithm generates the

public commitment key pkc = (ac, bc) where ac, bc & (Rq)k, g =3 mod 8
is prime and n is a power of 2.
— Com: in order to commit to a message m € R, the algorithm chooses rc & R,

$ e
and ec < DY conditioned on |lec||,, < n and computes:
¢ = Comg b (M;7c, ec) = acm + bere + ec

The opening of the commitments is defined as (m,rc, ec,1).
— Ver: given (¢, m’,r¢, e, f') the verification algorithm accepts if and only if:
nA/3

acm’ +bere + f e = e A lecll, < {2J Al <1 Adegf’ < g

This commitment scheme satisfies the security requirements of correctness, per-
fectly binding and computational hiding as they are explained in [7].

The main reason for us to choose this commitment scheme is that [7] gives
efficient ZKPoK to prove knowledge of an opening of a given commitment or
to prove that the messages inside some commitments satisfy any polynomial
relation.
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4 Proof of a Shuffle for RLWE Encryptions

The existing published proposal for a universally verifiable proof of a shuffle for
RLWE encryptions [11] based on [32], uses Generalized Pedersen commitments
to hide the secret re-randomization elements. This would not be sound in a
post-quantum scenario, as it is based on DL assumptions.

Naively replacing the commitment scheme with the one proposed by
Benhamouda et al. yields several difficulties since it is useful when committing
to polynomials, but is quite inefficient if we only want to commit to a bit, as is
the case with the entries of a permutation matrix. The fact that Z, [z] / (z™ + 1)
is not an integral domain also has some implications for the characterization of a
permutation matrix proposed in [32], that cannot be proven directly and would
require additional statements different from the ones discussed in [11].

In this section we construct a post-quantum verifiable mix-node following
the paradigm given by Bayer and Groth in [6]. Once again, replacing Pedersen
commitments with the ones proposed by Benhamouda et al. is not immediate.

We first show an overview of the shuffling protocol, then we present our proof
of a shuffle and give details regarding the ZKPoK involved in the construction
of the main proof and finally we prove that our mix-node is secure based on a
new formal definition of security, stronger than that given in [35].

Proofs of a shuffle commonly require universal verifiability, meaning that
a proof must be generated and also published, so it can be verified by any
observer. Classically, this kind of interactive protocols can be transformed into
non-interactive protocols by means of the Fiat-Shamir heuristics, replacing the
random responses from the verifier with a hash of the previous elements in the
conversation, achieving a protocol secure in the Random Oracle Model (ROM).

However, as it is exposed in [34], this method is not secure anymore in the
Quantum Random Oracle Model (QROM). As far as we know the only quantum
secure general transformation from an interactive protocol to a non-interactive
version is the one described by [33]. Therefore, a universally verifiable version of
our protocol requires further considerations.

4.1 Protocol Overview

Given a permutation 7 and a set of re-encryption parameters {T/E(z), e/E(Z, e/E(zg}
for each one of the messages, the shuffling of N RLWE encryptions is defined as
(w'®,v') = Re-encrypt ((u”(i), v (@) ,rgi),egz, e/E(fg).

A mix-node will perform the shuffling over the input ciphertexts and will gen-
erate a proof of a shuffle, see (1), to demonstrate that it knows the permutation
7 and the random elements r’E(i),e/E(Z,e/E(ig, without revealing any information
about them. , ,

This proof will be published so everybody is convinced that the ciphertexts
have been permuted and re-encrypted without modifying the encrypted plain-
texts (even if some of the nodes are dishonest and leak the permutation).
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The first step of the protocol will be to commit to the encryptions of 0 used to
compute the RLWE re-encryptions and a ZKPoK of the resulting commitments
containing valid encryptions of 0. Additionally, it will also be demonstrated that
the small polynomials rg, e’E7u7 e'Ew used to compute the re-encryptions have an
infinity norm that is bounded by some parameter ¢ < ¢/4.

('@, /) =

ﬂ- . . .
ZKPoK {TIE@ :E(z) eé(z }N Re-encrypt ((u”(i),v”(”) ,r'E(l),e/E(z,elE(z)
u’ v 1 ) . .
e e e <o

As it is explained in [7] for a suitable § even if this additional restriction on
the re-encryption parameters norm is applied, the re-encryptions remain pseu-
dorandom, as the two probability distributions are statistically close. The last
part of the protocol consists on proving that two sets contain the same elements:

. . N . X N
B S W ()
g i= i=

This is done following the strategy proposed by Bayer and Groth in [6], that
consists on building two polynomials, each of them having as roots the elements
of each of the sets and then prove that both polynomials are equal. To convince
a verifier that two polynomials are equal the prover evaluates them in a random
point chosen by the verifier and uses the generalized version of Schwartz-Zippel
lemma (Lemma1). Our polynomials will be evaluated and have coefficients in
R, that is, we will work in R, [A] and the variable A takes values on R,.

We define the mixing protocol using the following algorithms:

— Setup(1*): generate parameters (n,q,o) and run the following algorithms:
e KeyGeng(17) to obtain the public and the private key of the RLWE
encryption scheme: (ag,bg) € Ry X Ry and s € R,.

o KeyGen((1%) to generate the public commitment key: ac, bc & (Rq)k.
Output {{(ag, be), s}, (ac,bc)}

— MixVotes(pke, pkc, {(u,v)}N ): taking as input a list of N encrypted mes-
sages {(u®,v)}N | compute the shuffling of these RLWE encryptions. Gen-
erate commitments and ZKPoK (we denote by ZK; its corresponding proto-
cols and by X; the proofs they output) as it is explained in Sect. 4.2 in order
to demonstrate the correctness of the process. We can explicitly state the
permutation and/ or random elements to be used writing MixVotes(pkg, pkc,

{(@® v, {TE eE(z)L’ CE, )} 1)
Output, ({(u®, ")}, {(e,00, €00+ Cx(iys Carr) Hs D1, T, Ty, T )
0 0

We denote Xy = {cuéi)7cv(()i>,cﬂ(i),cawm)}?’:l to unify the notation of the
output of MixVotes.
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— VerifyMix(pke, pkc, {(u®,v@)} N {(/@ /)N {5}, ,): given an input
and an output of the mixing process and the ZKPoK generated, this algorithm
outputs 1 if the proofs are valid and 0 otherwise.

4.2 Proof of a Shuffle

In this subsection we present the proposed proof (see Protocol 1.1) and explain
in detail how it can be used as a proof of a shuffle.

Notice that each mix-node runs the algorithm MixVotes and acts as a prover.
He first commits to N encryptions of zero. Each commitment (cu(()i) , CU((Ji)) is

(ac (aE’FE(Z) + eE(u) + bc T‘(z + eé)u, ac (bETE + BE v) + bc?” gl)

That is, the commitment is a linear combination of the polynomials, with
the additional condition of T/E( ), e/E(i, e/E(37 e(c)u, eC » having small norm.

Then, P sends the commitments to the verifier and proves using the amor-
tized proof of knowledge of secret small elements [14] that the public commit-
ments are indeed commitments to encryptions of zero.

As the relation is always the same we will use the amortized proposal by
del Pino and Lyubashevsky [14], which is a direct improvement of the proposal
by Cramer et al. [12]. For a linear function f, a small vector  and its image
y = f(x) we can prove knowledge of a small vector @’ such that f(x’) = y. As
it is usual in this kind of proofs there is a gap 7 between the upper bound of
the norm we use for witness @ and the upper bound we get for the extracted x’.
This has to be taken into account when determining specific parameters so that
this possible error multiplied by the number of mix-nodes does not exceed the
bounds allowed for a correct decryption. We refer the reader to [14] for details,
as we directly use their protocol as a building block for the ZKPoK of linear
relations in ZK; (Protocol 1.1).

In order to commit to a permutation, P starts committing to w(1),...,7(N)
in ¢, (;) and receives a polynomial o chosen uniformly at random from the subset:

S ={p(z) € Ry | degp(z) < n/2}

Observe that the subset S meets the required conditions for Lemmal, as
all differences of two different elements in S are invertible. This is true as the
condition ¢ = 3 mod 8 required for the Benhamouda et al. commitment scheme
implies that 2™ + 1 splits into two irreducible polynomials of size exactly n/2.
Then all polynomials of degree smaller that n/2 have an inverse that can be
computed using the Chinese Remainder Theorem.

P commits to each power a™® in commitments ¢~ and publishes them.

‘P receives two more random polynomials 3, ~y S Using the X-protocols from
[7] that allow him to prove polynomial relations between committed messages, P
proves that he knows openings m;, m; to commitments c.(;), C,~ that satisfy
the following relation (ZKs in Protocol 1.1).

I, (Bi+a' =) = 1Y, (Bmi + i — ) (2)
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Protocol 1.1. Proof of a shuffle
P (u<i)7 BORVICINIONSSwOR 6'5(2, e/E(zg) v (u@-) RRORWON U,@)
Vie[l,...,N]
c () —Com<a /()—l—e/())
c,m = Com( A e'(’))
cu(i) 3 cv(i)
0 0
e = ac (awé 0yl )) +ber®, + e,
10) 1D ) ’
ZKPoK NN N - ( (i) /m) (z) <z> 7K
T(Cz) eglﬁéiﬂe(l)v c,m = ac berg ) +egy ) +bere), + el (ZK4)
‘ rg’ , ) egf*) < 76, Heg)* <7d
Vie[l,...,N]
Cﬂ.(i) = Com(w(i))
cTr(i)
« & S
L.«
Vie[l,...,N]
c iy = Com (a”(i))
(i)
By <5
B,
N N -
<H (ﬁH—a —7) [ Bms + i —’Y)> ;
m;,Ti,eci, f = i=1
iy iy €Clay J1 N
ZKPoK M, Ty €C,05 ﬁ Z_é\l (Ver(cﬁm; mi, Ti,ec,, fi) = accept) (ZK2)
N ~
A (Ver( Com(i); M, Ti, €C,4, fi) = accept)
=1
ye{ w(v)} N
i Z i ()_Zma"‘(l)( m(l))
ZKPoK Ty i=1 (ZKs3)
€Cy A (Ver(cy,my,ry7 ec,y, fy) = accept)
fy Y
(@) N
yE { (4) } e
Y0 5,0 Zoz U*Zm ﬂ()( _mv(7))
ZKPoK Ty i=1 (ZK4)
e};,y A (Ver(cy, My, Ty, €Cy; fy) = accept)
Y Y

outputs accept if all
ZKPoK are correct
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Notice that the prover claims that each c,(; is a commitment to (i) with
a fixed permutation 7. But until it proves that it has indeed committed to a
permutation we will refer to the opening of the commitment c.(;, as m; and for
the same reason we will call m; to the opening of the commitment ¢ ).

We can consider the two expressions as polynomials in a variable that we can
call I' evaluated in a specific v € R, with coefficients in Z, [z] / (™ + 1). The
prover has shown that they are equal when evaluated in this specific v chosen
by the verifier, but we would like them to be equal as polynomials in R,[I’]. The
left hand side of the equation has been determined by the choices of the verifier,
and in the right hand side, by the binding property of the commitment scheme,
we know that m;, m; were determined before the choice for v was made.

We have already checked that subset S satisfies the conditions of the Gen-
eralized Schwartz-Zippel lemma (Lemma1). Then the verifier is convinced that
with overwhelming probability the two polynomials defined by (2) are equal in
R,[I'] and have the same roots. These roots may be in different order, defined
by a permutation 7. For all ¢ € [1,..., N] we have:

Bm; +m; = (i) + oD, then B(m; —7(i)) = ™D — .

The polynomials m; and m; were fixed before 8 was chosen. But the permu-
tation 7 was not predetermined. However looking at one i and fixed m; and m;
we can consider all possible j and study 3(m; —j) = o/ —m;. If (m; —j) # 0 then
there exists at most one 3; € S that fulfills the equation with this particular j
(this was trivial in Bayer and Groth’s proof, but in our case is again given by
the condition of set S). The probability of choosing 8 equal to one of these (at
most N) 3; is negligible. This implies that for each ¢ there exists a j such that
m; = j and Mm; = of. With this reasoning for each i and the previous equations
we finally get that, with overwhelming probability m; = 7 (i) and m; = o™,

This means that ¢~ are indeed commitments to o with exponents from 1
to N permuted in an order that was fixed by c,(;) before a was chosen.

Then we again need to prove polynomial relations between committed mes-
sages using the X-protocols from [7]. We get that the input and output of the
mix-node hold the following relation (ZK5 and ZK4 in Protocol 1.1).

Y au® =Y mn (U/(i) —agrg? — 652)

We already know that m~u = a™@ for a secret 7 and that the claimed
small elements used for the re-encryption are in fact small.

TN aiu® = 3N ar (u/u) — agr® - egg)

Once again we can see them as polynomials in R,[A] with coefficients in R,
that are equal when evaluated in «.

Both polynomials were determined before o was picked up, so we can apply

Lemmal and conclude that with overwhelming probability they are equal as

polynomials, and so:

/D =0 4 agr 4 e o' = o™ 4 per 4 )
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The verifier V can conclude that the mix-net has behaved properly and the
output is a permuted re-encryption of the input. Completeness, zero-knowledge
and soundness follow from this reasoning and are discussed in a full version of
this paper.

4.3 Security

Finally we propose a security definition and provide a proof of security for our
proposed mix-node. Informally, a mix-node should ensure that it is not possible
to link an input ciphertext with its corresponding output. However, there might
be more than one ciphertext encrypting the same message (this is particularly
the case in an election with many voters and only a few voting options), and we
have to precisely say that it is not possible to link an input of the mix-node to
an output encrypting the same message.

Some security definitions assume that the original messages are indepen-
dently and uniformly distributed over the message space, but it was pointed out
by Wikstréom in [35] that there might be known correlations between some of
the input plaintexts that cannot be ignored.

We base our secure mix-node definition in the one presented by Wikstrom
n [35], but we notice that he assumes that the inputs of the mix-node are
correctly computed encryptions of the messages. However the input of each mix-
node comes from the (possibly malicious) previous node, and while the proofs
of a shuffie ensure that the input is a set of valid encryptions we do not know
if the re-encryption parameters have been drawn randomly from the adequate
distributions or specifically chosen by the possibly malicious previous nodes.
Therefore we present a stronger definition where we even allow an adversary A
to choose the messages and compute something of the form of an encryption, that
is, a pair of polynomials in R, allowing him to completely determine the input
of the mix-node. Even though, he should not be able to identify an input and
output index corresponding to the same message with a probability significantly
greater than a random guess. Let MixVotes be an algorithm that performs a
shuffle and outputs a zero-knowledge proof Y. Then we can define:

sec

Exp’“(k)

— (pk, sk) < Setup(1¥)

— (M, 2™ qug) & A(pk)
for ]{)E {LvN}
w®,o®) & A(pk, 2™ qua)
enc}; for

— 7+ OGN
({0 0N} ) MixVotes(pk, {(u®), o)} ;)

(i ja) S AQ@® 0NN (W) 0 ONN S auz)
— if 2(ta) = ;7(4) then Return 1 else Return 0

Now we can formalize our security definition saying that no adversary can
have a significant advantage over a random guess.
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Definition 2 (Secure Mix-Node). Let J be a uniform random variable
taking values in [1,...,N]. We say that a miz-node defined by an algorithm
MixVotes is secure if the advantage of any PPT adversary A over a random
guess is negligible in the security parameter. That is, for all ¢ there exists a Kg
such that if K > ko:

A = [pe [0 = 709) e s = 07
= ’Pr [Ezp’‘(k) = 1] — Pr [z(iA) _ z“(J)] ’ _ %

We allow the adversary to corrupt all mix-nodes except one, and the non-
corrupted one is that considered in the experiment Exp’“. In order to take into
account any possible control of the adversary over those other corrupted nodes
and possibly a subset of the voters we even allow him to fully control all the
input of the mix-node. Even though, if at least one of the mix-nodes is honest,
the link between the ciphertexts at the output and those at the input of the
mix-net remains completely hidden.

Observe that this security definition has to be complemented with additional
security proofs when this mix-node is used as a building block in a larger scheme.
For instance Wikstrém in [35] shows how a malleable cryptosystem can be used
to break anonymity. Therefore additional validity proofs are required to enforce
non-malleability, as well as strict decryption policies to prevent any leakage of
information during the decryption phase.

Theorem 1. The proposed miz-node given by our MixVotes algorithm is a
secure miz-node according to Definition 2, under the RLWE hardness assump-
tion.

The proof of Theorem 1 is given in a full version of this paper.

5 Conclusions

We present a shuffle that consists of a permutation and re-encryption of a set of
RLWE ciphertexts. The lattice-based encryption scheme used is that proposed
by Lyubashevsky et al. and we provide a proof of correctness of the shuffle using a
lattice-based commitment scheme proposed by Benhamouda et al. Furthermore
we give a security definition and we prove that our shuffle satisfies it.

As future work it would be worthy to have an implementation with concrete
parameters in order to accurately test efficiency in a real setting. We also remark
that this shuffle has to be combined with additional security requirements regard-
ing how the input is generated as well as how the output is decrypted, in order
to guarantee privacy for the overall scheme that uses this shuffle as a building
block, and these requirements will depend on the specific application.
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