
Lattice Reduction with Approximate
Enumeration Oracles

Practical Algorithms and Concrete Performance

Martin R. Albrecht1(B), Shi Bai2, Jianwei Li1, and Joe Rowell1

1 Information Security Group, Royal Holloway, University of London, Egham, UK
martin.albrecht@royalholloway.ac.uk , Jianwei.Li@rhul.ac.uk

2 Department of Mathematical Sciences, Florida Atlantic University,

Boca Raton, USA

Abstract. This work provides a systematic investigation of the use
of approximate enumeration oracles in BKZ, building on recent tech-
nical progress on speeding-up lattice enumeration: relaxing (the search
radius of) enumeration and extended preprocessing which preprocesses in
a larger rank than the enumeration rank. First, we heuristically justify
that relaxing enumeration with certain extreme pruning asymptotically
achieves an exponential speed-up for reaching the same root Hermite
factor (RHF). Second, we perform simulations/experiments to validate
this and the performance for relaxed enumeration with numerically opti-
mised pruning for both regular and extended preprocessing.

Upgrading BKZ with such approximate enumeration oracles gives rise
to our main result, namely a practical and faster (wrt. previous work)
polynomial-space lattice reduction algorithm for reaching the same RHF
in practical and cryptographic parameter ranges. We assess its concrete
time/quality performance with extensive simulations and experiments.

1 Introduction

Lattices are discrete subgroups of Rm. A lattice L in R
m is represented as a set

of all integer linear combinations of n linearly independent vectors b0, . . . , bn−1

in R
m: L =

{∑n−1
i=0 xi · bi, xi ∈ Z

}
. The matrix B := (b0, . . . , bn−1) forms a

basis of L, and the integer n is the rank of L. Any lattice of rank ≥ 2 has
infinitely many bases.

A central lattice problem is the shortest vector problem (SVP): given a basis of
a lattice L (endowed with the Euclidean norm), SVP is to find a shortest nonzero
vector in L. SVP is known to be NP-hard under randomised reductions [3]. The

J. Rowell—This work was supported in part by EPSRC grants EP/S020330/1,
EP/S02087X/1, EP/P009301/1, by European Union Horizon 2020 Research and Inno-
vation Program Grant 780701, by Innovate UK grant AQuaSec, by NIST award
60NANB18D216 and by National Science Foundation under Grant No. 2044855. Part
of this work was done while MA visited the Simons Institute for the Theory of Com-
puting. The full version of this work is available as [5].

c© International Association for Cryptologic Research 2021
T. Malkin and C. Peikert (Eds.): CRYPTO 2021, LNCS 12826, pp. 732–759, 2021.
https://doi.org/10.1007/978-3-030-84245-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84245-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-84245-1_25

Lattice Reduction with Approximate Enumeration Oracles 733

hardness of solving SVP and in particular its applications in cryptography have
led to the study of approximate variants.

For δ ≥ 1, the δ-approximate variant of SVP (δ-SVP) is to find a non-zero vec-
tor v in L such that ‖v‖ ≤ δ · λ1(L), where λ1(L) := minx∈L�=0

‖x‖ denotes the
length of the shortest nonzero vector in L. Solving δ-SVP is also NP-hard for any
δ ≤ nc/ log log n with some constant c > 0 under reasonable complexity assump-
tions [30,32,37,38]. A closely related problem is δ-Hermite SVP (δ-HSVP),
which asks to find a non-zero vector v in L such that ‖v‖ ≤ δ · vol(L)1/n, where
vol(L) denotes the volume of L. Many cryptographic primitives base their secu-
rity on the worst-case hardness of δ-SVP or related lattice problems [2,27,43,46].
Security estimates of these constructions depend on solving δ-HSVP, typically
for δ = poly(n) [9,10]. The output quality of a δ-HSVP solver in rank n is
typically assessed with the so-called root Hermite factor (RHF) δ1/(n−1).1

To solve the approximate versions of SVP, the standard approach is lattice
reduction, which finds reduced bases consisting of reasonably short and relatively
orthogonal vectors. Its “modern” history began with the celebrated LLL algo-
rithm [34] and continued with stronger blockwise algorithms [1,4,23,40,49,51].
Lattice reduction has numerous applications in mathematics, computer science
and especially cryptanalysis.

Lovász [36] showed that any δ-HSVP solver in rank n can be used to efficiently
solve δ2-SVP in rank n. For random lattices L of rank n, the classical Gaussian
heuristic claims λ1(L) ≈ GH(L) := GH(n) · vol(L)1/n. Here, GH(n) denotes the
radius of the unit-volume n-dimensional ball. Thus, any δ-HSVP solver in rank
n for δ ≥ √

n can possibly be used to solve (δ/
√

n)-SVP in the same rank in
practice (see [24, §3.2]).

In this work we consider the practical aspects of solving δ-HSVP using block-
wise lattice reduction algorithms. The Schnorr–Euchner BKZ algorithm [51] and
its modern incarnations [4,7,12,13,17] provide the best time/quality trade-off in
practice. The BKZ algorithm takes a parameter k controlling its time/quality
trade-off: the larger k is, the more reduced the output basis, but the running
time grows at least exponentially with k. BKZ is commonly available in software
libraries (such as FP(y)LLL [21,22], NTL [53] and PBKZ [12]) and has been
used in many lattice record computations [7,19,48]. G6K [7,19] currently pro-
vides the fastest public BKZ implementation by replacing the enumeration-based
SVP oracle in BKZ with a sieving-based oracle. As such, it achieves a running
time of 2Θ(k) at the cost of also requiring 2Θ(k) memory. However, this memory
requirement may prove prohibitively expensive in some settings. Moreover, in
a massively parallelised computation the communication overhead required for
sieving may limit its performance advantage.

In this work we reduce the performance gap between enumeration-based and
sieving-based BKZ. That is, we focus on enumeration-based lattice reduction for
solving δ-HSVP, i.e. the polynomial-memory regime, building on recent technical

1 The normalisation by the (n − 1)-th root is justified by that the algorithms consid-
ered here achieve RHFs that are bounded independently of the lattice rank n.

734 M. R. Albrecht et al.

progress on speeding-up lattice enumeration: relaxed pruned enumeration [35]
and extended preprocessing [4].

Recently, [35] heuristically justified that if relaxing the search radius by a small
constant α > 1, then enumeration with certain extreme cylinder pruning [25,52]
asymptotically achieves an exponential speed-up. Intuitively, this relaxation strat-
egy allows to upgrade the enumeration subroutine for BKZ (2.0) [17,51] with one
more optional parameter α. Here and in what follows, we omit pruning parameters
due to the use of FP(y)LLL’s numerical pruning module [21,22].

Concurrently, a variant of BKZ presented in [4] can achieve RHF
GH(k)1/(k−1) in time kk/8+o(k), which is super-exponentially faster than the
cost record kk/(2e)+o(k) of [29,31] for reaching the same RHF. The idea behind
the BKZ variant [4] is to preprocess in a larger rank than the enumeration rank.
That is, [4] upgraded the HSVP-oracle of BKZ to exact (pruned) enumeration
in rank k with extended preprocessing in rank �(1 + c) · k	 for some small con-
stant c ≥ 0. Intuitively, this preprocessing strategy upgrades the enumeration
subroutine for BKZ (2.0) [17,51] with an additional optional parameter c.

Contributions. This work investigates the impact of improved enumeration
subroutines in BKZ by integrating the relaxation strategy [1,12,35] with the
extended preprocessing strategy [4], i.e. we propose the use of relaxed pruned
enumeration with extended preprocessing in BKZ.

First, in Sect. 3, we justify and empirically validate that relaxed enumeration
with certain extreme cylinder pruning [25,52] asymptotically achieves better
time/quality trade-offs for certain approximation regimes based on standard
heuristics. More precisely, for large enough k, the resulting α · GH(kα)-HSVP-
oracle in rank kα is exponentially faster than a GH(k)-HSVP-oracle in rank k
for any constant α ∈ (1, 2]. Here, kα is the smallest integer greater than k such
that the corresponding RHF would not become larger after relaxation:

GH (k)
1

k−1 ≥ (α · GH(kα))
1

kα−1 .

Prior work [35] only treated the speed-up of α · GH(k) compared with GH(k).
Second, in Sect. 4, we explore the concrete cost estimates of relaxed enu-

meration with FP(y)LLL’s pruning module [21,22] with or without extended
preprocessing, using simulations and experiments. We validate that with the
same preprocessing in rank �(1 + c) · k	 for c ∈ [0, 0.4], the resulting α · GH(k)-
HSVP-oracle in rank k is exponentially faster than a GH(k)-HSVP-oracle in
rank k for constants α ∈ (1, 1.3].2

Third, our main result is a practical BKZ variant presented in Sect. 5, which
uses an (α · GH(kα))-HSVP enumeration oracle in rank kα with preprocessing in
rank �(1 + c) · kα	. Intuitively, it upgrades the enumeration subroutine for BKZ
(2.0) [17,51] with two more optional parameters (α, c), and generalises the BKZ

2 We also observed a small speed-up of c = 0.15 over c = 0.25 (claimed to be the
“optimal” in [4]) and verified it using the original simulation code from [4] in the
full version of this work.

Lattice Reduction with Approximate Enumeration Oracles 735

variant in [4] with one more optional parameter α. This additional freedom results
in the best current time/quality trade-off for enumeration-basedBKZ implementa-
tions: our algorithm achieves RHF GH (k)

1
k−1 in time ≈ 2

k log k
8 −0.654 k+25.84. This

improves on the cost record 2
k log k

8 −0.547 k+10.4 given in [4]. As a side result, by
setting c = 0 (i.e. without extended preprocessing), our algorithm achieves RHF
GH(k)

1
k−1 in time ≈ 2

k log k
2 e −1.077 k+29.12, which also improves on the cost for BKZ

2.0 [17] reported in [4]: 2
k log k

2 e −0.995 k+16.25. A comparison between our results and
those reported in [4] is given in Fig. 1: it illustrates that our BKZ variant is expo-
nentially faster than previous BKZ variants in the polynomial-memory setting.
Comparing our best fit with the results reported in [4], we obtain a crossover rank
of 145, or approximately 261 operations.3

100 150 200 250 300 350 400 450 500 550

128

192

256

Rank k

lo
g
(#

n
o
d
es

)

FPLLL [4]: k log k
2 e

− 0.995 k + 16.25

This work c = 0.00: k log k
2 e

− 1.077 k + 29.12

[4, §4]: k log k
8

− 0.547 k + 10.4

This work c = 0.15: k log k
8

− 0.654 k + 25.84

Fig. 1. Cost comparison.

Since our results critically depend on our simulation and implementation
results, we provide the complete source code (used to produce our simulation
data and experimental verification) with the full version of this work.

Impact on security estimates. Security estimates for lattice-based crypto-
graphic primitives typically rely upon sieving algorithms [6]. In the classical
(i.e. non-quantum) setting this is backed by both the asymptotic [14] and con-
crete [7,19] performance of sieving algorithms. Our results do not affect this

3 To put this into perspective, [55] reports solving 1.05-HSVP in rank 150 using a dis-
tributed implementation of an enumeration algorithm. As a result, we expect the
speedups demonstrated in this work to be practical.

736 M. R. Albrecht et al.

state of the art.4 As can be gleaned from Fig. 1, all known enumeration-based
algorithms, including those based on the strategies in this work, perform sim-
ilarly up to rank k ≈ 100. On the other hand, G6K [7] outperforms FPLLL’s
implementation of enumeration for ranks � 70.

In the quantum setting the situation is considerably more complicated. Quan-
tum enumeration algorithms asymptotically produce a quadratic speed-up over
classical enumeration algorithms [11] in the “query model”, but each such queries
may have significant (polynomial) cost, implying that such an estimate is likely
a significant underestimate of the true cost. On the other hand, quantum siev-
ing improves the cost from 20.292 k+o(k) to 20.265 k+o(k) [33], assuming no depth
restriction on quantum computation. In [8] some quantum resource estimates
are given for the dominant part of various lattice sieving algorithms. These
costs, however, are derived assuming unit cost for accessing quantum accessible
RAM, an optimistic assumption. Overall, given the lack of clarity on the cost
of the two families of algorithms under consideration in a quantum setting, it is
currently not possible to assess the crossover rank when quantum lattice siev-
ing outperforms quantum lattice-point enumeration. This suggests an analogous
investigation to [8] for quantum enumeration as a pressing research question.

Faced with the difficulty of assessing the cost of quantum algorithms, the
literature routinely relies on rough low bounds to estimate the cost of lattice
reduction, see e.g. [15,26,45].5 In particular, the quantum version of the Core-
SVP methodology [10] assigns a cost of 20.265 k to performing lattice reduction
with RHF GH(k)1/(k−1). Now, comparing this figure with a naive square-root of
our enumeration costs would give a crossover rank of k = 547. Yet, even then,
i.e. even presuming the square-root advantage applies as is to our algorithm
including preprocessing, accepting the assumptions of suppressing (potentially
significant) polynomial factors, no depth restriction on quantum computation
and unit-cost qRAM, this would not imply a downward correction of Category 1
NIST PQC Round 3 submission parameters and similar parameters for lattice-
based schemes. That is, we stress that this work does not invalidate the claimed
NIST Security Level of such submissions. This is because a given security level is
defined by both a classical and a quantum cost: roughly 2λ classically and 2λ/2

quantumly. For example, for Level 1 this is the cost of classically and quantumly
breaking AES-128. Submissions targeting a classical security level 2λ relying
on the cost of classical sieving 20.292 k+o(k) have a quantum security level much
higher than 2λ/2 under the 20.265 k cost model. In other words, this work does not
lower the cost of quantum enumeration sufficiently to invalidate NIST Security
Level claims since known quantum algorithms provide only a minor speed-up
in the chosen cost model over classical algorithms when compared to Grover’s
algorithm for, say, AES.

4 We discuss the (apparent lack of) applicability of our approach to the sieving setting
in the full version of this work.

5 This does not imply, though, that those works endorse this mode of comparison,
e.g. [15] explicates its objections to it.

Lattice Reduction with Approximate Enumeration Oracles 737

2 Background

Notation. To be compatible with software implementations such as FP(y)LLL,
we let matrix indices start with 0 and use row-representation for both vectors
and matrices in this work. Bold lower-case and upper-case letters denote row
vectors and matrices respectively. The set of n × m matrices with coefficients in
the ring A is denoted by A

n×m, and we identify A
m with A

1×m. The notations
log(·) and ln(·) stand for the base 2 and natural logarithms respectively.

2.1 Lattices

Orthogonalisation. Let B = (b0, . . . , bn−1) ∈ R
n×m be a basis of a lattice

L. Lattice algorithms often involve the orthogonal projections πi : R
m
→

span (b0, . . . , bi−1)
⊥ for i = 0, . . . , n − 1. The Gram–Schmidt orthogonalisa-

tion (GSO) of B is B∗ = (b∗
0, . . . , b

∗
n−1), where the Gram–Schmidt vector b∗

i

is πi(bi). Then b∗
0 = b0 and b∗

i = bi − ∑i−1
j=0 μi,j · b∗

j for i = 1, . . . , n − 1,

where μi,j = 〈bi,b
∗
j 〉

〈b∗
j ,b∗

j 〉 . The projected block (πi(bi), πi(bi+1), . . . , πi(bj−1)) is
denoted by B[i,j). Then the volume of the parallelepiped generated by B[i,j)

is vol(B[i,j)) =
∏j−1

k=i ‖b∗
k‖. In particular, B[0,j) = (b0, . . . , bj−1) and vol(L) =

vol(B) =
∏n−1

k=0 ‖b∗
k‖.

Hermite’s constant. Hermite’s constant of dimension n is the maximum
γn = max

(
λ1(L)/vol(L)1/n

)2

over all n-rank lattices L, where λ1(L) =
minv∈L\{0} ‖v‖ is the first minimum of L. The best asymptotical bounds known
are [18,41]: n

2πe + log(πn)
2πe ≤ γn ≤ 1.744n

2πe + o(n).

Lattice reduction. Let B = (b0, . . . , bn−1) be a basis of a lattice L.
B is size-reduced if |μi,j | ≤ 1

2 for all 0 ≤ j < i < n. B is LLL-reduced [34]
if it is size-reduced and every 2-rank projected block B[i,i+2) satisfies Lovász’s
condition: 3

4 · ‖b∗
i ‖2 ≤ ‖μi+1,i · b∗

i + b∗
i+1‖2 for 0 ≤ i ≤ n − 2. In practice, the

parameter 3
4 can be replaced with any constant in the interval (14 , 1).

B is SVP-reduced if ‖b0‖ = λ1(L). There are two relaxations with δ ≥ 1: B is
δ-SVP-reduced if ‖b0‖ ≤ δ · λ1(L); B is δ-HSVP-reduced if ‖b0‖ ≤ δ · vol(L)1/n.

B is HKZ-reduced if it is size-reduced and B[i,n) is SVP-reduced for i =
0, . . . , n − 1; B is k-BKZ-reduced [49] if it is size-reduced and B[i,min{i+k,n}) is
SVP-reduced for i = 0, . . . , n − 1.

Primitive vector. Let L be a lattice with basis (b0, . . . , bn−1). A vector b =∑n−1
i=0 xibi ∈ L with xi ∈ Z is primitive for L iff it can be extended to a basis of

L, or equivalently, gcd(x0, . . . , xn−1) = 1 [54, Theorem 32].

738 M. R. Albrecht et al.

HSVP-oracle and RHF. A δ-HSVP-oracle with factor δ > 0 is any algorithm
which, given as input an n-rank lattice L specified by a basis, outputs a prim-
itive vector v in L such that ‖v‖ ≤ δ · vol(L)1/n. The resulting root-Hermite-

factor (RHF) is
(

‖v‖
vol(L)1/n

)1/(n−1)

, which is less than δ1/(n−1). In other words,

the worst-case RHF of this δ-HSVP-oracle on an n-rank lattice is δ1/(n−1). For
instance, any exact SVP-solver working on an n-rank lattice is a

√
γn-HSVP-

oracle, whose corresponding worse-case RHF is γ
1

2(n−1)
n .

Geometric Series Assumption. Let B = (b0, . . . , bn−1) be a basis. Schnorr’s Geo-
metric Series Assumption (GSA) [50] says that B follows the GSA wrt. some
constant r ∈ [3/4, 1) (depending on the reduction algorithm) if its Gram–
Schmidt lengths decay geometrically wrt. r, namely ‖b∗

i+1‖/‖b∗
i ‖ = r for all

i = 0, . . . , n − 2. In practice, it has been observed that a reduced basis produced
by the LLL algorithm [34] satisfies the GSA in an approximate sense when the
input basis is sufficiently randomised.

Gaussian heuristic. Given a full-rank lattice L in R
n and a measurable set

S ⊆ R
n, the cardinality of S ∩ L is approximately vol(S)/vol(L). Under the

heuristic, there are about αn points in L of norm ≤ α · GH(L), and one would
expect λ1(L) to be close to GH(L). Here, GH(L) := GH(n) · vol(L)1/n with

GH(n) :=
Γ (n/2 + 1)1/n

√
π

≈
√

n

2πe
· (πn)

1
2n

by Stirling’s formula. In fact, for a random lattice L, λ1(L) is close to GH (L)
with high probability [47]; for any lattice L of rank n > 24, it follows from
Blichfeldt’s inequality γn ≤ 2 · GH (n)2 [16] that λ1(L) ≤ √

2 · GH (L).

2.2 Enumeration: Pruning Plus Relaxation

Enumeration [4,20,31,39,44,51] is the simplest algorithm for solving SVP and
requires only polynomial memory: given a full-rank lattice L in R

n and a
radius R > 0, enumeration outputs L⋂

Balln(R) by a depth-first tree search. If
R ≥ λ1(L), then it is trivial to extract a nonzero lattice vector of length ≤ R:
moreover, by comparing all the norms of vectors in L⋂

Balln(R), one can find
a shortest nonzero lattice vector.

Cylinder pruning [25,52] speeds up enumeration by replacing the search
region Balln(R) with a (much smaller) subset Pf (B, R) defined by a bound-
ing function f : {1, . . . , n} → [0, 1], a basis B of L and R:

Pf (B, R) = {x ∈ R
n : ‖πn−k(x)‖ ≤ f(k) · R for all 1 ≤ k ≤ n} ⊆ Balln(R).

Algorithm 1 recalls enumeration with extreme cylinder pruning, which
repeats enumeration with cylinder pruning many times over different subsets
Pf (B, R) by randomising B. Here, each Step 3 is a single cylinder pruning.

Lattice Reduction with Approximate Enumeration Oracles 739

Algorithm 1. Extreme cylinder pruning [25, Algorithm 1]
Require: (L, R, f), where L is a full-rank lattice in R

n specified by a basis, R > 0 is
a radius and f is a bounding function.

Ensure: A nonzero vector in L ⋂
Balln(R).

1: WHILE no nonzero vector in L ⋂
Balln(R) has been found:

2: Compute a (randomised) reduced basis B by applying basis reduction to a “ran-
dom” basis of L.

3: Compute L ⋂
Pf (B, R) by enumeration with cylinder pruning

The use of enumeration with extreme cylinder pruning in blockwise lattice
reduction requires finding just one nonzero point in L⋂

Pf (B, R) for some basis
B produced at Step 2: it allows to suitably relax radius R for speedup, which
was already exploited in solving SVP challenges [48].

Recently, Li and Nguyen [35] clarified the heuristic asymptotic speedup
achieved by enumeration with relaxed radius and with certain extreme cylin-
der pruning. It uses the following two heuristic assumptions as in [25]:

Heuristic 1 The cost of Algorithm 1 is dominated by enumeration with cylin-
der pruning at Step 3, rather than the repeated reductions of Step 2.

Heuristic 2 All the reduced bases B of Algorithm 1 follow the GSA wrt. the
same positive constant.

Theorem 1 ([35, Theorem 6]). Let L be a full-rank lattice in R
n. Let α ≥ 1

and ρ ∈ (0, 1
2) such that 4α4 · ρ · (1 − ρ) < 1. Let R = α · GH(L) and

f(i) =
{√

ρ if 1 ≤ i ≤ n/2,
1 otherwise.

Under Heuristics 1 and 2, the time complexity Tα,ρ(n) of Algorithm 1 on
(L, R, f) equals, up to polynomial factors, T (n) of a full enumeration on
L⋂

Balln(GH(L)) reduced by a multiplicative factor (4α2(1 − ρ))n/4:

Tα,ρ(n) ≈ T (n)

(4α2(1 − ρ))n/4
.

Here (and for the remainder of this work) the cost of enumeration is expressed
as the number of nodes visited during the enumeration process.

2.3 Schnorr–Euchner’s BKZ and its Accelerated Variant in [4]

BKZ. The (original) BKZ algorithm introduced by Schnorr and Euchner [51] is
the most widely used lattice reduction algorithm besides LLL [34] and a central
tool in lattice-based cryptanalysis. Its performance drives the setting of concrete
parameters (such as keysizes) for concrete lattice-based cryptographic primitives
(see e.g. [6]).

740 M. R. Albrecht et al.

Originally, the SVP subroutine implemented in [51] was the simplest form of
lattice enumeration, but it is now replaced by better subroutines, such as pruned
enumeration [25] in BKZ 2.0 [17] and FP(y)LLL [21,22] and (asymptotically)
faster sieving in the General Sieve Kernel [7,19]. In practice, BKZ is typically
implemented with an approximate (rather than exact) SVP-subroutine. Thus,
Algorithm 2 slightly generalises BKZ by allowing the use of a relaxed HSVP-
oracle at Step 3, as well as full LLL (instead of partial LLL) at Step 5: both are
justified by Li–Nguyen’s analysis [35].

At a high level, Algorithm 2 reduces a basis in high rank, using HSVP-oracles
in low rank (≤ k) as subroutines and running the LLL algorithm [34] to remove
the linear dependency right after inserting a lattice vector (found by the oracle)
in the current basis.

Algorithm 2. BKZ: Schnorr–Euchner’s BKZ algorithm [51]
Require: A block size k ∈ (2, n), the number of tours N ∈ Z

+, a relaxation factor
α ≥ 1, and an LLL-reduced basis B = (b0, . . . , bn−1) of a lattice L ⊆ Z

m.
Ensure: A new basis of L.
1: for � = 0 to N − 1 do
2: for j = 0 to n − 2 do
3: Find a primitive vector b for the sublattice generated by the basis vectors

bj , . . . , bh−1 where h = min{j + k, n} s.t. ‖πj(b)‖ ≤ α
√

γh−j · vol(B [j,h))
1/(h−j)

4: if ‖b∗
j ‖ > ‖πj(b)‖ then

5: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
6: end if
7: end for //A BKZ tour refers to a single execution of Steps 2-7.
8: end for
9: return B.

Building on Hanrot–Pujol–Stehlé’s analysis of a certain BKZ variant (remov-
ing internal LLL calls) [28], Li and Nguyen [35] justified the popular “early
termination” strategy in practice of BKZ:

Theorem 2 ([35, Theorem 2]). Let n > k ≥ 2 be integers and let 0 < ε ≤
1 ≤ α ≤ 2(k−1)/4√

γk
. Given as input a block size k, a relaxation factor α, and an

LLL-reduced basis of an n-rank lattice L ⊂ R
m, if N ≥ 4(ln 2)n2

k2 log n1.5

(4
√
3)ε

, then
Algorithm 2 outputs a basis (b0, . . . , bn−1) of L such that

‖b0‖ ≤ (1 + ε) · (α2γk)
n−1

2(k−1)+
k·(k−2)
2n·(k−1) · vol(L)1/n

.

It was also mentioned in [35] that for n > k > 8eπ, there is a k-BKZ reduced

basis B = (b0, . . . , bn−1) satisfying ‖b0‖ =
(

k−1
8eπ

)n−1
2k · vol(B)1/n. Since γk =

Θ(k), this means that BKZ with early termination indeed provides bases almost
as reduced as the full BKZ algorithm. Theorem 2 has a heuristic version (i.e. [35,
Th. 5]), which heuristically models the practical behaviour of BKZ.

Lattice Reduction with Approximate Enumeration Oracles 741

The accelerated BKZ variant in [4]. Recently, in [4] a practical and faster
BKZ variant within the class of polynomial-space algorithms was introduced,
based on the idea that its HSVP-oracle performs an exact enumeration with
extended preprocessing.

Extended preprocessing is to preprocess in a larger rank than the enumeration
rank. Exact enumeration with extended preprocessing refers to the procedure
that the δ(k)-HSVP-oracle in “block size” �(1 + c) · k	 (for some small constant
c ≥ 0 and an integer k ≥ 2) first preprocesses a given projected block of rank
�(1+c)·k	 (using this BKZ variant recursively in lower levels) into a reduced block
(say,) C and then performs a (pruned) enumeration for solving SVP exactly on
the k-rank head block of C to find a short nonzero vector v ∈ L(C).

The performance parameter k dominates the time/quality trade-off:

– Quality aspect: v is a shortest nonzero vector in the lattice generated by the
k-rank head block C [0,k) of C, so that ‖v‖ ≤ √

γk · vol(C [0,k))
1/k. The BKZ-

preprocessing on C ensures that vol(C [0,k))/vol(C)k/
(1+c)k� can be upper
bounded well, so that ‖v‖ ≤ δ(k) · vol(C)1/
(1+c)k�.

– Cost aspect: Due to the extended preprocessing on C, the k-rank head block
C [0,k) has good quality for enumeration, i.e. C [0,k) almost satisfies the GSA.
As a result, enumeration on C [0,k) costs at most kk/8 · 2O(k) (matching the
Gaussian heuristic estimate under the GSA). Both the GSA shape and the
cost estimate were validated by [4]’s simulations and experiments.

We revisit [4, § 4]’s BKZ variant in Algorithms 3 and 4. We refer the reader
to [4] for definitions of the functions tail() and pre() called in Algorithm 4.

When c = 0, Algorithm 3 is essentially Schnorr-Euchner’s BKZ algorithm [51]
(i.e. using enumeration but with recursive BKZ preprocessing as an SVP-oracle).

Algorithm 3. BKZ variant in [4, Algorithm 4]
Require: (B, k, c), where B = (b0, . . . , bn−1) is an LLL-reduced basis of an n-rank

lattice L in Z
m, k ∈ [2, n) is a performance parameter, c ≥ 0 is an overshooting

parameter and N ∈ Z
+ is the number of tours.

Ensure: A reduced basis of L.
1: for � = 0 to N − 1 do
2: for j = 0 to n − 2 do
3: Find a short nonzero vector v in the lattice L[j,h) (generated by the projected

block B [j,h) where h = min{j + �(1 + c)k	, n}), by calling Alg. 4 on (B [j,h), k, c)
4: if ‖b∗

j ‖ > ‖v‖ then
5: Lift v into a primitive vector b for the sublattice generated by the basis

vectors bj , . . . , bh−1 such that ‖πj(b)‖ ≤ ‖v‖
6: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
7: end if
8: end for
9: end for

10: return B.

742 M. R. Albrecht et al.

Without formal analysis but with concrete simulations and experiments, [4]
reported that the following instantiation of Algorithm 3 seems to provide the best
practical performance: (c,N) = (0.25, 4) and Algorithm 4 performing pruned
enumeration at both Step 4 and Step 8. The resulting procedure achieves RHF
≈ GH(k)1/(k−1) in time ≈ 2

k log k
8 −0.547 k+10.4, at least up to k ≈ 500.

2.4 Simulating BKZ

To understand the behaviour of lattice reduction algorithms, a useful approach is
to conduct simulations. The underlying idea is to model the practical behaviour
of the evolution of the Gram–Schmidt norms during the algorithm execution,
without running a costly lattice reduction algorithm. Note that this requires
only the Gram–Schmidt norms rather than the basis itself. Chen and Nguyen
first provided a BKZ simulator [17] based on the Gaussian heuristic and with an
experiment-driven modification for the tail blocks of the basis. It relies on the
assumption that each SVP solver on the projected blocks (except the tail ones
of the basis) finds a vector whose norm corresponds to the Gaussian heuristic
applied to that local block.

We extend/adapt this simulator to also estimate the cost and not only the
evolution of the Gram–Schmidt norms. To find the enumeration cost with prun-
ing, we make use of FPyLLL’s pruning module which numerically optimises
pruning parameters for a time/success probability trade-off using a gradient
descent. In small block sizes, the enumeration cost is dominated by calls to LLL.
In our code, we simply assume that one LLL call in rank k costs the equivalent of
visiting k3 enumeration nodes. While this is clearly not the cost of LLL [42], this
choice produces costs that match the observed running times (see e.g. Fig. 4) clos-
est among the choices we experimented with. We hypothesise that this behaviour
can be explained by that the basis vectors b0, . . . , bj−1, bj , . . . , bn−1 appearing
at, say, Step 6 of Algorithm 3 are already (better than) LLL-reduced. This
assumption enables us to bootstrap our cost estimates. BKZ in block size up to
(say,) 40 only requires LLL preprocessing, allowing us to estimate the cost of
preprocessing with block size up to 40, which in turn enables us to estimate the
cost (including preprocessing) for larger block sizes etc. Our simulation source

Algorithm 4. An approx-HSVP oracle on (B[j,h), k, c) using exact enumeration
in rank k∗ with extended preprocessing in rank (h − j) [4, Algorithm 3]
1: Find the enumeration rank k∗ ← tail(k, c, h − j)
2: Numerically find the preprocessing parameter k′ ← pre(k∗, ‖b∗

j ‖, . . . , ‖b∗
h−1‖)

3: if k′ ≥ 3 then
4: Run Alg. 3 on (B [j,h), k

′, c) to obtain a reduced basis C ∈ Q
(h−j)×m of L[j,h)

5: else
6: LLL-reduce B [j,h) into a basis C ∈ Q

(h−j)×m of L[j,h)

7: end if //Steps 3-7 preprocess B [j,h) for the next local enumeration
8: Enumerate on the head block C [0,k∗) of C to find a shortest nonzero vector v in

the lattice generated by C [0,k∗)

Lattice Reduction with Approximate Enumeration Oracles 743

code is available as simu.py, as an attachment to the electronic version of the
full version of this document.

3 Asymptotic Time/Quality Trade-Offs

In this section, we show asymptotically that relaxed (rather than exact) enu-
meration with certain extreme cylinder pruning does achieve better time/quality
trade-offs for certain approximation regimes, especially for small enough RHFs.

3.1 An Elementary Lemma

We will use the following notation for the remainder of this work:

– δ-HSVP enumeration oracle: it denotes a δ-HSVP-solver using (relaxed) enu-
meration with (extreme) pruning, i.e. setting the radius R = δ · vol(L)1/n for
enumeration on a given n-rank lattice L.

– kα: for real α ≥ 1 and integer k ≥ 36, let kα be the smallest integer greater
than k such that

GH (k)
1

k−1 ≥ (α · GH(kα))
1

kα−1 . (1)

The integer kα is well-defined, due to the following fact:

Fact 3. With the definition GH (i) = Γ (i/2+1)1/i

√
π

, GH (i)
1

i−1 strictly decreases
for integers i ≥ 36.

Our following analysis relies on a key observation that the ratio kα

k “almost”
decreases for k ≥ �2πe2	 = 47 and tends to 1 as k tends to infinity. More
precisely, we will use the following key elementary lemma:

Lemma 1. Let α ≥ 1 be a real and k ≥ 36 be an integer.

1. Monotonicity: For any fixed k, kα increases with α ≥ 1.
2. Lower bound: kα ≥ k + k log α

log k .

3. Upper bound: If k ≥ (2πe2)
η

η−2 for some variable η > 2, then

kα ≤ k +
⌈

η k log α

log k

⌉
.

The proofs of Fact 3 and Lemma 1 can be found in the full version of this work.
Lemma 1 indicates that asymptotically for a fixed constant α, the larger the

integer k, the smaller we can assign the variable η in Item 3, then the smaller
both the upper bound 1 + η log α

log k + 1
k and the lower bound 1 + log α

log k of the ratio
kα

k . Figure 2 verifies this numerically for several values of α and k.

744 M. R. Albrecht et al.

Fig. 2. Evolution of the ratio kα
k

wrt. constant α ∈ {1.05, 1.1, 1.2, 1.3, 1.4} and integer
k = 80, . . . , 400.

3.2 Asymptotic Time/Quality Trade-Offs

Theorem 1 implies that with certain extreme cylinder pruning, relaxing enumer-
ation would result in an exponential speedup, with a minor loss in the approxi-
mation factor:

Corollary 1. Let L be a full-rank lattice in R
n. Let α ≥ 1 and ρ ∈ (0, 1

2) such
that 4α4ρ(1 − ρ) < 1. Let R = GH(L), Rα = α · GH(L) and

f(i) =
{√

ρ if 1 ≤ i ≤ n/2,
1 otherwise.

Under Heuristics 1 and 2, the heuristic time complexity of Algorithm 1 with
radius Rα is less than that of Algorithm 1 with radius R by a multiplicative
factor αn/2 (up to some polynomial factor).

Proof. Let T (n) denote the standard heuristic estimate for the cost of full enu-
meration on L⋂

Balln(GH(L)). It follows from Theorem 1 that the heuristic
cost estimates of Algorithm 1 with radius Rα and with radius R are respectively

T (n)

(4α2(1 − ρ))n/4
and

T (n)

(4(1 − ρ))n/4

up to some polynomial factors. This implies the conclusion. ��
The corollary indicates that, in the same extreme pruning regime (i.e. with

the same bounding function f), if one is interested in finding just one short
nonzero vector (rather than one shortest nonzero vector) for a given lattice,
then it is faster to run a relaxed (rather than exact) enumeration.

A more interesting question is whether such benefits can be carried over with-
out sacrificing the quality. Thus what remains to be established is how the cost
gain compares to the corresponding quality loss. For instance, we take k = 50
and α = 2. For reaching the same RHF GH(50)

1
49 ≈ 1.012, it is unlikely that the

Lattice Reduction with Approximate Enumeration Oracles 745

(2 · GH(152))-HSVP enumeration oracle in rank 152 is faster than the GH(50)-
HSVP enumeration oracle in rank 50. Thus, we now clarify that asymptotically
relaxed (rather than exact) enumeration with certain extreme cylinder pruning
does achieve better time/quality trade-offs for certain approximation regimes,
especially for small enough RHFs. To do so, we compare costs of δ-HSVP enu-
meration oracles with different factors δ aiming for the same output quality.

More precisely, Lemma 1 allows us to prove that for reaching the same RHF
GH(k)

1
k−1 , the (α · GH(kα))-HSVP enumeration oracle in rank kα is exponen-

tially faster than the GH(k)-HSVP enumeration oracle in rank k, provided that
k is sufficiently large and α > 1 is reasonably small.

Theorem 4. Let α > 1 and ρ ∈ (0, 1
2) be constants such that 4α4 ρ · (1 − ρ) < 1.

Let

f(i) =
{√

ρ if 1 ≤ i ≤ n/2,
1 otherwise.

In addition to Heuristics 1 and 2, assume that up to some polynomial factor, the
heuristic runtime of full enumeration on any n-rank integer lattice with radius
equal to the Gaussian heuristic is T (n) := nc0n · 2c1n with constant coefficients
c0, c1 such that 0 < c0 < 1

4 . Let k be an arbitrary positive integer satisfying

k > max
{

(2πe2)
1

1−4c0 , 2− c1
c0

}
. For any real η ∈ [2 ln k

ln k−ln(2πe2) ,
1

2c0
), if 1 < α ≤

(kc0 · 2c1)2, then the (α · GH(kα))-HSVP enumeration oracle in rank kα (using
Algorithm 1) is exponentially faster than the GH(k)-HSVP enumeration oracle
in rank k (using Algorithm 1) by a multiplicative factor of at least

α(1
2−c0η)k ·

(
4(1 − ρ)

(√
α

(2e)c0 2c1

)4η
) k log α

4 log k

(up to some polynomial factor).

Proof. We omit some polynomial factors in the following complexity analysis.
By the assumption, it follows from Theorem 1 that the heuristic runtime of
the (α · GH(kα))-HSVP enumeration oracle in rank kα and the GH(k)-HSVP
enumeration oracle in rank k are respectively

Tα ≈ T (kα)
(4α2(1 − ρ))kα/4

= kc0kα
α · 2c1kα · α−kα/2 · (4(1 − ρ))−kα/4

= 2(c0 log kα+c1− log α
2)kα · (4(1 − ρ))−kα/4,

T1 ≈ T (k)
(4(1 − ρ))k/4

= kc0k · 2c1k · (4(1 − ρ))−k/4.

For simplicity, let uα := k + φα ∈ Z
+ with φα :=

⌈
ηk log α
log k

⌉
. Since η ∈

[2 ln k
ln k−ln(2πe2) ,

1
2c0

) and k > (2πe2)
1

1−4c0 , we have η > 2 and k ≥ (2πe2)
η

η−2 >

(2πe2)
1

1−4c0 . Then Item 3 of Lemma 1 implies kα ≤ uα. Since 1 < α ≤ (kc0 ·2c1)2,

Item 2 of Lemma 1 implies kα > k ≥ α
1

c0 2
|c1|
c0 . Then c0 log kα + c1 − log α

2 > 0.

746 M. R. Albrecht et al.

Thus,

Tα � 2(c0 log uα+c1− log α
2)uα ·(4(1−ρ))−kα/4 = uc0uα

α ·2c1uα ·α−uα/2·(4(1−ρ))−kα/4.

As a result, we have

T1

Tα
� kc0k · 2c1k · αuα/2 · (4(1 − ρ))kα/4

uc0uα
α · 2c1uα · (4(1 − ρ))k/4

=
α(k+φα)/2

kc0φα · (1 + φα
k

)
c0·(k+φα) · 2c1φα

· (4(1 − ρ))
(kα−k)

4

≥ α(k+φα)/2

kc0φα · ec0·φα · (1 + φα
k

)c0φα · 2c1φα
· (4(1 − ρ))

(kα−k)
4 (using

(

1 +
φα

k

)k

≤ eφα)

≥ α(k+φα)/2

kc0φα · (2e)c0φα · 2c1φα
· (4(1 − ρ))

(kα−k)
4 (using 1 +

φα

k
≤ 2)

≥ α(k+φα)/2

αc0ηk · kc0 · (2e)c0φα · 2c1φα
· (4(1 − ρ))

(kα−k)
4 (using kc0φα ≤ αc0ηk · kc0)

≥ α(1
2 −c0η)k ·

(√
α

(2e)c02c1

)φα

· k−c0 · (4(1 − ρ))
k log α
4 log k . (by Item 2 of Lemma 1)

Substituting φα =
⌈

ηk log α
log k

⌉
, we conclude that

T1

Tα
� α(1

2−c0η)k ·
(√

α

(2e)c02c1

) ηk log α
log k

· (4(1 − ρ))
k log α
4 log k

up to some polynomial factor. This completes the proof. ��
By Theorem 4, the smaller the time coefficient c0 and the larger the relaxation

constant α (satisfying both 4α4 ρ · (1 − ρ) < 1 and 1 < α ≤ (kc0 · 2c1)2), the
larger the exponential speedup factor α(1

2−c0η)k. This suggests that if some full
enumeration algorithm of time nc0n · 2O(n) with smaller coefficient c0 is found,
then relaxing such an algorithm in the certain extreme cylinder pruning regime
would result in better time/quality trade-offs for certain (including larger) RHFs.
In brief, an enumeration oracle with smaller coefficient c0 would benefit more
from (larger) relaxation.

3.3 Numerical Validation

To validate Corollary 1 for concrete parameters, we simulated enumeration up to
rank k = 500 when fixing ρ = 0.01 for varying α. For this, we first simulated
both the output and the corresponding cost of pre-processing with k′-BKZ for
some index k′ < k. We note that for our pre-processing, we always assume a
k′-rank SVP oracle inside BKZ. By combining the (recursive) preprocessing cost
with the expected (repeated) enumeration cost, we arrive at an expected overall

Lattice Reduction with Approximate Enumeration Oracles 747

enumeration cost (denoted by tα(k) in Table 1). For the top-most enumeration,
we pick pruning parameters as suggested by Corollary 1 for ρ = 0.01 and for all
values of α. Our simulation runs a simple linear search for k′ such that the total
expected cost is minimised. We then used SciPy’s scipy.optimize.curve fit

function [56] to fit simulation data into cost functions of form k
k
2e · 2c1 k+c2

with constant coefficients c1 and c2. For fitting we use always the indices k =
�α · 100	, �α · 100	 + 1, . . . , �α · 250	, which depend on α due to numerical
stability issues. The results are given in Table 1.

Furthermore, several heuristics (such as the Geometric Series Assumption)
are required to hold to instantiate Corollary 1 and Theorem 4. We check these
experimentally in the full version of this work. In those experiments, the prepro-
cessing cost is not taken into account and thus these algorithms are hypothetical.
As a consequence, they give lower-bound estimates rather than predict costs.

Table 1. Speedups of relaxed enumeration with certain extreme cylinder pruning
derived from our simulation for ρ = 0.01 and claimed by Corollary 1.

α log tα(k) log t1(k)
tα(k)

log t1(k)
tα(k)

≈ log α
2

k

Simulation Simulation Corollary 1

1.00 k log k
2 e

− 0.581 k + 9.07 0.00 0.00

1.05 k log k
2 e

− 0.638 k + 10.91 0.057 k − 1.84 0.035k

1.10 k log k
2 e

− 0.691 k + 12.34 0.110 k − 3.27 0.069k

1.15 k log k
2 e

− 0.731 k + 11.97 0.150 k − 2.90 0.101k

1.20 k log k
2 e

− 0.767 k + 11.21 0.186 k − 2.14 0.132k

1.25 k log k
2 e

− 0.800 k + 10.37 0.219 k − 1.30 0.161k

1.30 k log k
2 e

− 0.836 k + 10.75 0.255 k − 1.69 0.189k

Here, tα(k) denotes the “expected cost” of the (α · GH(k))-HSVP
enumeration oracle in rank k ∈ [�α ·100	, �α ·250], including prepro-
cessing.

4 Practical Approximate Enumeration Oracles

Table 1 highlights the relative speedups obtainable by relaxed enumeration with
certain extreme cylinder pruning. It does not, however, present speedups over
the state-of-the-art for enumeration, which can be observed by comparing the
second column of Table 1 with the known cost 2

k log k
2 e −0.995 k+16.25 of enumeration

with optimised BKZ 2.0 [17] preprocessing (see [4, Fig. 2]).

748 M. R. Albrecht et al.

In this section, we provide simulation data – fitted curves and experimental
validation – to show that with FP(y)LLL’s pruning module [21,22] and with or
without extended preprocessing, relaxed enumeration does achieve exponential
speedups, but with a loss in the approximation factor: it can be viewed as a
practical version of Corollary 1. We will consider the performance gain when
targeting the same RHF as an exact oracle in Sect. 5. In the full version of
this work, we also provide additional experiments to check the accuracy of the
underlying cost estimation module in FP(y)LLL, with respect to relaxed pruned
enumeration. Furthermore, a curious artefact of our parameters is that they do
not suggest extreme pruning. Rather, they imply a small number of repetitions
only. We elaborate on this in the full version of this work.

4.1 Simulations and Cost Estimates

As in Sect. 3.3, we run the top-most enumeration as an (α ·GH(k))-HSVP-oracle
in rank k and perform a linear search over parameter k′ (< k) for preprocessing
such that the overall enumeration cost is minimised. We first simulate calling
Algorithm 2 with block size k′ (i.e. k′-BKZ) to preprocess a given basis of rank
�(1 + c) · k	 and then simulate running relaxed enumeration on it. That is, we
simulate the “expected cost” of the (α · GH(k))-HSVP enumeration oracle in
rank k with preprocessing in rank �(1 + c) · k	, i.e. enumeration on a k-rank
head block B with FPyLLL’s optimised cylinder pruning and with relaxed radius
R = α · GH(L(B)). Here, the “expected cost” of each oracle call includes both
the expected (repeated) enumeration cost and all recursive preprocessing costs.

We illustrate the fitted cost estimates in Table 2 (columns “α′ = 1”), which
confirm that relaxed enumeration does achieve exponential speedups. We also
give some example data and curve fits in Fig. 3.

Remark 1. In Table 2 we are seeing a slight advantage when picking c = 0.15 over
picking c = 0.25. It slightly deviates from a claim in [4] that for α = 1, c = 0.25
seems to provide the best performance among c ≥ 0. We hence reproduce this
advantage using the original simulation code from [4] in the full version of this
work. This simulation confirms that the choice of c = 0.15 also provides a minor
performance improvement for α = 1.

4.2 Consistency with Experiments

In Fig. 4, we give experimental data comparing our implementation with our
simulations of the (α · GH(k))-HSVP enumeration oracle in rank k with pre-
processing in rank �(1 + c) · k	 for c ∈ {0.00, 0.15, 0.25}.6 It shows that our
simulation for cost estimates is reasonably accurate for larger instances with a
minor bias towards underestimating the cost. The data should be understood as
follows:

6 The reader may consult [4, Fig. 4] for the case c = 0.00, α = 1.00.

Lattice Reduction with Approximate Enumeration Oracles 749

Fig. 3. Selected “expected costs” from simulations for (α · GH(k))-HSVP enumeration
oracles in rank k for c ∈ {0.00, 0.15, 0.25} (in turn).

– “Simulation” is the output of our simulation code simu.py.
– “Runtime” is the walltime for running FPLLL, converted to “nodes visited”

units, assuming 64 CPU cycles per node. It is scaled by 3.3 · 109/64 because
it runs on a “Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30 GHz” (strombenzin).

– “Nodes” is the number of enumeration nodes visited reported by FPLLL.
“Runtime” also includes the cost of recursive LLL calls, but “Nodes” does
not.

750 M. R. Albrecht et al.

Fig. 4. Experimental verification of simulation results for the (α · GH(k))-HSVP enu-
meration oracle in rank k with example α ∈ {1.10, 1.20, 1.30} (in turn) and c = 0.15.
We ran 16 experiments.

5 A Practical BKZ Variant

While Sect. 4 establishes a practical exponential speed-up of relaxed enumer-
ation in the same rank k, it does not yet account for the loss in quality. In
this section, we consider relaxed enumeration in rank kα to obtain a RHF of
≈ GH(k)1/(k−1). This enables us to define a practical variant of the BKZ algo-
rithm utilising relaxed enumeration. This, in turn, enables us to use relaxed
enumeration recursively to preprocess bases for relaxed enumeration.

To this end, we present a generalisation of the BKZ variant in [4] with one
more optional parameter. This generalisation integrates the idea of extended pre-
processing (introduced by [4]) with the relaxation strategy (formalised in [1,35])
on enumeration-based HSVP-oracles. That is, given a performance parame-
ter k (akin to the ‘block size’ of Algorithm 2), we equip Schnorr–Euchner’s
BKZ with approximate enumeration oracles as illustrated in Sect. 4, namely an
(α · GH(kα))-HSVP enumeration oracle in rank kα with preprocessing in rank
�(1 + c) · kα	 for some small constant c ≥ 0 and an optional relaxation con-
stant α ≥ 1. This BKZ variant uses three parameters (k, c, α), while [4]’s variant
relies on two parameters (k, c) and BKZ (2.0) [17,51] uses one parameter k. In
particular, our BKZ variant can be viewed as a practical version of Theorem 4.

Lattice Reduction with Approximate Enumeration Oracles 751

With extensive experiments and simulations, we investigate the performances
of this BKZ variant for both practical and cryptographic parameter ranges: it
does achieve better time/quality trade-offs for certain approximation regimes
than both [4]’s variant and BKZ 2.0 [17].

Main result. Given as input a performance parameter k—our simulations cover
k ∈ [100, 400]—an overshooting parameter c ∈ [0, 0.4], and a basis of an integer
lattice of rank n ≥ (1+ c) ·k1.3, our BKZ variant first picks the “optimal” relax-
ation constant α ∈ {1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3} to minimise the expected cost
of one oracle call and achieves RHF GH(k)

1
k−1 with simulated cost estimates:

– Case c = 0: the expected cost of one oracle call is about 2
k log k

2 e −1.077 k+29.12,
which is lower than BKZ 2.0’s record 2

k log k
2 e −0.995 k+16.25 reported in [4, Fig. 2];

– Case c = 0.25: the expected cost of one oracle call is about 2
k log k

8 −0.632 k+21.94,
which is lower than the record in [4]: 2

k log k
8 −0.547 k+10.4;

– Case c = 0.15: the expected cost of one oracle call is about 2
k log k

8 −0.654 k+25.84.

Our results are illustrated in Fig. 1. Our simulations were performed on q-ary
lattices of dimensions n = �(1 + c) · kα	 with volume qn/2 for q = 230.

5.1 Algorithm

Algorithm 5 is our BKZ variant which, given as input a performance parameter
k ≥ 2, an overshooting parameter c ≥ 0, a relaxation parameter α ≥ 1, and
a basis of an integer lattice L of rank n ≥ (1 + c) · kα, outputs a reduced
basis of L.

It calls the (α·GH(kα))-HSVP enumeration oracle in rank kα with preprocess-
ing in rank �(1 + c) · kα	 as an HSVP subroutine. This oracle includes recursive
preprocessing: when α = 1 then Algorithm 6 is essentially Algorithm 4, and
hence calls a function pre(·, ·) for returning the preprocessing parameter. When
(c, α) = (0, 1), Algorithm 5 is essentially BKZ 2.0 [17] and Schnorr-Euchner’s
BKZ algorithm [51].

Restricted to the state-of-the-art power in practice, we choose c ∈ [0, 0.4] and
α ∈ {1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30} for simplicity in our simulations.

Remark 2. In our experiments, the choice of α in Algorithm 5 is determined from
an optimised strategy profile built upon our simulated data for each k ∈ [2, 400].
We remark that it is also possible to determine such α on-the-fly based on
simulations on the current basis.

752 M. R. Albrecht et al.

Algorithm 5. A new BKZ variant with three parameters (k, c, α)
Require: (B, k, c, α), where B = (b0, . . . , bn−1) is an LLL-reduced basis of an n-rank

lattice L in Z
m, k ∈ [2, n) is a performance parameter, c ≥ 0 is an overshooting

parameter, α ≥ 1 is a relaxation parameter satisfying n ≥ (1+ c) · kα, and N ∈ Z
+

denotes the number of tours.
Ensure: A reduced basis of L.
1: for � = 0 to N − 1 do
2: for j = 0 to n − 2 do
3: Find a short nonzero vector v in the lattice L[j,h) (generated by the projected

block B [j,h) where h = min{j+�(1+c)·kα	, n}), by calling Alg. 6 on (B [j,h), k, c, α)
4: if ‖b∗

j ‖ > ‖v‖ then
5: Lift v into a primitive vector b for the sublattice generated by the basis

vectors bj , . . . , bh−1 such that ‖πj(b)‖ ≤ ‖v‖
6: LLL-reduce (b0, . . . , bj−1, b, bj , . . . , bn−1) to remove linear dependencies
7: end if
8: end for
9: end for

10: return B.

Handling the tail. Just like all known BKZ variants (such as the variant in [4]
and BKZ 2.0 [17]), it is tricky to handle tail projected blocks of the current basis
during execution, because of the decreasing ranks over d = �(1 + c) · kα	, �(1 +
c) ·kα	−1, . . . , 2. We hence generalise [4]’s tail function tail(·, ·, ·) with one more
parameter α for computing the enumeration rank.

For given integer k ≥ 2, constant c ≥ 0 and relaxation constant α ≥ 1, our
approximate enumeration oracle first finds the enumeration rank k∗ using the
function tail(k, c, α, d) for d = 2, . . . , �(1 + c) · kα	:

k∗ ← tail(k, c, α, d) = max
{

min
{

d,

⌈
kα − �(1 + c) · kα	 − d

2

⌉}
, 2

}
.

Then k∗ = kα when d = �(1 + c) · kα	. It can be checked that k∗ is strictly less
than d if d is large enough and is exactly equal to d otherwise:

tail(k, c, α, d) =

{
kα +

⌈
d−
(1+c)·kα�

2

⌉
if (1 − c) · kα < d ≤ �(1 + c) · kα	

d if 2 ≤ d ≤ (1 − c) · kα

∈ [2, kα].

(2)
Algorithm 5 calls the (α · GH(k∗))-HSVP enumeration oracle in rank k∗ with
preprocessing in rank d to reduce each tail projected block, namely Algorithm 6.

Lattice Reduction with Approximate Enumeration Oracles 753

Preprocessing parameter. Given a projected block (say,) (b0, . . . , bd−1) of
rank d ∈ [2, �(1 + c) · kα], the preprocessing function pre(k∗, ‖b∗

0‖, . . . , ‖b∗
d−1‖)

returns the “optimal” preprocessing parameter k′ ∈ [2, k∗], possibly based on
simulations, such that the cost of enumeration on the k∗-rank head block is
minimised (e.g., at most kk/8 · 2O(k) when c = 0.15), after preprocessing on
(b0, . . . , bd−1) using Algorithm 5 recursively in lower levels, i.e. equipped with
a similar HSVP-oracle with parameters (k′, c, α′) (instead of the current level
(k, c, α)).

Since kα ≥ k∗ ≥ k′ ≥ 2, each enumeration throughout all recursive levels of
Algorithm 5 would not be more expensive than the top-most enumeration-based
HSVP-oracle (i.e., the (α · GH(kα))-HSVP enumeration oracle in rank kα with
preprocessing in rank �(1 + c) · kα).

5.2 Performance of Our BKZ Variant

Using simulations and data from our implementation, we now validate the perfor-
mance of our algorithm. We first show that preprocessing with relaxed enumer-
ation has a performance benefit (for c > 0) and then validate the output quality
of our algorithm. Combining the two, we obtain our main result in Fig. 1, as
claimed above.

Algorithm 6. An approx-HSVP oracle on (B[j,h), k, c, α) using relaxed enumer-
ation in rank k∗ with extended preprocessing in rank (h − j)
1: Find the enumeration rank k∗ ← tail(k, c, α, h − j) by Eq. (2)
2: Numerically find the preprocessing parameter k′ ← pre(k∗, ‖b∗

j ‖, . . . , ‖b∗
h−1‖)

3: if k′ ≥ 3 then
4: Run Alg. 5 on (B [j,h), k

′, c, α′) with some α′ ≥ 1 to obtain a reduced basis

C ∈ Q
(h−j)×m of L[j,h)

5: else
6: LLL-reduce B [j,h) into a basis C ∈ Q

(h−j)×m of L[j,h)

7: end if //Steps 3-7 preprocess B [j,h) for the relaxed enumeration.
8: Call the (α·GH(k∗))-HSVP enumeration oracle in rank k∗ on the head block C [0,k∗)

of C to find a short nonzero vector v in the lattice L[j,h)

α · GH(k)-HSVP oracle performance. In the columns labelled “α′ ≥ 1” in
Table 2, we present the speed-ups over α = 1 attained by our BKZ variant. That
is, the performance of solving α·GH(k)-HSVP when using recursive preprocessing
with α′ ≥ 1. We can observe the following from Table 2:

754 M. R. Albrecht et al.

Table 2. Speedups of relaxed enumeration with extreme cylinder pruning derived
from our simulation with FPyLLL’s optimised cylinder pruning and recursive relaxed
enumeration compared with that claimed by Corollary 1.

α log
t1(k)
tα(k) log tα(k) log

t1(k)
tα(k) log tα(k) log

t1(k)
tα(k)

Cor. 1 Sim. (α′ = 1) Sim. (α′ = 1) Sim. (α′ ≥ 1) Sim. (α′ ≥ 1)

c = 0.00

1.00 0.00 k log k
2 e − 0.994 k + 17.94 0.00 k log k

2 e − 0.946 k + 11.31 0.00

1.05 0.035k k log k
2 e − 1.040 k + 17.69 0.046 k + 0.24 k log k

2 e − 0.984 k + 9.82 0.038 k + 1.49,

1.10 0.069k k log k
2 e − 1.088 k + 18.56 0.093 k − 0.63 k log k

2 e − 1.027 k + 9.99 0.081 k + 1.32

1.15 0.101k k log k
2 e − 1.132 k + 20.55 0.137 k − 2.61 k log k

2 e − 1.078 k + 12.75 0.132 k − 1.45

1.20 0.132k k log k
2 e − 1.166 k + 22.28 0.171 k − 4.34 k log k

2 e − 1.123 k + 15.73 0.176 k − 4.43

1.25 0.161k k log k
2 e − 1.193 k + 23.84 0.199 k − 5.90 k log k

2 e − 1.157 k + 17.93 0.211 k − 6.62

1.30 0.189k k log k
2 e − 1.217 k + 25.42 0.223 k − 7.48 k log k

2 e − 1.187 k + 20.31 0.241 k − 9.00

c = 0.15

1.00 0.00 k log k
8 − 0.552 k + 12.53 0.00 k log k

8 − 0.566 k + 14.28 0.00

1.05 0.035k k log k
8 − 0.601 k + 12.51 0.049 k + 0.02 k log k

8 − 0.617 k + 14.69 0.052 k − 0.41

1.10 0.069k k log k
8 − 0.641 k + 13.13 0.089 k − 0.60 k log k

8 − 0.660 k + 15.68 0.094 k − 1.40

1.15 0.101k k log k
8 − 0.670 k + 13.79 0.118 k − 1.26 k log k

8 − 0.691 k + 16.71 0.126 k − 2.43

1.20 0.132k k log k
8 − 0.693 k + 14.43 0.142 k − 1.90 k log k

8 − 0.716 k + 17.73 0.151 k − 3.45

1.25 0.161k k log k
8 − 0.713 k + 15.19 0.161 k − 2.66 k log k

8 − 0.738 k + 18.91 0.172 k − 4.63

1.30 0.189k k log k
8 − 0.730 k + 15.95 0.178 k − 3.42 k log k

8 − 0.757 k + 20.01 0.191 k − 5.73

c = 0.25

1.00 0.00 k log k
8 − 0.549 k + 12.33 0.00 k log k

8 − 0.571 k + 15.39 0.00

1.05 0.035k k log k
8 − 0.596 k + 12.09 0.047 k + 0.24 k log k

8 − 0.616 k + 14.80 0.044 k + 0.60

1.10 0.069k k log k
8 − 0.639 k + 13.15 0.090 k − 0.82 k log k

8 − 0.651 k + 14.84 0.080 k + 0.55

1.15 0.101k k log k
8 − 0.669 k + 14.08 0.121 k − 1.75 k log k

8 − 0.683 k + 15.93 0.112 k − 0.53

1.20 0.132k k log k
8 − 0.694 k + 15.17 0.145 k − 2.84 k log k

8 − 0.712 k + 17.59 0.140 k − 2.20

1.25 0.161k k log k
8 − 0.713 k + 15.92 0.164 k − 3.59 k log k

8 − 0.735 k + 19.09 0.164 k − 3.70

1.30 0.189k k log k
8 − 0.728 k + 16.62 0.180 k − 4.29 k log k

8 − 0.755 k + 20.50 0.183 k − 5.11

Here, tα(k) denotes the “expected cost” of the (α · GH(k))-HSVP enumeration oracle in rank k ∈
[�α · 100�, �α · 250�], with preprocessing in rank �(1 + c) k�, using relaxed enumeration recursively.

– Without extended preprocessing (i.e. setting the overshooting parameter c =
0), Table 2 indicates that it is better for preprocessing in rank k to call the
(α′ · GH(k′))-HSVP enumeration oracle in rank k′ with α′ = 1 than α′ > 1.

– In contrast, Table 2 indicates that in the case c > 0, it is better for prepro-
cessing in rank �(1 + c) · k	 to call the (α′ ·GH(k′))-HSVP enumeration oracle
in rank k′ with some α′ ≥ 1 than α′ = 1, i.e. to proceed as outlined above.

Table 2 does not normalise time/quality trade-offs. Thus, in Fig. 5 we illus-
trate the performance gain of relaxed enumeration for reaching the same RHF.

Lattice Reduction with Approximate Enumeration Oracles 755

Fig. 5. Expected performance of (α · GH(kα))-HSVP enumeration oracle in rank kα;
case c = 0.15; preprocessing with α′ ≥ 1.00.

Quality. To validate the output quality of our BKZ variant, we compared the
RHF predicted by the simulations for BKZ, Algorithm 5 and a self-dual variant
of Algorithm 5 in Fig. 6a, following the strategy of [4]. As Fig. 6a illustrates, our
variant achieves the same RHF as BKZ, when run in “self-dual” mode.

We also verified the behaviour of the practical implementation of Algorithm 5
against our simulation and give an example in Fig. 6b. As this figure illustrates,
our implementation agrees with our simulation except in the tail.

756 M. R. Albrecht et al.

Fig. 6. Basis quality.

References

1. Aggarwal, D., Li, J., Nguyen, P.Q., Stephens-Davidowitz, N.: Slide reduction,
revisited—filling the gaps in SVP approximation. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 274–295. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 10

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press (May 1996)

3. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: 30th ACM STOC, pp. 10–19. ACM Press (May 1998)

4. Albrecht, M.R., Bai, S., Fouque, P.A., Kirchner, P., Stehlé, D., Wen,
W.: Faster enumeration-based lattice reduction: root Hermite fac-
tor k1/(2k) Time kk/8+o(k). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020, Part II. LNCS, vol. 12171, pp. 186–212. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 7

5. Albrecht, M.R., Bai, S., Li, J., Rowell, J.: Lattice reduction with approximate
enumeration oracles: practical algorithms and concrete performance. Cryptology
ePrint Archive, Report 2020/1260 (2020). https://eprint.iacr.org/2020/1260

https://doi.org/10.1007/978-3-030-56880-1_10
https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-56880-1_7
https://eprint.iacr.org/2020/1260

Lattice Reduction with Approximate Enumeration Oracles 757

6. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes!. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 19

7. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp.
717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

8. Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Estimating
quantum speedups for lattice sieves. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020, Part II. LNCS, vol. 12492, pp. 583–613. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64834-3 20

9. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected
cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 11

10. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association (August 2016)

11. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I.
LNCS, vol. 11272, pp. 405–434. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03326-2 14

12. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms
and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.S.
(eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 789–819. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49890-3 30

13. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head con-
cavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part I. LNCS, vol. 11272, pp. 369–404. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03326-2 13

14. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neigh-
bor searching with applications to lattice sieving. In: Krauthgamer, R. (ed.) 27th
SODA, pp. 10–24. ACM-SIAM (January 2016)

15. Bernstein, D.J., et al.: NTRU prime. Tech. rep., National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

16. Blichfeldt, H.F.: A new principle in the geometry of numbers, with some applica-
tions. Trans. Am. Math. Soc. 16, 227–235 (1914)

17. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

18. Conway, J.H., Sloane, N.J.A.: Sphere-Packings, Lattices, and Groups. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-1-4757-6568-7

19. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs, with
tensor cores (2021). to appear in Eurocrypt 2021. https://eprint.iacr.org/2021/141

20. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

21. FPLLL development team: FPLLL, a lattice reduction library (2019). https://
github.com/fplll/fplll

22. FPyLLL development team: FPyLLL, a Python interface to FPLLL (2020).
https://github.com/fplll/fpylll

https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-1-4757-6568-7
https://eprint.iacr.org/2021/141
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fpylll

758 M. R. Albrecht et al.

23. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 207–216. ACM Press
(May 2008)

24. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

25. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

26. Garcia-Morchon, O., et al.: Round5. Tech. rep., National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (May 2008)

28. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 25

29. Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vector
algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 10

30. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. Theory Comput. 8(1), 513–531 (2012). prelimi-
nary version in Proceedings of STOC ’07

31. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: 15th ACM STOC, pp. 193–206. ACM Press (April 1983)

32. Khot, S.: Hardness of approximating the shortest vector problem in lattices. J.
ACM 52(5), 789–808 (2005). preliminary version in Proceedings of FOCS ’04

33. Laarhoven, T.: Search problems in crpytography. Ph.D. thesis, Eindhoven Univer-
sity of Technology (2015)

34. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 366–389 (1982)

35. Li, J., Nguyen, P.Q.: A complete analysis of the BKZ lattice reduction algorithm
(2020). https://eprint.iacr.org/2020/1237.pdf

36. Lovász, L.: An algorithmic theory of numbers, graphs and convexity. Society for
Industrial and Applied Mathematics (1986)

37. Micciancio, D.: The shortest vector in a lattice is hard to approximate to within
some constant. SIAM J. Comput. 30(6), 2008–2035 (2001). preliminary version in
Proceedings of FOCS ’98

38. Micciancio, D.: Inapproximability of the shortest vector problem: toward a
deterministic reduction. Theory Comput. 8(22), 487–512 (2012). http://www.
theoryofcomputing.org/articles/v008a022

39. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Indyk, P. (ed.) 26th SODA, pp. 276–294. ACM-SIAM (January 2015)

40. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 31

41. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer, Heidelberg (1973).
https://doi.org/10.1007/978-3-642-88330-9

https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-13190-5_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-540-74143-5_10
https://eprint.iacr.org/2020/1237.pdf
http://www.theoryofcomputing.org/articles/v008a022
http://www.theoryofcomputing.org/articles/v008a022
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-642-88330-9

Lattice Reduction with Approximate Enumeration Oracles 759

42. Nguên, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 13

43. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342.
ACM Press (May/June 2009)

44. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull. 15, 37–44 (1981)

45. Poppelmann, T., et al.: NewHope. Tech. rep., National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(May 2005)

47. Rogers, C.A.: The number of lattice points in a set. Proc. Lond. Math. Soc. 3,
305–320 (1956)

48. Schneider, M., Gama, N.: Darmstadt SVP challenges (2010). https://www.
latticechallenge.org/svp-challenge/index.php. Accessed 17 Aug 2018

49. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

50. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

51. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

52. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995). https://doi.org/10.1007/3-
540-49264-X 1

53. Shoup, V.: NTL 11.4.3: number theory c++ library (2020). http://www.shoup.
net/ntl/

54. Siegel, C.L.: Lectures on the Geometry of Numbers. Springer, New York (1989).
https://doi.org/10.1007/978-3-662-08287-4

55. Teruya, T., Kashiwabara, K., Hanaoka, G.: Fast lattice basis reduction suitable
for massive parallelization and its application to the shortest vector problem. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 437–460.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 15

56. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods 17, 261–272 (2020)

https://doi.org/10.1007/11426639_13
https://doi.org/10.1007/11426639_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://www.latticechallenge.org/svp-challenge/index.php
https://www.latticechallenge.org/svp-challenge/index.php
https://doi.org/10.1007/3-540-36494-3_14
https://doi.org/10.1007/3-540-49264-X_1
https://doi.org/10.1007/3-540-49264-X_1
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://doi.org/10.1007/978-3-662-08287-4
https://doi.org/10.1007/978-3-319-76578-5_15

	Lattice Reduction with Approximate Enumeration Oracles
	1 Introduction
	2 Background
	2.1 Lattices
	2.2 Enumeration: Pruning Plus Relaxation
	2.3 Schnorr–Euchner's BKZ and its Accelerated Variant in ch25C:ABFKSW20
	2.4 Simulating BKZ

	3 Asymptotic Time/Quality Trade-Offs
	3.1 An Elementary Lemma
	3.2 Asymptotic Time/Quality Trade-Offs
	3.3 Numerical Validation

	4 Practical Approximate Enumeration Oracles
	4.1 Simulations and Cost Estimates
	4.2 Consistency with Experiments

	5 A Practical BKZ Variant
	5.1 Algorithm
	5.2 Performance of Our BKZ Variant

	References

