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Abstract. Can a sender encode a pair of messages (mo,m1) jointly,
and send their encoding over (say) a binary erasure channel, so that the
receiver can decode exactly one of the two messages and the sender does
not know which one?

Garg et al. (Crypto 2015) showed that this is information-theoretically
impossible. We show how to circumvent this impossibility by assuming
that the receiver is computationally bounded, settling for an inverse-
polynomial security error (which is provably necessary), and relying on
ideal obfuscation. Our solution creates a “computational anti-correlation”
between the events of receiving mgo and receiving m by exploiting the
anti-concentration of the binomial distribution.

The ideal obfuscation primitive in our construction can either be
directly realized using (stateless) tamper-proof hardware, yielding an
unconditional result, or heuristically instantiated in the plain model
using existing indistinguishability obfuscation schemes.

As a corollary, we get similar feasibility results for general secure com-
putation of sender-receiver functionalities by leveraging the completeness
of the above “random oblivious transfer” functionality.

1 Introduction

Starting with the pioneering work of Wyner [57], who showed that the wiretap
channel can be used for secure communication, a long line of work in cryp-
tography studied the usefulness of noisy channels for general cryptographic
tasks [12,13,22,35,48,51,55,56]. A major landmark in this line of work is a
full characterization of the “complete” channels on which oblivious transfer, and
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hence secure two-party computation, can be based [20,21]. In a nutshell, almost
all nontrivial noisy channels are complete in this sense.

However, most cryptographic constructions from noisy channels crucially
require interaction, and while this is not always a barrier, there are applications
in which interaction is inherently unidirectional. Indeed, secure communication
in this setting was the topic of Wyner’s work, and is a central theme in the
big body of work on “physical layer security” [14,50]. Given only one-way noisy
communication, any functionality that can be securely realized can be expressed
as a randomized mapping f : A — B that takes an input a € A from a sender S
and delivers an output b = f(a) to a receiver R. Note that, here the randomness
is internal to the functionality, and is neither known to nor can be influenced
by the sender or the receiver. We will give examples for useful functionalities of
this type in Sect. 1.3.

The goal is to realize such sender-receiver functionalities assuming that S and
R are given access to a channel C : X — ). Such channels are usually simpler
than the target function f, and can be plausibly assumed to be available to the
parties. Well-known examples of “simple” channels that correspond to naturally
occurring processes are the binary erasure channel (BEC), which erases each
transmitted bit with some fixed probability 0 < p < 1, and the binary symmetric
channel (BSC) which flips each bit with probability 0 < p < 1/2.

1.1 Complete Channels

The general study of secure computation from one-way noisy communication
was initiated by Garg et al. [25], who showed that one-way communication over
BEC or BSC suffices for realizing any deterministic sender-receiver functionality.
This includes zero-knowledge proofs as a useful special case. For general, possibly
randomized, functionalities, they showed that the following random string-OT
functionality (ROT) described below (where ag, a1 are strings), is complete:

(a0, L) w.p.

CroT(ag,a1) = {

(SIS

(L,a1) w.p.

This was recently extended to the case when ag,a; are bits [2], albeit at the
(necessary) cost of allowing an inverse polynomial, rather than negligible, error.

Note that in ROT the receiver must learn ezactly one of the two messages
but the sender should not be able to guess which one. This makes the secure
realization of ROT highly non-trivial. Indeed, ROT appears to be significantly
more powerful than BEC and BSC, and it is not clear how to realize it by a
naturally occurring process. While BEC and BSC merely erase or flip bits of
information randomly and independently, ROT induces a strong anti-correlation
between events, namely the receipt of ag and the receipt of a;.

Can the anti-correlation inherent in ROT be generated “out of thin air”
by invoking simple channels such as BEC or BSC? This question was already
addressed by Garg et al. [25], who showed that the simple noisy channels are
indeed not complete. In fact, ROT cannot be securely realized from such channels



126 S. Agrawal et al.

even if one considers semi-honest parties (who do not deviate from the protocol)
and allows a small constant security error.!

It is instructive to sketch the proof of this impossibility result. We consider
the more general case of a string erasure channel (SEC) that erases each input
string with probability p. The proof relies on a classical correlation inequality
due to Harris and Kleitman [33,43], asserting that for any two monotone Boolean
functions fo, f1 : {0,1}" — {0,1} and for any product distribution R over
{0,1}™, the events fo(R) =1 and f1(R) = 1 are not anti-correlated. That is,

Prfo(R) =1A fi(R) =1] = Pr[fo(R) = 1] - Pr[f1(R) = 1].

Now, by the receiver’s security requirement, even if we condition on a “typical”
joint encoding x of (ag,aq) that the sender transmits over the SEC channel,
the receiver’s output should be distributed almost as prescribed by the ROT
functionality. In particular, if p; is the probability that the receiver can con-
fidently decode a; conditioned on « being sent, and F; is the corresponding
conditional event, then pg =~ p; =~ 0.5. Letting n denote the number of invoca-
tions of the SEC, r C [n] represent the set of received symbols, and f;(r) indicate
whether FE; occurs on received set r, the Harris-Kleitman inequality implies that
Pr[Eog A E1] > po - p1 =~ 0.25, contradicting the sender’s security requirement.
The above impossibility result is purely information-theoretic and does not
give rise to a constructive attack. In particular, the functions f; are monotone
because information is monotone: more received symbols mean more confidence.
While there are examples for non-monotonicity of information in a computational
setting, for instance in the context of generalized secret sharing [45], it is not clear
that this has any relevance to the current setting. In fact, Garg et al. [25] showed
an efficient attack that rules out computationally secure protocols with negligible
security error. This leaves open the possibility of obtaining ROT from naturally-
occurring channels with a small constant, or better yet inverse-polynomial, error.

1.2 Our Results

In this work, we show that the impossibility result for ROT from SEC and other
simple channels can be circumvented, if one is willing to settle for security against
a computationally bounded receiver and to allow for inverse-polynomial error.
On the one hand, both of these relaxations are necessary in light of the above
mentioned impossibility results but, on the other hand, we still find the positive
result to be unexpected, even with these relaxations.

Our main result is cast in a generic model that assumes “ideal obfuscation,”
enabling the sender to give the receiver an oracle access to an obfuscated pro-
gram. In this generic model, we can unconditionally obtain information-theoretic
security by assuming that a malicious receiver is restricted to polynomially many

! The argument in [25] implicitly relies on the technical assumption that the ROT
protocol is Las Vegas, in the sense that if the receiver does output a message ap,
then this message is correct; all existing protocols in this setting, including those
presented in this work, satisfy this requirement.
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queries to the program, but is otherwise computationally unbounded. Before dis-
cussing the question of instantiating the generic model, we state the main result.

Theorem 1 (Informal). There is a one-way secure computation (OWSC) pro-
tocol for ROT over the binary erasure channel (BEC) as well as the binary sym-
metric channel (BSC) using ideal obfuscation, with inverse-polynomial statisti-
cal security error against a semi-honest sender and a query-bounded malicious
recetver.

Building on Theorem 1, we can leverage the completeness of ROT for sender-
receiver functionalities [25] to obtain the following general completeness result:

Theorem 2 (Informal). BEC and BSC are (each) complete for OWSC using
ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded malicious receiver.

Instantiating ideal obfuscation. A direct way of implementing the ideal
obfuscation in our construction is by sending (stateless) tamper-proof hardware
to the receiver. To obtain a plain-model instantiation, a natural approach is
to use indistinguishability obfuscation (iO) [6,30] instead of ideal obfuscation.
Following the first candidate construction of Garg et al. [24], iO has been stud-
ied extensively [1,4,7,8,15,16,19,26,27,37,38,46,54] and has been constructed
from well-studied assumptions in the recent breakthrough work of Jain, Lin and
Sahai [38]. Unfortunately, we were unable to prove that our protocols remain
(computationally) secure when replacing ideal obfuscation by iO, and consider
this to be a highly plausible conjecture. Since iO is “best possible” obfusca-
tion [30], it follows that if some instantiation of ideal obfuscation in our proto-
cols is secure then its instantiation with any iO scheme is secure. Concretely, we
make the following conjecture.

Congecture 1 (Informal). Replacing ideal obfuscation by any secure iO scheme
in the protocol establishing Theorem 1 results in a OWSC protocol for ROT
over BEC or BSC that has inverse-polynomial computational security against a
semi-honest sender and a malicious receiver.

While there are strong negative results for instantiating ideal notions of
obfuscation [6,28], these results require at least one of the building blocks to
be “contrived.” They are not known to apply to any combination of a natural
(unbroken) iO candidate and natural application. We believe that Conjecture 1
is qualitatively similar to the leap of faith one makes when heuristically instanti-
ating natural protocols in generic models such as the Random Oracle Model [9]
or the Generic Group Model [53]. Arguably, the leap of faith in our case is quite
conservative because of the simple and “non-cryptographic” functions to which
we apply ideal obfuscation. This should be contrasted with typical applications
of obfuscation in cryptography, and also with heuristic iO candidates whose secu-
rity needs to hold even for contrived pairs of equivalent circuits. See Sect. 1.5 for
further discussion.
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Assuming Conjecture 1, we can obtain a plain-model variant of Theorem 2
with security against a malicious sender by using OWSC for non-interactive zero
knowledge to effectively emulate an honest sender behavior.

Theorem 3 (Informal). Suppose iO exists and Conjecture 1 holds. Then,
BEC and BSC are (each) complete for OWSC, with inverse-polynomial com-
putational security against malicious sender and receiver.

We leave open the question of eliminating Conjecture 1 or, better yet, basing
the conclusion of Theorem 3 on a weaker or incomparable assumption to iO.

1.3 Why Base on One-Way Noisy Communication?

Several important cryptographic tasks can be captured as sender-receiver func-
tionalities. A natural example, already given in [25] is that of randomly gener-
ating “puzzles” without giving any of the parties an advantage in solving them.
For instance, the sender can transmit to a receiver a random Sudoku challenge,
or a random image of a one-way function, while the receiver is guaranteed that
the sender has no advantage in solving the puzzle. More generally, one could use
secure realizations of sender-receiver functionalities to unidirectionally generate
trusted parameters such as RSA moduli or common reference strings. Unlike the
common interactive solutions to such problems, here we consider a setting that
allows for completely non-interactive solutions.

Another example of a useful sender-receiver functionality is randomized blind
signatures, which can be captured by a randomized function that takes a mes-
sage and a signing key from the sender and delivers a signature on some random-
ized function of the message to the receiver (for instance by adding a random
serial number to a given dollar amount). Randomized blind signatures are a
fundamental building block for e-cash applications. They can also be used for
non-interactive certified PKI generation, where an authority can issue to a user
signed public keys, while only the users learn the corresponding secret keys.

Non-interactive zero-knowledge (NIZK), which is constructed in the common
random string model, can also be implemented in the sender-receiver model, by
modeling it as a deterministic function that takes an NP-statement and a witness
from the sender and outputs the statement along with the output of the verifica-
tion predicate to the receiver. As noted by Garg et al. [25], NIZK over a one-way
noisy channel provides a truly non-interactive solution to zero knowledge proofs,
where no trusted common randomness is available to the parties. Moreover, this
solution can achieve useful properties of interactive zero-knowledge protocols
such as non-transferability and deniability, which are impossible to achieve in
the standard non-interactive setting.

While the above applications require security against a malicious sender, it is
also meaningful (and non-trivial) to implement protocols that are secure against
semi-honest senders. Such protocols can be generically compiled to be secure
against malicious senders by invoking NIZK in the sender-receiver model. Note
that NIZK by itself is not sufficient for realizing many non-trivial functionalities,
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including the ones mentioned above. For this, it is necessary (and sufficient) to
have a secure realization of semi-honest ROT.

Applications notwithstanding, understanding the cryptographic power of
noisy channels with one-way communication is a fundamental question from
the theoretical standpoint.

1.4 Technical Overview

To present the new idea underlying our constructions, we focus on a protocol
for realizing ROT using a string erasure channel (SEC), with erasure probability
p = 0.5. This can be extended to BEC and BSC as required by Theorem 1. To
realize ROT, we want the symbols that the sender transmits over the SEC to
partition the probability space into two events Fy and Fj, such that Pr[Ey] =
Pr[E4] =~ 0.5, and in each event E; the receiver can learn a; but not a;_;.

The protocol begins by having the sender transmit a random n-tuple x € X™
over a large alphabet X' that makes the probability of predicting an erased sym-
bol negligible. It sends « over the SEC. It then picks a small secret “test set”
S C [n] and sends to the receiver an obfuscated program F = Fg,, that
expects the receiver to report all of the symbols it received from the channel.
(When instantiating the ideal obfuscation, the sender needs to communicate the
obfuscated program over a reliable channel; however, the latter can be imple-
mented with constant rate over any standard noisy channel.) After checking that
each unerased symbol reported by the receiver matches the corresponding sym-
bol in @, the program F' counts how many symbols from the secret set S were
reported; if this number is bigger than |S|/2 it outputs a1, otherwise it outputs
ap (Fig. 1).

Sender input: a = (ao,a1).

Sender: Sample random & € X" and send @ over SEC.

Sender: Sample random S C [n] of size y/n and send an obfuscation of F =
Fs %,a over reliable channel.

Receiver: Output F(y), where y is the sequence of non-erased symbols.

Fig. 1. ROT from String Erasure Channel (SEC)

The erasures induced by the channel are independent of x, and so whether the
receiver outputs ag or a; is independent of the sender’s view. Thus, the protocol
is secure even against a computationally unbounded semi-honest sender.

For security against the receiver, we consider two cases. If the channel delivers
a minority of the symbols from S, then an honest receiver can legitimately obtain
ag from F'| and even a dishonest receiver will need a super-polynomial number
of calls to F' to guess even one of the missing symbols.

On the other hand, what if the channel delivers a majority of the symbols
from S, which occurs with probability ~ 0.57 In this case, a dishonest receiver
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can obtain both messages by first acting honestly, legitimately obtaining a;, and
then invoking F' again and obtaining ag by just “forgetting” some of the received
symbols. The latter attack seems inherently impossible to defend against. How
can we expect a receiver who obtained few symbols from S to prove its ignorance?

It turns out, however, that there is a surprisingly simple solution: F’ will not
deliver ay when the total reported number of received symbols is significantly
below n/2. In other words, F' does not trust a receiver who claims to be too
unlucky. Intuitively, the reason this simple approach works is that S is both
small and secret. So without knowledge of S, for every symbol in S that the
receiver tries to “forget” it needs to unwillingly forget a large number of additional
received symbols. By choosing the size of S and the “unluckiness” threshold
carefully, we can ensure that successfully mounting the above “forgetting” attack
is computationally infeasible except for a bad event that occurs with inverse-
polynomial probability.

The analysis however requires more care and crucially relies, in addi-
tion to standard Chernoff-style concentration inequalities, on a simple anti-
concentration phenomenon: the binomial distribution with n trials is almost
always 2(n'/?)-far from its mean. Metaphorically speaking, the events Ey and
FE; that are separated by this anti-concentration can be viewed as “computa-
tional black holes” whose disjoint gravity zones cover almost the entire proba-
bility space.

In a bit more detail, for a transmitted & € X™ and set V' C [n] indicating
non-erased coordinates, let @[, denote the vector & with all coordinates outside
of V replaced by a special erasure symbol L. Set the “unluckiness” threshold to
be n/2 — n°5! and the size of S to be /n. Define the function F as:

(L, L) if (y|, # z|,)V (|V| <n/2-— n0'51) ,
Fsaa(yly) =< (ap, L) otherwise if [V N S| <|S|/2,
(L,ay) otherwise.

where y|,, denotes a n-tuple of presumably received symbols.

An honest receiver, who always feeds y|,, = x|, to F, gets unlucky with
negligible probability. This is because, over the random erasures of the SEC,
Pr[|V|>n/2 —n%%] > 1 — negl(n), and conditioned on this event, [V N S| is
symmetrically distributed around |S|/2. In particular, the output of F' is almost
equally likely to be ag as it is to be a;.

A dishonest receiver, on the other may attempt to learn both ag and a;
by feeding y|, to F, where U # V does not correspond to the set of non-
erased coordinates. This is not a problem if y|,, # |, as in such a case F will
output (L, L), but there is always a chance that the receiver can come up with
Y|y = x|,. Here we have two possible cases:

U is not contained in V. This case can be ruled out when |X| is super-
polynomially large, as it requires the receiver to correctly guess a randomly
sampled x; for i € U\ V.



Secure Computation from One-Way Noisy Communication 131

U is a strict subset of V. In this case, one cannot prevent the receiver from
feeding an input y|,; = x|, as this merely amounts to erasing symbols from
the received string x|, . Here, the only hope for the receiver to obtain both
ap and ap is to be able to transition from the case |V N S| > [S|/2 to the
case U N S| < |S|/2. Note that, by anti-concentration, in this case |V N S|
is likely larger than |S|/2 by £2(1/|S]) and, moreover, S is secret, hence the
receiver cannot just find such U by only removing few elements of V' in an
exhaustive search. On the other hand, if the receiver tries to forget many
symbols from the unknown S by just forgetting many symbols from V, it will
hit the unlucky zone where F' returns (L, L).

To prevent attacks as in the first case, it is imperative that the obfuscation of F’
hide x. Avoiding attacks as in the second case, on the other hand, requires the
obfuscation to hide S. What type of obfuscation would be sufficient for hiding x
and S? Ideal obfuscation limits the receiver to black-box access to F'. Intuitively,
this means that the receiver’s attempts to mount the above attacks are restricted
to random guesses, as  and S are information theoretically hidden.

1.5 Discussion

The unconditional result given by Theorem 1 (and subsequent theorems that
build on it) captures the main contribution of this work. Our use of ideal obfusca-
tion is technically equivalent to having a single, stateless, tamper-proof hardware
token shipped from the sender to the receiver. In fact, unlike current candidates
for cryptographic obfuscation, such an approach may be efficient enough to be
implemented. Thus, our results can be cast as part of a long line of theory-
oriented works on cryptography using tamper-proof hardware (see [5,29,32,40],
along many others).

From a complexity theoretic point of view, the ideal obfuscation primitive
can be viewed as a (succinctly described) oracle generated by the sender, such
that security holds unconditionally with respect to any query-bounded receiver
that has access to this oracle. For instance, this is the model used in works
on zero-knowledge PCP [36,42,47|. Alternatively, it can be seen as a second,
“resettable” sender, analogously to the multi-prover proof model [10,11,31,39].

An unusual aspect of our main feasibility result that separates it from almost
all nontrivial applications of obfuscation in cryptography is that it is based on
ideal obfuscation alone, without making any additional assumptions such as the
existence of one-way functions (or alternatively NPZ io-BPP [44]). In particular,
the functions we obfuscate are simple, explicit and “non-cryptographic.”

We also note the analogy with the Random Oracle Model (ROM) method-
ology: there is a long tradition in cryptography of using a construction in an
idealized “generic” model, such as the ROM [9], as a stepping stone towards
heuristic plain-model realizations. The latter are obtained by using concrete hash
functions as a substitute for the random oracle. For example, constructions of
transparent SNARGs for NP follow this approach [49]. Our proposal is analogous:
heuristically instantiate the ideal obfuscation by using any iO construction from
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the literature. There are strong negative results for instantiating ideal notions
of obfuscation [6]. These are in a sense analogous to similar negative results for
instantiating the ROM [18|. However, similarly to ROM instantiations, we do
not see a reason why these negative results should apply to a combination of a
natural application and a natural iO construction that was not designed with a
counterexample in mind.

Finally, most solutions for natural cryptographic tasks that were initially
cast in idealized models were later followed by plain-model constructions under
simple and plausible cryptographic assumptions. We expect the current work to
follow a similar path.

2 Preliminaries

Notation. We write z < X to denote the process of freshly sampling a uni-
formly random element x from a finite set A'. We denote the i-th coordinate of
a vector & € X™ by either x; or x(i). For a vector ¢ € X™ and set A C [n], the
restriction of & to A, denoted by x| 4, is the length n vector in (X U {L})" with
all the coordinates outside of A replaced by a special erasure symbol L. That
is, x|, (i) = «(i) if t € A and x|, (i) = L otherwise. The notation ([Z]) denotes
the family of all subsets of [n] with size k.

2.1 Sender-Receiver Functionalities and Channels

We study secure computation tasks that are made possible by one-way commu-
nication over a noisy channel. Such tasks can be captured by sender-receiver
functionalities, that take an input from a sender S and deliver a (possibly) ran-
domized output to a receiver R. In the randomized case, the randomness is picked
by the functionality and is not revealed to the sender or the receiver. More pre-
cisely, a sender-receiver functionality is a randomized mapping f : A — B that
takes an input a € A from a sender S and delivers an output b = f(a) to a
receiver R. We will sometimes refer to f simply as a function.

In order to realize f, we assume that S and R are given parallel access to
a channel C : X — Y. A channel is also a sender-receiver functionality but is
usually much simpler than the target function f. We define three channels of
interest below.

~ BSC. C§sc denotes the Binary Symmetric Channel (BSC) with crossover
probability p: i.e., for input z € {0,1}, the output Cisc(z) is 1 — x with
probability p and is x otherwise.

~ SEC and BEC. C{.. denotes the String Erasure Channel (SEC) which takes
an input string of a fixed length and outputs 1 with probability p and = oth-
erwise. When the string length is 1, CZc is called a Binary Erasure Channel
(BEC), and denoted by C5zc. When p = 1, we may omit it from the notation.

— ROT. The (String) Randomized Oblivious Transfer channel Crot takes as
input a pair of fixed-length strings (xo,z1) and outputs (xg, L) or (L,x;)
with probability % each.
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For brevity, we shall write C(z1,..., %) to denote (C(z1),...,C(zm)), ie.,
the outcome of m independent invocations of a channel C.

2.2 Secure Computation with One-Way Communication

A secure protocol for f: A — B over a channel C is formalized via the standard
definitional framework of reductions in secure computation. Our definitions are
in fact simpler because of the non-interactive setting. We start with the sim-
plest case of defining information-theoretic security against semi-honest parties
for a finite function f, ignoring computational complexity. We then describe
extensions to malicious parties, computational security, and infinite families of
functions.

OWSC protocols. A one-way secure computation protocol for f over C specifies
a randomized encoder that maps the sender’s input a into a sequence of channel
inputs x, and a decoder that maps the receiver’s channel outputs y into an
output b. Up to an error bound parameter e, the protocol should satisfy the
following security requirements: (i) given the sender’s view, which consists of an
input a and the messages ® that it fed into the channel, the receiver’s output
should be distributed as f(a), and (ii) the view of the receiver, namely the
messages y it received from the channel, can be simulated from f(a). Note that
(i) captures receiver security against a semi-honest sender as well as correctness,
while (ii) captures sender security against the receiver. Also note that since the
receiver does not send messages, whether it is semi-honest or malicious does not
make a difference. We formalize the above security requirements below, using A
to denote statistical distance.

Definition 1 (One-way secure computation: semi-honest sender).
Given a randomized function f : A — B and a channel C : X — Y, a pair
of randomized functions (S,R), where S : A — X™ and R : Y™ — B, is said to
be an e-secure OWSC protocol for f over C (with semi-honest sender) if there
exists a simulator Sg : B — Y™, such that for all a € A, the following hold:

A((S(a), f(a)) , (S(a),R(C(S(a))))) <€ (Security against semi-honest sender)
A(Sr(f(a)), C(S(a))) <€ (Security against receiver)

OWSC for malicious parties. In the case of a malicious sender, our security
requirement coincides with the standard notion of universally composable (UC)
security [17], but with simplifications implied by the communication model. The
extra security requirement in this case is that for any strategy of the sender (for
choosing x), a simulator is able to extract a valid input. Formally, an OWSC
protocol for f over C is secure against malicious parties if, in addition to the
requirements in Definition 1, there exists a randomized simulator Sg : X™ — A
such that for every x € X",

A(f(Ss(x)), R(C(x))) <€ (Security against malicious sender)
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Note that the first condition of Definition 1 is retained to imply correctness when
the sender is honest, and the second condition implies security against malicious
receiver as well.

OWSC with computational security. We can naturally relax the above
definition of (statistical) e-secure OWSC to a computationally (T,€)-secure
OWSC, for a distinguisher size bound T, by replacing each statistical dis-
tance bound A (A, B) < e by the condition that for all circuits C of size T,
|Pr[C(A) =1] —Pr[C(B) =1]| <e.

Universal Protocols and Complete channels for OWSC. So far, we con-
sidered OWSC protocols for a concrete finite function f and with a concrete
level of security. However, in a cryptographic context, one is often interested in
a single “universal” protocol in which the sender and the receiver are given a cir-
cuit f , representing a function f, and a security parameter 1* as common inputs
(in addition to the sender being given an input a for f). More generally, one
may consider any computational model — i.e., a representation of the function —
instead of circuits (e.g., in the context of information-theoretic security, it will
be useful to consider weaker representation models such as branching programs).

In a polynomial time universal protocol IT = (S,R), both S and R run in
time polynomial in A. Protocol IT is said to be a universal e-secure (resp., (T, €)-
secure) OWSC protocol for F over C, if for all f € F with |f| < A, the protocol
obtained from IT by fixing the common inputs to (f,1*) is an e(\)-secure (resp.,
(T'(N), €(N))-secure) OWSC for f over C, where f denotes the function repre-
sented by f.

While F above can be a narrow class of functions (e.g., string OTs), we shall
be particularly interested in the case where it is a general computational model
like circuits or branching programs. If a channel C enables such a universal pro-
tocol, we say that C is OWSC-complete for the corresponding computational
model. We will distinguish between completeness with inverse-polynomial error
and completeness with negligible error, depending on how fast the error van-
ishes with A\. We will also distinguish between completeness with statistical vs.
computational security and between semi-honest vs. malicious senders.

Definition 2 (OWSC-complete channel). For a computational model F,
we say that C is OWSC-complete with inverse-polynomial statistical error if,
for every ¢ > 0, there is a polynomial-time universal e-secure OWSC' protocol
for F over C, where e(\) = O(5=). We say that C is OWSC-complete with
negligible statistical error if there exists a polynomial-time universal e-secure
OWSC protocol for F over C for some negligible function e.

We say that C is computational OWSC-complete with inverse-polynomial
statistical error (resp., negligible statistical error) if, for every ¢ > 0, there exists
a polynomial-time universal OWSC protocol II such that for every polynomial
T(N), II is a (T,€)-secure OWSC protocol for F over C, where e(\) = O(5=)
(resp., € is negligible).
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Completeness as defined above is said to be against malicious parties if the
definition of secure OWSC used is against malicious parties, with the simulator
Ss being polynomial time.

As discussed above, useful instantiations of F include circuits, branching pro-
grams, and string-ROT. We will assume statistical security against semi-honest
parties by default, and will explicitly indicate when security is computational or
against malicious parties.

OWSC using ideal obfuscation. Our results, which are information-theoretic
in nature, make use of obfuscation as an ideal primitive. An OWSC protocol for
f over C using ideal obfuscation is defined similarly to the above except that,
in addition to its inputs x for the channel C, the sender specifies a function F
(using, say, a circuit F'), to which the receiver is only given (bounded) oracle
access. An honest receiver can make a single query ¢ to F' after observing the
outputs y of C, and then compute the output b based on y and F(q). To define
security, we extend the syntax of Definition 1 by adding a query bound parameter
Q. The definition of e-security against the receiver is modified to (Q, €)-security
as follows. The simulator Sg is now an interactive algorithm that interacts with
an arbitrary @-bounded R*. Given input b (output of f), Sg first generates
and sends to R* a simulated channel output y, and then provides a simulated
response for each F-query made by R*. We require that for every Q-bounded R*
and sender input a € A, the following holds:

A (ISr(f(@) = R, [F = R (C(x)) | (F,z) —S(a)]) < e

(Security against a query-bounded receiver)

Here [Sr(f(a)) <> R*] is the ideal-world transcript of the interaction of Sr(f(a))

with R*, and [F < R*(C(x))] denotes the real-world transcript of R* interacting
with the channel C and F', on sender input a. Note that in the latter F' denotes
the function corresponding to E generated by S(a). The completeness notions
in Definition 2 are adapted to the ideal obfuscation setting by requiring that for
every polynomial query bound Q()), there is an appropriate € such that IT is a
universal (Q, €)-secure OWSC protocol.

2.3 Probability Preliminaries

We state an anti-concentration bound for binomial distribution, which we cru-
cially use in the analysis of all our constructions. The statement of the lemma
is quoted verbatim from [52, Theorem 4.6].

Lemma 1 (Anti-concentration). Let 0 < p < 1, and X = X; + ... + X,
where, for each i € [n], X; is independently and identically distributed as
Bernoulli(p). There exists ©, > 0 depending only on p (where @% = 1), such

that, for all 0 < k < n, we have Pr[X = k] < &
Vvn
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Following is a standard concentration inequality required for the analysis of
our protocols.

Lemma 2 (Chernoff bound). Let 0 < p < 1, and X1, ..., X,, be random vari-
ables such that for each i € [n], X; is independently and identically distributed as
Bernoulli(p). Further, let X = X1+ Xo+...+ X,,. When u denotes the expected
value of X, i.e., pn=E(X)=p-n,

(i) PriX > (1+)u] < o~ Pk for all § > 0,
(i1) PriX < (1-9d)u] < e for all § € (0,1).
In particular, for all n € (%, 1), for sufficiently large n,

(iii) Pr[X € [p(n —n"),p(n+n")]] > 1 -2 %" =1 — negl(n).

n”*l

Proof: (iii) follows from applying (i) and (ii) by setting p =p-n and § = -
Note that § € (0,1) for sufficiently large n. O

3 ROT from SEC Using Ideal Obfuscation

In this section, we prove that ROT can be realized using a string erasure channel
(with erasure probability p = 0.5), assuming ideal obfuscation, following the
sketch discussed in Sect. 1.4. In more detail, we prove:

Theorem 4 (ROT from SEC using ideal obfuscation). There exists an
OWSC protocol for string-ROT over SEC using ideal obfuscation, with inverse-
polynomial statistical security against a semi-honest sender and a query-bounded
recetver.

More concretely, for any constant ¢ > 0, there exists an OWSC protocol
which, for all A\;t € N, realizes t-bit string ROT with e-security against a semi-
honest sender and a polynomial query-bounded receiver, using n invocations of
(-bit SEC and an ideal obfuscation of a circuit F', when e = O(5), n=0(\%),
(= w(log)), and |F| = O(t 4+ \169).

Proof: An OWSC protocol (S, R) for ¢-bit string ROT over ¢-bit SEC is provided
in Fig. 2. The proof follows the argument sketched in the technical overview (See
Sect. 1.4). We will use the following lemmas to prove the theorem; they are
formally proved in the full version of this work [3] using the anti-concentration
bound (Lemma 1) and Chernoff bound (Lemma 2).

Lemma 3. Let ) > %, and U,V be arbitrary subsets of [n] such that |U|,|V| €
[”_T"", ”';—7“] and V. CU. For all § € (n— %,1), and for sufficiently large n,
Vn

71.5
Pr [|SﬁV|§|SﬁU|2\/ﬁ—i—n‘s < e TH6
(I 2 2
S—(w)
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Lemma 4. Let k € [”;2"77, ”*2—"”] and 0 < 6 < min(§,1 —n). For sufficiently

large n such that @ is an integer, for any S C [n] with |S| = v/n,

Pr [|SﬂU|€ |:\/ﬁ—n6’\/ﬁ+n5:|:| §2n57%€3.
U«—([:]) 2 2

Correctness. For any x = (1, ..., ,) such that z; € {0, 1}, the output of Cqgc
on input x is Cggc(x) = x|, where U is a uniformly random subset of [n]. Hence,
when |S| = /n is an odd number, by symmetry, the event |[U N S| < @ = 4
occurs with probability 1. By Lemma 2, with all but negligible probability, |U| >
2

? —n%?1. Hence, by a union bound, Fs 4 q0.a, (2|;;) = (a0, L) with probability
3 —negl(n) and Fsg a9.0, (®[;) = (L,a1) with probability 3 — negl(n). This
proves the correctness of the protocol.

Security. Next, we argue that the protocol presented in Fig.2 achieves sender
and receiver privacy. To argue receiver privacy against (even a computationally
unbounded) semi-honest sender, we need to show that for all (ag,a1), it holds
that:

A((S(ao,a1),Crot(a0,a1)), (S(ao, a1), R(Csgc(S(ao; a1))))) < negl(n)

Note that the erasures induced by the string erasure channel are independent of
the input to the channel. Hence, as we already observed, for any @ sent by the
sender, the receiver R obtains x|, where U is a uniformly random subset of [n],
independent of x (as well as single query access to F's 5 q0.q4,)- By definition of
F, the output of an honest receiver, viz. Fs 4 a9, (Z|y), is only a function of
the size of the sets U and U N S. Thus, whether the receiver outputs (ag, L) or
(L,ay) is independent of the view of the sender. Receiver privacy now follows
from the fact that the receiver is correct with negligible error.

To argue sender privacy, we need to construct a simulator Sg : B — V" as
an interactive algorithm that interacts with an arbitrary @-bounded R*. In the
sequel, for ease of presentation, for ag,a; € {0,1}!, we will denote (L, a;) by
(1,a1) and (ag, L) by (0,a0) (i-e., we will use the format (index revealed, message
at the revealed index)). Given input (b, ap) for a random bit b, Sg first generates
and sends to R* a simulated channel output y, and then provides a simulated
response for each F-query made by R*.

Simulator Sg(b, ap):

1. Sample S « (\[7/%)
2. Let © = (x1,...,2,), where z; « {0,1}¢ for i € [n].
3. Sample U « 2[" conditioned on
(a) [UNS|> L ifb=0,
(b) [UNS| < ¥ ifb=1.
4. Output x|, to R*.
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Next, the simulator answers ) queries by R* to Fs 4 4.4, @s follows: Upon
query yly,if (|V] > 2 — n®)A(yl|,, = @) it outputs (b, ap). If not, it outputs
1.

We will argue that the statistical distance between the simulated transcript
resulting from the interaction of Sr(b,ap) with R* and the real view of R* on
sender input (ag,a;) is at most O(n~%). The distribution on x|, received by
R* is identical when it interacts with S or with the simulator Sg. It remains to
argue that R* cannot make a query which Sr(b, as) cannot simulate (except with

probability O(n ¥ )).
n ). (1)

First, we argue that,

To see this, observe that by Lemma 2, with all but negligible probability, |U| €
[% — n0-5L, 5+ n0'51}. Conditioned on this event, by Lemma 4, probability with
which |U N S| € [¥2 —ns, Y2 4 ns]is O(n~3).

Now we show that in the above event, the simulator answers any query by R*
as in the real world, except with negligible probability. To see this, note that the
simulator has access to ap, and the only cases in which it cannot answer correctly
is when R* makes a query to F' whose output is (1 — b,a1_5). We argue that
this does not happen, except with negligible probability. Consider the following
cases:

e

2 "9 2

>1

Pr {|U| € [ﬁ — 05 @+n0‘51} and |UN S| ¢ [\/ﬁ

Case 1: |UNS| < YT R* is given x|, where Fsgz a0.0,(x|;) = (L,a1). To

n

recover ag, R* must output (yl,,) such that [V N S| > % and y|, = x|,
However, since Vi € [n], z; is uniform in {0,1}¢, the probability of guess-
ing even a single string x; is negligible. Thus in this case, R* succeeds with
probability at most 2~¢, which is negligible.

Case 2: |UNS| > @ +ns. R* is given x|y st. Fs g a0,a,(x|;) = (a0, L). To

recover the other output ag, R* must output (y|,,) such that [V N S| < 4
and yl,, = x|,. As before, for any ¢ ¢ U, it can guess z; correctly only
with negligible probability. By Lemma 3, when |[U| < & + n%-31 (this happens
with overwhelming probability by Lemma 2), for all V' C U such that |U| >
5 = n%1 the probability that |V N S| < @ is negligible. Thus in this case
also, R* succeeds in coming up with a query that makes Fg 4 40,4, OUtput
(1 —b,a1_p) with at most negligible probability.

Thus, by taking a union bound, we can conclude that the simulator can answer
the queries of a poly(\)-bounded R* except with negligible probability.

Finally, we show the bound on the circuit |F | in the theorem statement. Each
position of the input y is encoded using ¢ + 1 bits, with say, the first bit used as
a flag denoting if it is L. Then a circuit of size O(n?) on the n flag bits suffices
for computing the two threshold conditions on |V| and [V N S| used in F, and a
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circuit of size O(nf) suffices to compute the equality condition x|, = yl,,. The
output is encoded, say, as (b, ap) for b € {0,1} with an additional flag to indicate
if it is (L, L). Each of these ¢t + 2 output bits can be computed as a function of
two bits from ag and a; and the three condition bits computed above. So overall
F'is of size O(t + n? + nf)). The theorem now follows by setting n = A8¢. This
concludes the proof. |

ROT from String Erasure Channel

Function F

Parameters: S C [n] with |S| = /n, & = (z1,...,%,), where z; € {0,1}¢ for
i€ [n], ao,a1 € {0,1}".

Input: y = (y1,...,Yn), where, for all i € [n], yi € {0,1}" or y; = L. We write
Y|, to indicate that V' = {i|y; # L}.

FS,m (y'v ,(107(11)
(Lyar), if (V] >2—=n®Y) A (yl, = ®|,) A (VNS < L),
= ¢ (ao, L), if (V=2 -n"")A(yly=a|,)A(VNSI>4L), (2
(L, 1), otherwise.

NIE

We write Fs,z,a9,a; (-) to denote Fs (-, ao,a1).

Sender S(ag, a1)

Receiver R
(inputs ao, a1 € {0,1}")

1. Sample S « (E;ll) @ sent over Csec (with 1-query access to F')
2. Let = 5 ~
CLet & = (21, @), F given as 1. Receive Csec(x) = x|,

where each z; < {0,1}*.
3. Output (F, ) where F'is
a circuit for Fs,z, ag,a; -

oracle to R where U « 2[™.
2. Output F (z|).

Fig. 2. The OWSC protocol (S,R) for realizing ROT over the string erasure channel
assuming ideal obfuscation.

4 Completeness of BEC and BSC Using Ideal Obfuscation

In this section, we show that the binary erasure channel and the binary sym-
metric channel are (each) complete, assuming ideal obfuscation. In Sect. 4.1, we
construct the string erasure channel from the binary erasure channel and from
the binary symmetric channel. We then appeal to a composition theorem 5 to
argue that BEC/BSC can be used to construct ROT. Finally, in Sect.4.2 we
discuss completeness of BEC/BSC for general sender-receiver functionalities.
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4.1 String Erasure Channel from BEC/BSC

In this section, we provide constructions of string erasure channel from binary
erasure channel and from binary symmetric channel using ideal obfuscation.?

We first define a quantity that will be used in the construction and analysis
of the following protocols. Let 0 < p < 1, and Xj,...,X,, be random variables
such that for each i € [n], X; is independently and identically distributed as
Bernoulli(p). Further, let X = X7 + Xo + ... + X,,. Define

Centre(p, n) = max {t €n]:PriX <t < ;}

Claim 1. For ©, > 0 that depends only on p (as described in Lemma 1),
11 6
Pr[X < Centre(p,n)] € <2, 3t \/%] :
Proof: Pr[X = Centre(p,n)] < % by the anti-concentration bound in Lemma 1.
Claim follows from this and the definition of Centre(p,n). O

We now proceed to formally state and prove the first main result in this
section.

Lemma 5 (SEC from BEC using ideal obfuscation). There exists an
OWSC protocol for SEC over BEC using ideal obfuscation, with inverse-
polynomial statistical security against a semi-honest sender and a query-bounded
recetver.

More concretely, for all p € (0,1) and ¢ > 0, there exists an OWSC' protocol
which, for all \,€ € N, realizes £-bit SEC with e-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BEC
with erasure probability p and an ideal obfuscation of a circuit F, when € =

O(%), n=0\*), and |F| = O£ - X%).

Proof: The OWSC protocol (S, R) for an ¢-bit SEC over BEC with erasure prob-
ability p € (0, 1) is provided in Fig. 3. We argue correctness and security below.
Correctness. Since Che erases each bit in & with probability p independently,
the number of non-erasures |U| is distributed according to Binomial(n,1 — p).
Hence, by Claim 1, the probability with which receiver reports an erasure is

11 61,
Pr[|U| < Centre(1 — p,n)] € (2, 5T NG ) .

2 We remark that OWSC of SEC over BEC with inverse polynomial statistical secu-
rity exists without using ideal obfuscation. Such a protocol can be obtained following
the ideas in [2], where an OWSC protocol was constructed for string-ROT over bit-
ROT with inverse polynomial statistical security. We do not explore the possibility
of building such an OWSC protocol for SEC over BSC. Instead, we stick to con-
structions using ideal obfuscation since our next step towards realizing OWSC of
ROT over BEC/BEC, i.e. of constructing OWSC of ROT over SEC, anyway uses
ideal obfuscation.
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String Erasure Channel from Binary Erasure Channel

Function F

— Parameters: € {0,1}" and a € {0,1}".
— Input: y|,, such that V C [n] and y; € {0,1}" forall i € V.

a. i (gly = @ly) A (V] > Centre(1 - p,n)),

1, otherwise.

Fw(y|V7a) _{

We write Fi o) to denote Fz (-, a).

Sender S(a € {0, 1}[') Receiver R

@ sent over Chrc
(with 1-query access to F')

1.+ {0,1}". b tven us
2. Output (F, ) where F'is given as 1. Receive x|, = Chec(x).
reuit for F oracle to R
a circui z,a- 2. Output F(z|;).

Fig. 3. Protocol (S,R) for realizing ¢-bit string-Erasure Channel using n invocations
of a binary erasure channel with erasure probability p € (0, 1).

Thus, the input string a is output with probability % (with inverse polynomial
bias), which proves correctness of SEC.

Security. We first prove the statistical security against a computationally
unbounded semi-honest sender by arguing that for all a € {0, 1}*

6.,
NE

The erasure pattern over n uses of the channel is independent of the sender’s
input . Consequently, whether the receiver outputs a or L is independent of
the view of the sender. The bound on the statistical distance now follows from
the correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
Sgr : B — Y™ as an interactive algorithm that interacts with an arbitrary poly(n)-
bounded R*. Given input a € {0,1}° U { L}, Sg first generates and sends to R*
a simulated channel output y, and then provides a simulated response for each
F’—query made by R*.

A((S(a), Csec(a)) , (S(a), R(Cgec(S(a))) <

Simulator Sg(a): Simulator constructs y as follows:

1. Sample x « {0,1}"

2. Sample erasure pattern [n] \ U (as generated on n independent uses of C5¢c)
under the conditioning |U| > Centre(1 — p,n) if a # L and under the condi-
tioning |U| < Centre(1 —p,n) if a = L.

3. Output x|, to R*.



142 S. Agrawal et al.

For @ queries by R* to F', the simulator replies to a query y|,, follows:

— Case 1:1f |U| > Centre(1—p, n), simulator outputs F ,(y|,/) as it has access
to z,a, and U.
— Case 2: If |U| < Centre(1 — p, n), simulator simply outputs L.

Since the distribution on x|, received by R* is identical when it interacts with S
or with the simulator Sg, it is sufficient to argue that R* cannot make any query
which Sg cannot correctly respond to, except with probability O(n_Tl) In case
1, when |U] > Centre(1 — p,n), the simulator/predictor can honestly compute
Fy o(yly/) and the query is answered correctly. In case 2, the simulator /predictor
fails if R* makes a query y|,, such that F, ,(y|, ) = a. Define the set

Bad = {U : |U| € [Centre(1 — p,n) — n°,Centre(1 — p,n))} .

Since [n] \ U is the erasure pattern during n independent uses of Chec, |U]| is
distributed according to the Binomial(n,1 — p) distribution independent of x.
Hence, for all € {0,1}", by applying the anti-concentration bound in Lemma 1
together with a union bound,

O1p -nd.
Vn

We will show that, except under the event Bad (which happens with probability
at most 81_p~n*i, when § = %), R* outputs a query yl,, such that F, .(yl,,) =
a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.

It suffices to show that for all @ € {0,1}* and computationally unbounded
algorithms Adv that take x|, as input,

Pr[Bad] = I?Jr [|U] € [Centre(1 — p,n) — n’, Centre(1 — p,n))] <

W_{g)f}n v [Fe(yly ,a) # L |-Bad, y|,, = Adv(x|,), Fx (yl, ,a) = L] = negl(n).
3)

The event ‘~Bad and F, (y|,, ,a) = L’ is the same as ‘|U| < Centre(1—p,n)—n’".
Hence,

P [Faluly ) # L-Bad. gl = Adv(ly). Fe(yly ) = L

< P [V Ul > n® and -
_ac«—{OE}",U‘ \U|=n’® an y|V\U x|\ |

|U| < Centre(1 —p,n) — nd, y|, = Adv(w|U)}

. 5 —n®
= m‘*{O,F}I,‘ViE[n‘S] I:yl - Ii’V’L © [n H =2 .

The function F' can be realized using ¢ + 1 Boolean circuits (to compute
each bit of the output encoded with one extra bit to report L). When the input
is appropriately encoded, the Boolean circuits need to compute a thresholding
function on n-bit inputs (quadratic blow-up), and equality check for O(n)-bit
inputs (linear blow-up). Hence, the size of E" is O(£-n?). The lemma now follows
by setting n = A*c. This concludes the proof. O
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We would like to remark that the above construction can also be used to realize
string erasure channel with erasure probability % from another string erasure
channel (possibly of different string length) with arbitrary probability of erasure
(¢'-bit Cégc for 0 < p < 1). We can then put this result together with the result in
Theorem 4 to show that ROT can be realized from general SEC (See Sect. 4.2).

Using a similar construction we can realize string erasure channel from binary
symmetric channel using ideal obfuscation. Formally, we prove the following
lemma:

Lemma 6 (SEC from BSC using ideal obfuscation). For p € (0, %), there
exists an OWSC protocol for SEC over BSC with crossover probability p using
ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded receiver.

More concretely, for all p € (0, %) and ¢ > 0, there exists an OWSC protocol
which, for all A\, ¢ € N, realizes £-bit SEC with e-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BSC

with crossover probability p and an ideal obfuscation of a circuit F, when ¢ =
O(), n = O(X¥), and |[F| = O(¢ - 3%).

Proof: The OWSC protocol (R,S) for SEC over BSC is provided in Fig.4. We
argue correctness and security below.

Correctness. Since Ci flips each bit in @ with probability p independently,
|& & y| is distributed according to Binomial(n, p). Hence, by Claim 1,

)

Thus, the input string a is output with probability % (with inverse polynomial
bias), which proves correctness of SEC.

Nl

11
Pr |z @ y| < Centre(p,n)] € ( +60,-n

272

Security. We first argue statistical security against a computationally
unbounded semi-honest sender by showing that for all a € {0,1}*

A((S(a), Csec(@)) , (S(a), R(CEsc(S(a)))) < 6, -n*.

Observe that the noise added by the BSC is independent of the sender’s input
x. Consequently, whether the receiver outputs a or L is independent of the
view of the sender. The bound on the statistical distance now follows from the
correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
Sr : B — Y™ as an interactive algorithm that interacts with an arbitrary poly(n)-
bounded R*. Given input a € {0,1}* U { L}, Sg first generates and sends to R*
a simulated channel output y, and then provides a simulated response for each
F-query made by R*.

Simulator Sg(a): Simulator constructs y as follows:

1. Sample x «— {0,1}"™.
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String Erasure Channel from Binary Symmetric Channel

Function F
— Parameters: @ € {0,1}" and a € {0,1}".
— Input: y € {0,1}".

a, if & ® y| < Centre(p,n),

Fm(yaa) = {

1, otherwise.
We write Fi o(-) to denote Fz (-, a).

Sender S(a € {0,1}9)

1. =+ {0,1}".
2. Output (F, x) where F is a circuit fgr Fya-
(z will be sent to R over CEsc, and F' will be used as the oracle for R, below.)

Receiver R with 1 query oracle access to F'

1. Receive y = Chsc ().
2. Output F(y).

Fig. 4. The protocol (S,R) for realizing ¢-bit String-Erasure Channel using n invoca-
tions of a binary symmetric channel with crossover probability p.

2. Sample y = CEsc(x) conditioned on |z & y| < Centre(p,n) if a # L and
|x @ y| > Centre(p,n) if a = L.
3. Output y to R*.

For @ queries by R* to F, the simulator replies to a query gy follows:

— Case 1:If |x @ y| < Centre(p,n), simulator outputs Fj (y) as it has access
to x and a.
— Case 2: If |x @ y| > Centre(p, n), simulator simply outputs L.

Since the distribution on |, received by R* is identical when it interacts with
S or with the simulator Sg, it is sufficient to argue that R* cannot make any query
which Sg cannot correctly respond to (except with probability O(n%l)). In case
1, when |U| > Centre(1 — p,n), the simulator/predictor can honestly compute
Fy o(yly/) and the query is answered correctly. In case 2, the simulator /predictor
fails if R* makes a query y|,, such that F, ,(yl|,/) = a. Define the set

Bad = {(z,y) € {0,1}*" : |z ® y| € (Centre(p, n), Centre(p,n) +n’]} .

In the sequel, we will denote Centre(p,n) by t. When = «— {0,1}" and y =
Chsc(x), |x Pyl is the number of bits noise added by Che. Hence, it is distributed
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according to the Binomial(n, p) distribution. By applying the anti-concentration
bound in Lemma 1 together with a union bound, we get

= g o3
(m<—{o,1}1:,2=cgsc(m)[Bad] o, 1}}?1, e lr@yl e (t,t+n]] <O, -n’"2.
We will show that, except under the event Bad (which happens with probability
at most 91,p~n_%, when § = %), R* outputs a query y|,, such that F, ,(y|,,) =
a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.
It suffices to show that for all @ € {0,1}¢ and computationally unbounded
algorithms Adv that take y as input,

[Fo.a(y) # L|-Bad, Fr () = L,g = Adv(y)] = negl(n).  (4)

T
z—{0,1}",y=Cfsc(z)

The event ‘~Bad and Fj, ,(§) = L’ is the same as ‘|z ® y| > Centre(p,n) + n°".
We complete the argument by appealing to the following claim.

Claim 2. For any computationally unbounded algorithm A, for sufficiently large
values of n,

Pr  [Fu(g.a)# Lz @y| > Centre(p.n) +nf,§ — Aly)]
E‘—{O-,l}”yyzcgsc(ﬂ?)

a-2p2 s
f”‘

< 3e~

Proof: Let t = Centre(p,n) and V ={i € [n] : §; ®y; = 1}. For & «— {0,1}",y =
Cosc(x), and § — A(y),
Pr[Fpa(y) # Ll @yl >t + 0]
7Pr[|m@ﬁ|<t|\x®y|>t+n5]
=Pr[|(z S yey) <tllzayl>t+n’]
gPrl (z; D yi) <|V|Z(xi@yz)> 2n5||m@y|2t+n5
eV

eV

V| +nd
=Pr lZ(xi@yi)z”Hx@ylzwn‘;
eV

Since « is uniformly distributed, & @ y is independent of y and, therefore,
independent of (y, 9, V). Conditioned on V (and suppressing this conditioning
in the steps below), we have, for all V' C [n],

V4 é
Pr [;(mi@yi) > H%,Lr@yl >t +n’
2

5
<Pr [Z(xi oy > VT

‘ 2
eV




146 S. Agrawal et al.

where z;®y;, ¢ € V, are independent and identically distributed with distribution
Bernoulli(p). This probability is clearly zero if |V| < n%. For |V| > n%, by the
Chernoff bound in Lemma 2,

1% J 1%
Pr Z(ﬂﬁz Dy > H% < Pr Z(ﬂcz Dy > %
eV eV
1
=Pr Z(ml@yz)2(1+(2—1>)p-|V|
eV
(&)
<e Tlp"'l p-|V| < ei(l—ip)2 nd

Moreover, since |z @ y| is Binomial(n,p), we have Pr[lz & y| <

Centre(p,n)] < %, which along with the anti-concentration bound in Lemma 1,

gives
1 e 1
P >t+n]>-—=L.14+n%)>2
llreyl>t+n’]> 5 - 28 (407 > 3,
for sufficiently large n since § < % This proves the claim. O

The function F' can be realized using ¢ 4+ 1 Boolean circuits (to compute each
bit of the output encoded with one extra bit to report ). When the input
is appropriately encoded, the Boolean circuits need to compute a XOR and
thresholding function on n-bit input (quadratic blow-up). Hence, the size of Fis
O(f-n?). The lemma now follows by setting n = A*c. This concludes the proof.

O

4.2 Completeness of BEC/BSC Using Ideal Obfuscation

We can put together the results in Sect.4.1 (that the string erasure channel
(SEC) can be constructed using the binary erasure and binary symmetric chan-
nels, using ideal obfuscation) with the result from Sect.3 (that ROT can be
constructed using SEC, using ideal obfuscation), to obtain the following.

Theorem 5 (ROT from BEC or BSC using ideal obfuscation). There
exists an OWSC protocol ﬂﬁg({« (respectively, WE%% ) for ROT over BEC (respec-
tively, BSC) using ideal obfuscation, with inverse-polynomial statistical security
against a semi-honest sender and a polynomial query-bounded receiver.

Proof: We shall compose the OWSC protocol for ROT over SEC from Theorem 4
with the protocol from Lemma 5 (respectively, from Lemma 6). For this, we need
to argue that OWSC protocols compose. The security definition of OWSC (Def-
inition 1) could be seen as a specialization of the UC security notion, to the
one-way communication setting, and a semi-honest sender, in a (C,B)-hybrid
model, where C is the channel, and B is a functionality that takes a circuit
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from the sender and provides the receiver with black-box access to it (for a
bounded number of queries). To see this is indeed the case, note that when the
sender is (passively) corrupt, a simulator for passive-security should merely for-
ward the sender’s input a to the functionality, resulting in the receiver obtaining
f(a); hence the environment’s views in the ideal and real executions (in addi-
tion to a, which is universally quantified over) are simply (S(a), R(C(S(a)))) and
(S(a), f(a)).

When the receiver is (possibly actively) corrupt, its view includes an output
from the channel C and its interaction with the oracle B; the security definition
for OWSC in this case is the same as for UC security, by treating the receiver as
the environment (the input a is part of the corrupt receiver’s view in the OWSC
definition, due to the universal quantifier over a).

Before we can apply composition, note that we have a mixed corruption
model with fized roles. That is, the party playing the sender in all of the protocols
or functionalities is the same (i.e., corrupting one corrupts all), and similarly for
the receiver. Hence we have only two non-trivial corruption scenarios: all the
senders are passively corrupt, or all the receiver’s are actively corrupt. In either
case, the protocol for ROT from SEC, as well as the protocol for SEC from
BEC (or BSC) satisfies the corresponding security guarantee. We note that in a
corruption scenario, if UC or passive security holds for each protocol instance,
then, it holds for the composed protocol for the same corruption scenario (this is
implicit in the proof of composition theorems for static adversaries, which fixes
a corruption scenario and derives a simulator for the composed protocol from
individual simulators for the constituent protocols).

Finally, note that in the composed secure protocol, there are several instances
of B invoked by the sender (and each one accessed a bounded number of times
by the receiver). These multiple instances, with programs, say Fi,---, F, can
be replaced by a single instance of B to which the sender inputs a combined
program F' such that F'(i,z) = F;(x). Thus we obtain an OWSC protocol using
ideal obfuscation for ROT from either BEC or BSC. O

We are now ready to show that the binary erasure channel and the binary
symmetric channel are complete, using ideal obfuscation. To generalize the above
construction to arbitrary functionalities, we rely on a previous result by Garg
et al. [25], which showed that ROT is complete for arbitrary finite functionalities
even for the case of malicious parties, with statistical security. Combined with
our reductions from ROT to BSC and BEC, we get a similar completeness result
for BEC/BSC with inverse-polynomial error.

In more detail, we claim that:

Theorem 6 (Completeness of BEC/BSC using ideal obfuscation: semi-
honest sender). BEC and BSC are (each) complete for OWSC using ideal
obfuscation, with inverse-polynomial statistical security against a semi-honest
sender and a polynomial query-bounded receiver.

Proof: [Proof sketch] Analogously to [2], let us first consider the setting of
semi-honest parties. In this case, we may combine the reduction from ROT
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to BEC/BSC with Yao’s garbled circuits [58] as follows. Given a randomized
sender receiver functionality F'(a;r), define a deterministic (two-way) function-
ality F that takes (a,r1) from the sender and ry from the receiver, and outputs
F(a;m @ 1) to the receiver. Using Yao’s protocol to securely evaluate F with
uniformly random choices of r1, 7y, we get a secure reduction of F' to OT where
the receiver’s inputs are random. We may now replace the random choices of the
receiver by leveraging a ROT channel, and then apply the reduction from ROT
to BEC/BSC.

The above compiler makes use of Yao’s garbled circuits, which assume the
existence of one way functions. In the setting of ideal obfuscation, we may obtain
an unconditional result as follows. First, note that for the case of branching
programs, we may use information theoretic garbled circuits [23,34,41]. For the
case of circuits, we use a result of Goyal et al. [32] which implies unconditionally
secure garbled circuits from ideal obfuscation. In more detail, [32] show how to
obtain unconditionally secure computation from hardware tokens. Our setting
requires only a degenerate “single-use” version of the construction of Goyal et al.,
that replaces symmetric encryption with a one-time pad. O

5 OWSC in the Plain Model and Against Malicious
Adversaries

In this section, we address the question of implementing our protocols in the
plain model. We also show how to augment a plain model OWSC protocol to be
secure against active corruption (of the sender, as the receiver is always passive),
using a NIZK proof.

5.1 OWSC in the Plain Model

Recall that an OWSC protocol IT using ideal obfuscation uses oracle access to a
function F (specified as a circuit ). We denote by II[O] the protocol in the plain
model that is obtained by communicating O(F ) instead of providing the oracle.
Here, for the purpose of error-free communication, we use an error correcting
(or erasure correcting, resp.) code to encode O(F) before sending it over BSC
(resp., BEC).

As discussed earlier, given the statistical nature of the functions used in the
protocols TTEES and TIESS., it is conceivable that there exists an obfuscation
scheme O such that the protocols TTEES and TTESS. can be converted to secure
protocols in the plain model by using this obfuscation scheme to replace the
ideal obfuscation scheme. We state this as a conjecture below.?

3 We remark that a more general conjecture about obfuscation of a generalized notion
of “evasive” functions is plausible, and would in turn imply Conjecture 2. As such a
generalization is somewhat tangential to the focus of this work, we do not present
this formalization here.
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Congecture 2. There exists an obfuscation scheme O such that TTEES[O] and
MESC.[O] are OWSC protocols (in the plain model) for ROT, over BEC and
BSC respectively, with inverse-polynomial security against a semi-honest sender
and a computationally bounded receiver.

Interestingly, if any such scheme as conjectured above exists, then an indis-
tinguishability obfuscation (iO) scheme can be used in its place. More formally,
we have the following theorem. Its proof follows standard ideas and is deferred
to the full version.

Theorem 7. Suppose Conjecture 2 holds, with an obfuscation scheme O. Fur-
ther, suppose there is an 10 scheme iO for all polynomial sized circuits. Let
pad(ﬁ’) be a padded version of the circuit F' which is of the same size as O(F)
Then TIEES[iO o pad] and TIEZS.[iO o pad] are OWSC' protocols (in the plain
model) for ROT, over BEC and BSC respectively, with inverse-polynomial secu-
rity against a semi-honest sender and a computationally bounded receiver.

5.2 Security Against Malicious Sender

In this section, we argue that BEC and BSC are (each) complete even against
malicious adversaries in the plain model, assuming Conjecture 2. The key obser-
vation here is that UC-secure OWSC protocols for NIZK exist over BEC as well
as over BSC, as shown by Garg et al. [25, Lemma 3]. We show that such a NIZK
can be used to turn the ROT protocols TTEEG[O] and TTESS[O] to be secure
against malicious senders. We then appeal to another result of Garg et al. [25]
which shows that for general (possibly randomized) functionalities, the ROT
channel is complete.

To obtain security against malicious senders, we need to ensure that the
receiver’s output is of the form (ag, L) with probability % and (L, a;) other-
wise (except for a small inverse polynomial error). The strings (ag, a;) may be
probabilistic, but should be extracted by a simulator. For this, we show that it
is enough for the sender to additionally provide a NIZK proof of the fact that
the program communicated is indeed an obfuscation O(F) of a valid function F
as specified by the protocol. Recall that in the original protocol, the receiver is
supposed to feed the message it received over the channel (BEC or BSC) to the
obfuscated program and output whatever the program outputs. In the modified
ROT protocol, if the verification of the NIZK proof fails, or if the program out-
puts an error, then the receiver outputs (a, L) or (L, a) (for some fixed a) with
probability % each.

We briefly sketch why this modification yields a OWSC for ROT that is secure
against a malicious sender (we defer further details to the full version [3]). If the
NIZK proof fails or if the program outputs an error, the protocol corresponds
to an ideal ROT execution in which the sender sends (a,a) as its input. We
need to analyze the behavior of the protocol when this does not happen. Note
that the program F contains a string « that the sender is supposed to send over
the channel, but a malicious sender may send a different string «’. If ' differs



150 S. Agrawal et al.

from x in a lot of positions, then with all but negligible probability the program
outputs an error, captured by the above case. On the other hand, if &’ agrees
with @ in most places, then conditioned on the program not outputting an error,
it can be shown that the output continues to be of the form (ag, L) or (L,a)
with almost equal probabilities, as in the original analysis. A formal analysis of
this modification is provided in the full version of this work [3].

It remains to argue that BEC and BSC are complete, even in the plain model,
assuming Conjecture 2. Recall that in Sect. 4.2, we argued that BEC and BSC are
complete for OWSC assuming ideal obfuscation, by composing OWSC protocols
over ROT for general sender-receiver functionalities with OWSC protocols over
BEC/BSC for ROT using ideal obfuscation. The argument for the plain model
remains the same, except that we now use the ROT protocols in the plain model.
Using standard garbled circuits based on one way functions in the compiler
described by Theorem 6, we obtain:

Theorem 8 (Completeness of BEC/BSC against malicious adversary).

Suppose Conjecture 2 holds and one-way functions exist. Then BEC and BSC
are (each) complete for OWSC with inverse-polynomial security against a mali-
cious sender and a computationally bounded receiver.
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