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Abstract

We present a novel tree-based technique that can convert any designated-prover NIZK proof
system (DP-NIZK) which maintains zero-knowledge only for single statement, into one that
allows to prove an unlimited number of statements in ZK, while maintaining all parameters
succinct. Our transformation requires leveled fully-homomorphic encryption. We note that
single-statement DP-NIZK can be constructed from any one-way function. We also observe a
two-way derivation between DP-NIZK and attribute-based signatures (ABS), and as a result
derive now constructions of ABS and homomorphic signatures (HS).

Our construction improves upon the prior construction of lattice-based DP-NIZK by Kim and
Wu (Crypto 2018) since we only require leveled FHE as opposed to HS (which also translates
to improved LWE parameters when instantiated). Alternatively, the recent construction of
NIZK without preprocessing from either circular-secure FHE (Canetti et al., STOC 2019) or
polynomial Learning with Errors (Peikert and Shiehian, Crypto 2019) could be used to obtain
a similar final statement. Nevertheless, we note that our statement is formally incomparable
to these works (since leveled FHE is not known to imply circular secure FHE or the hardness
of LWE). We view this as evidence for the potential in our technique, which we hope can find
additional applications in future works.

1 Introduction

In non-interactive zero-knowledge proof systems for NP (NIZK) [BFM88], a prover can provide a
non-interactive proof of the validity of an NP statement (efficiently, using a witness), that convinces
a verifier, without revealing any information about the witness or anything other than the validity
of the statement. This is not possible to achieve in the plain model, and therefore usually some
common setup is considered, in particular it is often assumed that an honestly generated common
reference string (CRS) is accessible to both the prover and the verifier [FLS90]. In this work we
consider proof systems with statistical soundness and computational zero-knowledge.

NIZK with Preprocessing. In some cases it suffices to consider a relaxed notion, NIZK with
preprocessing [SMP87], where the trusted party that generates the CRS also produces additional
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secret information either for the prover or for the verifier or for both. As pointed out by Kim
and Wu [KW18], multi-theorem preprocessing NIZK could replace plain NIZK in a number of
applications, e.g. for achieving MPC with low round complexity.

In the case of secret information for the prover, known as designated-prover NIZK or DP-
NIZK, the prover’s key should be kept secret in order to maintain zero-knowledge. In the mirror
case of designated-verifier NIZK (DV-NIZK), the verifier’s secret is for the purposes of securing the
soundness. In both cases, the preprocessing might make the CRS non-reusable. That is, if the same
secret key of the prover (resp. verifier) is used in the proofs of multiple statements then ZK (resp.
soundness) might not hold for all of these statements. Therefore, we make the distinction between
single-theorem and multi-theorem NIZK in the preprocessing model. We note that throughout this
introduction, writing DP/DV-NIZK refers by default to the multi-theorem version.

The seminal work of [FLS90] shows, among other things, how to transform any single-statement
NIZK proof system into a multi-statement NIZK. [KNYY19] recently showed that a similar boot-
strapping strategy works also in the designated-verifier model. As pointed out by [KW18], the
transformation fails to work in the designated-prover model since it critically relies on the fact that
the prover algorithm is publicly computable. In this work we focus on multi-statement DP-NIZK.

1.1 Our Results

We present a new technique for bootstrapping DP-NIZK from single-theorem to multi-theorem,
using leveled fully homomorphic encryption (FHE) as a building block. We recall that leveled FHE
schemes are ones that allow to evaluate depth d circuits, for any (polynomially bounded) d specified
at key generation time. We start by noticing that single-theorem DP-NIZK can be constructed
straightforwardly from any one-way function using garbled circuits and commitment schemes (we
did not find this simple construction in the literature). We then apply a succinctness transformation
similar to that proposed by Gentry et al. [Gen09, GGI+15] to shrink the CRS size and make it
independent of the complexity of the statement that needs to be proven. This transformation
uses (leveled) FHE. Finally, as our main contribution, we present a tree based construction which
transforms single-theorem succinct DP-NIZK into multi-theorem (succinct) DP-NIZK, essentially
by committing to an implicit tree of CRS values, each of which is used to prove the validity of its
children. We provide more information and a technical overview in Section 1.3 below.

In addition, in this work, we observe a two-way implication between DP-NIZK and the notion of
attribute-based signatures (ABS) [MPR11,BF14,BZ14,BGI13], assuming one-way functions exist.
Combining this new observation with the known connection between ABS and HS [Tsa17], we get a
construction of homomorphic signatures from leveled FHE. We note the parameters of the obtained
HS scheme are fairly unfavorable, in particular the length of the signature grows with the size of
the evaluated function. However, this schemes has the so-called context-hiding property. Such HS
schemes suffice for some applications (not surprisingly, the [KW18] construction of DP-NIZK is an
example of such as application). See Section 1.4 below.

1.2 Our Parameters and Assumptions Compared to Prior Work

Comparison with DP-NIZK Constructions from LWE. [KW18] presented a construction
of DP-NIZK using homomorphic signatures for NC1 as building block. Such HS schemes were con-
structed under the learning with errors (LWE) assumption [Reg05] by Gorbunov, Vaikuntanathan
and Wee [GVW15]. Comparing our result with their work, we point out that our techniques are
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very different. Succinctness and bootstrapping that play a central role in our construction, do not
appear to be a component of the [KW18] construction. In terms of assumptions, we require leveled
FHE and they require homomorphic signatures. The two assumptions are formally incomparable,
but when instantiating concretely with LWE, our construction is favorable in terms of the required
assumption. Leveled FHE can be constructed based on the hardness of LWE, with a fixed poly-
nomial modulus-to-noise ratio, and with parameters that grow moderately with d [BV14]. The
modulus-to-noise ratio (when measured as a function of the dimension of the LWE problem) effec-
tively determines the hardness of the LWE instance at hand. The smaller the ratio is, the harder
the problem becomes, and the better approximation to worst-case lattice problems one will be able
to achieve if the assumption is broken. In terms of parameter growth, the only parameter effected
by d is the public key, which grows linearly with d. In contrast to FHE, it is not known how to
bootstrap homomorphic signatures. Bootstrapping allows the modulus-to-noise ratio to be fixed,
regardless of the evaluation depth. Therefore, since [KW18] requires the use of HS rather than
FHE, they require modulus to noise ratio of poly(s), where s is the size of the verification circuit
for the NP relation for which proofs are provided. This is worse than the parameters presented in
this work.

We should also compare our construction to the recent constructions of NIZK without prepro-
cessing by Canetti et al. [CCH+19] and by Peikert and Shiehian [PS19]. The former constructs
NIZK from any circular secure FHE scheme. That is, one that can securely encrypt its own secret
key. This is not known to be implied by LWE, but it is an assumption that is fairly common in the
FHE literature. The latter constructs NIZK from LWE with fixed polynomial modulus-to-noise
ratio. Their construction uses LWE-based leveled FHE as building block, but then uses specific
properties of the LWE-based scheme so their construction is not generic. Formally, none of these
constructions are implied by generic leveled FHE, which suggests that our techniques have a novel
aspect that hopefully can serve as stepping stone for future contributions.

Other DP-NIZK Constructions. Katsumata et al. [KNYY19] showed how to construct DP-
NIZK (with computational soundness) based on a (new) assumption on groups with bilinear maps,
however a later work by these authors [KNYY20] subsumed that result and showed how to remove
the preprocessing and remain with essentially the same properties.

1.3 Technical Overview

As we outlined above, our construction has three components:

1. A single-theorem DP-NIZK construction from any one-way function via garbled circuits and
commitments.

2. A succinctness transformation from single-theorem DP-NIZK to succinct single-theorem DP-
NIZK. This is similar to the succinctness transformations in [Gen09,GGI+15].

3. Tree-based bootstrapping from succinct single-theorem NIZK to (succinct) multi-theorem
DP-NIZK.

In what follows, we describe each of these components in more detail. We consider an NP
language L and we let V be the verifier for an NP relation of L. That is, V is a polynomial time
algorithm s.t. V (x,w) = 1 if and only if w is a valid witness for x ∈ L. We slightly overload the
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notation and also use V to denote the circuit that implements the algorithm V on instances x of
length n, where n is clear from the context.

Single-Theorem DP-NIZK from OWF. We create a DP-NIZK scheme for instances of size
n with respect to the language L. The DP-NIZK setup generates a common reference string crs
and prover secret key kP as follows. We start by generating a garbled circuit G of the circuit V .
We then commit to each of the labels of the garbled circuit, let ci,b be a commitment to the label
`i,b. The garbled circuit G and the committed labels are placed in crs, and the openings of all
commitments are provided as the secret kP . In order to prove that x ∈ L for some instance x, a
prover P with witness w simply opens the commitments to the labels corresponding to (x,w). The
verifier executes the garbled circuit and verifies that the output is indeed 1. One minor subtlety is
that the verifier needs to be convinced that the prover indeed opened to the correct x, but needs to
know nothing about w. This is achieved by providing the labels corresponding to x in the “correct”
order, i.e. ci,0 followed by ci,1, but for the w labels ci,0 and ci,1 will be randomly permuted.

Remark 1.1. As was pointed out to us by TCC 2020 reviewers, there is an alternative way to obtain
single-theorem DP-NIZK from OWF by instantiating the hidden-bit model [FLS90]. The hidden bit-
model requires that the CRS constitutes a commitment to a sequence of bits drawn (by a trusted
party) from a certain distribution, which can be opened by the prover. This can be instantiated
for designated prover straightforwardly by having in the CRS commitments to the hidden bits, and
giving the openings of the commitments to the prover.

This alternative has the advantage of not requiring use of garbled circuits, but it has the drawback
of being designated for a specific NP complete language such as hamiltoniciy, or variants of SAT
[KP95]. Although in a different context, [Dam92] also considers the goal of constructing proofs
directly for arbitrary circuits. In contrast, the garbled circuit approach can apply directly to any
witness relation and does not require an NP reduction to be used.

Succinctness Transformation. The idea here is to use (leveled) FHE as follows. In the setup
process, generate crs0, kP

0 for a non-compact scheme, and also generate a key pair for the FHE
scheme (hpk, hsk). Place hpk, crs0 and a commitment c for hsk in the new CRS and hsk, kP

0 and the
opening for the commitment c in the new kP . Now, to prove that x ∈ L using w, encrypt w using
the FHE, let ctw be the encryption. Then consider the ciphertext ct which is the homomorphic
evaluation of V (x, ·) on the ciphertext ctw. The prover will use kP

0 to prove that when decrypting
ct with the hsk committed to by the commitment c, the outcome is 1. The verifier will calculate ct
locally using homomorphic evaluation, and then will verify the proof using crs0. This guarantees
that soundness holds, up to subtleties like ensuring that any ciphertext ctw, even dishonestly
generated, corresponds to some encrypted value. We note that soundness for DP-NIZK is easier to
show than for NIZK without preprocessing as in [Gen09,GGI+15] since the homomorphic encryption
keys, and commitments thereof, are guaranteed to be honestly generated.

In terms of succinctness, we only use the underlying scheme to prove statements about the
decryption circuit of the FHE scheme, which is independent of the statement length n, and therefore
we would hope that the complexity of V does not play a role in the parameters of the new scheme.
This is not entirely correct since in leveled FHE, the length of hpk can depend on the depth of V.
However, we note that hpk is reusable, and we can generate many instances of the proof system
with the same hpk. Thus, the parameters contain a part which may not be succinct but is reusable,
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and another part that is succinct but possibly not reusable. This will suffice for our purposes as
we see below.

Tree-Based Bootstrapping. The basic idea is to implicitly generate exponentially many (in
the security parameter) single-theorem (crs, kP ) values, so that the prover can use a fresh value for
each new theorem. Of course the verifier will need a way to retrieve the correct crs and verify that
it is indeed one of those implicit crs values and not some value maliciously chosen by a dishonest
prover. To resolve this issue, we generate additional instances of the single-theorem DP-NIZK and
use them to prove that the crs values were generated honestly according to some predetrmined
(pseudo)randomness that is given via a PRF.

In more detail, we consider a depth-λ binary tree, where each node is associated with an
independent instance of the single-theorem DP-NIZK, and all of those instances are implicitly
determined by a PRF seed that generates the randomness for the DP-NIZK setup algorithm. Every
intermediate node is used in order to prove the (single) statement that the CRS of its two children
were generated honestly according to the PRF seed, and the CRS of the tree-root is given as part
of the CRS of the multi-theorem DP-NIZK. To prove a statement, the prover randomly chooses one
of the tree leaves and uses the corresponding CRS to generate the proof for the statement. It then
provides, in addition, all of the proofs on the path from the tree root to this leaf, as an evidence
that this leaf indeed appears in the predetermined tree.

Note that the setup algorithm of any node is encoded into the NP relation that is proved
by its parent node, and a non-efficient setup might cause a blow-up that is exponential with the
tree depth. This is where we crucially use the decomposability of the setup algorithm that was
discussed when we described the succinctness transformation. In the tree construction, we will
generate the reusable-but-not-succinct part of the single-statement CRS once for all of the nodes
in a given level of the tree, and then each node will be associated with a new instance of the
succinct-but-not-reusable part of the single-statement CRS.

The zero-knowledge comes from the zero-knowledge of the single-statement DP-NIZK (as long
as the prover does not choose the same leaf more than once) and from the pseudorandomness of
the PRF seed. In fact, we have to generate a fresh PRF seed for every level of the tree, and to
use the pseudorandomness of the seed of the ith level to claim that the single-statement DP-NIZK
instances of the ith level are zero-knowledge. We then can claim that the zero-knowledge of the
ith level instances guarantees that the PRF seed of the i+ 1th level remains secret since it is only
used as a witness, and the proof proceed via 2λ similar hybrids.

If we only cared about zero-knowledge, we could let the prover sample the PRF seeds on its
own (or even to use real randomness instead of PRF outputs). But such scheme would not be
sound, since the prover can possibly sample a bad CRS of the single-statement DP-NIZK for which
soundness does not hold. To resolve this issue, during setup we sample a random string r along
with the PRF seeds for all of the tree levels, and publish r and commitments to the seeds. The
prover is then forced to use as “randomness” for the single-statement DP-NIZK setup the PRF
outputs XORed with the truly random string r, where we enforce this as part of the NP relation
that is verified. That is, we require that the witnesses of all of the proofs along the tree will
include the proper decommitments to the PRF seeds. With this approach the PRF seeds remain
hidden from the verifier due to the hiding of the commitments, so we don’t compromise zero-
knowledge, and in addition the truly random string r restricts the prover to use as “randomness”
for the single-statement DP-NIZK setup only strings which the marginal distribution of each of
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them independently is uniform. We therefore need the underlying single-statement DP-NIZK to
be sound for any set of 2λ CRS values that were sampled with “randomness” that is randomized
via the same uniform string r. To obtain this, we use the fact that the underlying single-statement
DP-NIZK is statistically sound and therefore its soundness can be amplified via parallel repetition
λ times.

1.4 DP-NIZK, Attribute-Based Signatures and Homomorphic Signatures

An attribute-based signatures scheme (ABS, [MPR11, BGI13, BF14, BZ14]) is a digital signature
scheme that supports multiple keys with varying permissions, where signatures do not reveal in-
formation about the permissions of the signing key that was used. A homomorphic signature
(HS, [CJL09, BFKW09, GKKR10, BF11a, BF11b, GVW15]) is a digital signature that supports
homomorphic evaluations over the signed message, where evaluated signatures should not reveal
information about the message associated with the pre-evaluated signature other than the result
of the function that was computed homomomorphically.

The relation between ABS, HS and NIZK was studied in various works. [MPR11,BF14,SAH16,
SKAH18] show reductions of the form “OWF+NIZK → ABS”, [KW18] show that “HS → DP-
NIZK” and [Tsa17] shows that “ABS ↔ HS” for certain types of ABS and HS. Our new DPNIZK
construction can be translated to new ABS and HS constructions as follows.

Attribute-Based Signatures from OWF and DP-NIZK. While we believe that some of
the aforementioned constructions [MPR11,BF14,SAH16,SKAH18] of ABS from OWF+NIZK can
possibly be initialized from OWF+DPNIZK (and in turn also imply HS from OWF+DPNIZK
via [Tsa17]), to the best of our knowledge a statement of the flavor “OWF+DPNIZK → ABS”
does not explicitly appear in previous literature, so we briefly describe such a reduction now.

The ABS public key and master secret key are an instance of a standard signature scheme. To
generate an ABS key for a policy f , generate and instance of DPNIZK and a commitment scheme.
Commit to f and use the master secret key to sign (with a standard signature) the DPNIZK CRS
and the commitment to f . To sign a message x with a constrained key, provide a DPNIZK proof
respective to the instance that appears in the key, proving that “there exists a valid decommitment
for some f such that f(x) = 1”. The commitments scheme and standard signature schemes can be
instantiated from one-way functions.

Attribute-Based Signatures from FHE. Applying the transformation which is described
above to our DPNIZK construction results in an ABS scheme with the following characteristics:

• Efficiency. The size of public parameters and the master key is some poly(λ) and in particular
independent of the message and policy space, while keys and signatures grow with the policy
size.

• Unforgeability. The unforgeability is based on the statistical soundness of DPNIZK, the
(possibly statistical) binding of the commitment scheme and the unforgeability of the standard
signature scheme. Since any ABS is in particular a standard signature scheme, this is the
best possible unforgeability.

• Policy Privacy. The privacy is based on the hiding of the commitment and on the zero-
knowledge of DPNIZK, which in turn relies on the security of the underlying FHE.
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Homomorphic Signatures from FHE. We apply the “ABS → HS” transformation of [Tsa17]
and derive a single-hop HS scheme with the following characteristics:

• Efficiency. The size of public parameters and the master key is some poly(λ) and in par-
ticular independent of the message and policy space. However, both post-evaluation and
pre-evaluation signatures grow with the function to be computed. That is, when one signs a
message they also commit to the maximal size of functions to be homomorphically-computed
over it.

• Unforgeability. Can be based on any OWF.

• Context-Hiding. Relies on the security of the FHE.

DP-NIZK from Attribute-Based Signatures. As mentioned above, the work of [Tsa17,
KW18] implies a derivation of the form “ABS → DPNIZK”. To simplify and complete the pic-
ture, we now briefly describe a direct and simple transformation. In the setup of the DP-NIZK
scheme, sample a symmetric key sk and initialize the ABS scheme. If V (·, ·) is the verification
circuit of the NP relation, then consider the circuit V ′(·, ·) = V (·,Decsk(·)) and generate an ABS
key for the policy V ′. The secret prover key consists of sk and the ABS key for V ′. To prove a
statement x with a witness w, consider w′ the encryption of w under key sk and provide an ABS
signature for the message (x,w′).

2 Preliminaries

2.1 Notations

For n ∈ N we let [n] denote the ordered set {1, . . . , n}. For a bit-string m ∈ {0, 1}n we let Udm
denote the universal circuit that takes as input a description of a circuit f : {0, 1}n → {0, 1} of
depth at most d, and outputs f(m). for a bit-string m ∈ {0, 1}n we let mi denote the ith bit of m.

2.2 Pseudorandom Function (PRF)

Definition 2.1. A Pseudorandom Function (PRF) is a pair of polynomial-time algorithms (Setup,Eval)
where Setup is randomized and Eval is deterministic, such that for any ppt adversary A it holds
that ∣∣∣Pr [AEvalk(·)(1λ) = 1

]
− Pr

[
AO(·)(1λ) = 1

]∣∣∣ = negl(λ)

where the probability is over k ← Setup(1λ) and the coins of A, and O(·) is a random function.

2.3 Collision Resistant Hash Function (CRH)

Definition 2.2. An efficient function family ensemble H = {Hn,λ : {0, 1}n → {0, 1}λ}n,λ∈N is a
secure collision-resistant hash (CRH) function family if for any ppt algorithm A and any n, for
large enough λ it holds that

Pr
[
x 6= y, H(x) = H(y) : H ← Hn,λ, (x, y)← A(1λ+n, H)

]
= negl(λ) .
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2.4 Statistically Binding Equivocable Commitments

Definition 2.3. A commitment scheme (Gen,Commit,Ver) is a tuple of ppt algorithms as follows.

• Gen(1λ, 1n)→ crs takes as input a security parameter λ and message length n, and outputs a
common reference string crs.

• Commit(crs,m) → (c, d) takes as input a common reference string crs and a message m ∈
{0, 1}n, and outputs a commitment c and decommitment d.

• Ver(crs, c,m, d) → {accept, reject} takes as input a common reference string crs, a commit-
ment c, a message m and a decommitment d, and either accepts or rejects.

Correctness. A commitment scheme is correct if for every m ∈ {0, 1}n it holds that

Ver(crs, c,m, d) = accept

where crs← Gen(1λ, 1n) and (c, d)← Commit(crs,m).

Statistical Binding. A commitment scheme is statistically binding if for any sufficiently large
λ and any n the following holds

Prcrs←Gen(1λ,1n)

∃(r,m0,m1, d) :
c := Commit(crs,m0 ; r)
Ver(crs, c,m1, d) = accept

m0 6= m1

 = negl(λ) .

Hiding. A commitment scheme is hiding if for any sufficiently large λ and any n, for any ppt
adversary A and any pair of messages m0,m1 ∈ {0, 1}n it holds that

|Pr [A(crs, c0) = 1]− Pr [A(crs, c1) = 1]| = negl(λ)

where crs ← Gen(1λ, 1n), (cb, db) ← Commit(crs,mb) for b ∈ {0, 1} and the probability is over the
coins of Gen, Commit and A.

Equivocability. A commitment scheme is equivocable if there exists a ppt simulator S = (SA,SB)
such that for any sufficiently large λ and any n, for any ppt distinguisher Ψ, any pair of messages
m0,m1 ∈ {0, 1}n and any b ∈ {0, 1} it holds that∣∣Pr [Ψ(crs, cb, db) = 1]− Pr

[
Ψ(crs′, c′, d′b) = 1

]∣∣ = negl(λ)

where crs ← Gen(1λ, 1n), (cb, db) ← Commit(crs,mb) for b ∈ {0, 1}, (crs′, c′, tdc′) ← SA(1λ, 1n) and
d′b ← SB(crs′, c′, tdc′ ,mb) for b ∈ {0, 1}, and the probability is over the coins of Gen, Commit, S
and Ψ.
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2.5 Garbled Circuits

Definition 2.4. A garbling scheme for circuits is a tuple of ppt algorithms (Garble,Eval) with the
following syntax.

• Garble(1λ, C)→ (C̃, {labi,b}i∈[n],b∈{0,1}) is a probabilistic algorithm that takes as input a secu-

rity parameter λ and a boolean circuit C : {0, 1}n → {0, 1}, and outputs a garbled circuit C̃
and 2n labels {labi,b}i∈[n],b∈{0,1}, where each of the labels is of size λ = poly(λ) for some fixed
polynomial poly.

• Eval(C̃, {labi}i∈[n]) → b is a deterministic algorithm that takes as input a garbled circuit C̃
and n labels {labi}i∈[n], and outputs a bit b ∈ {0, 1}.

Correctness. The scheme is correct if for every circuit C : {0, 1}n → {0, 1}, every input x ∈
{0, 1}n and every

(
C̃, {labi,b}i∈[n],b∈{0,1}

)
← Garble(1λ, C), it holds that

Eval
(
C̃, {labi,xi}i∈[n]

)
= C(x) .

Security. The scheme is secure if there exists a ppt simulator S such that for every circuit
C : {0, 1}n → {0, 1} and every input x ∈ {0, 1}n it holds that(

C̃, {labi,xi}i∈[n]
)
≡λ S

(
1λ, 1|C|, C(x)

)
,

where
(
C̃, {labi,b}i∈[n],b∈{0,1}

)
← Garble(1λ, C) and ≡λ denotes computational indistinguishability

with respect to the security parameter λ.

2.6 Homomorphic Encryption

Definition 2.5. A leveled fully homomorphicencryption scheme FHE is a tuple of ppt algorithms
(Keygen,Enc,Eval,Dec) with the following syntax.

• Keygen(1λ, 1d)→ (pk, sk) is a probabilistic algorithm that takes as input a security parameter
λ and depth d, and outputs a public key pk and secret key sk.

• Enc(pk,m)→ ct is a probabilistic algorithm that takes as input a public key pk and a message
m ∈ {0, 1}∗, and outputs a ciphertext ct.

• Eval(ct, C)→ ct′ is a deterministic algorithm that takes as input a ciphertext ct and a boolean
circuit C : {0, 1}∗ → {0, 1}, and outputs an evaluated ciphertext ct′.

• Dec(sk, ct′) is a deterministic algorithm that takes as input a secret key sk and an evaluated
ciphertext ct′, and outputs a bit b ∈ {0, 1}.
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Correctness. The scheme is correct if for every n, d ∈ N, every message m ∈ {0, 1}n and every
circuit C : {0, 1}n → {0, 1} of depth at most d, it hold that

Pr[ (pk, sk)← Keygen(1λ, 1d) ,

ct← Enc(pk,m) ,

ct′ ← Eval(ct, C) ,

Dec(sk, ct′) 6= C(m) ] = negl(λ) ,

where the probability is over the coins of Keygen and Enc.

Security. The scheme is secure if for any ppt adversary A, any n ∈ N and any pair of messages
m0,m1 ∈ {0, 1}n, it holds that

|Pr [A (Enc(pk,m0)) = 1]− Pr [A (Enc(pk,m1)) = 1]| = negl(λ)

where pk← Keygen(1λ, 1d) and the probability is over the coins of Keygen, Enc and A.

Compactness. The scheme is compact if there exists a polynomial p = p(·) such that for all
security parameters λ and all n, d ∈ N, m ∈ {0, 1}n and C : {0, 1}n → {0, 1} of depth at most
d, for all (pk, sk) ← Keygen(1λ, 1d), the output length of Eval(m̃, C) is at most p bits long where
m̃← Enc (pk,m), and the size of sk is at most p bits.

For our application we need an FHE scheme where the correctness also holds for maliciously
chosen ciphertexts. Formally,

Definition 2.6 (FHE with correctness for all ciphertexts). An FHE shceme has correctness for all
ciphertexts if for all n, d ∈ N, for every string ct ∈ {0, 1}p and every circuit C : {0, 1}n → {0, 1} of
depth at most d, it holds that

Pr[ (pk, sk)← Keygen(1λ, 1d) ,

ct′C ← Eval(ct, C) ,

ct′I ← Eval(ct, I) ,

Dec(sk, ct′C) 6= C
(
Dec(sk, ct′I)

)
] = negl(λ) ,

where I is the identity circuit and the probability is over the coins of Keygen.

We now show that any FHE scheme with standard correctness implies a scheme with correctness
for all ciphertexts (which preserves the compactness property).

Lemma 2.1. Let FHE = (Keygen,Enc,Eval,Dec) be an FHE scheme with standard correctness and
let PKE = (Keygen,Enc,Dec) be a public-key encryption scheme. hen there exists an FHE scheme
FHE′ = (Keygen′,Enc′,Eval′,Dec′) with correctness for all ciphertexts.

Proof. Define FHE′ = (Keygen′,Enc′,Eval′,Dec′) as follows:

• Keygen′(1λ, 1d): Sample (hpk, hsk) ← FHE.Keygen(1λ, 1d
′
) and (pk, sk) ← PKE.Keygen(1λ),

then compute s̃k ← FHE.Enc(hpk, sk) and output (pk′, sk′) := ((hpk, pk, s̃k), hsk) where d′ =
poly(d, λ) is the maximal depth of C ′ as defined in Eval′ below.
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• Enc′(pk′,m): Compute and output ct′ := m′ ← PKE.Enc(pk,m).

• Eval′(ct′, C): Define the circuit Cct′(◦) := C(PKE.Dec◦(ct
′)). Compute and output ct′′ :=

FHE.Eval(s̃k, Cct′).

• Dec′(sk′, ct′): Output FHE.Dec(hsk, ct′).

Fix n, d ∈ N, a string ct′ ∈ {0, 1}p and a circuit C : {0, 1}n → {0, 1} of depth at most d. Consider
(pk′, sk′)← Keygen′(1λ, 1d), ct′′I ← Eval′(ct′, I) and ct′′C ← Eval′(ct′, C), then it holds that

ct′′C = FHE.Eval(s̃k, Cct′)

ct′′I = FHE.Eval(s̃k, Ict′)

and therefore

Dec′(sk′, ct′′C) = FHE.Dec(hsk, ct′′C)

= FHE.Dec(hsk,FHE.Eval(s̃k, Cct′))

= Cct′(sk)

= C(PKE.Decsk(ct
′))

and

C
(
Dec′(sk′, ct′′I )

)
= C

(
FHE.Dec(hsk, ct′′I )

)
= C

(
FHE.Dec(hsk,FHE.Eval(s̃k, Ict′))

)
= C (Ict′(sk))

= C
(
PKE.Decsk(ct

′)
)
.

3 Definitions of Designated-Prover NIZK

Definition 3.1 (DP-NIZK Proofs). A designated-prover non-interactive zero-knowledge (DP-NIZK)
proof ΠDPNIZK for an ensemble of NP languages C ⊆ {C : {0, 1}∗ × {0, 1}∗ → {0, 1}} (where C is
a verification circuit and LC = {x : ∃w C(x,w) = 1} is the NP language determined by C) is
defined by a tuple of ppt algorithms with the following syntax.

• Setup(1λ, params) → (crs, kP ) takes as input the security parameter λ and possibly some pa-
rameters params of C (e.g. the maximal circuit depth), and outputs a common reference string
crs and a proving key kP .

• Provecrs(C, kP , x, w) → π takes as input a common reference string crs, a circuit C ∈ C, a
proving key kP , a statement x and a witness w. It outputs a proof π.

• Verifycrs(C, x, π) → {0, 1} takes as input a common reference string crs, a circuit C ∈ C, a
statement x and a proof π, and either accepts (with output 1) or rejects (with output 0) the
proof.

Moreover, ΠDPNIZK should satisfy the following properties:
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(Perfect) Completeness. For all sufficiently large λ, for all circuits C ∈ C, for all pairs (x,w)
for which C(x,w) = 1 and for all (crs, kP )← Setup(1λ, params), it holds that

Pr [Verifycrs (C, x,Provecrs(C, kP , x, w)) = 1] = 1 .

(Statistical) Soundness. For all sufficiently large λ and for all C ∈ C it holds that

Prcrs←Setup(1λ,params) [∃(x, π) : x /∈ LC ∧ Verifycrs(C, x, π) = 1] = negl(λ) .

(Programmable CRS) Zero-Knowledge. For all ppt adversaries A there exists a ppt sim-
ulator S = (S1,S2) such that∣∣∣Pr [AProvecrs(·,kP ,·,·) (crs) = 1

]
− Pr

[
AO(·,crs′,τ,·,·)

(
crs′
)

= 1
]∣∣∣ = negl(λ) ,

where (crs, kP )← Setup(1λ, params), (crs′, τ)← S1(1λ, params) and

O(C, crs′, τ, x, w) =

{
S2(C, crs′, τ, x) C(x,w) = 1

⊥ o.w.
,

and the probability is over the coins of A,S,Setup,Prove. We also consider the a relaxed notion of
single-statement zero knowledge, in which the (programmable CRS) zero-knowledge condition holds
only for adversaries A that make at most a single query to the oracle.

We sometimes require the following additional property.

Efficient Setup. A DP-NIZK proof system is efficient if for all λ there exists a p = poly(λ) such
that for all params, the complexity of Setup(1λ, params) is p (and in particular does not depend on
params).

3.1 Single-Statement Global-Setup DP-NIZK Proofs

Definition 3.2 (Single-Statement Global-Setup DP-NIZK Proofs). A single-statement global-setup
DP-NIZK proof Π1DPNIZK for an ensemble of NP languages C ⊆ {C : {0, 1}∗ × {0, 1}∗ → {0, 1}}
(where C is a verification circuit and LC = {x : ∃w C(x,w) = 1} is the NP language determined
by C) is defined by a tuple of ppt algorithms with the following syntax.

• GlobalSetup(1λ, params) → (crs,msk) takes as input the security parameter λ and possibly
some parameters params of C (e.g. the maximal circuit depth), and outputs a common refer-
ence string crs and a master secret key msk.

• Setupcrs(msk) → (pk, kP ) takes as input a common reference string crs and a master secret
key msk, and outputs a public key pk and a proving key kP .

• Provecrs(C, (pk, kP ), x, w)→ π takes as input a common reference string crs, a circuit C ∈ C,
a public key pk, a proving key kP , a statement x and a witness w. It outputs a proof π.

• Verifycrs(C, pk, x, π) → {0, 1} takes as input a common reference string crs, a circuit C ∈ C,
a public key pk, a statement x and a proof π, and either accepts (with output 1) or rejects
(with output 0) the proof.

Moreover, Π1DPNIZK should satisfy the following properties:
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(Perfect) Completeness. For all sufficiently large λ, for all C ∈ C and for all pairs (x,w) for
which C(x,w) = 1, it holds that

(crs,msk)← GlobalSetup(1λ, params);

(pk, kP )← Setupcrs(msk);

π ← Provecrs(C, (pk, kP ), x, w);

Verifycrs (C, pk, x, π) = 1 .

(Statistical) Soundness. For all sufficiently large λ, for all C ∈ C and for all (crs,msk) ←
GlobalSetup(1λ) it holds that

Prpk←Setupcrs(msk)

[
∃(x, π) :

x /∈ LC
Verifycrs(C, pk, x, π) = 1

]
= negl(λ) .

(Statistical) ε-Soundness. We also define a generalized notion of soundness as follows. For all
sufficiently large λ, for all C ∈ C for all (crs,msk)← GlobalSetup(1λ) it holds that

Prpk←Setupcrs(msk)

[
∃(x, π) :

x /∈ LC
Verifycrs(C, pk, x, π) = 1

]
= ε(λ) .

(Programmable CRS) Single-Statement Zero-Knowledge. For all ppt adversaries A there
exists a ppt simulator S = (S1,S2) such that∣∣∣Pr [A{pki}←Setupcrs(msk) , Provecrs(·,pki,kiP ,·,·) (crs) = 1

]
− Pr

[
A{pk

i}←O1 , O2(·,pki,·,·) (crs) = 1
]∣∣∣ = negl(λ) ,

where
O1 = (pki, τ i)← S1(crs); Output pki;

and

O2(C, pk
i, x, w) =

{
S2(crs, C, pki, τ i, x) C ∈ C ∧ C(x,w) = 1

⊥ o.w.
,

the probability is over the coins of A,S,Setup,Prove and crs ← GlobalSetup(1λ, params), and for
every i the adversary A makes at most a single query of the form Provecrs(·, pki, kiP , ·, ·).

Efficiency. For all λ there exists a p = poly(λ) such that for all params and all (crs,msk) ←
GlobalSetup(1λ, params), the complexity of Setupcrs(msk) is p (and in particular does not depend on
params).

Remark 3.1. A global-setup DP-NIZK can be viewed as a generalization of standard DP-NIZK
in the following manner. When the algorithm GlobalSetup is trivial (i.e. when it outputs crs =
msk = 1λ), then the tuple of algorithms (Setup,Prove,Verify) qualify as a DP-NIZK proof system
with efficient setup and single-statement zero-knowledge.

Remark 3.2. Every 1DPNIZK with standard statistical soundness can be amplified to 1DPNIZK
with statistical ε-soundness for any ε = 1

2poly(λ)
via parallel composition of Setup,Prove,Verify for

log
(
1
ε

)
= poly(λ) times. The single-statement zero-knowledge simulator of the amplified proof

system is derived via parallel composition of the simulator of the underlying 1DPNIZK proof system.
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4 Our Construction

4.1 Single-Statement Global-Setup DP-NIZK from FHE

Theorem 4.1. Assuming the existence of the following building blocks, for every d ∈ N there exists
a single-statement global-setup DP-NIZK proof system as in Definition 3.2 for the ensemble Cd of
NP relations that are verifiable by circuits C of depth at most d.

1. A leveled fully-homomorphic scheme FHE = (Keygen,Enc,Eval,Dec) with correctness for all
ciphertexts as in Definitiosn 2.5,2.6. For every λ let p = poly(λ) denote the size of FHE
evaluated-ciphertexts and secret-keys as described in the “compactness” section of Definition
2.5.

2. A garbing scheme GC = (Garble,Eval) as in Definition 2.4 where each label is of size λ =
poly(λ) bits.

3. A statistically-binding equivocable commitment scheme SBCS = (Gen,Commit,Ver) as in Def-
inition 2.3.

In the rest of this section we prove Theorem 4.1. We let params = d be the depth bound of
circuits in Cd.

Construction 4.1 (Single-Statement Global-Setup DP-NIZK).

• GlobalSetup(1λ, 1d):

1. Compute (hpk, hsk)← FHE.Keygen(1λ, 1d).

2. Output crs := hpk and msk := hsk.

• Setupcrs(msk):

1. Parse msk = hsk and let Dhsk : {0, 1}p → {0, 1} be the boolean circuit that has hsk
hard-wired in it, takes as input an FHE evaluated-ciphertext ct, and decrypts ct with
hsk. Compute (

D̃hsk, {labi,b}i∈[p],b∈{0,1}
)
← GC.Garble

(
1λ, Dhsk

)
.

2. For i ∈ [p] and b ∈ {0, 1} compute crsi,b ← SBCS.Setup(1λ, 1λ) and (ci,b, di,b) ←
SBCS.Commit(crsi,b, labi,b).

3. Output

pk :=
(
D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}

)
, kP := {labi,b, di,b}i∈[p],b∈{0,1} .

• Provecrs(C, (pk, kP ), x, w):

1. If C /∈ Cd or C(x,w) 6= 1 then output ⊥.

2. Encrypt ctw ← FHE.Enchpk(w).

3. Let C ′x be the circuit Cx(◦) := C(x, ◦) and compute homomorphically

ctb ← FHE.Evalhpk(ctw, Cx) .
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4. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb. Output

π :=
(
ctw, {labi,̃bi , di,̃bi}i∈[p]

)
.

• Verifycrs(C, pk, x, π):

1. Parse crs = hpk, pk =
(
D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}

)
and π =

(
ctw, {labi, di}i∈[p]

)
.

2. Compute ctb ← FHE.Evalhpk(ctw, Cx) (where Cx is as defined above).

3. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb. Verify the label
decommitments: for i ∈ [p] compute

SBCS.Ver
(
crs

i,̃bi
, c
i,̃bi
, labi, di

)
,

if any of those verifications fail then output 0 (reject).

4. Compute and output GC.Eval
(
D̃sk, {labi}i∈[p]

)
.

Proof of Completeness. Fix λ, d, C, x, w where C ∈ Cd and C(x,w) = 1. Consider

(crs,msk)← GlobalSetup(1λ, 1d) ,

(pk, kP )← Setupcrs(msk) ,

π ← Provecrs(C, (pk, kP ), x, w) .

Parse crs = hpk, pk =
(
D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}

)
and π =

(
ctw, {labi, di}i∈[p]

)
.

Consider the execution of Verifycrs (C, pk, x, π). Since FHE.Eval is deterministic, the value ctb
that is computed in Prove and in Verify is identical. Therefore the correctness of SBCS implies that
all of the decommitment verifications in step (3) of Verify pass. Moreover, due to the correctness
of FHE it holds that

FHE.Dechsk(ctb) = FHE.Dechsk (FHE.Evalhpk(ctw, Cx))

= FHE.Dechsk (FHE.Evalhpk(FHE.Enchpk(w), Cx))

= Cx(w) = C(x,w) = 1 ,

and the correctness of GC implies that the output in step (4) of Verify is FHE.Dechsk(ctb) = 1.

Proof of Soundness. Fix λ, d ∈ N, C ∈ Cd and (crs,msk) ← GlobalSetup(1λ, 1d), and consider
the random variable pk ← Setupcrs(msk). Assume that there exist (x, π) such that x /∈ LC and
Verifycrs(C, pk, x, π) = 1.

Parse crs = hpk, pk =
(
D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}

)
and π =

(
ctw, {lab′i, d′i}i∈[p]

)
, and recall

that the values in the pk were computed as follows(
D̃hsk, {labi,b}i∈[p],b∈{0,1}

)
← GC.Garble

(
1λ, Dhsk

)
and

∀i ∈ [p] : (ci,b, di,b)← SBCS.Commit(crsi,b, labi,b) .
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Let ctb ← FHE.Evalhpk(ctw, Cx) be the value that is computed during Verify and for i ∈ [p] let b̃i
denote the ith bit of ctb.

Assume towards contradiction that for all i ∈ [p] it holds that lab′i = lab
i,̃bi

, then by the
correctness of GC and FHE, and since Verify outputs 1, it holds that

1 = GC.Eval
(
D̃hsk, {lab′i}i∈[p]

)
= GC.Eval

(
D̃hsk, {labi,̃bi}i∈[p]

)
= FHE.Dechsk(ctb)

= FHE.Dechsk (FHE.Evalhpk(ctw, Cx))

= Cx (FHE.Dechsk(FHE.Evalhpk(ctw, I)))

= C (x,FHE.Dechsk(FHE.Evalhpk(ctw, I))) ,

and therefore the string w := FHE.Dechsk(FHE.Evalhpk(ctw, I)) satisfies C(x,w) = 1, with contra-
diction to the assumption that x /∈ LC .

Therefore, it must be the case that there exists some j ∈ [p] for which lab′j 6= lab
j,̃bj

. Since all

of the verifications in step (3) of Verify pass successfully, it in particular holds that

SBCS.Ver
(
crs

j,̃bj
, c
j,̃bj
, lab′j , d

′
j

)
= 1 .

Therefore, denoting crs∗ := crs
j,̃bj

, m∗0 := lab
j,̃bj

, m∗1 := lab′j and d∗ := d′j , and letting r∗ be the ran-

domness used during pk← Setupcrs(msk) when computing c
j,̃bj
← SBCS.Commit(crs

j,̃bj
, lab

j,̃bj
; r∗),

it holds that

Prpk←Setupcrs(msk)

[
∃(x, π) :

x /∈ LC
Verifycrs(C, pk, x, π) = 1

]
≤

Prcrs∗←SBCS.Setup(1λ,1λ)

∃(r∗,m∗0,m∗1, d∗) :
c∗ ← SBCS.Commit(crs∗,m∗0 ; r∗)

m∗0 6= m∗1
SBCS.Verify (crs∗, c∗,m∗1, d

∗) = 1

 = negl(λ)

where the last equation is due to the binding of SBCS.

Proof of Single-Statement Zero-Knowledge Let SBCS.S = (SBCS.SA,SBCS.SB) be the
equivocability simulator of SBCS and let GC.S be the simulator of the garbling scheme. Define the
single-statement zero-knowledge simulator S = (S1,S2) as follows:

• S1(crs):

1. Set hsk := 0p , where p is the upper-bound on the size of FHE secret-keys and evaluated
ciphertexts, as in Definition 2.5.

2. Let Dhsk : {0, 1}p → {0, 1} be the boolean circuit that has hsk hard-wired in it, takes as
input an FHE evaluated-ciphertext ct, and decrypts ct with hsk. Compute(

D̃hsk, {labi}i∈[p]
)
← SGC

(
1λ, 1|Dhsk|, 1

)
.

3. For i ∈ [p] and b ∈ {0, 1} compute
(
crsi,b, ci,b, td

c
i,b

)
← SBCS.SA(1λ, 1λ).
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4. Set

pk :=
(
D̃hsk, {ci,b}i∈[p],b∈{0,1}

)
, τ :=

(
{labi}i∈[p], {tdci,b}i∈[p],b∈{0,1}

)
.

• S2(crs, C, pk, τ, x):

1. Parse crs = hpk, pk =
(
D̃hsk, {ci,b}i∈[p],b∈{0,1}

)
and τ =

(
{labi}i∈[p], {tdci,b}i∈[p],b∈{0,1}

)
.

2. Encrypt ctw ← FHE.Enchpk(0
k), where k is the bit-length of witnesses as determined by

C.

3. Compute homomorphically ctb ← FHE.Evalhpk(ctw, Cx), where Cx is the circuit Cx(◦) :=
C(x, ◦).

4. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb and compute

di ← SBCS.SB
(
crs

i,̃bi
, c
i,̃bi
, tdc

i,̃bi
, labi

)
5. Output

π :=
(
ctw, {labi, di}i∈[p]

)
.

We now prove indistinguishability via a sequence of hybrids:

Hybrid H0. The real Setup,Prove algorithms.

Hybrid H1. We change the way that the values {crsi,b, ci,b}i∈[p],b∈{0,1} and {d
i,̃bi
}i∈[p] are com-

puted in Setup and Prove respectively:

1. In Setup, for i ∈ [p] and b ∈ {0, 1} compute
(
crsi,b, ci,b, td

c
i,b

)
← SBCS.SA(1λ, 1λ).

2. In Prove, for i ∈ [p] compute

di ← SBCS.SB
(
crs

i,̃bi
, c
i,̃bi
, tdc

i,̃bi
, lab

i,̃bi

)
.

Hybrids H1 and H0 are computationally indistinguishable due to the equivocability of SBCS.

Hybrid H2. Note that in Hybrid H1 the values {lab
i,̃bi
}i∈[p] are only used during Prove, and the

other p GC labels are never used. In this hybrid we change the way that the values D̃hsk and
{lab

i,̃bi
}i∈[p] are computed in Setup and Prove respectively:

1. In Setup, compute (
D̃hsk, {labi}i∈[p]

)
← SGC

(
1λ, 1|Dhsk|, 1

)
.

2. In Prove, for i ∈ [p] set lab
i,̃bi

:= labi and proceed as in the previous hybrid.

Hybrids H2 and H1 are computationally indistinguishable due to the security of GC.
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Hybrid H3. Note that in Hybrid H2 the value hsk is only used when computing the FHE
ciphertext ctw in Prove. In this hybrids we change the way that ctw is computed: Encrypt
ctw ← FHE.Enchpk(0

k), where k is the bit-length of witnesses as determined by C. Hybrids H3 and
H2 are computationally indistinguishable due to the security of FHE.

Note that this hybrid is identical to the simulators S1,S2.

Efficiency. Fix λ and note that by the compactness of FHE, there exists some p = poly(λ)
such that for all params = d and (hpk, hsk) ← FHE.Keygen(1λ, 1d), the size of FHE evaluated-
ciphertexts and hsk is at most p. Denote (crs,msk) = (hpk, hsk) and note that the running time
of Setupcrs(msk) is bounded by some p′ = poly(p, λ) = poly(λ), i.e. for all params = d and all
(crs,msk)← GlobalSetup(1λ, 1d), the complexity of Setupcrs(msk) is at most p′.

4.2 DP-NIZK from Single-Statement Global-Setup DP-NIZK

Theorem 4.2. Assuming the existence of the following building blocks, for every d ∈ N there exists
a DPNIZK proof system as in Definition 3.1 for the ensemble Cd of NP relations that are verifiable
by circuits C of depth at most d.

1. A pseudo-random function PRF = (Setup,Eval) where w.l.o.g. for every k ← PRF.Setup(1λ)
it holds that k ∈ {0, 1}λ.

2. A single-statement global-setup DPNIZK proof system 1DPNIZK = (GlobalSetup, Setup,Prove,Verify)
for {Cd}d, where w.l.o.g. for every (crs,msk)← 1DPNIZK.GlobalSetup(1λ, 1d) it holds that the
randomness used by 1DPNIZK.Setupcrs(msk) is of size ` = poly(λ), the size of msk is some
p = poly(λ) and the scheme satisfies (2λ−`, λ)-soundness.

3. A statistically-binding commitment scheme SBCS = (Gen,Commit,Ver) as in Definition 2.3.

In the rest of this section we prove Theorem 4.2.

Construction 4.2 (DP-NIZK from 1-DP-NIZK).

• Setup(1λ, 1d):

1. For i = 0, . . . , λ compute (crs′i,msk′i)← 1DPNIZK.GlobalSetup(1λ, 1d
′
i) where d′i is defined

in the paragraph bellow.

2. Sample r
$← {0, 1}` and for i ∈ [λ] sample ki ← PRF.Setup(1λ).

3. Compute crs∗ ← SBCS.Gen(1λ, 1p+λ) and for i ∈ [λ] sample (c∗i , d
∗
i )← SBCS.Commit(crs∗, (msk′i, ki)).

4. Sample
(
pk∅, k∅P

)
← 1DPNIZK.Setupcrs′0(msk′0).

5. Output crs := ({crs′i}i=0,...,λ, crs
∗, {c∗i }i∈[λ], pk

∅, r) and kP :=
(
{msk′i}i=0,...,λ, {ki, d∗i }i∈[λ], k∅P

)
.

• Provecrs(C, kP , x, w):

1. Parse crs = ({crs′i}i=0,...,λ, crs
∗, {c∗i }i∈[λ], pk

∅, r) and kP =
(
{msk′i}i=0,...,λ, {ki, d∗i }i∈[λ], k∅P

)
.

2. Sample m
$← {0, 1}λ and for i ∈ [λ] let mi denote length-i prefix of m (i.e. mi =

m1m2 . . .mi). In particular denote m0 = ∅ and mλ = m.
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3. For i = 0, . . . , λ− 1 do:

(a) For b ∈ {0, 1} compute

rm
i‖b := r ⊕ PRF.Evalki+1

(mi‖b)

and sample a 1-DPNIZK instance respective to (crs′i+1,msk′i+1) with rm
i‖b as ran-

domness: (
pkm

i‖b, k
mi‖b
P

)
:= 1DPNIZK.Setupcrs′i+1

(msk′i+1 ; rm
i‖b) .

(b) Let C ′i be the relation that takes as a statement a pair (◦0, ◦1) and as a witness a
3-tuple (•0, •1, •2), and outputs 1 iff

SBCS.Ver
(
crs∗, c∗i+1, (•0, •1), •2

)
= accept ∧

∀b ∈ {0, 1}, ◦b = 1DPNIZK.Setupcrs′i+1

(
•0 ; r ⊕ PRF.Eval•1(mi‖b)

)
.

Compute

πm
i ← 1DPNIZK.Provecrs′i

(
C ′i, (pk

mi , km
i

P ), (pkm
i‖0, pkm

i‖1), (msk′i+1, ki+1, d
∗
i+1)

)
.

4. Compute
πm ← 1DPNIZK.Provecrs′λ (C, (pkm, kmP ), x, w) .

5. Output π :=
(
m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πm

i}i=0,...,λ

)
.

• Verifycrs(C, x, π):

1. Parse crs = ({crs′i}i=0,...,λ, crs
∗, {c∗i }i∈[λ], pk

∅, r) and π =
(
m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πm

i}i=0,...,λ

)
.

2. For i = 0, . . . , λ− 1 compute

1DPNIZK.Verifycrs′i

(
C ′i, pk

mi , (pkm
i‖0, pkm

i‖1), πm
i
)

and if it rejects (outputs 0) then reject (output 0).

3. Compute and output
1DPNIZK.Verifycrs′λ (C, pkm, x, πm) .

Choice of Parameters. Note that by the efficiency of 1DPNIZK there is some fixed polynomial
p = p(λ) such that for all λ, d and (crs′,msk′) ← 1DPNIZK.GlobalSetup(1λ, 1d) the complexity of
1DPNIZK.Setupcrs′(msk′) is p. Therefore, there is some fixed polynomial p′ = poly(λ, p) = poly(λ)
such that for all λ, d and (crs, kP )← Setup(1λ, 1d), the complexity of {C ′i}i (the circuits defined in
step (b) of Provecrs(·, kP , ·, ·)) is at most p′. It follows that there is also some d′′ = poly(λ) such
that for all λ, d and (crs, kP ) ← Setup(1λ, 1d), the depth of {C ′i}i is at most d

′′
. For i < λ we set

d′i := d
′′

and for i = λ we set d′λ := d.
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Proof of Completeness. Fix λ, d, C, x, w where C is of depth at most d and C(x,w) = 1.
Consider (crs, kP )← Setup(1λ, 1d) and π ← Provecrs(C, kP , x, w). Parse

crs = ({crs′i}i=0,...,λ, crs
∗, {c∗i }i∈[λ], pk∅, r), π =

(
{pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πm

i}i=0,...,λ

)
.

Consider the execution of Verifycrs (C, x, π). For i = 0, . . . , λ− 1 it holds that

C ′i

(
(pkm

i‖0, pkm
i‖1), (msk′i+1, ki+1, d

∗
i+1)

)
= 1

and therefore 1DPNIZK.Verifycrs′i

(
C ′i, (pk

mi‖0, pkm
i‖1), πm

i
)

= 1.

Moreover, since C(x,w) = 1, it holds that 1DPNIZK.Verifycrs′λ (C, x, πm) = 1.

Proof of (Statistical) Soundness.
Notation. For any fixed pair (crs′,msk′) ← 1DPNIZK.Global.Setup(1λ, params) we divide the space
{0, 1}` into “good randomness” and “bad’ randomness”, where a string s′ ∈ {0, 1}` is “bad ran-
domness” respective to (crs′,msk′) if it breaks its soundness, i.e. if

∃(C, x, π) : x /∈ LC ∧ 1DPNIZK.Verifycrs′(C, pk
′, x, π) = 1

where pk′ ← 1DPNIZK.Setupcrs′(msk′ ; s′), and otherwise s′ is “good randomness”.

The following lemma follows immediately from the ε-soundness of 1DPNIZK if ε(λ) = 2−λ ·negl(λ):

Lemma 4.3. For every pair (crs′,msk′)← 1DPNIZK.Global.Setup(1λ, 1d) and every set S ⊂ {0, 1}`
of size at most 2λ,

Pr
r

$←{0,1}`
[∃s ∈ S, s⊕ r is bad randomness respective to (crs′,msk′)] = negl(λ) .

We now proceed with the proof of soundness. Fix λ, d and a circuit C ∈ Cd. Consider the
random variable crs ← Setup(1λ, 1d) and the corresponding circuits {C ′i}i=0,...,λ−1 as described in
step (b) of Provecrs. Parse

crs = ({crs′i}i=0,...,λ, crs
∗, {c∗i }i∈[λ], pk∅, r)

and recall that crs′i was computed as
(
crs′i,msk′i

)
← 1DPNIZK.GlobalSetup(1λ, 1d

′
i) and r

$← {0, 1}`.
Moreover, the values {c∗i }i∈[λ] were compute as

(c∗i , d
∗
i )← SBCS.Commit(crs∗, (msk′i, ki))

where crs∗ ← SBCS.Gen(1λ, 1p+λ) and ki ← PRF.Setup(1λ).
For all i ∈ [λ] consider the set of strings Si := {PRF.Evalki(mi)}mi∈{0,1}i . Then due to Lemma

4.3, it holds that

Pr
r

$←{0,1}`
[∃s ∈ Si, s⊕ r is bad randomness respective to (crs′i,msk′i)] = negl(λ) . (1)

Assume that there exist (x, π) such that x /∈ LC and Verifycrs(C, x, π) = 1. Parse

π =
(
m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πm

i}i=0,...,λ

)
.
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• Assume that there exists some j ∈ [λ] such that the value pkm
j−1

(as appears in π) was

computed “honestly” and the value pkm
j

(as appears in π) wasn’t computed “honestly”, i.e.
assume that

pkm
j−1

=

{
1DPNIZK.Setupcrs′j−1

(msk′j−1 ; r ⊕ PRF.Evalkj−1
(mj−1)) j − 1 > 0

1DPNIZK.Setupcrs′0(msk′0 ; s
$← {0, 1}`) j − 1 = 0

and
pkm

j 6= 1DPNIZK.Setupcrs′j (msk′j ; r ⊕ PRF.Evalkj (m
j)) .

Due to soundness of 1DPNIZK respective to (crs′j−1,msk′j−1) and pkm
j−1

(which holds with
all but negl. prob due to Eq. (1)), and since we assume that Verifycrs(C, x, π) = 1 and

in particular that 1DPNIZK.Verifycrs′j−1

(
C ′j−1, pk

mj−1
, (pkm

j−1‖0, pkm
j−1‖1), πm

j−1
)

= 1, with

all but negl. prob, there exists a a string ŵj−1 such that

C ′j−1

(
(pkm

j−1‖0, pkm
j−1‖1), ŵj−1

)
= 1 . (2)

Parse ŵj−1 = (m̂skj , k̂j , d̂
∗
j ), then Eq. (2) in particular means that

pkm
j

= 1DPNIZK.Setupcrs′j (m̂skj ; r ⊕ PRF.Evalk̂j (m
j)) .

Since we assume that pkm
j

wasn’t generated honestly, i.e. that

pkm
j 6= 1DPNIZK.Setupcrs′j (msk′j ; r ⊕ PRF.Evalkj (m

j)) ,

it follows that (m̂skj , k̂j) 6= (msk′j , kj). However, Eq. (2) also implies that

SBCS.Ver
(
crs∗, c∗j , (m̂skj , k̂j), d̂

∗
j

)
= accept ,

and therefore the decommitment d̂∗j breaks the soundness of SBCS respective to (crs∗, c∗j ) and

the pair of messages (msk′j , kj) and (m̂skj , k̂j). Since the soundness of SBCS respective to

(crs∗, c∗j ) holds with all but negligible probability, it follows that the probability that pkm
j−1

was computed “honestly” and pkm
j

wasn’t computed “honestly” is negligible.

Since for j−1 = 0 the value pkm
j−1

is always generated honestly during Setup, an inductive argument
implies that with all but negligible probability all of the values pk∅, pkm

1
, . . . , pkm

λ−1
, pkm ∈ π were

generated honestly.
Lastly, the soundness of 1DPNIZK respective to (crs′λ,msk′λ) and pkm implies that with all but

negligible probability there is no (x,C, πm) such that

x /∈ LC ∧ 1DPNIZK.Verifycrs′λ (C, pkm, x, πm) = 1 .
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Proof of (Programmable CRS) Zero-Knowledge. Let 1DPNIZK.S = (S1,S2) be the single-
statement zero-knowledge simulator of 1DPNIZK and define the zero-knowledge simulator S =
(S1,S2) as follows:

• S1(1λ):

1. For i = 0, . . . , λ compute (crs′i,msk′i)← 1DPNIZK.GlobalSetup(1λ, 1d
′
i).

2. Sample r
$← {0, 1}`.

3. Compute crs∗ ← SBCS.Gen(1λ, 1p+λ) and for i ∈ [λ] sample (c∗i , d
∗
i )← SBCS.Commit(crs∗, 0p+λ).

4. Compute (pk∅, τ∅)← 1DPNIZK.S1(crs′0).
5. Output crs := ({crs′i}i=0,...,λ, crs

∗, {c∗i }i∈[λ], pk
∅, r) and τ := τ∅.

• S2(C, crs, τ, x):

1. Parse crs = ({crs′i}i=0,...,λ, crs
∗, {c∗i }i∈[λ], pk

∅, r) and τ = τ∅.

2. Compute m
$← {0, 1}λ and for i ∈ [λ] let mi denote length-i prefix of m (i.e. mi =

m1m2 . . .mi). In particular denote m0 = ∅ and mλ = m.

3. For i = 0, . . . , λ− 1 do:

(a) For b ∈ {0, 1} compute

(pkm
i‖b, τm

i‖b)← 1DPNIZK.S1(crs′i+1) .

(b) Compute

πm
i ← 1DPNIZK.S2

(
crs′i, C

′
i, pk

mi , τm
i
, (pkm

i‖0, pkm
i‖1)
)
.

4. Compute
πm ← 1DPNIZK.S2

(
crs′λ, C, pk

m, τm, x
)
.

5. Output π :=
(
m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πm

i}i=0,...,λ

)
.

We now prove indistinguishability via a sequence of 2 + 3λ hybrids:

Hybrid H0. The real Setup,Prove algorithms.

For i = 0, . . . , λ− 1 we define the hybrids {Hi,j}j∈[3] and consider the sequence

H0, (H0,1,H0,2,H0,3), (H1,1,H1,2,H1,3), . . . , (Hλ−1,1,Hλ−1,2,Hλ−1,3),Hλ .

Hybrid Hi,1. Note that in the previous hybrid, 1DPNIZK public-keys respective to crs′i are sam-
pled with real randomness, and msk′i is not used elsewhere. We therefore can simulate them and

proofs respective to them. Formally, we change the way that values of the form pkm
i−1‖b and πm

i

are generated:
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• If i = 0, change the way that pk∅ is generated during Setup:

(pk∅, τ∅)← 1DPNIZK.S1(crs′0) .

If i > 0, change the way that pkm
i−1‖b is generated during the (i− 1)th iteration of Step (3)

of Prove:
(pkm

i−1‖b, τm
i−1‖b)← 1DPNIZK.S1(crs′i) .

• Change the way that πm
i

is generated during the ith iteration of Step (3) of Prove:

πm
i ← 1DPNIZK.S2

(
crs′i, C

′
i, pk

mi , τm
i
, (pkm

i‖0, pkm
i‖1)
)
.

HybridsHi−1,3 andHi,1 are indistinguishable due to the single-statement zero-knowledge of 1DPNIZK
respective to crs′i.

Hybrid Hi,2. Note that in the previous hybrid, the value d∗i+1 is never used. In this hybrid we
change the way that the commitment c∗i+1 is computed:

(c∗i+1, d
∗
i+1)← SBCS.Commit(crs∗, 0p+λ) .

Hybrids Hi,1 and Hi,2 are indistinguishable due to the hiding of SBCS.

Hybrid Hi,3. Note that in the previous hybrid, the value ki+1 is only used when computing

rm
i‖b := r ⊕ PRF.Evalki+1

(mi‖b)

during Prove. In this hybrid we sample instead rm
i‖b $← {0, 1}`. Hybrids Hi,2 and Hi,3 are indis-

tinguishable due to the pseudorandomness of PRF.

Hybrid Hλ. Note that in the previous hybrid (Hλ−1,3), 1DPNIZK public-keys respective to crs′λ
are sampled with real randomness, and msk′λ is not used elsewhere.

Moreover, the values m which are used by the prover when answering proof queries are sampled
uniformly at random from {0, 1}λ. Since the adversary is allowed to make at most a polynomial
number of queries, with all but negligible probability the prover does not sample the same m for
two different proof queries. In that case, for every pkm that is sampled respective to crs′λ, the prover
generates at most a single proof.

We therefore can simulate those proofs with the single-statement zero-knowledge simulator of
1DPNIZK. Formally, we change the way that values of the form pkm and πm are generated:

• Change the way that pkm is generated during the (λ− 1)th iteration of Step (3) of Prove:

(pkm, τm)← 1DPNIZK.S1(crs′λ) .

• Change the way that πm is generated during Step (4) of Prove:

πm ← 1DPNIZK.S2
(
crs′λ, C, pk

m, τm, x
)
.

HybridsHλ−1,3 andHλ are indistinguishable due to the single-statement zero-knowledge of 1DPNIZK
respective to crs′λ. This hybrid is identical to the simulator, which completes the proof.
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