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1 Introduction
This document provides a survey on commonly used computational problems on
lattices, the state of the art of lattice cryptanalysis, and discusses several important
implementation aspects.

Most of lattice-based cryptography relies on the assumption that the SIS and LWE
problems (and structured variants thereof like Ring-SIS/LWE or Module-SIS/LWE)
are computationally intractable even for quantum computers. Section 2 recalls basic
de�nitions, formally de�nes the above assumptions, and provides a survey over known
techniques to attack them on classical and quantum computers. Section 3 deals with
all implementation aspects of lattice-based cryptography, including potential problems
with lattice trapdoors and side-channel attacks.

2 Security Issues
We �rst focus on security issues from a theoretical point of view. After some de�nitions,
we introduce mostly used security assumptions related to lattices, then consider
cryptanalysis and �nally give some words about quantum random oracles.

2.1 De�nition and Notation
Vectors are denoted in bold lower-case letters and bold upper-case letters will denote
matrices. The Euclidean and in�nity norm of any vector b ∈ Rm will be denoted
by ‖b‖ and ‖b‖∞, respectively. The Euclidean norm of matrix B ∈ Rm×n with
columns (bi)i≤n is ‖B‖ = maxi≤n ‖bi‖. When B has full column-rank, we let B̃
denote its Gram-Schmidt orthogonalization.

2.2 Lattices
A lattice L is the set of integer linear combinations of linearly independent basis
vectors (bi)i≤n living in Zm. We work with q-ary lattices, for some prime q.

De�nition 1 Letm ≥ n ≥ 1, a prime q ≥ 2 andA ∈ Zn×mq and u ∈ Znq , de�ne the
lattice Λq(A) := {e ∈ Zm | ∃s ∈ Znq s.t. A> · s = e mod q} as well as

Λ⊥q (A) := {e ∈ Zm | A · e = 0n mod q},

as well as

Λu
q (A) := {e ∈ Zm | A · e = u mod q}.,

which is a shift of the lattice Λ⊥q (A) since, for any arbitrary t ∈ Λu
q (A), we have

Λu
q (A) = Λ⊥q (A) + t.

For a lattice L, let ρσ,c(x) = exp(−π‖x− c‖2/σ2) for x ∈ L, a vector c ∈ Zm and a
real σ > 0. The discrete Gaussian of support L, center c and parameter σ is

DL,σ,c(y) = ρσ,c(y)/ρσ,c(L)

for any y ∈ L, where ρσ,c(L) =
∑

x∈L ρσ,c(x). The distribution centered in c = 0 is
denoted by DL,σ(y).

It is well-known that one can e�ciently sample from a Gaussian distribution with
lattice support given a su�ciently short basis of the lattice.
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Lemma 2.1 ([BLP+13, Le. 2.3]) There exists a PPT algorithm GPVSample that takes
as inputs a basisB of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖·Ω(

√
log n), and outputs

vectors b ∈ L with distribution DL,σ .

We also rely on the trapdoor generation algorithm of Alwen and Peikert [AP09],
which re�nes the technique of Gentry et al. [GPV08].

Lemma 2.2 ([AP09, Th. 3.2]) There is a PPT algorithm TrapGen that takes as inputs
1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Zn×mq

and a basisTA of Λ⊥q (A) such thatA is within statistical distance 2−Ω(n) to U(Zn×mq ),
and ‖T̃A‖ ≤ O(

√
n log q).

2.3 Assumptions and reductions
Most of lattice-based cryptography relies on the assumption that the SIS and LWE
problems [Reg05b] (and structured variants thereof like Ring-SIS/LWE [Mic02, SSTX09,
LPR10] or Module-SIS/LWE [BGV12, LS15]) are computationally intractable even for
quantum computers.

De�nition 2 Let n,m, q, β be functions of λ ∈ N. The Short Integer Solution problem
SISn,m,q,β is, given A←$U(Zn×mq ), �nd x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.

The SIS∞n,m,q,β is de�ned in the same way with the di�erence that the Euclidean norm
‖x‖ is replaced by the in�nity norm ‖x‖∞.

If q ≥
√
nβ and m,β ≤ poly(n), then standard worst-case lattice problems with

approximation factors γ = Õ(β
√
n) reduce to SISn,m,q,β (see, e.g., [GPV08, Se. 9]).

De�nition 3 Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z. For
s ∈ Znq , let As,χ be the distribution obtained by sampling a←↩ U(Znq ) and e←↩ χ, and
outputting (a,aT · s+ e) ∈ Znq ×Zq . The Learning With Errors problem LWEn,q,χ asks
to distinguishm samples chosen accordingly to As,χ (for s←↩ U(Znq )) andm samples
chosen accordingly to U(Znq × Zq).

If q is a prime power, B ≥
√
nω(log n), γ = Õ(nq/B), then there exists an

e�cient sampleable B-bounded distribution χ (i.e., χ outputs samples with norm
at most B with overwhelming probability) such that LWEn,q,χ is at least as hard
as SIVPγ (see, e.g., [Reg05a, BLP+13]). Similarly, if αq = Ω(

√
n), standard worst-

case lattice problems with approximation factors γ = O(α/n) reduce to LWEn,q,α
[Reg05a, BLP+13].

Ideal Lattices. Letting q be a prime and N = 2r for some r ∈ N+, we consider
the polynomial rings R = Z[X]/〈XN + 1〉 and Rq = Zq[X]/〈XN + 1〉. Each ring
element f ∈ R (resp. f ∈ Rq) is thus a polynomial f =

∑N−1
i=0 fiX

i of degree at
most N − 1 in Z[X] (resp. Zq[X]). Each f ∈ R can be associated with the vector
(f0, f1, . . . , fN−1) ∈ ZN containing its coe�cients. When speaking of the norm of a
polynomial f ∈ R, we mean the norm of its coe�cient vector. We thus use the standard
norm de�nitions ‖f‖1 =

∑N−1
i=0 |fi|, ‖f‖2 = (

∑N−1
i=0 f2

i )1/2 and ‖f‖∞ = maxi |fi|.
For any g ∈ Rq and g =

∑
i ḡiX

i, we identify each ḡi with an element gi ∈
[− q−1

2 , q−1
2 ] such that ḡi = gi mod q. For a positive integer α > 0, Sα = {a ∈ R |

‖a‖∞ ≤ α} denotes the set of all elements in R with `∞-norm at most α.
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De�nition 4 ([LS15]) Let n,m be positive integers and let a real β > 0. TheModule-
SIS (M-SISq,n,m,β) problem is, given A←$U(Rn×mq ), to �nd a non-zero z ∈ R such
thatA · z = 0 and 0 ≤ ‖z‖ ≤ β.

De�nition 5 ([LS15]) Let n,m be positive integers and letχ a distribution overRq . The
Module-LWE (M-LWEq,n,m,χ) problem is to distinguish betweenm uniform samples
(ai, bi)←$U(Rnq ×Rq) andm samples (ai, bi) ∈ Rnq ×Rq , where ai←$U(Rnq ) and
bi = a>i s + ei for each i ∈ [m], with s←$χn.

Some applications of Module-LWE [DPLS18] use a distribution χ which is simply the
uniform distribution over S1 = {a ∈ Rq | ‖a‖∞ ≤ 1}, in which case M-LWE retains
its hardness as long as the number of samples is not too large.

There have been in-depths studies of these assumptions in the last decade, the main
focus having been the relationship of (Module-)LWE with standard worst-case lattice
problems [Ajt96, Reg05b, LS15]. We will attempt to better understand the quantum
hardness of these problems: �rst with improved quantum reductions between them
and second with better relationships with standard quantum problems. As this is pure
research, success is highly unpredictable. We cryptanalysis (a hardness proof can be
viewed as a “Cryptanalysis with some hints”).

2.4 Cryptanalysis
While the linear algebra formalism o�ered by LWE and SIS is very convenient for de-
signing and proving the security of cryptographic scheme, their cryptanalysis requires
to take a more geometric point of view. Indeed, the SIS problem can be interpreted as
the problem of �nding a short vector (not necessarily the shortest) in a lattice, while
LWE is more of a lattice decoding problem: given a noisy lattice point, separate the
noise from the lattice point. This conversion will be explained in Section 2.4.2.

Such problems have a long history, predating lattice-based cryptography. Al-
gorithmically, it starts with the lattice reduction algorithm of LLL [LLL82], but the
mathematical notion of lattice reduction itself has been studied for centuries. Neverthe-
less, the precise behavior of those algorithm remains quite hard to understand precisely:
while we have very little doubt about the exponential hardness of lattice problems,
determining precisely how hard it is remains a di�cult question, and progress is still
being made. A brief state of the art is presented in Section 2.4.1.

Furthermore, the growing interest for using lattice with extra algebraic structure
to make scheme more e�cient (Ring-SIS/LWE) opens the door to other approaches.
For quite a while, most structured variants were thought to be essentially as secure
as unstructured one. But recent results, using a quantum algorithm for the Hidden-
Subgroup problem, have led to demonstrate an asymptotic gap of hardness. Such a gap
does not disquali�es structured lattices, but calls for serious scrutiny. Those recent
developments are presented in Section 2.4.1.

2.4.1 Lattice Reductions

Lattice reduction algorithms try to produce a basis with short and nearly orthogonal
vector, given an integer lattice.

Lattice reduction algorithms have been studied for many years in [LLL82, Sch87,
GN08, HPS11, CN11, MW16]. From a theoretical perspective, the best lattice reduction
algorithm is the slide reduction algorithm from [GN08]. Alternatively, we may call the
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BKZ algorithm [Sch87] and its variants [HPS11, CN11], performing best in practice.
Several public implementations of the BKZ algorithm exist [dt17, Sho, AWHT16]. The
BKZ algorithm is parameterized by a block size β and consists of repeated calls to an
oracle solving the Shortest Vector Problem (SVP) in dimension β combined with calls
to the LLL algorithm.

To express the output quality of a lattice reduction, we may relate the shortest
vector in the output basis to the volume of the lattice in the Hermite-factor regime or
to the shortest vector in the lattice, in the approximation-factor regime.

The BKZ-β algorithm repeatedly calls an SVP oracle for �nding (approximate)
shortest vectors in dimension or block size β. After BKZ-β reduction, we call the
basis BKZ-β reduced and in the Hermite-factor regime assume [Che13] that this basis
contains a vector of length ‖b0‖ = δd0 · Vol(Λ)

1/d where δ0 = βΘ(1/β) and where
Vol(Λ) is the volume of the lattice.

In the approximation-factor regime, we are interested in �nding a vector not much
longer than some unusually short vector, i.e. a vector that is shorter than predicted
for a random lattice. If the unusually short vector is the only vector in that range,
this implies we �nd the target vector. Speci�cally, we assume that we can �nd the
unusually short vector v if [ADPS16, AGVW17] if the following condition is satis�ed:√

β/d ‖(v)‖ ≤ δ2β−d
0 Vol(Λ)

1/d
. (1)

Increasing the parameter β leads to a smaller δ0 but also leads to an increase in
run-time; the run-time grows at least exponentially in β. The two main families of
algorithms that can be used to realise the SVP oracle inside BKZ are enumeration and
sieving.

Sieving. The cost of sieving on a random lattice of dimension β is 2cβ+o(β), where
c = 0.292 classically [BDGL16]. Some authors replace o(β) by a constant based on
experiments in [Laa15b], some authors omit it. We note that sieving, while only
singly exponential in time, is also exponential in memory. While it was generally
assumed that sieving remains uncompetitive in practice compared to enumeration,
recent practical improvements suggest that it may soon become competitive [Duc18].

Enumeration. In contrast, enumeration costs 2c1β log β+c2β+c3 [Kan83, MW15] but
only polynomial memory. The worse case complexity of enumeration is 21/(2e)β log β+Θ(β)

and curve �tting of data available in [CN11] suggests that this is indeed the cost of
BKZ as currently widely implemented [APS15].

2.4.2 Solving LWE

We may pursue one of the two following strategies for solving standard LWE over Zq ,
called the primal and dual strategies. There are other possible strategies but we will
point out that they are not competitive.

Primal. Find some s′ such that ‖w − c‖ with w = A · s′ is minimized, under
the guarantee that w is not too far from c. This is known as the Bounded Distance
Decoding problem (BDD). To solve BDD, we may embed the BDD instance into a
unique SVP (uSVP) instance and apply lattice reduction to solve it. We can then
use the estimates for the approximation-factor regime to estimate the required block
size. For the primal attack, only one BKZ call su�ces, i.e. the attack either succeeds
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with high probability or it fails. To solve BDD, we may also perform lattice reduction
followed by lattice point enumeration [LP11, LN13].

Dual. Find a short y in the integral row span of A. This problem is known as the
Short Integer Solution problem (SIS). Given such a y, we can then compute 〈y, c〉. On
the one hand, if c = A · s + e, then 〈y, c〉 = 〈y ·A, s〉+ 〈y, e〉 ≡ 〈y, e〉 (mod q). If
y is short then 〈y, e〉 is also short. On the other hand, if c is uniformly random, so is
〈y, c〉, cf., for example, [LP11].

Note that the dual attack solves the decision version of LWE. Thus, applying the
Cherno� bound to amplify an advantage ε to a constant advantage, we need to perform
≈ 1/ε2 experiments and pick by majority vote. However, for the dual attack, too, we
can assume that one BKZ call is su�cient: A BKZ-β call is followed by ≈ 1/ε2 calls to
LLL. This assumption is justi�ed heuristically in that we can rerandomise an already
reduced basis followed by some light lattice reduction such as LLL to achieve a di�erent
basis which is almost as reduced as the input [Alb17]. Alternatively, [ADPS16] argues
that sieving outputs exponentially short vectors which can be used (assuming they
behave su�ciently close to independent) to amplify the success probability.

Combinatorial Techniques. Both of the above strategies can be augmented with
combinatorial techniques. This is often bene�cial when the LWE secret follows a small
(and/or) sparse distribution, such as a binary {0, 1} or ternary {−1, 0, 1} distribution.
In case of the dual attack, we can view the dual attack as a dimension reduction
technique when applied to only a subset of the columns of A [Alb17]. Then, the
smaller LWE instance (with a larger error) can be solved e.g. using exhaustive search.
In case of the primal attack, we can guess components of the secret to run the attack
on a smaller instance.

Other Methods. The dual strategy can also be realized using variants of the BKW
algorithm [GJS15, KF15]. However, for the parameter choices considered here, these
algorithms are not competitive with lattice-reduction based algorithms.

Furthermore, Arora and Ge proposed an asymptotically e�cient algorithm for solv-
ing LWE [AG11], which was later improved in [ACF+15]. However, these algorithms
involve large constants in the exponent, ruling them out for parameters typically
considered in cryptography such as here.

2.4.3 Quantum Algorithms

The quantum algorithms can be classi�ed into two classes. The �rst classes consist
of algorithm obtained by accelerating classical algorithm using Grover’s quadratic
speed-up. The second class consists in polynomial time algorithm based on the Hidden-
Subgroup Solvers [EHKS14], a generalization of Shor’s quantum factoring algorithm.
While there is no indication that general lattices are vulnerable to this second class
of algorithms, recent results [BS16, CDPR16, CDW17] have shown a hardness gap
between cyclotomic ideal lattices (related to the lattices appearing in Ring-LWE and
Ring-SIS) and general lattices.

Grover-like accelerations. Grover’s algorithm provides a generic quadratic speed-
up to unstructured search problems, and for example forces on to double the key-size
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of symmetric cryptographic primitives, assuming a quantum computer can run as fast
as a classical one.

It is not straigthforward to adapt Grover’s speed-up to lattice algorithm. In the case
of lattice enumeration, the work of Montanaro [Mon15] has lead experts to believe in
a quadratic speed-up for enumeration, which was very recently con�rmed by Aono et
al. [ANS18]. In the case of case of Sieving, speed-ups were also found, yet there are
much less than quadratic [Laa15a], only decreasing the asymptotic complexity from
2.292n+o(n) down to 2.265n+o(n). Moreover, such algorithm would require exponential
amount of Quantumly accessible RAM, so even if they appear theoretically more
promising than enumeration, their practical implementation may be vey costly or
unfeasible.

This unresolved comparison makes post-quantum security estimate rather delicate,
unless one is ready to pay for a comfortable margin. It should also be noted that dust
has not yet fully settled, as the latest asymptotic improvements are only a few years
old.

Hidden-Subgroup based algorithm for algebraic lattices. The main drawback
of lattice-based cryptography is its large memory and bandwidth footprints: a lattice
is represented by a basis, i.e. a m× n matrix for a dimension m of several hundreds.
For e�ciency reasons, it is tempting to rely on structured lattices, such as lattices
generated by a circulant matrix. The earliest example of such a cryptosystem is the
NTRUencrypt proposal from Ho�stein et al. [HPS98]. Algebraically, those lattices
can be viewed as ideals or modules over cyclotomic number �elds.

Nevertheless, there is no guarantee that hard lattice problems remain hard on
particular classes of structured lattices, and indeed, a series of results [EHKS14, CGS14,
BS16, CDPR16, CDW17] have lead to new quantum algorithms solving certain ideal
lattice problems. To the best of our knowledge, the same problems remain hard over
arbitrary lattices, even with a quantum computer. More precisely, for certain sub-
exponential approximation factors α, α-SVP on ideal lattices admit a polynomial-time
algorithm, as depicted in Figure 1. A detailed survey on these results can be found
in [Duc17].

The impact of these new algorithm remain nevertheless unclear: beyond breaking
some exotic lattice-based cryptosystem directly based upon principal ideal of cyclo-
tomic rings (namely, the original FHE scheme of Gentry [Gen09] and the Soliloqy
encryption scheme [CGS14]), we have not found yet how to apply them to Ring-SIS
and Ring-LWE. In other words, while we have proof that such problem are at least as
hard as ideal-SVP [Mic02, SSTX09, LPR10], we do not know of any converse reduction.

2.4.4 Open Problems

The most important question is certainly the quantum security of Ring-LWE and
Ring-SIS. While not directly a�ected by the quantum algorithm discussed above, their
security must be questioned more than ever, as the best guarantee for a security assump-
tion is the resistance to years of relentless cryptanalysis e�ort. Such a di�cult (and
ideally impossible) goal is fortunately paved with interesting intermediate and more
realistic results. For example, what can be done using an unlimited pre-computation,
or can we determine precisely the performance of the quantum Ideal-SVP algorithm.

Yet another crucial goal when it comes to practice is also to quantify as precisely
as possible the hardness under known approaches. To this end, we must go beyond the
asymptotic complexity discussed above, and propose heuristic improvements that could
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Figure 1: Best known quantum algorithm for general α-SVP (left), and for α-SVP in
cyclotomic ideal lattices (right).

be asymptotically negligible, yet quite signi�cant in practice. While such an e�ort has
been done for enumeration, sieving seems to have, up to recent work mostly subject
to asymptotic studies; this seems to be a question to prioritize. Developing trade-
o�s between enumeration and sieving also seems like an important question, as the
exponential memory requirement of sieving will become problematic, counterbalancing
its better asymptotic running time.

2.5 Quantum Random Oracles
Building provably secure cryptosystems in a classical setting (i.e., without assuming
quantum access) has been the focus of intensive research in the last decades. Con-
sidering provable security in a post-quantum setting comes with a number of new,
sometimes quite subtle, challenges. Tackling these will be one of the goals of this task,
which will set the foundations for a number of later tasks.

Provable security means that one proves security of a given cryptosystem relative
to some hard computational assumption by means of a security reductions: one shows,
via a reduction, that if the computational assumptions holds, then the cryptosystem is
secure in some well de�ned security model. Such a security model is usually given as an
interactive probability experiment in which an adversary is run. We refer to standard
text books by Goldreich [Gol01] and Katz/Lindell [KL07]. The experiment precisely
de�nes the adversary’s capabilities and its winning condition. In a post-quantum world,
an adversary may access some parts of the system via a quantum computer. This
is in particular the case for so called “o�ine” primitives, i.e., cryptographic building
blocks that can be implemented and executed without having to interact with the
whole system. For example, if the security model provides the adversary access to an
idealized hash function, then it is realistic to assume that the access is "quantum". This
is called the quantum random oracle model (QROM) [BDF+11]. We will study a number
of relevant advanced security models and model their post-quantum counterparts.
To this end we will also consider objects like the quantum ideal cipher model or the
quantum random permutation model. One central question will be how to even de�ne
the concept of “indi�erentiability” in the quantum setting.

Once quantum security models are de�ned, the next step is to provide general
techniques for proving security in these models. Again, compared to the classical
setting, a number of subtleties arise in the quantum world. For example, one cannot use
the rewinding technique, which is a popular technique for proving classical security
of signature schemes. Neither can we use pre-image awareness of a quantum random
oracle, which has been a crucial technique in almost all classical random oracle proofs.
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Open Problems. We intend to develop a toolbox of techniques to deal with general
provable security problems in quantum models. This will be crucial input to the other
part of the project that will use the toolbox to provide provably secure and e�cient
cryptosystems in the QROM. We will also look at generic implications between basic
primitives in the QROM. Another task will be to �nd useful relaxations of the QROM
such that security proofs are still meaningful in the quantum setting, but are easier
to execute. A major problem in the QROM setting is the tightness of the security
reduction. In particular, almost all known security reductions are highly non-tight.
This, in turn, means a massive increase in the system parameters that usually renders
the cryptographic primitive rather ine�cient. The central open problem in this setting
is to �nd out if the non-tightness is inherent or if tightness can be improved with more
sophisticated security reductions.

3 Implementation issues
We now consider implementation issues related to lattice-based cryptography. We
�rst survey lattice trapdoors and then talk about side channel attacks.

3.1 Trapdoors
A trapdoor function is a function that is e�ciently computable by anyone, but can
only be e�ciently inverted using a secret information, called the trapdoor, built at
the time of the function generation. In lattice-based cryptography, the function is
typically associated with a lattice, and the trapdoor generally consists of a short basis
of that lattice, c.f. Def. 2.2. Unlike trapdoor functions like RSA, those in lattice-based
cryptography are not injective. This means that when it is inverted (using the trapdoor),
a choice should be made among pre-images. It turned out that the simplest inversion
algorithms (e.g., Babai Nearest Plane’s algorithm [Bab86]) lead to a statistical leakage
of the trapdoor. Early lattice signature schemes were completely broken because of
this leak [NR09, DN12b]. Fortunately, sampling the preimage according to a discrete
Gaussian distribution that does not depend on the choice of the trapdoor basis is
a provably safe countermeasure [Kle00, GPV08]. While this is in theory a simple
algorithm, obtaining a practical implementation raises numerous issues that make the
use of trapdoors prohibitive in many cases.

3.1.1 Generating and using lattice trapdoors

Generating lattices with trapdoors has been a major research focus for decades and
the �rst attempt can be traced back to Merkle and Hellman in 1978 [MH06]. Until the
NTRU encryption scheme [HPS98], most attempts have been broken, as the generated
lattices were more vulnerable than random ones. One of the achievements of modern
lattice-based cryptography was to provide a method of generating trapdoors [Ajt99]
for lattices that are uniformly distributed in a family for which there is signi�cant
evidence that �nding short vectors with non-negligible probability is computationally
hard [Ajt96]. The most e�cient construction to date is the one of Micciancio and
Peikert [MP12] that relies on a so-called gadget matrix corresponding to base-2 rep-
resentation of integers. The construction of [MP12] has other virtues, in particular
some form of homomorphism that led to very powerful attribute-based encryption
schemes [GVW15], among others.
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However, using lattice trapdoors remains quite impractical with current tech-
niques. Two signi�cant obstacles can be pointed out. The �rst concerns the memory
requirement of the technique of [Kle00, GPV08], which requires storing the full Gram-
Schmidt-Orthogonalisation (GSO) of the secret short basis. This matrix remains huge
even for structured lattices (e.g., module lattices), because the naive GSO algorithm
breaks the structure of the basis. Fortunately, new orthogonalisation algorithms should
allow to tackle this issue [DP16]. The second obstacle is the concrete arithmetic used
for computing the GSO. Exact arithmetic is prohibitive, as the sizes of the numera-
tors and denominators of the rationals involved are too large. Instead, one may rely
on �oating-point arithmetic, but the known bounds on the numerical precision for
ensuring security are currently too high for e�cient implementations. Again, recent
theoretical results [BLR+18] suggest tools to solve this practical issue.

3.1.2 Statistical arguments

The use of statistical arguments is even more prevalent in lattice-based cryptography
than in classical cryptography, and this fact is even more acute in the case of algorithms
manipulating lattice-trapdoors, for two reasons:

• All known trapdoor samplers are parameterized with a standard deviation, and
their correctness (in the sense that they behave similarly to a perfect oracle)
increases continuously with the standard deviation. The most natural way
to modelise that correct behavior is to use measures of divergence between
distributions;

• More speci�c to trapdoor samplers is the fact that they rely on �oating-point
arithmetic (FPA): even among lattice-based algorithms, this is quite speci�c to
trapdoor samplers and until now, there has been no way to avoid that in all
genericity. FPA needs to be handled with care as it changes the behavior of
an algorithm: for example, rounding 0.5 + ε to the nearest integer yields very
di�erent outcomes whether FPA errors make ε to be positive or negative. In the
case of lattice trapdoor algorithms, statistical arguments have so far proved to
be the best solution for handling uncertainties introduced by FPA;

As usually in cryptography, the statistical distance has been a valuable tool to pro-
vide statistical arguments for lattice trapdoor algorithms. This was done in [GPV08] to
estimate the required standard deviation, then the analysis was re�ned and extended to
analyze the required precision in [DN12a, LP15]. However, the analysis was not opti-
mal and in particular the required precision (about λ bits of precision, where λ denotes
the security parameter) precluded the e�cient use of lattice trapdoor algorithms.

More speci�c divergences can provide tighter arguments as they are more �t
to the speci�cities of lattice-based cryptography, for example the Kullback-Leibler
divergence [PDG14, DLP14] allows to decrease the required precision down to about
λ/2 bits.

In lattice-based cryptography, the most powerful metric to this date has been
the Rényi divergence [BLL+15, Pre17]. As the e�ciency of the latter depends on
the number of queries granted to an attacker, it allows much tighter proofs under
reasonable assumptions for lattice-trapdoor algorithms [BLL+15, Pre17, HLS18], but
is sometimes delicate to use as it is not a distance.

Other interesting notions have been introduced along the way. The max-log
distance [MW17] can be combined with the Rényi divergence [Pre17] for maximal
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e�ciency and ease of use. Finally, [MW18] introduced a new notion of adversarial
advantage, which in the case of sampling algorithms allows sharper arguments for
decision games. Unfortunately, the arguments are currently not as sharp as in the case
of the Rényi divergence for search games.

3.1.3 Implementation

Because of the conjoint use of (high-precision) �oating-point arithmetic and discrete
Gaussian, it has long been delicate to implement lattice-trapdoor algorithms. Even
though the original �rst mention of trapdoor sampling [GPV08] dates back to 2008, it
has not been publicly implemented before the proof-of-concept signature scheme of
[EB13].

A line of works by Lyubashevsky, Prest and their co-authors has set to design
and implement e�cient schemes based on lattice trapdoors. In [DLP14], the IBE from
[GPV08] was implemented1, and algorithmic improvements were proposed and imple-
mented in [LP15]. These two articles provide links to open-source implementations.
Another implementation of the IBE from [DLP14] was proposed in [MSO17].

More recently, Ducas and Prest [DP16] proposed and implemented an algorithmic
improvement to trapdoor sampling, and their algorithm was subsequently implemented
in the signature scheme Falcon2 [PFH+17] and the hierarchical IBE LATTE [CG17].

In parallel, the lattice trapdoor algorithm of Micciancio and Peikert [MP12], which
relies on speci�c algorithmic tricks, has been implemented in the IBE scheme of
[GPR+17]. [GM18] proposed a few algorithmic improvements to it, and these improve-
ments were incorporated in the library PALISADE3.

A building block of trapdoor sampling which is particularly tricky to implement
is the generation of discrete Gaussians over Z. Interesting algorithms were proposed
and implemented in [MW17, HLS18, KHR+18]. Finally, since generation of discrete
Gaussians is delicate to implement properly, a testing suite has been proposed4 in
[HO17] to evaluate the “quality” of Gaussians.

3.1.4 Alternatives to trapdoors

Another avenue for limiting the cost impact of lattice trapdoors is to design solutions
that do not necessitate them.

As an alternative to GPV signatures [GPV08] and their extensions (which rely
on lattice trapdoors), Lyubashesky [LM08] proposed a lattice version of Schnorr-like
signatures [Sch89]. Nevertheless, a naive adaptation to the lattice setup of Schnorr
signatures would also be susceptible to statistical leakages. It is solved by a technique
called rejection sampling: knowing two distributions D1 and D2 which are somewhat
close, it is possible to transform samples following distributionD1 to samples following
D2, by rejecting some of them according to a well-crafted rejection process (see, e.g.,
[Lyu12]). While care is required, this procedure remains nevertheless signi�cantly
simpler than generic Gaussian sampling [Kle00, GPV08].

Other cryptographic primitives require only one or a few short vector(s) in the
lattice instead of a full short basis. This/these short vector(s) are sometimes called
a partial trapdoor. For example, Regev’s public-key encryption scheme uses only

1https://github.com/tprest/Lattice-IBE
2https://falcon-sign.info/impl/falcon.h.html
3https://git.njit.edu/palisade/PALISADE
4https://github.com/jameshoweee/glitch
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one such vector [Reg05b]. Other examples include the traitor tracing broadcast en-
cryption scheme from [LPSS14] and the inner-product functional encryption scheme
from [ALS16].

3.1.5 Open questions

Trapdoor sampling algorithms are not completely practical, for a few reasons.

First, they generally have to rely on �oating-point arithmetic, and this brings up
the question of the required precision. While recent works [Pre17, PFH+17] have
shown that the standard value of 53 bits of precision is su�cient in many cases, there
remains room for improvement. In particular, these works assume that we are in the
presence of search problems, and whether one can achieve the same level of e�ciency
for decision problems remains an open problem.

An interesting open question which would solve the previous one is whether one
can implement lattice trapdoors without �oating-point arithmetic. This could be for
example achieved via algorithmic tricks.

On a related topic, the generation of discrete Gaussians remains delicate to this
date, and no fully satisfying solution has been proposed yet. Therefore, �nding such a
solution is another open question.

Another interesting direction is to improve the generation of trapdoors themselves.
Indeed, the generation of trapdoored lattices leads to quite large lattice parameters
impacting the e�ciency of the overlying scheme. In particular, it would be interesting
to assess whether lattice-coding techniques (e.g., from electrical engineering) could
be imported in cryptography for this purpose. Additionally, while the homomorphic
properties of lattice trapdoors were mostly a theoretical feature, it could be of practical
interest to optimize them for low-degree homomorphisms, and use this limited, low-
degree, homomorphisms in cryptographic design.

3.2 Side channel attacks
Implementations of mathematically secure algorithms might still by vulnerable to
physical attacks. This applies in particular to embedded applications since the attacker
is in possession of the device which executes the algorithm. Such an adversary is free
to not only control the input to the device and closely monitor the device, observing
its physical properties whilst it performs the cryptographic operations. These physical
variables, such as the timings required to perform computations, or the instantaneous
power consumed during execution of the algorithm, may be sampled and recorded
and used to derive intermediate values of the algorithms. In this report we examine
possible attack vectors for implementations of lattice-based algorithms and discuss
possible countermeasures to prevent these kind of attacks. We also give an overview of
the state of the art in the �eld of side-channel analysis of lattice-based cryptography.

3.2.1 Physical Attacks

In this section, we discuss attacks exploiting physical properties of an implementation
to gain knowledge of the secret key used in the executed algorithm. One distinguishes
between passive attacks in which the attacker only monitors information, like execution
time, power consumption, or electromagnetic radiation, and active attacks in which
the attacker is allowed to interfere in the execution of the cipher.

PROMETHEUS-WP3-D3.1.pdf Page 14/29



PROMETHEUS 780701 — D3.1: Survey on computational problems, cryptanalysis, and
basic tools (v1.0)

When dealing with active attacks, one distinguishes between di�erent levels of
invasiveness. A non-invasive attacker is only allowed to modify the environment like
the temperature, the voltage of the power supply, or the duration of clock cycles. These
attacks usually aim to generate a faulty result that can be used to reveal the secret key.
A semi-invasive attacker removes the package material of the device and introduces
faults by shooting at the a speci�c location at the device with light or electromagnetic
radiation. Invasive attackers aim to even alter the device itself and reverse-engineer
the implementation.

Implementations are vulnerable to timing attacks if their execution time depends
on secret data. Power analysis exploits the fact that in CMOS technology the dynamic
power consumption is dominating in comparison to the static power consumption.
An attacker executes the algorithm and measures the power consumption during the
execution. The most important types of attacks on the power consumption leakage
are simple power analysis (SPA) and di�erential power analysis (DPA).

Fault attacks The idea of fault attacks is to induce a fault into a circuit and use the
faulty output to get information about the secret key. This can be achieved by high
temperature, unsupported supply voltage or current, excessively high overclocking,
strong electric or magnetic �elds, or even ionizing radiation. Fault attacks are usually
non-invasive as the induced fault is only temporary and the device is not permanently
damaged.

Timing attacks When implementing cryptographic algorithms, the developer has
to make sure that the execution time is independent of the secret data that is processed.
Otherwise an attacker might be able to exploit the information about the execution
time. Such attacks should not only be considered for embedded devices for which the
attacker has physical access to, but also remote timing attacks are a threat that must
be considered as shown by Brumley and Boneh [BB03]. Timing information can be
leaked by conditional branches, instructions with non-constant execution time, and
memory accesses that trigger cache hits or misses [Ber05].

Simple power analysis Simple power analysis [KJJR11] works similar to timing
attacks. However, while timing attacks exploit the timing information of one or many
executions of the algorithms, one or a few power traces of the executed algorithms
are used to perform a simple power analysis. An attacker uses visual examination
to identify leaking instructions whose execution depends on secret data. Thus, this
attack is especially e�ective when the order of the executed instructions di�ers from
run to run. For instance, an RSA implementation with a naive implementation of the
square-and-multiply algorithm can easily be broken by SPA as the square operations
and multiply operations are usually easily distinguishable in the power trace. Signal-
processing techniques, like frequency �lters, might improve the result and make the
visual inspection easier.

Di�erential power analysis While SPA targets the operation-dependency of the
power consumption, DPA exploits its data-dependency. Introduced in 1998 by Kocher
et al. [KJJR11], DPA (in contrast to SPA) needs many power traces and one analyzes
the set of traces with statistical methods. When performing DPA an attacker does
not attack the whole key at once, but only a part, e.g. one byte. A DPA is divided in
an online phase and an o�ine phase. During the online phase, the attacker runs a
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vast amount of executions of the algorithm to be attacked with di�erent inputs and
measures the power consumption of the target device during each run. DPA requires
a leakage model that is a prediction of the power consumption. During the o�ine
phase, the attacker guesses the key byte and computes the intermediate value that he
considers suitable to apply the power model to. Depending on the power model and
the intermediate value, she assigns the corresponding power trace to one of two sets
where one contains power traces with high predicted power consumption and one
set contains traces with low prediction power consumption. For all power traces, the
attacker stores the di�erence of the means of the sets. If the attack worked, the correct
key guess has a much higher di�erence of means than the other guesses.

t-test A commonly used methodology for side-channel analysis is the t-test leakage
detection method initially proposed in [GJJR11, CDG+13]. For the non-speci�c �xed
vs. random t-test one takes two types of measurements, one with �xed input and one
with random input. The t-statistic t is computed as

t =
µF − µR√
σ2
F

nF
+

σ2
R

nR

where µF , σ2
F , and nF (resp. µR, σ2

R, and nR) denote the mean, variance, and number
of measurements set with �xed input (resp. random input). If the value exceeds the
threshold |t| > 4.5, the test has detected leakage. As this test does not perform an
actual attack and does not consider a certain power model it is called non-speci�c.
Apart from the �xed vs. random t-test it is also possible to perform a semi-�xed vs.
random t-test. Such a test does not �x the input but some intermediate values, e.g.
part of the state of a block cipher to get a more accurate result.

3.2.2 Countermeasures

In this section we discuss di�erent approach to prevent side-channel analysis. Note
that there is not a single countermeasure that can be applied to �x all vulnerabilities,
in practice usually a combination of countermeasures is applied.

Hiding Hiding countermeasures are applied to raise the di�culty for an attacker
to detect sensitive information in a set of power traces. This can be achieved by
introducing additional noise or by trying to equalize the power consumption of all
operations.

The �rst approach can be achieved by other computations that are executed in
parallel or by shu�ing the order of operations. For hardware implementations one
can even instantiate dedicated noise generators to randomize the power consumption.
If shu�ing is applied an attacker needs to perform an extra alignment step before
analyzing the power traces. Otherwise the number of required power traces drastically
increases.

The second approach is more suitable for hardware implementations as in mi-
crocontrollers the developer has only limited in�uence on the power consumption
of an instruction and only one instruction can be executed in parallel (except the
microcontroller features SIMD instructions).
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Masking The idea behind masking is to split a secret value into several shares.
The secret value can only be reconstructed with the knowledge of all shares. The
splitting of the secret value can be performed in a Boolean way or in an arithmetic way.
Boolean masking means that the XOR-sum of all shares results in the secret value and
arithmetic masking means that the arithmetic sum or di�erence of the shares results
in the secret value. There are conversion approaches to switch between arithmetic and
Boolean masking [CGTV15]. The major advantage of masking schemes is that they
allow to prove the side-channel security of an algorithm. Nevertheless, there are still
implementation challenges that have to be taken care of. Otherwise, a provably secure
algorithm might still have a side-channel leakage. To achieve higher-order security, it
is necessary to split the secret value into more shares.

Constant-time implementation To prevent timing attacks and simple power anal-
ysis it is crucial to develop an implementation that has a constant (or at least secret-
independent) execution time. Some pitfalls that should be avoided are:

• Comparison of secret strings: Such a comparison must not stop at the �rst
unequal character.

• Branches: Branches must not be dependent on secret data. Ideally the same
branches are taken for every run of the implementation.

• Table look-ups: On platforms with a cache, table look-ups can have varying
access times. Thus the index must not depend on secret data for such platforms.
In same cases it might be necessary to completely disable caches.

• Compiler optimization: A developer must take care that the compiler does
not remove instructions that are critical for the security of the implementation
but irrelevant for its functionality.

Fault countermeasures The most intuitive way to detect a fault is to utilize re-
dundant computations that are used to check the correctness of the result. Spatial
redundancy is a possible countermeasure for hardware implementations and means
the same operation is executed twice in parallel. This countermeasures has only a
small performance overhead but the area consumption doubles. In contrast to that,
temporal redundancy means executing another operation after the original operations
has been �nished. This can either be an additional decryption after an encryption
operation to check whether the result matches the original plaintext or simply another
encryption to compare both ciphertexts.

For fault attacks that must induce the fault at a speci�c point in time, it is also
possible to randomize the order of the instructions to make an attack harder. Partial
recon�guration on FPGAs can also be used to randomize the location of the circuit
that compute the operation. For linear operations error correcting codes can be used
to detect faults.

3.2.3 Physical security of lattice-based schemes

In this section, we review the state-of-the-art of research on the physical security of
lattice-based cryptography.

Encryption schemes based LWE (and its ring-variant) have also been analyzed for its
resistance against side-channel attacks in several works mainly focusing on DPA. The
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�rst approach to secure LWE against DPA has been proposed by Reparaz et al. in 2015
[RRVV15, RRdC+16]. The authors attempt to protect the secret key by splitting it into
two shares and perform all operations separately on both shares. However, the last step
of the algorithm is a decoding function that is not a linear operation and thus requires
the knowledge of both shares. To solve this problem [RRVV15] proposed a masked
decoder. As this decoder has a number of drawbacks, like being non-deterministic and
increasing the failure rate of the scheme, Reparaz et al. [RdCR+16] proposed another
approach in 2016. In [RdCR+16] not the secret key, but the ciphertext is split into
two shares. This approach introduces a heavy computational overhead as it requires
another run of the decryption during the encryption. Oder et al. [OSPG16] combined
the ideas of [RRVV15] and [RdCR+16] to avoid the aforementioned problems and
also applied a CCA2-conversion to R-LWE to make it secure against adaptive chosen-
ciphertext attackers. Furthermore the masking scheme from [OSPG16] has a proof to
support its claim. Additionally, [RRVV15, RdCR+16, OSPG16] all provide results of
practical measurements to demonstrate that the masking schemes indeed prevent a
leakage. Oder et al. also discuss the fault sensitvity of R-LWE in [OSPG16]. While
these papers focus on encryption and key exchange schemes, the work by Barthe et al.
[BBE+18] proposes a masking scheme for the GLP signature scheme [GLP12]. Their
masking scheme even works for arbitrary orders.

Lattice-based signatures schemes, like BLISS [DDLL13] and GLP [GLP12], have
also been analyzed for their vulnerability to fault attacks in [BBK16] and [EFGT16].
Both papers consider instruction-skipping resulting in potential loop aborts and how
to exploit such a fault. The work of Bindel et al. [BBK16] furthermore examines the
impact of zeroing or randomization of critical values. The proposed countermeasures
mainly boil down to redundant computations that are used for correctness checks.
Another proposed countermeasure is to prevent instruction-skipping is to deliberately
induce a segmentation fault by allocating new memory for every intermediate result.

Bruinderink et al. [BHLY16] also found a cache-timing attack on the signature
scheme BLISS. More speci�cally, they attacked the Gaussian sampler that is used
to generate noise polynomials in BLISS and are able to extract the secret key with
only 3,500 signatures. To prevent timing attacks many implementations of lattice-
based schemes provide a constant or secret-independent execution time, like vectorized
implementations of the GLP signature scheme and the New Hope key exchange for Intel
CPUs [ADPSar, GOPS13]. Furthermore there are also microcontroller implementations
of R-LWE that are protected against timing attacks [POG15, OSPG16].

3.2.4 Open problems

The PROMETHEUS project will extend the work on side-channel attacks and coun-
termeasures on implementations of lattice-based cryptography. In particular, we aim
to study higher-order masking schemes for lattice-based algorithms as the majority
of work from the literature (with the exeception of [BBE+18]) only covers �rst-order
side-channels. We furthermore want to extend previous work with regard to the sub-
missions to the NIST post-quantum standardization process. Most work on LWE-based
schemes can be easily applied to multiple NIST submissions. For signature schemes,
it has not been investigated how the analyses conducted on GLP and BLISS can be
applied to, for instance, Dilithium. Except for supporting the practical security of
NIST submissions, a major target will be targeting side-channel security of advanced
constructions, such as identity-based or attribute-based encryption schemes.
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4 Conclusion
In the context of lattice-based computational problems, cryptanalysis and basic tools for
lattice-based cryptography, a lot of work has already been done and we have considered
the most relevant ones in this document. As shown all along this document, it however
remains several important open problems and Within WP3 of the PROMETHEUS
project, we will consider solving most of them.
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