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are fully secure constructions from bilinear maps for a fairly large class of policies, the situation
with lattice-based constructions is less satisfactory and many efforts were made to close this
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In this work we construct for the first time a lattice-based (ciphertext-policy) ABE scheme
for the function class t-CNF, which consists of CNF formulas where each clause depends on at
most t bits of the input, for any constant t. This class includes NP-verification policies, bit-fixing
policies and t-threshold policies. Towards this goal we also construct a fully secure single-key
constrained PRF from OWF for the same function class, which might be of independent interest.
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1 Introduction

Atrribute-based Encryption (ABE), first introduced in [SW05,GPSW06], is a public key encryption
system that can support multiple users with varying decryption permissions. In this work we focus
on ciphertext-policy ABE schemes, where each ciphertext is associated with a public policy f and
each decryption key is associated with a public attribute x, such that decryption succeeds condi-
tioned on f(x) = 1. One of the main properties of an ABE scheme is the function class of policies
that can be attached to ciphertexts. In fact, ABE was originally suggested as a generalization of
identity-based encryption (IBE), in which each ciphertext is destined to a single attribute x (i.e.
the policies are point functions).

Bilinear Maps Constructions. It was shown in a long line of works that bilinear maps prove
to be useful for the task of constructing IBE and ABE under varying group assumptions. [BF03,
Coc01] constructed the first IBE schemes in the random oracle model. [CHK03, BB04a] showed
constructions in the standard model, however their security was proven under a weaker notion,
called selective security.

A few approaches were suggested to go beyond selective security. [BB04b, Wat05] introduced
the first constructions with full security in the standard model, using a partitioning technique.
Their solutions were proved to be secure via a lossy reduction, where the simulator aborts with
probability that grows with the number of keys owned by the adversary. [Gen06] introduced the
tagging technique, with which he managed to construct a fully secure IBE scheme with a tight
reduction, however the hardness assumption was still related to the number of keys. Finally, [Wat09]
introduced the dual system encryption technique and achieved the first fully secure IBE scheme
with a tight reduction to a fixed assumption.

The first ABE construction was suggested by [SW05] and supported threshold policies. Later,
[GPSW06] constructed a key-policy1 ABE scheme for policies that can be expressed as a linear
secret-sharing (LSSS) access structure and [OSW07] constructed a key-policy ABE scheme for all
formulas. [Wat11] showed a ciphertext-policy ABE construction for LSSS access structures. All of
those works were proved to be secure in the weaker selective mode. The works of [LOS+10,LW12,
KL15,CGKW18] expand the dual system technique of [Wat09] to derive fully secure ABE for LSSS
and recently [KW19] showed a construction for all monotone access structures in NC1.

Lattice-Based Constructions. The emerging interest in hard problems over lattices, which
are believed to be hard even at the presence of quantum machines, led to the development of a
cryptographic toolbox [Ajt96,Ajt99,Reg05] that allows to base the security of various systems over
random instances of such problems. This gave rise to a line of works about lattice-based IBE and
ABE schemes. The first lattice-based IBE constructions were introduced by [GPV08, CHKP12,
ABB10a] and were secure in the selective model. Shortly after, [ABB10b] presented a construction
with full security and [BL16] constructed a fully secure scheme with a tight reduction.

The first schemes to support richer classes of polices were [AFV11,ABV+12], which constructed
ABE for inner product policies and threshold policies respectively. [Boy13] showed key-policy ABE
schemes for LSSS access structures. Lastly, the works of [GVW13,BGG+14] constructed key-policy
ABE for all policies that can be described by a bounded-depth polynomial-size circuit.

1In key-policy ABE the policies are attached to the keys and the attributes are attached to the ciphertexts.
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All of the aforementioned ABE constructions were proved to be selectively secure. The works of
[BV16,GKW16] showed how to boost the security of [GVW13,BGG+14] to an intermediate notion,
named semi-adaptive security, however it is not clear how to further develop those techniques. The
question of whether it is possible to construct fully-secure ABE schemes from lattices beyond point
functions remained open.

Our Contribution. In this work we construct for the first time a lattice-based ciphertext-policy
ABE scheme for the ensemble of function classes t-CNF, which consists of formulas in conjunctive
normal form where each clause depends on at most t bits of the input, for any constant t. Our
construction supports functions of unbounded size, that is, every function consisting of polynomial
number of clauses. Those function classes includes NP-verification policies, bit-fixing policies and
t-threshold policies. Towards this goal we also construct a fully secure single-key constrained PRF
from OWF for the same function class, which might be of independent interest.

1.1 Technical Background

Let us first describe the difference between full security and selective security. The former is modeled
as a game between an adversary A and a challenger C as follows. At the beginning of the game, C
publishes the public parameters of the scheme. At any point of the game, A can query for multiple
decryption keys to attributes x of its choice. In the challenge phase, A chooses a challenge policy
f∗ and C returns a ciphertext respective to f∗. The goal of A is to determine whether this is an
encryption of 0 or 1, and the scheme is secure if it cannot do that as long as none of its queried keys
x are authorized by f∗. The selective security game is identical, except that A has to announce
the challenge policy f∗ before the game begins.

In the latter game the security reduction has the opportunity to generate the public parameters
according to f∗. Selective security proofs usually follow a similar structure, where f∗ introduces a
partitioning of the identity space. The public parameters are generated in the security reduction
such that for all x for which f∗(x) = 0 (i.e. not authorized by f∗) it is possible to simulate a
decryption key, and for all x for which f∗(x) = 1, a key for x would allow to break the hard
problem. Since A can only query for keys of the first type, the reduction can still answer all of the
queries appropriately.

Tagging. In [Gen06] Gentry presented an adaptively secure IBE scheme from bilinear maps, using
a tagging technique as follows. In the real scheme, every ciphertext is associated with a random
tag rct and every key is associated with a random tag rsk. Decryption works as long as the IBE
condition is satisfied and rct 6= rsk. The probability that decryption fails is negligible since the tags
are random. In the security proof, a random degree-Q polynomial P is embedded into the public
parameters, such that it is possible to generate a challenge ciphertext respective to any x with
the tag rct = P (x) and similarly it is possible to generate a key respective to any x with the tag
rsk = P (x). That is, the security reduction can answer any key query and can generate a challenge
ciphertext respective to any x, however if it generates a ciphertext and a key for the same identity
then the decryption fails because they both have the same tag. Recall that in the security game A
is not allowed to query for a challenge and a key respective to the same attribute and therefore it
cannot detect that case. Since P is a random polynomial, the values of P on up to Q points are
distributed uniformly. For that reason security is guaranteed as long as A can only query for up
to Q − 1 keys. The evaluation of P has to be performed on a secret element in the exponent of a
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group. Since it is only possible to compute linear functions over the exponent, the reduction needs
to get information that grows linearly with Q and makes the assumption stronger.

The BGG+ Lattice-Based Construction. A long sequence of works [ABB10b,MP12,GSW13,
AP14,BGG+14] led to a selectively secure key-policy ABE scheme with security based on LWE, for
the function class of all policies that can be described as a bounded-depth polynomial-size circuit.
We now give an overview of their technique.

The public parameters consist of a matrix A, and for each attribute x (resp. policy f) there
is a related efficiently computable matrix Ax ← EncodeX(A, x) (resp. Af ← EncodeF(A, f)).
Encryption for an attribute x is a Dual-Regev encryption (see [GPV08]) respective to the public
matrix Ax, while a decryption key for f is a Dual-Regev key respective to the public matrix Af .
The matrices Ax,Af are cleverly defined s.t., informally, for all x, f

f(x) = 1 ←→ It is possible to convert a ciphertext respective to Ax

to a ciphertext respective to Af .

Let Convert be the “ciphertext conversion algorithm” that satisfies the above condition, then we
can informally say that

f(x) = 1 ←→ Convert(Ax, x, f) = Af .

The property that is important to us, is that Convert works gate-by-gate and therefore respects
function composition. That is, if f = g2 ◦ g1, then for all x it holds that

Convert(Ax, x, f) = Convert (Convert(Ax, x, g1), g1(x), g2) (1)

and therefore
f(x) = 1 ←→ Convert (Convert(Ax, x, g1), g1(x), g2) = Af .

The security proof follows similar lines to other selectively-secure schemes as described at the
beginning of this section. That is, the challenge attribute x∗ is embedded into the public parameters
A such that it is possible to create a challenge ciphertext only respective to Ax∗ = EncodeX(A, x∗),
and it is possible to generate keys only respective to Af = EncodeF(A, f) for which f(x∗) = 0.

1.2 Our Techniques

Identity-Based Encryption. We first describe how to construct a fully secure IBE scheme with
our approach. The main idea is to use the tagging technique of [Gen06], but with a PRF instead
of a random polynomial. The rich function class supported by [BGG+14] allows us to compute a
PRF over a seed that is secretly embedded into the public parameters in the security proof. The
tag of a key for an attribute x is the value of the PRF on the input x, i.e. rx. That is, a key for
x can decrypt any ciphertext respective to x unless the ciphertext tag is equivalent to rx. In the
real scheme the tags of ciphertexts are sampled uniformly, while in the security reduction they are
determined by the PRF seed that is embedded into the public parameters. Details follow.

For all x we let Ux denote the circuit that on inuput σ evaluates the PRF on the point x with
the seed σ. For all r we let Īr denote the circuit that on input r′ returns 1 if and only if r′ 6= r.

The public parameters of the IBE scheme are identical to [BGG+14] and the master secret
key includes a PRF seed σ. To encrypt respective to x, one samples a fresh PRF seed σ′ and
computes the Dual-Regev encryption with the public matrix A′x = Convert(Aσ′ , σ

′, Ux) where
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Aσ′ = EncodeX(A, σ′). To generate a key respective to x, one first computes rx = Ux(σ) and then
generates the Dual-Regev key respective to the matrix Afx = EncodeF(A, fx), where fx = Īrx ◦Ux.
Note that fx(σ′) = Īrx(Ux(σ′)) where rx = Ux(σ). Therefore, if σ = σ′ then fx(σ) = 0, but for
any uniformly sampled σ′, Ux(σ′) 6= Ux(σ) with high probability and therefore fx(σ′) = 1. That is,
with high probability over a uniform σ′ it holds that

fx(σ′) = 1 ←→ σ′ 6= σ

i.e.
Īrx ◦ Ux(σ′) = 1 ←→ σ′ 6= σ .

By the properties of [BGG+14] described above, it holds that

Īrx ◦ Ux(σ′) = 1 ←→ Convert
(
Convert(Aσ′ , σ

′, Ux), Ux(σ′), Īrx
)

= Afx

and therefore
σ′ 6= σ ←→ Convert

(
A′x, Ux(σ′), Īrx

)
= Afx .

That is, whenever σ′ 6= σ it is possible to convert a ciphertext respective to A′x to a ciphertext
respective to Afx and thus to decrypt. However, when σ′ = σ there is no such conversion algorithm.

In the security proof we encode σ in the public parameters, such that it is only possible to
simulate Dual-Regev encryptions respective to matrices of the form Ax = Convert(Aσ, σ, Ux) (where
Aσ = EncodeX(A, σ)) but not respective to any other σ′. The indistinguishability relies on the
pseudorandomness of the PRF and the properties of [BGG+14].

Expanding the Function Class. The main idea here is to replace the PRF with a constrained
PRF. A constrained PRF, first defined in [BW13,KPTZ13,BGI14], allows the key owner to generate
constrained keys σf respective to functions f , with which it is possible to compute the value of
the PRF only on points x where f(x) = 1. More formally, there are two additional algorithms
(Constrain, ConstrainEval) such that if σf = Constrain(σ, f), then for all x for which f(x) = 1 it
holds that ConstrainEval(σf , f, x) = Eval(σ, x), while for all x for which f(x) = 0, σf does not reveal
information about Eval(σ, x).

Our construction uses a cPRF for policies in a function class F in order to construct an ABE
scheme for policies in F . The cPRF has to be single-key adaptively secure, and in addition it has
to satisfy two properties as follows.

• Gradual Evaluation requires that for any f, x for which f(x) = 1, the circuit descriptions of
the algorithms Eval(·, x) and ConstrainEval(Constrain(·, f), f, x) are identical.

• Key Simulation requires an additional public algorithm KeySim(f)→ σ′f that allows to sim-
ulate constrained keys. The keys should be indistinguishable from real constrained keys to a
distinguisher with no access to evaluations on points x where f(x) = 1.

We call a cPRF that satisfies all of those properties a conforming cPRF. The ABE construction
from a cPRF is a generalization of the IBE construction from a PRF. Details follow.

In the encryption algorithm, in order to encrypt respective to a policy f we compute a Dual-
Regev encryption with the public matrix A′f = Convert(Aσ′ , σ

′, Uf ), where Aσ′ = EncodeX(A, σ′)
(as in the IBE construction) and Uf is the circuit description of Constrain(·, f). The key generation
algorithm remains the same as in the IBE construction. To decrypt with a key respective to x, one
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has to first convert the ciphertext to be respective to the matrix A′x. This is done by computing
Convert(A′f , Uf (σ′), Uf→x), where Uf→x is the circuit description of ConstrainEval(·, f, x). Note that

Convert(A′f , Uf (σ′), Uf→x) = Convert(Convert(Aσ′ , σ
′, Uf ), Uf (σ′), Uf→x)

= Convert(Aσ′ , σ
′, Ux) (2)

= A′x

where the last equation holds by definition, and Equation (2) holds since Uf→x ◦ Uf = Ux by
the gradual evaluation property of the cPRF, and since Convert respects function composition as
described in Equation (1).

The rest of the analysis is very similar to the IBE case. The key-simulation property guarantees
that the adversary cannot tell whether the challenge ciphertext f∗ is generated respective to σ or
to a random σ′, as long as it cannot query for evaluations of σ on points x where f∗(x) = 1 (which
is indeed guaranteed by the ABE security game).

Constructing a Conforming cPRF. We construct a conforming cPRF for the function class
t-CNF for any constant t. A policy f is in the class t-CNF if it can be described by a conjunctive
normal form (CNF) formula, where each clause depends on t bits of the input. Our construction
is inspired by the [DKNY18] construction of bit-fixing cPRF for a constant number of keys. In
fact, their technique can be generalized to instantiate a family of cPRF schemes with a tradeoff
between the “CNF locality” of the supported policies and the number of keys. They instantiate it
with CNF locality 1 (i.e. bit-fixing) and t keys, while we instantiate it with CNF locality t and a
single key. Details follow.

Let ` be the input length of the cPRF. We consider the set S = {(T, v)} of all pairs (T, v) such
that T ⊆ [`], |T | = t, v ∈ {0, 1}t. For any input x ∈ {0, 1}` we define the set Sx = {(T, xT )}T
where xT is the substring of x on indices T . For all f we define the set Sf ⊆ S of all of the pairs
(T, v) that do not violate any of the clauses of f . It is easy to verify that for all x and f ,

f(x) = 1 ←→ Sx ⊆ Sf . (3)

The master secret key is a key σ of a standard PRF. Evaluation on a point x returns the value rx,
computed as

rx =
⊕

(T,v)∈Sx

Eval(σ(T,v), x) where σ(T,v) = Eval(σ, (T, v)) .

A constrained key for f consists of the values {σ(T,v)}(T,v)∈Sf . Correctness holds by Equation (3), se-
curity and key simulation holds by the pseudorandomness of the underlying PRF and gradual evalu-
ation holds since the circuit CPRF.Eval(·, x) is a sub-circuit of CPRF.ConstrainEval(Constrain(·, f), f, x).

1.3 Related Work

The idea to embed a PRF seed in a [BGG+14]-like construction was previously suggested by
[BV16,BL16].
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Comparison with BV16. The work of [BV16] focuses on key-policy ABE with unbounded
attribute length. In their scheme, the evaluation of the PRF allows to dynamically increase the
width of the A matrix, so that Ax ← EncodeX(A, x) can be computed for x of varying length.
In particular, the PRF is evaluated over values that only depend on the length of the attribute,
where in our scheme the PRF is evaluated over the attribute value itself. Their ciphertexts contain
two “pieces” for every bit of the attribute and they use an additional ABE scheme in a black-box
manner in order to control the access that keys have to those pieces.

Their construction achieves semi-adaptive security, which means that the challenge attribute x∗

has to be announced before the first key query, but possibly after seeing the public parameters. This
property is due to the fact that in their cihpertexts the attribute value is implicitly XORed with a
hidden random string ∆, that can be chosen in the security reduction at the first key generation.
We note that if one desires a semi-adaptive scheme for a fixed attribute length `, their technique
can be instantiated with a PRG with poly(`) stretch instead of a PRF. That is, the incentives for
using a PRF are different in their work and ours.

Comparison with BL16. The work of [BL16] focuses on fully-secure signatures and IBE schemes
with tight reductions. Their usage of a PRF in the IBE scheme has some similarities to an IBE
instantiation of our approach, however the technicalities are different and the cPRF expansion is
not applicable to their approach. They use a PRF with tight security that on input x outputs a
single bit bx. A ciphertext for an identity x contains two independent Dual-Regev encryptions of
the message under two matrices Ax,0,Ax,1, and a key for x can only decrypt one of them Ax,bx .
In the security proof the PRF seed is encoded into the public parameters such that it is possible
to simulate keys for Ax,bx without the master secret key, while it is only possible to simulate the
“undecryptable” ciphertext part respective to Ax,1−bx .

1.4 Paper Organization

In Section 2 we go over the definitions of ABE and cPRF, and summarize lattice techniques from
previous works. In section 3 we define the conforming cPRF and provide a construction for policies
in t-CNF. In Section 4 we construct a fully secure ABE scheme that can be instantiated with any
conforming cPRF.

2 Preliminaries

2.1 Constrained PRF, Attribute-Based Encryption, t-CNF Policies

Definition 2.1 ((Standard) PRF). A pseudo-random function family (PRF) is a pair of ppt algo-
rithms (Setup,Eval) with the following syntax. Setup(1λ)→ sk takes as input a security parameter
λ and outputs a secret key sk. Evalsk(x) → rx takes as input a secret key sk and a bit-string
x ∈ {0, 1}`, and outputs a bit-sting rx ∈ {0, 1}k.

Pseudorandomness. A PRF family is secure if for any ppt adversary A it holds that∣∣∣Pr[AEvalsk(·)(1λ) = 1]− Pr[AO(·)(1λ) = 1]
∣∣∣ = negl(λ)

where sk← Setup(1λ) and O is a random oracle.
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Definition 2.2 (Constrained PRF). Let F be a function class such that F ⊆ {0, 1}` → {0, 1}. A
constrained pseudo-random function (cPRF) for policies in F is a tuple of ppt algorithms with the
following syntax.

• Setup(1λ)→ pp,msk takes as input a security parameter λ and outputs public parameters pp
along with a master secret key msk.

• Evalmsk(x)→ rx is a deterministic algorithm that takes as input a master secret key msk and
a bit-string x ∈ {0, 1}`, and outputs a bit-sting rx ∈ {0, 1}k.

• Constrainmsk(f) → skf takes as input a master secret key msk and a function f ∈ F , and
outputs a constrained key skf .

• ConstrainEvalskf (x) is a deterministic algorithm that takes as input a constrained key skf and

a bit-string x ∈ {0, 1}`, and outputs a bit-string r′x ∈ {0, 1}k.

Correctenss. A cPRF scheme is correct if for all x ∈ {0, 1}` and f ∈ F for which f(x) = 1, it
holds that Evalmsk(x) = ConstrainEvalskf (x) where (pp,msk)← Setup(1λ) and skf ← Constrainmsk(f).

Pseudorandomness. The adaptive security game of a cPRF scheme between an adversary A
and a challenger C is as follows.

1. Initialization: C generates (pp,msk)← Setup(1λ) and sends pp to A.

2. Queries Phase I: A makes (possibly many) queries in an arbitrary order:

• Evaluation Queries: A sends a bit-string x ∈ {0, 1}`, C returns rx ← Evalmsk(x).

• Key Queries: A sends a function f ∈ F , C returns skf ← Constrainmsk(f).

3. Challenge Phase: A sends the challenge bit-string x∗ ∈ {0, 1}`. C uniformly samples b
$←

{0, 1}. If b = 0 then C returns r∗
$← {0, 1}k. Otherwise it returns r∗ ← Evalmsk(x

∗).

4. Queries Phase II: same as the first queries phase.

5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b, (2) all of the evaluation queries are not for x∗ and (3) all of the
key queries f are such that f(x∗) = 0. The single-key adaptive security game is as described above,
except that A can only make a single key query throughout the entire game. A cPRF scheme is
secure (resp. single-key secure) if for any ppt adversary A, the probability that A wins in the
adaptive (resp. single-key adaptive) security game is at most 1/2 + negl(λ).

Definition 2.3 (Attribute-Based Encryption). Let F be a function class such that F ⊆ {0, 1}` →
{0, 1}. A (ciphertext-policy) atrribute-based encryption (ctpABE) for policies in F is a tuple of
ppt algorithms with the following syntax.

• Setup(1λ)→ pp,msk takes as input a security parameter λ and outputs public parameters pp
along with a master secret key msk.
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• KeyGenmsk(x)→ skx takes as input a master secret key msk and a bit-string x ∈ {0, 1}`, and
outputs a key skx.

• Enc(f, µ) → ct takes as input a function f ∈ F and plaintext µ ∈ {0, 1}, and outputs a
ciphertext ct.

• Decskx(ct, f) takes as input a key skx, a ciphertext ct and a function f ∈ F , and outputs a bit
µ′ ∈ {0, 1}.

Correctenss. A ctpABE scheme is correct if for all x ∈ {0, 1}` and f ∈ F for which f(x) = 1,
and for all µ ∈ {0, 1}, it holds that

Pr[Decskx(Enc(f, µ), f) 6= µ] = negl(λ)

where (pp,msk)← Setup(1λ) and skx ← KeyGenmsk(x).

Security. The adaptive security game of a ctpABE scheme between an adversary A and a chal-
lenger C is as follows.

1. Initialization: C generates (pp,msk)← Setup(1λ) and sends pp to A.

2. Queries Phase I: A makes (possibly many) key queries. For each query, A sends a string
x ∈ {0, 1}` and C returns skx ← KeyGenmsk(x).

3. Challenge Phase: A sends the challenge function f∗ ∈ F . C uniformly samples b
$← {0, 1}

and returns ct∗ ← Enc(f∗, b).

4. Queries Phase II: same as the first queries phase.

5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all of the key queries x are such that f∗(x) = 0. A ctpABE
scheme is secure if for any ppt adversary A, the probability that A wins in the adaptive security
game is at most 1/2 + negl(λ).

In this work we focus on the class of functions that can be described in a conjunctive normal
form (CNF), where each clause is of constant locality. We give now a definition.

Definition 2.4 (t-CNF). A t-CNF policy f : {0, 1}` → {0, 1} is a set of clauses f = {(Ti, fi)}i,
where for all i, Ti ⊆ [`], |Ti| = t and fi : {0, 1}t → {0, 1}. For all x ∈ {0, 1}` the value of f(x) is
computed as

f(x) =
∧
i

fi(xTi)

where xT is the length-t bit-string consisting of the bits of x in the indices T . A function class F
is t-CNF if it consists only of t-CNF policies for some fixed ` ∈ N and a constant t ≤ `. If F is a
t-CNF function class, we say that t is the CNF locality of F .
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2.2 Lattice Trapdoors, Bounded Distributions, LWE

Lattice Trapdoors. Let n, q ∈ Z, g = (1, 2, 4, . . . , 2dlog qe−1) ∈ Zdlog qe
q and m = ndlog qe. The

gadget matrix G is defined as the diagonal concatenation of g n times. Formally, G = g ⊗ In ∈
Zn×mq . For any t ∈ Z, the function G−1 : Zn×tq → {0, 1}m×t expands each entry a ∈ Zq of the
input matrix into a column of size dlog qe consisting of the bits representation of a. For any matrix
A ∈ Zn×tq , it holds that G ·G−1(A) = A.

The (centered) discrete Gaussian distribution over Zm with parameter τ , denoted DZm,τ , is the

distribution over Zm where for all x, Pr[x] ∝ e−π‖x‖
2/τ2 . Let n,m, q ∈ N and consider a matrix

A ∈ Zn×mq . For all v ∈ Znq we let A−1
τ (v) denote the random variable whose distribution is the

Discrete Gaussian DZm,τ conditioned on A ·A−1
τ (v) = v.

A τ -trapdoor for A is a procedure that can sample from a distribution within 2−n statistical
distance of A−1

τ (v) in time poly(n,m, log q), for any v ∈ Znq . We slightly overload notation and
denote a τ -trapdoor for A by A−1

τ . The following properties had been established in a long sequence
of works.

Corollary 2.1 (Trapdoor Generation [Ajt96,MP12]). There exists an efficiently computable value
m0 = O(n log q) and an efficient procedure TrapGen(1n, q,m) such that for all m ≥ m0 outputs
(A,A−1

τ0 ), where A ∈ Zn×mq is 2−n-uniform and τ0 = O(
√
n log q log n).

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 2.2 (Trapdoor Extension [ABB10b, MP12]). Given A ∈ Zn×mq with a trapdoor A−1
τ ,

and letting B ∈ Zn×m′q be s.t. A = BS (mod q) where S ∈ Zm′×m with largest singular value s1(S),

then (A−1
τ ,S) can be used to sample from B−1

τ ′ for any τ ′ ≥ τ · s1(S).

A few additional important corollaries are derived from this theorem. We recall that s1(S) ≤√
m′m ‖S‖∞ and that a trapdoor G−1

O(1) is trivial. The first is a trapdoor extension that follows by

taking S = [Im′‖0m]T .

Corollary 2.3. Given A ∈ Zn×m′q , with a trapdoor A−1
τ , it is efficient to generate a trapdoor

[A‖B]−1
τ ′ for all B ∈ Zn×mq , for any m ∈ N and any τ ′ ≥ τ .

Next is a trapdoor extension that had been used extensively in prior work. It follows from
Theorem 2.2 with S = [−RT ‖Im]T .

Corollary 2.4. Given A ∈ Zn×m′q , and R ∈ Zm′×m with m = ndlog qe, it is efficient to compute

[A‖AR + G]−1
τ for τ = O(

√
mm′ ‖R‖∞).

Note that by taking A uniformly and R to be a high entropy small matrix, e.g. uniform in
{−1, 0, 1}, and relying on the leftover hash lemma, Corollary 2.1 is in fact a special case of this
one.

Lattice Evaluation. The following is an abstraction of the evaluation procedure in previous
LWE based FHE and ABE schemes, that developed in a long sequence of works [ABB10b, MP12,
GSW13,AP14,BGG+14,GVW15].
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Theorem 2.5. There exist efficient deterministic algorithms EvalF and EvalFX such that for all
n, q, ` ∈ N and m = ndlog qe, for any depth d boolean circuit f : {0, 1}` → {0, 1}k and for every
x ∈ {0, 1}`, for any matrix A ∈ Zn×m·`q , the outputs H ← EvalF(f,A) and Ĥ ← EvalFX(f, x,A)

are both in Zm·`×m·k and it holds that ‖H‖∞ ,
∥∥∥Ĥ∥∥∥

∞
≤ (2m)d and

[A− x⊗G]Ĥ = AH− f(x)⊗G (mod q)2 .

Moreover, for any pair of circuits f : {0, 1}` → {0, 1}k, g : {0, 1}k → {0, 1}t and for any matrix
A ∈ Zn×m·`q , the outputs Hf ← EvalF(f,A), Hg ← EvalF(g,AHf ) and Hg◦f ← EvalF(g ◦ f,A)
satisfy HfHg = Hg◦f .

Bounded Distributions. The following definitions and corollaries, taken from [BV16], will allow
us to properly set the parameters of our scheme.

Definition 2.5. A distribution χ supported over Z is (B, ε)-bounded if Pr
x

$←χ
[|x| > B] < ε.

Definition 2.6. A distribution χ̃ supported over Z is (B, ε)-swallowing if for all y ∈ [−B,B] ∩ Z
it holds that χ̃ and y + χ̃ are within ε statistical distance.

Corollary 2.6. For every B, ε, δ there exists an efficiently sampleable distribution that is both
(B, ε)-swallowing and (B ·

√
log (1/δ)/ε,O(δ))-bounded.

Definition 2.7. A distribution χ̃ supported over Z is (χ, ε)-swallowing, for a distribution χ, if it
holds that χ̃ and χ+ χ̃ are within ε statistical distance. We omit the ε when it indicates a negligible
function in a security parameter that is clear from the context.

Corollary 2.7. Let B(λ) be some function and let B̃(λ) = B(λ) · λω(1), then there exists an
efficiently sampleable ensemble {χ̃λ}λ such that χ̃ is χ-swallowing for any B(λ)-bounded {χλ}λ,
and also B̃(λ)-bounded.

Learning With Errors. The Learning with Errors (LWE) problem was introduced by Regev [Reg05].
In this work we will use its decisional version.

Definition 2.8 (Decisional LWE (DLWE) [Reg05] and its HNF [ACPS09]). Let λ be the security
parameter, n = n(λ) and q = q(λ) be integers and let χ = χ(λ) be a probability distribution over
Z. The DLWEn,q,χ problem states that for all m = poly(n), letting A← Zn×mq , s← Znq , e← χm,

and u← Zmq , it holds that
(
A, sA + e

)
and

(
A,u

)
are computationally indistinguishable.

In this work we only consider the case where q ≤ 2n. Recall that GapSVPγ is the (promise)
problem of distinguishing, given a basis for a lattice and a parameter d, between the case where the
lattice has a vector shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ ·d. SIVP is the search problem of finding a set of “short” vectors. The best known algorithms
for GapSVPγ ( [Sch87]) require at least 2Ω̃(n/ log γ) time. We refer the reader to [Reg05, Pei09] for
more information. The following corollary allows us to appropriately choose the LWE parameters
for our scheme according to known reductions from GapSVPγ and SIVPγ to DLWEn,q,χ.

2For all n ∈ Z and v ∈ {0, 1}n the term v ⊗G denotes a tensor product of the binary row-vector v = (v1, . . . , vn)
and the matrix G. That is, v ⊗G = [v1 ·G‖ . . . ‖vn ·G].
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Corollary 2.8 ( [Reg05, Pei09, MM11, MP12, BLP+13]). For all ε > 0 there exists functions q =
q(n) ≤ 2n, χ = χ(n) such that χ is B-bounded for some B = B(n), q/B ≥ 2n

ε
and such that

DLWEn,q,χ is at least as hard as the classical hardness of GapSVPγ and the quantum hardness of

SIVPγ for γ = 2Ω(nε).

3 Conforming cPRF

Our ABE construction in the next section instantiates a constrained PRF that has to satisfy some
special properties, gathered under the following definition.

Definition 3.1 (Conforming cPRF). A cPRF scheme is conforming if, in addition to the correct-
ness and single-key addaptive security properties (see Definition 2.2), the following holds.

Gradual Evaluation. The algorithm Constrain (in addition to Eval,ConstrainEval) is determin-
istic and the following holds. For any fixing of pp ← Setup(1λ), f ∈ F and x ∈ {0, 1}` for which
f(x) = 1, define the following circuits:

• Uσ→x : {0, 1}λ → {0, 1}k takes as input msk and computes Evalmsk(x).

• Uσ→f : {0, 1}λ → {0, 1}`f takes as input msk and computes Constrainmsk(f).

• Uf→x : {0, 1}`f → {0, 1}k takes as input skf and computes ConstrainEvalskf (x).

We require that for all pp, f, x as defined above, the circuit Uσ→x and the effective sub-circuit of
Uf→x ◦ Uσ→f are the same. That is, the description of Uσ→x as a sequence of gates is identical to
the sequence of gates that go from the input wires to the output wires of the circuit Uf→x ◦ Uσ→f .

Key Simulation. We require a ppt algorithm KeySimpp(f)→ skf such that any ppt adversary
A has at most 1/2 + negl(λ) probability to win the following game against a challenger C.

• Initialization: C generates (pp,msk)← Setup(1λ) and sends pp to A.

• Evaluation Queries I: A makes (possibly multiple) queries. In each query it sends a bit-string
x ∈ {0, 1}` and C returns rx ← Evalmsk(x).

• Challenge Phase: A sends the challenge constraint f∗ ∈ F . C uniformly samples b
$← {0, 1}.

If b = 0 then C returns skf∗ ← Constrainmsk(f), otherwise it returns skf∗ ← KeySimpp(f).

• Evaluation Queries II: same as the first queries phase.

• End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all of the evaluation queries x are such that f∗(x) = 0.

Remark 3.1. The requirement for a deterministic Constrain algorithm is for simplicity of expo-
sition and since in our construction this requirement holds trivially. We note, however, that our
ABE scheme can be extended to support a randomized Constrain algorithm. Alternatively, any
cPRF scheme with a randomized Constrain algorithm can be converted to one with a deterministic
algorithm by generating the randomness with an additional standard PRF.
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Example. The [GGM86] PRF is a conforming cPRF for prefix policies. Gradual evaluation
holds since for any x ∈ {0, 1}` and any length-t prefix f ∈ {0, 1}t, it holds that Uσ→x(·) =
Gx`(· · ·Gx2(Gx1(·))) while Uσ→f (·) = Gft(· · ·Gf2(Gf1(·))) and Uf→x(·) = Gx`(· · ·Gxt+2(Gxt+1(·))).
Key simulation holds since a constrained key for f is indistinguishable from uniform to any adver-
sary that cannot query for evaluations on points accepted by f .

3.1 Construction for t-CNF Policies

We now describe our single key construction for the function class F consisting of CNF formulas
where each clause depends on t bits of the input (see Definition 2.4). Our construction is inspired
by the [DKNY18] construction of bit-fixing cPRF for a constant number of keys. In fact, their
technique can be generalized to instantiate a family of cPRF schemes with a tradeoff between the
CNF locality of the supported policies and the number of keys. They instantiate it with CNF
locality 1 (i.e. bit-fixing) and t keys, while we instantiate it with CNF locality t and a single key.

Let (P.Setup,P.Eval) be a (standard) PRF (Definition 2.1), let t ≤ ` be a fixed constant and let
S denote the set of all (T, v) pairs where T ⊆ [`], |T | = t and v ∈ {0, 1}t.

• Setup(1λ): Sample and output (pp,msk)← P.Setup(1λ).

• Eval(msk, x): Let Sx ⊆ S denote the set of all (T, v) ∈ S pairs that “agree” with x, that is,
Sx = {(T, xT ) ∈ S} where xT is the length-t bit-string consisting of the bits of x in the indices
T . For all (T, v) ∈ Sx compute skT,v ← P.Evalmsk(T‖v). Output

rx =
⊕

(T,v)∈Sx

P.EvalskT,v(x) . (4)

• Constrainmsk(f): Parse f as a set of clauses f = {(Ti, fi)} and recall that for all i, Ti ⊆ [`],

|Ti| = t and fi : {0, 1}t → {0, 1}. For any clause (Ti, fi) ∈ f let Sfi ⊆ S be the set of all
(T, v) ∈ S pairs that “agree” with (Ti, fi), that is,

Sfi = {(Ti, v) ∈ S : fi(v) = 1} .

Moreover, let Sfrest ⊆ S be the set of all (T, v) ∈ S pairs such that f does not have a clause
respective to T . That is,

Sfrest = {(T, v) ∈ S : ∀i Ti 6= T} .

Finally let Sf = Sfrest ∪
⋃

(Ti,fi)∈f S
f
i . For all (T, v) ∈ Sf compute skT,v ← P.Evalmsk(T‖v).

Output skf = {skT,v}(T,v)∈Sf .

• Evalskf (x): If f(x) = 0 then abort, o.w. note that Sx ⊆ Sf and compute rx as in Eq. (4).

Correctness. Fix x ∈ {0, 1}` and f ∈ F for which f(x) = 1. It is enough to prove that Sx ⊆ Sf .
Note that Sx = {(T, xT ) ∈ S} and parse f = {(Ti, fi)}. For each (T, xT ) ∈ Sx consider two options.
If f has a clause respective to T , i.e. there exists i such that Ti = T , then since f(x) =

∧
fi(xTi) and

f(x) = 1, it also holds that fi(xTi) = 1, and therefore (T, xT ) = (Ti, xTi) ∈ S
f
i ⊆ Sf . Otherwise, f

does not have a clause respective to T , i.e. ∀i Ti 6= T , and therefore (T, xT ) ∈ Sfrest ⊆ Sf .
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Single-Key Adaptive Security. We sketch here the proof, which follows similar lines to [DKNY18].
Consider the single-key adaptive security game and let x∗ and f be the challenge query and (single)
key query respectively. It is guaranteed by the game that f(x∗) = 0, therefore there exists at least
one clause (Ti, fi) ∈ f such that fi(x

∗
Ti

) = 0 and therefore (Ti, x
∗
Ti

) /∈ Sf .
In the simulated security game, the challenger guesses the value (Ti, x

∗
Ti

) at the beginning of

the game by sampling a random pair (T ′, v′)
$← S. When a key for f is queried, if there is no clause

(Ti, fi) ∈ f such that Ti = T ′ and fi(v
′) = 0, then the challenger aborts. When a challenge for x∗

is queried, if x∗T ′ 6= v′ then the challenger aborts. Since there must exist an element (T ′, v′) ∈ S
that does not cause an abort, and since (T ′, v′) is chosen uniformly from S where |S| = O((2`)t),
there is a significant probability 1/O((2`)t) that the challenger does not abort when t is constant.

If the challenger does not abort, it replaces the element EvalskT ′,v′ (x
∗) in the challenge ciphertext

with a uniform bit-string. This is indistinguishable by the pseudorandomness of P (respective to
the key skT ′,v′) and since the challenger does not have to provide skT ′,v′ in the constrained key. At
this point the challenge ciphertext is completely uniform, which completes the proof.

Gradual Evaluation. Fix x ∈ {0, 1}` and f ∈ F for which f(x) = 1 and note that Sx ⊆ Sf . The
circuit Uσ→x(·) can be divided to two layers, where the first layer computes skx = {skT,xT }(T,xT )∈Sx
and the second layer computes rx from skx. Moreover, letting U∗f→x ◦ U∗σ→f denote the effective
sub-circuit of Uf→x ◦Uσ→f (see Definition 3.1), it holds that U∗σ→f (resp. U∗f→x) is exactly the first
(resp. second) layer of Uσ→x(·).

Key Simulation. The simulator KeySim(f) simply samples all of the components skf = {skT,v}(T,v)∈Sf
uniformly. We sketch now the indistinguishability proof, which goes via a sequence of hybrids
H0, . . . ,HQ,HQ+1 where Q is the number of evaluation queries made by A. For i = 0 . . . Q, in
hybrid Hi the challenger answers the first i evaluation queries with uniformly sampled values and
answers the challenge key query as in the real game. In hybrid HQ+1, the challenger answers all of
the evaluation queries uniformly and answers the challenge key query with KeySim(f∗) regardless
of the value of b. Note that hybrid H0 is identical to the key simulation game and that in hybrid
HQ+1 the adversary wins the game with probability 1/2. For all i = 1 . . . Q, the indistinguishability
of Hi and Hi−1 follows from the single-key adaptive security of the scheme. Lastly, in hybrid HQ
the components of the key challenge skf = {skT,v}(T,v)∈Sf are either uniform (if b = 1) or from the
distribution {sk(T,v) ← P.Evalmsk(T, v)}(T,v)∈Sf (if b = 0), while in HQ+1 they are always uniform.
Those hybrids are indistinguishable by the pseudorandomness of P and since |Sf | ∈ poly(λ).

4 Fully Secure ABE from Conforming cPRF

4.1 The Construction

We now construct a ciphertext-policy ABE scheme for a function class F from a conforming cPRF
(Definition 3.1) for F . Our construction has adaptive security under the LWE assumption, and
assuming that the underlying cPRF maintains single-key adaptive security.

Let P = (P.Setup,P.Eval,P.Constrain,P.ConstrainEval) be a conforming cPRF for a class family
F with input length ` and output length k. W.l.o.g. assume that the master secret key length of P
is λ. For all f ∈ F let `f denote the size of a constrained key for the function f . Note that `f is
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constant and is efficiently computable given f and the description of P.Constrain. Let Uσ→x, Uσ→f
and Uf→x be the circuits as in Definition 3.1. Define ABE = (Setup,Enc,KeyGen,Dec) as follows.

• Setup(1λ): Sample (P.msk,P.pp) ← P.Setup(1λ) and denote σ = P.msk. Fix the parameters
n, q,m′, τ, χ, χ̃ as explained below and let m = ndlog qe. Sample a matrix with its trapdoor

(B,B−1
τ0 ) ← TrapGen(1n,m′, q). Sample uniformly a matrix A

$← Zn×m·λq and a vector v
$←

Znq . Output pp = (B,A,v,P.pp) and msk = (B−1
τ0 , σ).

• Encpp(f, µ): Sample skf ← P.KeySimP.pp(f) and denote sf = skf . Sample s
$← Znq , e0

$← χm,

e1
$← χ̃m·`f , e2

$← χ, and output ct = (sf ,u0,u1, u2) such that

u0 = sTB + eT0 , u1 = sT [Af − sf ⊗G] + eT1 , u2 = sTv + e2 + µbq/2e ,

where Af = AHσ→f for Hσ→f ← EvalF(Uσ→f ,A).

• KeyGenmsk(x): Compute the matrix Hσ→x ← EvalF(Uσ→x,A) and denote Ax = AHσ→x.
Compute r ← P.Evalσ(x) and let Ir : {0, 1}k → {0, 1} be the function that on input r′ returns
1 if and only if r = r′3. Compute Hr ← EvalF(Ir,Ax), denote Ax,r = AxHr and use B−1

τ0 to
compute [B‖Ax,r]

−1
τ . Sample k← [B‖Ax,r]

−1
τ (v) and output skx = (r,k).

• Decskx(ct, f): Parse skx = (r,k) and ct = (sf ,u0,u1, u2). Compute r′ ← Uf→x(sf ) and if
r = r′ then abort. Otherwise, compute Af and Ax as in Enc,KeyGen respectively, then
compute

Ĥsf→r′ ← EvalFX(Uf→x, sf ,Af ) and Ĥr,r′ ← EvalFX(Ir, r
′,Ax) .

Lastly, compute u = u2 − [u0‖u1Ĥsf→r′Ĥr,r′ ]k and output 1 if and only if |u| ≥ q/4.

Choice of Parameters. We set the parameters according to constraints that rise up in the
security and correctness analysis. Choose k = λ, let d = poly(λ) denote the depth of Uσ→x and
note that since P is gradual the depths of Uσ→f , Uf→x are bounded by d. Choose n ≥ λ such that
(2n2)2d+4 ≤ 2n

ε
, where ε ∈ (0, 1) is a security/efficiency tradeoff parameter. Note that n ≤ dO(1/ε)

which is polynomial in λ for any constant ε. Moreover, E′ ≤ 2n
ε

where E′ is as defined in Eq.
(5). Choose q,B, χ according to Corollary 2.8 and note that q/B ≥ 2n

ε
and that χ is B-bounded.

Choose m′ = (n + 1)dlog qe + 2λ and τ = max{τ0, τ
′}, where τ0 is as in Corollary 2.1 and τ ′ is as

in Eq. (6). Set χ̃ to be a B′-swallowing distribution, where B′ = (m′ +m)λB(2m)d. By Corollary
2.7, χ̃ can be chosen such that it is B̃-bounded for some B̃ ∈ O(B′, λ).

4.2 Correctness

Lemma 4.1. If P be a conforming cPRF for a class family F as per Definition 3.1, then ABE
is a correct ciphertext policy attribute-based encryption scheme as per Definition 2.3 for the class
family F .

3Previous works used an ABE definition where the decryption succeeds conditioned on f(x) = 0, while we
require that f(x) = 1. Note that in our scheme the decryption succeeds conditioned on f(x) = 1 ∧ r 6= r′, i.e.
f(x) = 1 ∧ Ir(r

′) = 0.
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Proof. Fix µ ∈ {0, 1}, (pp,msk)← Setup(1λ), f ∈ F and x ∈ {0, 1}` such that f(x) = 1. Consider
ct← Enc(f, µ) and skx ← KeyGenmsk(x), and parse skx = (r,k) and ct = (sf ,u0,u1, u2). Consider
the execution of Decskx(ct, f).

We first prove that with all but negligible probability r 6= r′ via a reduction to the pseudoran-
domness game of P. Recall that r′ is computed as P.ConstrainEvalsk′f (x) where sk′f ← P.KeySim(f),

while r is computed as P.Evalmsk(x). Consider an adversaryA in the pseudorandomness game of P as
follows. Upon receiving P.pp, it computes sk′f ← P.KeySim(f) and then r′x ← P.ConstrainEvalsk′f (x).

It then requests for a challenge on x, and upon receiving the challenge r∗x it outputs 1 if and only
if r∗x = r′x. The advantage of A is at least Pr[r = r′] and therefore if P is pseudorandom then
Pr[r = r′] is negligible.

We now prove that if r 6= r′ then the decryption succeeds with all but negligible probability.
Denote Hf→x = EvalF(Uf→x,Af ). Since P has gradual evaluation (see Definition 3.1), the effective
sub-circuit of Uf→x ◦ Uσ→f and the circuit Uσ→x are identical. By Theorem 2.5 it follows that
Hσ→fHf→x = Hσ→x, and therefore AfHf→x = AHσ→fHf→x = AHσ→x = Ax.

By applying Theorem 2.5 on (Hf→x, Ĥsf→r′) and (Hr, Ĥr,r′), we get respectively

[Af − sf ⊗G] Ĥsf→r′ = AfHf→x − Uf→x(sf )⊗G = Ax − r′ ⊗G

and [
Ax − r′ ⊗G

]
Ĥr,r′ = AxHr − Ir(r′)G = Ax,r

where the last equation holds since r 6= r′ and thus Ir(r
′) = 0. Therefore,

u1Ĥsf→r′Ĥr,r′ =
(
sT [Af − sf ⊗G] + eT1

)
Ĥsf→r′Ĥr,r′

= sT [Af − sf ⊗G] Ĥsf→r′Ĥr,r′ + e′1 where e′1 = eT1 Ĥsf→r′Ĥr,r′

= sT
[
Ax − r′ ⊗G

]
Ĥr,r′ + e′1

= sTAx,r + e′1 .

Hence,

u2 − [u0‖u1Ĥsf→r′Ĥr,r′ ]k = sTv + e2 + µbq/2e − sT [B‖Ax,r]k− [eT0 ‖e′1]k

= µbq/2e+ e2 − [eT0 ‖e′1]k .

Note that ∥∥e′1∥∥∞ ≤ m2`fk
∥∥eT1 ∥∥∞ ∥∥∥Ĥsf→r′

∥∥∥
∞

∥∥∥Ĥr,r′

∥∥∥
∞
≤ m2`fkB̃(2m)dConEv+1

and that by the properties of discrete Gaussians, ‖k‖∞ ≤ τ
√
m′ +m with all but 2−(m′+m) =

negl(λ) probability.
Therefore, if m′, k, `f ∈ O(n, dlog qe), B̃ ∈ O(B,n) and τ ∈ O

(
k, λ, (2m)d+3

)
, then with all but

negligible probability∣∣e2 − [eT0 ‖e′1]k
∣∣ ≤ |e2|+ (m′

∥∥eT0 ∥∥∞ +m
∥∥e′1∥∥∞) · ‖k‖∞

≤ B + (m′B +m3`fkB̃(2m)dConEv+1)τ
√
m′ +m

≤ B · poly(n, dlog qe) · (2m)dConEv+d+4 .
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Denoting
E = B · poly(n, dlog qe) · (2m)dConEv+d+4

and

E′ = 4E/B = 4 · poly(n, dlog qe) · (2m)dConEv+d+4 , (5)

by our choice of parameters E′ is bounded by q/B, and therefore E = BE′/4 is bounded by q/4.
Therefore, if µ = 0 then |u| ≤ q/4 and if µ = 1 then |u| > q/4.

4.3 Security

Lemma 4.2. If P be a conforming cPRF for a class family F as per Definition 3.1, then ABE is a
secure ciphertext policy attribute-based encryption scheme as per Definition 2.3 for the class family
F under the DLWEn,q,χ assumption.

Proof. We prove via a sequence of hybrids.

Hybrid H0. This is the adaptive security game from Definition 2.3.

Hybrid H1. We change the way C answers the challenge query f∗. Instead of computing sf ←
P.KeySimP.pp(f∗), it computes sf ← P.Constrainσ(f∗). Note that now sf = Uσ→f (σ).

We show computational indistinguishability via a reduction to the key simulation game of P (see
Definition 3.1). Let AP be an adversary in the key simulation game. It operates as the challenger in
the ABE security game as follows. For every key query x sent by A, AP queries the P challenger for
an evaluation over the input x and proceeds with computing the ABE key for x as in the scheme.
Note that it is guaranteed by the ABE game that f∗(x) = 0 and therefore this query is valid in the
P game. When A asks for the challenge ciphertext, AP asks for the challenge constrained key sk′f
and proceeds with the encryption algorithm as in the scheme. Any advantage of A at distinguishing
between those hybrids translates to identical advantage of AP in the key simulation game.

Hybrid H2. We change the way C generates the matrix A as follows. It samples uniformly

a matrix R
$← {0, 1}m′×m·λ and sets A = BR + σ ⊗ G. Indistinguishability follows from the

extended leftover hash lemma, since m′ ≥ (n+ 1)dlog qe+ 2λ and B is statistically-close to uniform
by Corollary 2.1.

Hybrid H3. We change again the way C answers the challenge query f∗, specifically the way it
generates u1. Note that now

Af − sf ⊗G = AHσ→f − Uσ→f (σ)⊗G

= [A− σ ⊗G]Ĥmsk→sf where Ĥmsk→sf ← EvalFX(Uσ→f , σ,A)

= BRĤmsk→sf .

The values u0 and u2 will be generated as before, by sampling s
$← Znq , e0

$← χm, e2
$← χ and

computing u0 = sTB + eT0 and u2 = sTv + e2 + µbq/2e.
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Recall that previously u1 was computed as u1 = sT [Af − sf ⊗G] + eT1 , where e1
$← χ̃m·`f . In

this hybrid, it will be computed as u1 = u0RĤmsk→sf + eT1 . Note that now

u1 = u0RĤmsk→sf + eT1

= (sTB + eT0 )RĤmsk→sf + eT1

= sT [Af − sf ⊗G] + eT0 RĤmsk→sf + eT1

and that B′ =
∥∥∥eT0 RĤmsk→sf

∥∥∥
∞
≤ (m′ +m)λ

∥∥eT0 ∥∥∞ ‖R‖∞ ∥∥∥Ĥmsk→sf

∥∥∥
∞
≤ (m′ +m)λB(2m)dCon ,

where dCon is the depth of Uσ→f . Therefore, if χ̃ is B′-swallowing then this change is statistically
indistinguishable.

Hybrid H4. We change the way C answers key queries. Let x be a query and fix r ← P.Evalσ(x)
and Ĥmsk→r ← EvalFX(Uσ→x, σ,A). Note that

[A− σ ⊗G]Ĥmsk→r = AHσ→x − r ⊗G

= Ax − r ⊗G where Ĥmsk→r ← EvalFX(Uσ→x, σ,A) ,

and since Ir(r) = 1,

[Ax − r ⊗G]Ĥr,r = AxHr − Ir(r)G = Ax,r −G where Ĥr,r ← EvalFX(Ir, r,Ax) .

Therefore, since A− σ ⊗G = BR it holds that BRĤmsk→rĤr,r = Ax,r −G and hence

[B‖Ax,r] = [B‖BRĤmsk→rĤr,r + G] .

Note that ∥∥∥RĤmsk→rĤr,r

∥∥∥
∞
≤ m2kλ ‖R‖∞

∥∥∥Ĥmsk→r

∥∥∥
∞

∥∥∥Ĥr,r

∥∥∥
∞

≤ m2kλ(2m)d+1 ,

and that Corollary 2.4, given B and RĤmsk→rĤr,r it is efficient to compute [B‖Ax,r]
−1
τ ′ for some

τ ′ = O
(∥∥∥RĤmsk→rĤr,r

∥∥∥
∞

)
= O

(
k, λ, (2m)d+3

)
. (6)

Therefore, if τ ≥ τ ′ then C can now sample from [B‖Ax,r]
−1
τ (v) without B−1

τ0 . The distribution
remains identical to the previous hybrid.

Hybrid H5. We change the way B is generated. Instead of sampling it via TrapGen, sample

uniformly B
$← Zn×mq . By Corollary 2.1 this change is statistically indistinguishable.

Hybrid H6. We change again the way C answers the challenge query. It now samples uniformly

u0
$← Zm′q and u2

$← Zq. This change is computationally indistinguishable under the DLWEn,q,χ
assumption. At this step the challenge completely hides b and so A has no advantage.
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Classical hardness of learning with errors. In Boneh et al. [BRF13], pages 575–584.

[Boy13] X. Boyen. Attribute-based functional encryption on lattices. In TCC, 2013.

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM,
2013.

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-abe from LWE: unbounded at-
tributes and semi-adaptive security. In Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part III, pages 363–384, 2016.

[BW13] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications.
In ASIACRYPT, 2013.

[CGKW18] Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via
bilinear entropy expansion, revisited. In Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, pages 503–534,
2018.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May
4-8, 2003, Proceedings, pages 255–271, 2003.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012.

19



[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA
Int. Conf., 2001.

[DKNY18] Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, and Shota Yamada. Constrained
prfs for bit-fixing from owfs with constant collusion resistance. IACR Cryptology ePrint
Archive, 2018:982, 2018.

[Dwo08] Cynthia Dwork, editor. Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May 17-20, 2008. ACM, 2008.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In Advances
in Cryptology – EUROCRYPT ’06, pages 445–464, 2006.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986. Extended abstract in FOCS 84.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and
bundling functionalities made generic and easy. In Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part II, pages 361–388, 2016.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, Ioctober 30 - November 3, 2006, pages 89–98. ACM, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Dwork [Dwo08], pages 197–206.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology - CRYPTO 2013, pages 75–92, 2013.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Boneh et al. [BRF13], pages 545–554.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomor-
phic signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 469–477. ACM,
2015.

[KL15] Lucas Kowalczyk and Allison Bishop Lewko. Bilinear entropy expansion from the
decisional linear assumption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 524–541, 2015.

20



[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
669–684. ACM, 2013.

[KW19] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from
k-lin. IACR Cryptology ePrint Archive, 2019:224, 2019.

[LOS+10] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT, pages 62–91, 2010.

[LW12] A. B. Lewko and B. Waters. New proof methods for attribute-based encryption:
Achieving full security through selective techniques. In CRYPTO, 2012.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions. In Advances in Cryptology - CRYPTO
2011, pages 465–484, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 700–718, 2012.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In Proceedings of the 2007 ACM Conference on Computer
and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28-31,
2007, pages 195–203, 2007.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342,
2009.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 84–93, 2005.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

[SW05] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances
in Cryptology – EUROCRYPT ’05, pages 114–127, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August

21



16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science, pages
619–636. Springer, 2009.

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, Public Key Cryptography - PKC 2011 - 14th Inter-
national Conference on Practice and Theory in Public Key Cryptography, Taormina,
Italy, March 6-9, 2011. Proceedings, volume 6571 of Lecture Notes in Computer Sci-
ence, pages 53–70. Springer, 2011.

22


	Introduction
	Technical Background
	Our Techniques
	Related Work
	Paper Organization

	Preliminaries
	Constrained PRF, Attribute-Based Encryption, t-CNF Policies
	Lattice Trapdoors, Bounded Distributions, LWE

	Conforming cPRF
	Construction for t-CNF Policies

	Fully Secure ABE from Conforming cPRF
	The Construction
	Correctness
	Security


