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Abstract. Multi-client functional encryption (MCFE) allows ` clients
to encrypt ciphertexts (Ct,1, Ct,2, . . . , Ct,`) under some label. Each client
can encrypt his own data Xi for a label t using a private encryption
key eki issued by a trusted authority in such a way that, as long as all
Ct,i share the same label t, an evaluator endowed with a functional key
dkf can evaluate f(X1, X2, . . . , X`) without learning anything else on the
underlying plaintexts Xi. Functional decryption keys can be derived by the
central authority using the master secret key. Under the Decision Diffie-
Hellman assumption, Chotard et al. (Asiacrypt 2018) recently described
an adaptively secure MCFE scheme for the evaluation of linear functions
over the integers. They also gave a decentralized variant (DMCFE) of their
scheme which does not rely on a centralized authority, but rather allows
encryptors to issue functional secret keys in a distributed manner. While
efficient, their constructions both rely on random oracles in their security
analysis. In this paper, we build a standard-model MCFE scheme for the
same functionality and prove it fully secure under adaptive corruptions.
Our proof relies on the Learning-With-Errors (LWE) assumption and does
not require the random oracle model. We also provide a decentralized
variant of our scheme, which we prove secure in the static corruption
setting (but for adaptively chosen messages) under the LWE assumption.
Keywords. Multi-client functional Encryption, inner product evaluation,
LWE, standard model, decentralization.

1 Introduction

Functional encryption (FE) [64,20] is a modern paradigm that overcomes the
all-or-nothing nature of ordinary encryption schemes. In FE, the master secret
key msk allows deriving a sub-key dkf associated with a specific function f . If
a ciphertext C encrypts a message X under the master public key mpk, when
dkf is used to decrypt C, the decryptor only obtains f(X) and nothing else
about X. Functional encryption is an extremely general concept as it subsumes
identity-based encryption [18,30], searchable encryption [17], attribute-based
encryption [64,45], broadcast encryption [33] and many others.

As formalized by Boneh, Sahai and Waters [20], FE only allows evaluating a
function f over data provided by a single sender whereas many natural applica-
tions require to compute over data coming from distinct distrustful parties. A



straightforward solution to handle multiple senders is to distribute the generation
of ciphertexts by means of a multi-party computation (MPC) protocol. Unfor-
tunately, jointly generating a ciphertext incurs potentially costly interactions
between the senders who should be online at the same time and have their data
ready to be submitted. Ideally, the participants should be able to supply their
input without interacting with one another and go off-line immediately after
having sent their contribution. This motivates the concepts of multi-input [39,38]
and multi-client [44,38] functional encryption, which support the evaluation of
multivariate functions over data coming from distinct sources.

1.1 (Decentralized) Multi-Client FE

Multi-client functional encryption. As defined in [44,38], multi-client
functional encryption (MCFE) allows computing over input vectors (X1, . . . , X`)
of which each coordinate Xi may be sent by a different client. Each ciphertext
Ci is associated with a client index i and a tag t (also called “label”): on input of
a vector of ciphertexts (C1 = Encrypt(1, X1, t), . . . , C` = Encrypt(`,X`, t)), where
Ci is generated by client i using a secret encryption key eki for each i ∈ [`],
anyone holding a functional decryption key dkf for an `-ary function can compute
f(X1, . . . , X`) as long as all Ci are labeled with the same tag t (which may be
a time-specific information or a dataset name). No further information than
f(X1, . . . , X`) is revealed about individual inputs Xi and nothing can be inferred
by combining ciphertexts generated for different tags. MCFE can thus be seen as
a multi-party computation (MPC) where each ciphertext Ci can be generated
independently of others and no communication is needed between data providers.

Decentralized multi-client functional encryption. Most FE flavors
involve a single central authority that should not only be trusted by all users, but
also receives the burden of generating all functional secret keys. In decentralized
FE systems [53,25], multiple authorities can operate independently without even
being aware of one another.

Like its single-client counterpart, multi-client FE requires a trusted entity,
which is assigned the task of generating a master key msk as well as handing
out encryption keys eki to all clients and functional decryption keys dkf to all
decryptors. In some applications, clients may be reluctant to rely on a single
point of trust. This motivates the design of a decentralized version of MCFE, as
introduced by Chotard et al. [28]. Decentralized multi-client functional encryption
(DMCFE) obviates the need for a centralized authority by shifting the task of
generating functional secret keys to the clients themselves. In a setup phase,
the clients S1, . . . ,S` first generate public parameters by running an interactive
protocol but no further interaction is needed among clients when it comes to
generating functional secret keys later on. When a decryptor wishes to obtain
a functional secret key for an `-ary function f , it interacts with each client
i independently so as to obtain partial functional decryption keys dkf,i. The
decryptor can then fold {dkf,i}`i=1 into a functional decryption key dkf for f . By
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doing so, each client has full control over his individual data and the functions
for which secret keys are given out. Importantly, no interaction among senders is
required beyond the setup phase, where public parameters are generated.

As a motivating example, Chotard et al. [28] consider the use-case of a finan-
cial analyst that is interested in mining several companies’ private data so as to
better understand the dynamics of an economical sector. These companies have
some incentives to collaborate, but they do not want their clients’ data to be
abused (in which case, they would risk heavy fines owing to the EU General Data
Protection Regulation). After having interactively set up DMCFE parameters,
each company can encrypt its own data with respect to a time-stamp. Then,
the analyst can contact each company to obtain partial functional keys and
reconstruct a key that only reveals a weighted aggregate of companies’ private
inputs provided they are labeled with the same time-stamp.

Chotard et al. [28] described a DMCFE scheme that allows evaluating
linear functions over encrypted data: namely, if (X1, . . . , X`) ∈ Z` are the
individual contributions sent by ` senders, a functional secret key dkf for
the integer vector y = (y1, . . . , y`) ∈ Z` allows computing

∑`
i=1 yi · Xi from

{Ci = Encrypt(i,Xi, t)}`i=1, where Ci is generated by the i-th sender. In the
decentralized setting, each sender can also generate a partial functional secret
key dkf,i for y = (y1, . . . , y`) ∈ Z` using their secret encryption key eki.

1.2 Our Contributions

The MCFE scheme of Chotard et al. [28] was proved fully secure (as opposed
to selectively secure) in the random oracle model under the standard Decision
Diffie-Hellman assumption in groups without a bilinear maps. Its decentralized
variant was proved secure under the Symmetric eXternal Diffie-Hellman (SXDH)
assumption in groups endowed with an asymmetric bilinear map. While efficient,
the schemes of [28] both require the random oracle model. Chotard et al. thus left
open the problem of designing a (D)MCFE system under well-studied hardness
assumptions without using random oracles: even in the centralized setting, the
only known MCFE candidates in the standard model [44,38] rely on indistin-
guishability obfuscation. They also left open the problem of instantiating their
schemes under the LWE assumption or any other assumption than DDH.

In this paper, we address both problems. For linear functions over the integers
(i.e., the same functionality as [28]), we construct the first MCFE scheme in
the standard model and prove it fully secure under the Learning-With-Errors
assumption [62] in the adaptive corruption setting (note that only static corrup-
tions were considered in [44, Section 2.3]). This construction turns out to be the
first standard-model realization of an MCFE system with labels – albeit for a
restricted functionality – that does not require obfuscation. Next, we extend our
centralized system to obtain the first labeled DMCFE scheme without random
oracles. Like [28], our decentralized solution is only proved secure in the static
corruption setting although we can handle adaptive corruptions in its centralized
version. Both constructions are proved secure under the LWE assumption with
sub-exponential approximation factors. Our security proofs stand in the standard
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model in the sense of the same security definitions as those considered in [28].
We leave it as an open problem to achieve security under an LWE assumption

with polynomial approximation factor. Another natural open question is the
feasibility of (D)MCFE beyond linear functions under standard assumptions.

1.3 Challenges and Techniques

We start from the observation that the DDH-based MCFE scheme of Chotard
et al. [28] can be interpreted as relying on (a variant of) the key-homomorphic
pseudorandom function [19] of Naor, Pinkas and Reingold [60]. Namely, the
scheme of [28] encrypts xi ∈ Zq for the tag t by computing Ci = gxi ·Hsi

t,1 ·H
ti
t,2,

where (si, ti) ∈ Z2
q is the i-th sender’s secret key and (Ht,1, Ht,2) = H(t) ∈ G2 is

derived from a random oracle in a DDH-hard group G = 〈g〉.
The security proof of [28] crucially exploits the entropy of the secret key (si, ti)

in a hybrid argument over all encryption queries. To preserve this entropy, they
need to prevent the encryption oracle from leaking too much about uncorrupted
users’ secret keys {(si, ti)}i. For this purpose, they rely on the DDH assumption to
modify the random oracle H : {0, 1}∗ → G2 in such a way that, in all encryption
queries but one, the hash value H(t) ∈ G2 lives in a one-dimensional subspace.
In order to transpose this technique in the standard model, we would need a
programmable hash function [47] that ranges over a one-dimensional subspace
of G2 on polynomially-many inputs while mapping an extra input outside this
subspace with noticeable probability. The results of Hanaoka et al. [46] hint that
such programmable hash functions are hardly instantiable in prime-order DDH
groups. While the multi-linear setting [34] allows bypassing the impossibility
results of [46], it is not known to enable standard assumptions.

A natural idea is to replace the random-oracle-based key-homomorphic PRF
of [60] by an LWE-based key-homomorphic PRF [19,12]. However, analogously
to Chotard et al. [28],4 we aim at an MCFE system that can be proved secure in
a game where the adversary is allowed to corrupt senders adaptively. In order
to deal with the adaptive corruption of senders, we thus turn to the adaptively
secure distributed PRF proposed by Libert, Stehlé and Titiu [56]. The latter
can be seen as instantiating the programmable hash function of Freire et al. [34]
in the context of homomorphic encryption (FHE). Their PRF maps an input x
to bA(x)> · scp, where5 s ∈ Zn is the secret key and A(x) ∈ Zn×mq is derived
from public matrices using the Gentry-Sahai-Waters FHE [37]. More precisely,
the matrix A(x) is obtained as the product of GSW ciphertexts dictated by
the output of an admissible hash function [16] applied to the PRF input. The
security proof of [56] uses the property that, with noticeable probability, the
input-dependent matrix A(x) is a GSW encryption of 1 for the challenge input x?:
namely, A(x?) is a matrix of of the form A(x?) = A ·R?+G, where G ∈ Zn×mq is

4 While their decentralized scheme is only proved secure under static corruptions, its
centralized version is proved secure under adaptive corruptions.

5 Introduced in [13], the notation bxcp stands for the rounded value b(p/q) · xc ∈ Zp,
where x ∈ Zq, and p < q.
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the gadget matrix of Micciancio and Peikert [58] and R? ∈ Zm×m is a small-norm
matrix. At the same time, all evaluation queries are associated with a matrix
A(x) consisting of a GSW encryption of 0 (i.e., a matrix A(x) = A ·R, for a
small-norm R ∈ Zm×m). Then, the proof of [56] appeals to the lossy mode of
LWE [40] and replaces the uniform matrix A> ∈ Zm×nq by a lossy matrix of the
form Â> · C + E, where E ∈ Zm×n is a short integer matrix with Gaussian
entries, C ∈ Zn1×n

q is random, and Â ∈ Zn1×m
q has rank n1 � n. In all evaluation

queries, the smallness of s ∈ Zn then ensures that the values bA(x)> · scp always
reveal the same information about s, which amounts to the product C · s ∈ Zn1

q .
Since A(x?) depends on G for the challenge input x?, the function bA(x?)> · scp
is in fact an injective function of s, meaning that it has high min-entropy.

Our MCFE scheme relies on the lossy mode of LWE in a similar way to
[56], except that we add a Gaussian noise instead of using the Learning-With-
Rounding technique [13]. The i-th sender uses his secret key si ∈ Zn to encrypt
a short integer vector as xi ∈ Zn0 as Ci = G>0 · xi + A(t)> · si + noise ∈ Zmq ,
where A(t) ∈ Zn×mq is a tag-dependent matrix derived as a product of GSW
ciphertexts indexed by the bits of t and G0 ∈ Zn0×m

q is a gadget matrix for
which the lattice Λ⊥(G0) has a short public basis. A functional secret key for the
vector y = (y1, . . . , y`)> consists of dky =

∑`
i=1 yi ·si ∈ Zn and allows computing

G>0 ·(
∑
i=1 yi ·xi)+small ∈ Zmq from

∑`
i=1 yi ·Ci ∈ Zmq and eventually recovering

the linear function
∑
i=1 yi · xi ∈ Zn0 of X = [x1 | . . . | x`] ∈ Zn0×`

q .
At this point, adapting the security proof of [56] is non-trivial. We cannot rely

on the DPRF of [56] in a modular way as it would require a DPRF where partial
evaluations are themselves pseudorandom so long as the adversary does not obtain
the underlying secret key shares: in our setting, a challenge ciphertext contains a
bunch of partial evaluations (one for each message slot) rather than a threshold
recombination of such evaluations. We emphasize that, in the LWE-based DPRF
of [56], partial evaluations are not proven pseudorandom: [56] only proves – via
a deterministic randomness extraction argument – the pseudorandomness of
the final PRF value obtained by combining partial evaluations. They cannot
apply (and neither can we) a randomness extractor to individual partial DPRF
evaluations as it would destroy their key homomorphic property. Instead of
relying on the pseudorandomness of partial evaluations, we actually prove a
milder indistinguishability property which suffices for our purposes.

The first step is to make sure that all encryption queries will involve a lossy
matrix A(t)> = Rt · Â> ·C+Et, for small-norm Rt ∈ Zm×m and Et ∈ Zm×n, so
that honest senders’ ciphertexts are of the form Ci = G>0 ·xi+Rt ·Â> ·C·si+noise
and thus leak nothing about si ∈ Zn beyond C · si ∈ Zn1

q . The difficulty arises
in the challenge queries (i, t?,x?0,i,x?1,i), where A(t?) ∈ Zn×mq is not a lossy
matrix and we must find a way to replace C?

i = G>0 · x?0,i + A(t?)> · si + noise
by C?

i = G>0 · x?1,i + A(t?)> · si + noise without the adversary noticing. In [56],
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the proof relies on a deterministic randomness extraction6 argument to extract
statistically uniform bits from bA(x?)> · scp, which has high min-entropy when
A(x?) is of the form A ·R? + G. Here, we do not see how to apply deterministic
extractors in the proof while preserving the functionality of the MCFE scheme.

Our solution is to program the public parameters in such a way that, with
noticeable probability, the challenge ciphertexts are generated for a matrix
A(t?) ∈ Zn×mq of the form

A(t?)> = R? ·A> + G>0 ·V = R? · Â> ·C + G>0 ·V + noise, (1)

for a statistically random matrix V ∈ Zn0×n
q included in the public parameters. In

the proof, the simulator generates a statistically uniform matrix U = [ V
C ], where

C ∈ Zn1×n
q is used to build the lossy matrix A> = Â> ·C + E, together with a

trapdoor TU for Λ⊥(U). (The idea of embedding a trapdoor in the LWE secret
of a lossy matrix is borrowed from [55]). Using TU, the simulator can sample a
short matrix T ∈ Zn×n0 satisfying U ·T =

[ In0
0

]
mod q, allowing it to define an

alternative secret key s′i = si+T ·(x?0,i−x?1,i) ∈ Zn. As long as si is sampled from
a Gaussian distribution with sufficiently large standard deviation, s′i and si are
negligibly far apart in terms of statistical distance (note that, as in [69,14], the
simulator can guess x?0,i − x?1,i upfront without affecting the polynomial running
time of the reduction since we are in the middle of a purely statistical argument).
The alternative secret keys {s′i}`i=1 further satisfy

∑`
i=1 yi · s′i =

∑`
i=1 yi · si

for all legal functional key queries y = (y1, . . . , y`) made by the adversary. The
definition of s′i finally ensures that C · s′i = C · si mod q, meaning that s′i is
compatible with all encryption queries for which A(t) is lossy. From (1), the
condition V ·T = In0 mod q then implies that the challenge ciphertext can be
interpreted as an encryption of x?1,i since C?

i = G>0 · x?1,i + A(t?)> · s′i + noise is
statistically close to C?

i = G>0 · x?0,i + A(t?)> · si + noise.
We insist that our construction and proof are not merely obtained by plugging

the DPRF of [56] into the high-level design principle of [28]. In particular, we do
not rely on the pseudorandomness of partial PRF evaluations, but rather prove a
milder indistinguishability property in some transition in our sequence of games.
To do this, we need to modify the proof of [56], by introducing a matrix V and
embedding a trapdoor in the matrix U obtained by stacking up V and the secret
matrix C of the lossy mode of LWE.

In order to build a DMCFE system, we proceed analogously to [28] and
combine two instances of our centralized MCFE scheme. The first one is only
used to generate partial functional secret keys whereas the second one is used
exactly as in the centralized system. As in [28], we first have the senders run
an interactive protocol allowing them to jointly generate public parameters for
the two MCFE instances. At the end of this protocol (which may involve costly
MPC operations, but is only executed once), each sender holds an encryption key
6 The standard Leftover Hash Lemma cannot be applied since the source bA(x?)> · scp
is not guaranteed to be independent of the seed. A deterministic extractor based on
k-wise independent functions [32] is thus needed in [56].
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eki = (si, ti) consisting of encryption keys for the two underlying instances. In
order to have the i-th sender Si generate a partial functional secret key dkf,i for
a vector y = (y1, . . . , y`)>, we exploit the fact that our centralized scheme allows
encrypting vectors. Namely, the decryptor obtains from Si an MCFE encryption
of the vector yi · si ∈ Zn under the encryption key ti of the first instance.

1.4 Related Work

Functional encryption was implicitly introduced by Sahai and Waters in [64],
where they also constructed a scheme for threshold functions. Constructions
of FE for point functions (known as identity-based encryption) [18,30] existed
already, but were not viewed through the lens of FE until later. Subsequent works
saw constructions for several more advanced functionalities such as inner product
functions [51,7], Boolean formulas [45,52,61,67,54], membership checking [21] and
even finite state automaton [68]. Recently, the landscape of functional encryption
improved considerably. Gorbunov et al. [43] and Garg et al. [35] provided the first
constructions of attribute-based encryption for all circuits; Goldwasser et al. [42]
constructed succinct simulation-secure single-key FE scheme for all circuits and
also obtained FE for Turing machines [41]. In a breakthrough result, Garg et
al. [35] designed indistinguishability-secure multi-key FE schemes for all circuits.
However, while the constructions of [43,42] rely on standard assumptions, the
assumptions underlying the other constructions [35,41] are still ill-understood
and have not undergone much cryptanalytic effort.

FE for simple circuits. Abdalla, Bourse, De Caro and Pointcheval [3] con-
sidered the question of building FE for linear functions (a functionality dubbed
IPFE for “inner product functional encryption”). Here, a ciphertext C encrypts
a vector y ∈ D` over some ring D, a secret key for the vector x ∈ D` allows
computing 〈x,y〉 and nothing else about y. Abdalla et al. [3] described two con-
structions under the Decision Diffie-Hellman (DDH) and Learning-With-Errors
(LWE) assumptions, respectively. On the downside, Abdalla et al. [3] only proved
their schemes to be secure against selective adversaries. Namely, in the security
game, the adversary chooses two vectors x0,x1 ∈ D` and expects to receive an
encryption of one of these in the challenge phase. Selective security forces the
adversary to declare x0,x1 before seeing the public key and before obtaining any
private key. Agrawal, Libert and Stehlé subsequently upgraded the constructions
of [3] so as to prove security against adaptive adversaries, which may choose
x0,x1 after having seen the public key and obtained a number of private keys.
Agrawal et al. [8] described several IPFE schemes under well-established assump-
tions which include the standard Decision Diffie-Hellman (DDH) assumption, the
Decision Composite Residuosity (DCR) assumption and the LWE assumption.
Under the DCR and LWE assumptions, the schemes of [8] can evaluate both inner
products over the integers and modulo a prime or composite number. The IPFE
constructions of [3,8] served as building blocks for FE schemes handling general
functionalities [9] in the bounded collusion setting [63,43]. Quite recently, the
IPFE functionality [3,8] was extended into FE schemes supporting the evaluation
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of quadratic functions over encrypted data [57,11]. The schemes of [57,11] are only
proved secure against selective adversaries and they can only compute functions
which have their output confined in a small interval. For the time being, the only
known FE schemes that support the evaluation of more general functions than
quadratic polynomials either require fancy tools like obfuscation [35] , or are
restricted to bounded collusions [43,9].

Multi-Input and Multi-Client Functional Encryption. Goldwasser et
al. [39,38] introduced the concept of multi-input functional encryption (MIFE).
MIFE and MCFE are both more interesting in the secret-key setting than in
the public-key setting, where much more information inevitably leaks about the
data (see, e.g., [39,5,28]). Similarly to MCFE, MIFE operates over input vectors
(X1, . . . , X`) comprised of messages sent by distinct parties, but without assigning
a tag to ciphertexts: each user i can encrypt Xi as Ci = Encrypt(Xi) in such a way
that anyone equipped with a functional secret key dkf for an `-argument function
f can compute f(X1, . . . , Xn) given multiple ciphertexts {Ci = Encrypt(Xi)}`i=1.
Brakerski et al. [23] gave a transformation for constructing adaptively secure
general-purpose MIFE schemes for a constant n from any general-purpose private-
key single-input scheme. Like MCFE, MIFE for general functionalities necessarily
rely on indistinguishability obfuscation or multilinear maps, so that instantiations
under standard assumptions are currently lacking. Under the SXDH assumption,
Abdalla et al. [5] managed to construct a MIFE scheme for the inner product
functionality. In their scheme, each input slot encrypts a vector xi ∈ Zmp while
each functional secret key sky corresponds to a vector y ∈ Z`·mp , where ` is
the total number of slots. On input of encrypted data X = (x1, . . . ,x`) such
that xi is encrypted by sender i in the i-th slot, their multi-input inner product
functionality computes 〈X,y〉 using sky. Function-hiding MIFE schemes were
described in [31,4]. Abdalla et al. [4] notably gave a generic single-input to multi-
input transformation, which yields MIFE constructions for the inner product
functionality under the DDH, LWE and DCR assumptions.

Besides syntactical differences, MCFE departs from MIFE in the amount of
information leaked about plaintexts. The MIFE model [39,38] allows any slot of
any ciphertext to be combined with any other slot of any other ciphertext. As
soon as senders encrypt more than one ciphertext per slot, a given functional
secret key can thus compute a much larger number of values. As discussed in [28],
this feature incurs a much more important information leakage, especially when
many functional secret keys are given out. In contrast, the multi-client setting
only allows functional secret keys to operate over ciphertexts that share the same
tag. As long as tags are single-use (e.g., a timestamp), this allows clients to retain
a more accurate control over the information leaked about their data.

The first MCFE realization was proposed in [44,38] and relies on the DDH
assumption and on indistinguishability obfuscation to handle general circuits.
The notion of aggregator-oblivious encryption (AOE) [66,24,49,15] allows an
untrusted aggregator to compute sums of encrypted values without learning
anything else about individual inputs. As such, AOE can be seen as a form of
MCFE with single-key security (namely, the only key revealed to the aggregator
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is for the vector (1, 1, . . . , 1)>) for the evaluation of inner products. So far, all
non-interactive AOE constructions [66,49,15] rely on the random oracle model.

The first efficient MCFE scheme with multi-key security was described by
Chotard et al. [28] who also introduced the concept of decentralized MCFE.
Their schemes both rely on DDH-like assumptions in the random oracle model.
At the time of writing, we are not aware of any (D)MCFE construction based on
a well-studied assumption in the standard model.

Decentralized Functional Encryption. The first examples of decentralized
FE schemes were given in the context of attribute-based encryption (ABE)
[26,27]. Lewko and Waters [53] gave the first ciphertext-policy ABE where users’
attributes may be certified by completely independent authorities. Boneh and
Zhandry [22] suggested distributed broadcast encryption systems, which dispense
with the need for an authority handing out keys to registered users. Chandran
et al. [25] considered decentralized general-purpose FE using obfuscation. The
decentralization of multi-client FE was first considered by Chotard et al. [28] in a
model where all clients run an interactive protocol to generate public parameters,
but eliminate any interaction beyond the setup phase.

Abdalla et al. [2] described generic transformations providing DMCFE schemes
from any MCFE system satisfying extra properties. While applying their compilers
to [4] yields DMCFE schemes in the standard model, the resulting ciphertexts are
not labeled. Without labels, the functionality leaks much more information about
encrypted messages for a given functional key since there is no restriction on the
way slots from different ciphertexts can be combined together (any slot from any
ciphertext can be combined with any other slot from any other ciphertext). In
this paper, our goal is to support labels, which is significantly more challenging
and was only achieved in the random oracle model so far.

Chotard et al. [29] gave a technique to remove the restriction that forces the
adversary to make challenge queries for all uncorrupted ciphertext slots. Their
technique upgrades any MCFE scheme satisfying our definition (which is the
definition introduced in [28] and called “pos-IND” security in [2]) so as to prove
security under a stronger definition where the adversary can obtain incomplete
ciphertexts. Their technique builds on a “secret-sharing layer” (SSL) primitive
which is only known to exist assuming pairings and random oracles as their
SSL scheme [29, Section 4.2] is implicitly based on the Boneh-Franklin IBE [18].
Abdalla et al. [2] suggested a different technique to handle incomplete ciphertexts
without using pairings, but they either require random oracles or they do not
support labels (except in a model with static corruptions and selective security).

Chotard et al. [29] also showed how to transform the ROM-based scheme from
[28] in such a way that users are allowed multiple encryption queries for each
slot-label pair. Their technique is not generic and only works for their DDH-based
construction (as they mention in Section 6.2). Finally, [2,29] both give generic
compilers from MCFE to DMCFE. Abdalla et al. [2] obtain DMCFE under
adaptive corruptions, but they need to start from an MCFE which computes
inner products modulo an integer L (instead of inner products over Z). Hence,
their compiler does not imply DMCFE from LWE in the standard model. As it
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turns out, neither [2,29] implies MCFE with labels in the standard model from
LWE (nor any standard assumption), even for the security definition of [28]. In a
concurrent and independent work [1], Abdalla et al. provide a solution to this
problem via a generic construction of labeled MCFE from single-input IPFE
schemes evaluating modular inner products. While their construction satisfies a
stronger security notion than ours (which allows multiple encryption queries for
the same slot-label pair), their scheme of [1, Section 3] requires longer ciphertext
than ours as each slot takes a full IPFE ciphertext of linear size in ` if ` is the
number of slots.

In their construction and in ours, handling incomplete ciphertexts expands
partial ciphertexts by a factor O(`). In our most efficient schemes, we still need to
assume that the adversary obtains challenge ciphertexts for all clients as in [28].
In Appendix A, we show that a variant of the compiler of Abdalla et al. [2] allows
proving security in the standard model, even when the adversary is allowed to
obtain incomplete challenge ciphertexts. Our compiler relies on pseudorandom
functions satisfying a specific security definition in the multi-instance setting.
The concurrent work of Abdalla et al. [1] achieves a similar result using any PRF
satisfying a standard security definition.

2 Background

2.1 Lattices

For any q ≥ 2, we let Zq denote the ring of integers modulo q. For a vector x ∈ Rn

denote ‖x‖ =
√
x2

1 + x2
2 + · · ·x2

n and ‖x‖∞ = maxi |xi|. If M is a matrix over R,
then ‖M‖ := supx6=0

‖Mx‖
‖x‖ and ‖M‖∞ := supx6=0

‖Mx‖∞
‖x‖∞ . For a finite set S, we

let U(S) denote the uniform distribution over S. If X and Y are distributions over
the same domain, then ∆(X,Y ) denotes their statistical distance. Let Σ ∈ Rn×n
be a symmetric positive-definite matrix, and c ∈ Rn. We define the Gaussian
function on Rn by ρΣ,c(x) = exp(−π(x − c)>Σ−1(x − c)) and if Σ = σ2 · In
and c = 0 we denote it by ρσ. For an n dimensional lattice Λ ⊂ Rn and for
any lattice vector x ∈ Λ the discrete gaussian is defined ρΛ,Σ,c(x) = ρΣ,c

ρΣ,c(Λ) .
For an n-dimensional lattice Λ, we define ηε(Λ) as the smallest r > 0 such
that ρ1/r(Λ̂ \ 0) ≤ ε with Λ̂ denoting the dual of Λ, for any ε ∈ (0, 1). For
a matrix A ∈ Zn×mq , we define Λ⊥(A) = {x ∈ Zm : A · x = 0 mod q} and
Λ(A) = A> ·Zn+qZm. For an arbitrary vector u ∈ Znq , we also define the shifted
lattice Λu(A) = {x ∈ Zm : A · x = u mod q}.

Definition 2.1 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and α ∈ (0, 1) be functions of a
security parameter λ. The LWE problem consists in distinguishing between the
distributions (A,As + e) and U(Zm×nq × Zmq ), where A ∼ U(Zm×nq ), s ∼ U(Znq )
and e ∼ DZm,αq. For an algorithm A : Zm×nq × Zmq → {0, 1}, we define:

AdvLWE
q,m,n,α(A) = |Pr[A(A,As + e) = 1]− Pr[A(A,u) = 1| ,
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where the probabilities are over A ∼ U(Zm×nq ), s ∼ U(Znq ), u ∼ U(Zmq ) and
e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if, for any ppt algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible.

Micciancio and Peikert [58] described a trapdoor mechanism for LWE. Their
technique uses a “gadget” matrix G ∈ Zn×wq , with w = n log q, for which anyone
can publicly sample short vectors x ∈ Zw such that G · x = 0.

Lemma 2.2 ([58, Section 5]). Let m ≥ 3n log q. There exists a ppt algorithm
GenTrap that outputs a statistically uniform matrix A ∈ Zn×mq , together with a
trapdoor TA ∈ Zm×m for Λ⊥(A), such that maxj ‖t̃j‖ ≤ O(

√
n log q), where t̃j

are the corresponding Gram-Schmidt vectors.

It is known [58] that, for any u ∈ Znq , a trapdoor for A ∈ Zn×mq allows sampling
from D

Λu(A),s·ω
(√

logm
) for s = O(

√
n log q). Since

η2−m
(
Λ⊥(A)

)
≤ max

j
‖t̃j‖ · ω(

√
logm) ≤ s · ω(

√
logm)

for large enough s = O(
√
n log q), the magnitude of a vector x sampled from

D
Λu(A),s·ω

(√
logm

), is bounded by ‖x‖ ≤ s
√
m · ω(

√
logm).

Remark 2.3. For m ≥ 3n log q, we can thus sample a statistically uniform matrix
A from Zn×mq together with a trapdoor, which allows finding small solutions of
A · x = u mod q, with ‖x‖ ≤ s

√
m · ω(

√
logm) = O(

√
mn log q) · ω(

√
logm).

We sometimes rely on the so-called “noise flooding” technique via the next lemma.

Lemma 2.4 ([40, Lemma 3]). Let y ∈ Zm. The statistical distance between
DZm,σ and y +DZm,σ is at most ∆ (DZm,σ,y +DZm,σ) ≤ m · ‖y‖∞σ .

Lemma 2.5 ([36, Theorem 4.1]). There is a ppt algorithm that, given a basis
B of an n-dimensional lattice Λ = L(B), a parameter s > ‖B̃‖ ·ω(

√
logn), and a

center c ∈ Rn, outputs a sample from a distribution statistically close to DΛ,s,c.

2.2 Admissible Hash Functions

Admissible hash functions were introduced by Boneh and Boyen [16] as a com-
binatorial tool for partitioning-based security proofs for which Freire et al. [34]
gave a simplified definition. Jager [48] considered the following generalization in
order to simplify the analysis of reductions under decisional assumption.

Definition 2.6 ([48]). Let `(λ), L(λ) ∈ N be functions of a security parameter
λ ∈ N. Let AHF : {0, 1}` → {0, 1}L be an efficiently computable function. For
every K ∈ {0, 1,⊥}L, let the partitioning function PK : {0, 1}` → {0, 1} such that

PK(X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

11



We say that AHF is a balanced admissible hash function if there exists
an efficient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a
non-negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q), X? ∈ {0, 1}` such that X? 6∈ {X(1), . . . , X(Q)}, we have

γmax(λ) ≥ Pr
K

[
PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X?) = 0

]
≥ γmin(λ),

where γmax(λ) and γmin(λ) are functions such that

τ(λ) = γmin(λ) · δ(λ)− γmax(λ)− γmin(λ)
2

is a non-negligible function of λ.

Intuitively, the condition that τ(λ) be non-negligible requires γmin(λ) to be
noticeable and the difference of γmax(λ)− γmin(λ) to be small.

It is known [48] that balanced admissible hash functions exist for `, L = Θ(λ).

Theorem 2.7 ([48, Theorem 1]). Let (C`)`∈N be a family of codes C` :
{0, 1}` → {0, 1}L with minimal distance c · L for some constant c ∈ (0, 1/2).
Then, (C`)`∈N is a family of balanced admissible hash functions. Furthermore,
AdmSmp(1λ, Q, δ) outputs a key K ∈ {0, 1,⊥}L for which η = b ln(2Q+Q/δ)

− ln((1−c)) c
components are not ⊥ and γmax = 2−η, γmin =

(
1 − Q(1 − c)

)η · 2−η, so that
τ = (2δ − (2δ + 1) ·Q · (1− c)η)/2η+1 is a non-negligible function of λ.

Lemma 2.8 ([50, Lemma 8],[6, Lemma 28]). Let K ← AdmSmp(1λ, Q, δ),
an input space X and the mapping γ that maps a (Q+ 1)-uple (X?, X1, . . . , XQ)
in XQ+1 to a probability value in [0, 1], given by:

γ(X?, X1, . . . , XQ) := Pr
K

[
PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X?) = 0

]
.

We consider the following experiment where we first execute the PRF secu-
rity game, in which the adversary eventually outputs a guess b̂ ∈ {0, 1} of the
challenger’s bit b ∈ {0, 1} and wins with advantage ε. We denote by X? ∈ X
the challenge input and X1, . . . , XQ ∈ X the evaluation queries. At the end
of the game, we flip a fair random coin b′′ ←↩ U({0, 1}). If the condition
PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X?) = 0 is satisfied we define b′ = b̂. Oth-
erwise, we define b′ = b′′. Then, we have |Pr[b′ = b]− 1/2| ≥ γmin · ε− γmax−γmin

2 ,
where γmin and γmax are the maximum and minimum of γ(X) for any X ∈ XQ+1.

2.3 Randomness Extraction

The Leftover Hash Lemma was used by Agrawal et al. [6] to re-randomize matrices
over Zq by multiplying them with small-norm matrices.

Lemma 2.9 ([6]). Let integers m,n such that m > 2n · log q, for some prime
q > 2. Let A,U ←↩ U(Zn×mq ) and R ←↩ U({−1, 1}m×m). The distributions
(A,AR) and (A,U) are within 2−Ω(n) statistical distance.

12



2.4 Multi-Client Functional Encryption

We recall the syntax of multi-client functional encryption as introduced in [44].

Definition 2.10. A multi-client functional encryption (MCFE) scheme for
a message spaceM and tag space T is a tuple (Setup,Encrypt,DKeygen,Decrypt)
of efficient algorithm with the following specifications:

Setup(cp, 1`) : Takes in global parameters cp and a pre-determined number of
users 1`, where cp specifies a security parameter 1λ. It outputs a set of
public parameters mpk, a master secret key msk, and a set of encryption keys
{eki}`i=1. We assume that mpk is included in all encryption keys eki.

Encrypt(eki, xi, t) : Takes as input the encryption key eki of user i ∈ [`], a
message xi and a tag t ∈ T . It output a ciphertext Ct,i.

DKeygen(msk, f) : Takes as input the master secret key msk and an `-argument
function f :M` → R. It outputs a functional decryption key dkf .

Decrypt(dkf , t,C) : Takes as input a functional decryption key dkf , a tag t,
and an `-vector of ciphertexts C = (Ct,1, . . . , Ct,`). It outputs a function
evaluation f(x) ∈ R or an error message ⊥.

Correctness. For any set of public parameters cp, any (mpk,msk, {eki}`i=1) ←
Setup(cp, 1`), any vector x ∈Mn any tag t ∈ T and any function f :M` → R,
if Ct,i ← Encrypt(eki, xi, t) for all i ∈ [`] and dkf ← DKeygen(msk, f), we have
Decrypt

(
dkf , t,Ct = (Ct,1, . . . , Ct,`)

)
= f(x) with overwhelming probability.

We now recall the security definition given in [44] for an adaptively secure
MCFE, and then we will give the definition that we use in this work. These two
definitions are in fact equivalent.

Definition 2.11 (IND-sec). For an MCFE scheme with ` senders, consider the
following game between an adversary A and a challenger C. The game involves a
set HS of honest senders (initialized to HS := [`]) and a set CS (initialized to
CS := ∅) of corrupted senders.

Initialization: The challenger C chooses cp and runs (mpk,msk, {eki}`i=1) ←
Setup(cp, 1`). Then, it chooses a random bit b← {0, 1} and gives the master
public key mpk to the adversary

Encryption queries: The adversary A can adaptively make encryption queries
QEncrypt(i, x0, x1, t), to which the challenger replies with Encrypt(eki, xb, t).
For any given pair (i, t), only one query is allowed and subsequent queries
involving the same (i, t) are ignored.

Functional decryption key queries: The adversary can adaptively obtain
functional decryption keys by making queries of the form QDKeygen(f).
The challenger returns dkf ← DKeygen(msk, f).

Corruption queries: For any user i ∈ HS, the adversary can adaptively make
queries QCorrupt(i), to which the challenger replies with eki and updates HS
and CS by setting CS := CS ∪ {i} and HS := HS \ {i}.

Finalize: The adversary makes its guess b′ ∈ {0, 1}; A wins the game if β = b,
where β is defined to be β := b′ except in the following situations.
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1. An encryption query QEncrypt(i, x0, x1, t) has been made for an index
i ∈ CS with x0 6= x1.

2. For some label t, an encryption query QEncrypt(i, x0
i , x

1
i , t) has been asked

for i ∈ HS, but encryption queries QEncrypt(j, x0
j , x

1
j , t) have not been

asked for all j ∈ HS.
3. For a label t and some function f queried to QDKeygen, there exists a

pair of vectors (x0,x1) such that f(x0) 6= f(x1), where
- x0

i = x1
i for all i ∈ CS;

- QEncrypt(i, x0
i , x

1
i , t) have been asked for all i ∈ HS.

In any of the above cases, A’s output is replaced by a random β ← U({0, 1}).

An MCFE scheme provides IND security if, for any efficient adversary A, we
have AdvIND(A) := |Pr[β = 1 | b = 1]− Pr[β = 1 | b = 0]| ∈ negl(λ).

In the following, it will be convenient to work with the following security
definition, which is equivalent to Definition 2.11.

Definition 2.12 (1-challenge IND-sec). For an MCFE scheme with ` senders,
we consider the following game between an adversary A and a challenger C. The
game involves a set HS (initialized to HS := [`]), of honest senders and a set
CS (initialized to CS := ∅), of corrupted senders.

Initialization: The challenger C generates cp and runs (mpk,msk, {eki}`i=1)←
Setup(cp, 1`). Then, it chooses a random bit b← {0, 1} and gives the master
public key mpk to the adversary A.

Encryption queries: The adversary can adaptively make encryption queries
QEncrypt(i, x, t), to which the challenger replies with Encrypt(eki, x, t). Any
further query involving the same pair (i, t) is ignored.

Challenge queries: The adversary adaptively makes challenge queries of the
form CQEncrypt(i, x?0i , x?1i , t?). The challenger replies with Encrypt(eki, x?bi , t?).
Only one tag t? can be involved in a challenge query. If t? denotes the tag of
the first query, the challenger only replies to subsequent challenge queries for
the same label t?. Moreover, only one query (i, t?) is allowed for each i ∈ [`]
and subsequent queries involving the same i ∈ [`] are ignored.

Functional decryption key queries: The adversary can adaptively obtain
functional decryption keys via queries QDKeygen(f). At each query, the
challenger returns dkf ← DKeygen(msk, f).

Corruption queries: For any user i ∈ HS, the adversary can adaptively make
queries QCorrupt(i), to which the challenger replies with eki and updates HS
and CS by setting CS := CS ∪ {i} and HS := HS \ {i}.

Finalize: The adversary outputs a bit b′ ∈ {0, 1}. The adversary A wins if β = b,
where β is defined as β := b′, unless of the situations below occurred.
1. A challenge query CQEncrypt(i, x?0i , x?1i , t?) has been made for an index

i ∈ CS with x?0i 6= x?1i .
2. An encryption query QEncrypt(i, x, t?) has been made for the challenge

tag t? for some index i ∈ [`].
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3. For the challenge tag t?, a challenge query CQEncrypt(i, x?0i , x?1i , t?) has
been asked for some i ∈ HS, but challenge queries CQEncrypt(j, x?0j , x?1j , t?)
have not been asked for all j ∈ HS.

4. For the challenge tag t? and some function f queried to QDKeygen, there
exists a pair of vectors (x?0,x?1) such that f(x?0) 6= f(x?1), where
- x?0i = x?1i for all i ∈ CS;
- CQEncrypt(i, x?0i , x?1i , t?) have been asked for all i ∈ HS.

If any of these events occurred, A’s output is overwritten by β ← U({0, 1}).

We say that an MCFE scheme provides 1Ch-IND security if, for any efficient
adversary A, we have Adv1Ch-IND(A) :=

∣∣Pr[β = b]− 1
2
∣∣ ∈ negl(λ).

In Appendix B, we show that 1Ch-IND security implies IND security. We also
note that condition 2 of “Finalize” could be:

2’. Both QEncrypt(i, x, t?) and CQEncrypt(i, x?0i , x?1i , t?) have been made for an
index i and the challenge label t?, such that x0?

i 6= x1?
i

This allows the adversary to make both an encryption query QEncrypt(i, x, t?)
and a challenge query CQEncrypt(i, x?0i , x?1i , t?) where x?0i = x?1i . In Proposition
B.2 in Appendix, we show that replacing condition 2 by condition 2′ does not
make the adversary any stronger.

Our first construction is proven secure under Definition 2.12. Abdalla et al. [2]
and Chotard et al. [29] independently showed constructions that can be proven
secure in the sense of a stronger definition which eliminates restriction 3 from
the “Finalize” stage. In Appendix A, we show that a variant of the compiler
of [2, Section 4.2] is secure in the standard model. Recently, Abdalla et al. [1]
independently obtained a similar result. While their PRF-based compiler [1] can
rely on any PRF, we obtain a tighter reduction using a specific PRF described in
[56]. Chotard et al. [29] additionally show how to enable repetitions by allowing
multiple encryption queries for the same pair (i, t). However, they need random
oracles for this purpose.

2.5 Decentralized Multi-Client Functional Encryption

We use the same syntax as Chotard et al. [28] with the difference that we explicitly
assume common public parameters cp. As in [28], we assume that each function
f can be injectively encoded as a tag tf (called “label” in [28]) taken as input by
the partial functional key generation algorithm.

Definition 2.13. For a message space M and tag space T , a decentralized
multi-client functional encryption (DMCFE) scheme between ` senders
{Si}`i=1 and a functional decryptor FD is specified by the following components.

Setup(cp, 1`) : This is an interactive protocol between the senders {Si}`i=1, which
allows them to generate their own secret keys ski and encryption keys eki,
for i ∈ [`], as well as a set of public parameters mpk.
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Encrypt(eki, xi, t) : Takes as input the encryption key eki of user i ∈ [`], a
message xi and a tag t ∈ T . It output a ciphertext Ct,i.

DKeygenShare(ski, tf ) : Takes as input a user’s secret key ski and the label tf
of a function f : M` → R. It outputs a partial functional decryption key
dkf,i for the function described by tf .

DKeygenComb({dkf,i}i, tf ) : Takes as input a set of partial functional decryp-
tion keys {dkf,i}i and the label tf of a function f : M` → R. It outputs a
full functional decryption key dkf for the function f described by tf

Decrypt(dkf , t,C) : Takes as input a functional decryption key dkf , a tag t,
and an `-vector of ciphertexts C = (Ct,1, . . . , Ct,`). It outputs a function
evaluation f(x) ∈ R or a message ⊥ indicating a decryption failure.

For simplicity, we assume that mpk is included in all secret keys and encryption
keys, as well as in (partial) functional decryption keys. We also assume that a
description of f is included in (partial) functional decryption keys.
Correctness. For any λ ∈ N, any (mpk, {ski}`i=1, {eki}`i=1) ← Setup(cp, 1`), any
x ∈Mn, any tag t ∈ T and any function f :M` → R, if Ct,i ← Encrypt(eki, xi, t)
for all i ∈ [`] and dkf ← DKeyComb({DKeyGenShare(ski, tf )}i, tf ), with over-
whelming probability, we have Decrypt

(
dkf , t,Ct = (Ct,1, . . . , Ct,`)

)
= f(x).

Definition 2.14 (IND-sec for DMCFE). For a DMCFE scheme with ` senders,
we consider the following game between an adversary and a challenger. It involves
a set HS of honest senders (initialized to HS := [`]) and a set CS (initialized to
CS := ∅) of the corrupted senders.

Initialization: The challenger C generates cp and runs (mpk, {ski}`i=1, {eki}`i=1)
← Setup(cp, 1`). Then, it flips a fair coin b ← {0, 1} and gives the master
public key mpk to the adversary A.

Encryption queries: The adversary A can adaptively make encryption queries
QEncrypt(i, x0, x1, t), to which the challenger replies with Encrypt(eki, xb, t).
For any given pair (i, t), only one query is allowed and subsequent queries
involving the same (i, t) are ignored.

Functional decryption key queries: Via queries QDKeygen(i, f), A can adap-
tively obtain partial functional decryption keys on behalf of uncorrupted
senders. At each query, the challenger returns dkf ← DKeygenShare(ski, tf )
if i ∈ HS (if i ∈ CS, the oracle returns ⊥).

Corruption queries: For any user i ∈ HS, the adversary can adaptively make
queries QCorrupt(i) and the challenger replies by returning (ski, eki). It also
updates the sets HS and CS by setting CS := CS ∪ {i} and HS := HS \ {i}.

Finalize: The adversary outputs a bit b′ ∈ {0, 1}. The adversary A wins if β = b,
where β is defined as β := b′, unless of the situations below occurred.
1. An encryption query QEncrypt(i, x0

i , x
1
i , t) has been made for an index

i ∈ CS with x0
i 6= x1

i .
2. For some label t, an encryption query QEncrypt(i, x0

i , x
1
i , t) has been asked

for i ∈ HS, but encryption queries QEncrypt(j, x0
j , x

1
j , t) have not been

asked for all j ∈ HS.
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3. For a tag t and some function f queried to QDKeygen(i, .) for all i ∈ HS,
there exists a pair of vectors (x0,x1) such that f(x0) 6= f(x1), where

- x0
i = x1

i for all i ∈ CS;
- QEncrypt(i, x0

i , x
1
i , t) have been asked for all i ∈ HS.

If any of these events occurred, A’s output is overwritten by β ← U({0, 1}).

We say that a DMCFE scheme provides IND security if, for any efficient adversary
A, we have AdvIND(A) := |Pr[β = 1 | b = 1]− Pr[β = 1 | b = 0]| ∈ negl(λ).

The above definition captures adaptive corruptions in that the QCorrupt(·)
oracle may be invoked at any time during the game. In the static corruption
setting, all queries to QCorrupt(·) should be made at once before the initialization
phase. In this case, the sets HS and CS are thus determined before the generation
of (mpk, {ski}`i=1, {eki}`i=1). We denote by sta-IND-sec the latter security game.

Our scheme of Section 4 will be proven secure under static corruptions. We
insist that only corruptions are static: the encryption oracle can be queried on
adaptively chosen messages (x0, x1), which is stronger than the selective security
game, where the challenge messages have to be declared upfront.

3 Our MCFE Scheme for Linear Functions

The scheme encrypts xi ∈ Zn0 as a vector Ct,i = G>0 ·xi + A(τ)> · si + ei, where
G0 is a gadget matrix; τ = AHF(t) ∈ {0, 1}L is an admissible hash of the tag t;
and ei is a Gaussian noise. This is done in a way that a functional secret key
sy =

∑`
i=1 yi · si ∈ Zn allows computing

∑`
i=1 yi ·xi from {Ct,i}`i=1 by using the

public trapdoor of the lattice Λ⊥(G0).
We derive A(τ) from a set of 2L public matrices {Ai,0,Ai,1}Li=1 and an

additional matrix V ∈ Zn0×n
q . Like [56], our proof interprets each Ai,b ∈ Zn×mq as

a GSW ciphertext Ai,b = A·Ri,b+µi,b·G, where Ri,b ∈ {−1, 1}m×m, µi,b ∈ {0, 1}
and G ∈ Zn×mq is the gadget matrix of [58]. Then, we homomorphically compute
A(τ) as an FHE ciphertext A · R′τ + (

∏L
i=1 µi,τ [i]) · G, for some small-norm

R′τ ∈ Zm×m, which is in turn multiplied by G−1(V> ·G0) in such a way that
A(τ) = A·Rτ +(

∏L
i=1 µi,τ [i])·(V> ·G0). Via a careful choice of {µi,b}i∈[L],b∈{0,1},

the properties of admissible hash functions imply that
∏L
i=1 µi,x[i] vanishes in all

encryption queries but evaluates to 1 on the challenge tag τ?. In order to prevent
the encryption oracle from leaking too much about si ∈ Zn, we proceed as in [56]
and replace the random A ∈ Zn×mq by a lossy matrix A> = Â> ·C + E, where
Â←↩ U(Zn1×m

q ), C←↩ U(Zn1×n
q ) and for a small-norm E ∈ Zm×n.

Our construction and proof depart from [56] in that we use an additional
multiplication by G−1(V> ·G0) in order to introduce a matrix V ∈ Zn0×n

q in
the expression of A(τ?). In addition, unlike [56], we do not rely on a randomness
extraction argument to exploit the entropy of A(τ?)> · si + ei in the challenge
phase. Instead, we use a trapdoor for the matrix U = [ V

C ] to “equivocate” the
challenge ciphertexts and explain them as an encryption of x?1,i instead of x?0,i.
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Another difference with [56] is that the product A(τ) of GSW ciphertexts
{Ai,τ [i]}Li=1 is evaluated in a sequential manner7 (as in the “right-spine” PRF
construction of [12]) in order for the noise matrix Rτ to retain small entries.

We note that, as was suggested by [56, Section 4.3] in the context of distributed
PRFs, a technique due to Yamada [70] can be used to compute A(τ) as a function
of Θ(log2 λ) (instead of Θ(λ))) public matrices. For simplicity, we chose to describe
the scheme using public parameters containing a linear number of matrices here.

3.1 Description

In the following description, we assume public parameters

cp :=
(
λ, `max, X, Y, n0, n1, n, m, α, α1, σ, `t, L, q, AHF

)
,

consisting of a security parameter λ and the following quantities:

- (X,Y, `max, n0, n1, n,m), which are all in poly(λ)
X = 1, n1 = λd, q = 2λd−1 , α = 2−

√
λ, α1 = 2−λd−1+d logλ, n0 = o(λd−2),

n = O(λ2d−1), σ = 2λd−1−2λ and n0 · `max = O(λd−2) where d is a constant;
for instance d = 3 works asymptotically.

- The description of a tag space T = {0, 1}`t , for some `t ∈ poly(λ), such that
tags may be arbitrary strings (e.g., time period numbers or dataset names).

- The description of a balanced admissible hash function AHF : {0, 1}`t →
{0, 1}L, for a suitable L ∈ Θ(λ).

- The message space will beM = [−X,X]n0 , for some n0 ∈ poly(λ).
- Integers n, n0, n1,m ∈ poly(λ) satisfying the conditions m > 2n · dlog qe and
n > 3 · (n0 + n1) · dlog qe.

- A real α > 0 and a Gaussian parameter σ > 0, which specifies an interval
[−β, β] = [−σ

√
n, σ
√
n] where the coordinates of users’ secret keys will live

(with probability exponentially close to 1).

Letting ` ∈ poly(λ), with ` ≤ `max, be the number of users, our function
space is the set of all functions fy : Zn0×` → Zn0 indexed by an integer vector
y ∈ Z` of infinity norm ‖y‖∞ < Y .

We define G0 ∈ Zn0×m
q to be the gadget matrix

G0 = [In0 ⊗ (1, 2, 4, . . . , 2dlog qe) | 0n0 | . . . | 0n0 ] ∈ Zn0×m
q

where the product In0 ⊗ (1, 2, 4, . . . , 2dlog qe) is padded with m− n0 · dlog qe zero
columns. We similarly denote by G ∈ Zn×mq the gadget matrix of rank n:

G = [In ⊗ (1, 2, 4, . . . , 2dlog qe) | 0n | . . . | 0n] ∈ Zn×mq .

Our MCFE construction goes as follows.
7 In [56], the multiplication of ciphertexts {Ai,τ [i]}Li=1 was computed in a parallel
fashion A0 ·

∏L

i=1 G−1(Ai,τ [i]) because their initial proof required the matrices
{Ai,b}i,b to be generated in such a way that G−1(Ai,b) was invertible over Zq.
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Setup(cp, 1`): On input of cp and a number of users `, do the following.

1. Choose random matrices Ai,b ←↩ U(Zn×mq ), for each i ∈ [L], b ∈ {0, 1}.
2. Choose a uniformly random matrix V←↩ U(Zn0×n

q ).
3. For each i ∈ [`], sample si ←↩ DZn,σ and define eki = si ∈ Zn.
Output the master secret key msk := {eki}`i=1 and the public parameters

mpk :=
(

cp, V, {Ai,0,Ai,1 ∈ Zn×mq }Li=1

)
.

DKeygen(msk, fy) : Given the master secret key msk := {eki}`i=1 and a linear
function fy : Zn0×` → Zn0 defined by an integer vector y = (y1, . . . , y`)> ∈ Z`
which maps an input X = [x1 | . . . | x`] ∈ Zn0×` to fy(X) = X · y ∈ Zn0 ,
parse each eki as a vector si ∈ Zn. Then, compute and output the functional
secret key dky := (y, sy), where sy =

∑`
i=1 si · yi ∈ Zn.

Encrypt(eki,xi, t) : Given eki = si ∈ Zn, xi ∈ [−X,X]n0 , and t ∈ {0, 1}`t ,

1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Define W = G>0 ·V ∈ Zm×nq and compute

A(τ) = AL,τ [L] ·G−1
(
AL−1,τ [L−1] ·G−1(. . .A2,τ [2] ·G−1(A1,τ [1]

)))
·G−1(W>) ∈ Zn×mq . (2)

3. Sample a noise vector ei ←↩ DZm,αq. Then, compute and output

Ct,i = G>0 · xi + A(τ)> · si + ei ∈ Zmq .

Decrypt(dky, t,Ct) : On input of a functional secret key dky = (y, sy) for a
vector y = (y1, . . . , y`)> ∈ [−Y, Y ]`, a tag t ∈ {0, 1}`t , and an `-vector of
ciphertexts Ct = (Ct,1, . . . ,Ct,`) ∈ (Zmq )`, conduct the following steps.

1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Compute A(τ) ∈ Zn×mq as per (2).
3. Compute ft,y =

∑`
i=1 yi ·Ct,i −A(τ)> · sy mod q.

4. Interpret ft,y ∈ Zmq as a vector of the form ft,y = G>0 · z + ẽ mod q, for
some error vector ẽ ∈ [−B,B]m. Using the public trapdoor of Λ⊥(G0),
compute and output the underlying vector z ∈ [−` ·X · Y, ` ·X · Y ]n0 .

The following lemma is proved in Appendix C.1.

Lemma 3.1 (Correctness). Assume that αq = ω(
√

log `), Y ·` ·αq · log q < q/2
and ` · X · Y < q/2. Then, for any (mpk,msk, {eki}`i=1) ← Setup(cp, 1λ), any
message X = [x1| · · · |x`] ∈ [−X,X]n0×`, any y ∈ [−Y, Y ]`, any tag t ∈ {0, 1}`t ,
algorithm Decrypt(dky, t,Ct) outputs X · y ∈ Zn0 with probability exponentially
close to 1, where Ct,i ← Encrypt(eki,xi, t) and dky ← DKeygen(msk, fy).
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3.2 Security

We now prove the security of the scheme in the sense of Definition 2.12 (and thus
Definition 2.11 modulo some loss of tightness in the reduction).

For the current parameters n1 = λd, q = 2λd−1 , and α1 = 2−λd−1+d logλ,
α1q = Ω(√n1), we know from [62] that LWEq,n1,α1 is at least as hard as GapSVPγ ,
with γ = Õ(n1/α1) = Õ(2λd−1). The best known algorithms [65] for solving
GapSVPγ run in 2Õ( n1

log γ ), which for our parameters is 2Õ(λ).

Theorem 3.2. The above MCFE schemes provides adaptive security under the
LWEq,m,n1,α1 assumption.

Proof. The proof considers a sequence of games. In each game, we denote by Wi

the event that b′ = b. For each i, the adversary’s advantage function in Gamei is
Advi(A) := |Pr[b′ = b]− 1/2| = 1

2 · |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]|.

Game0: This is the real security game. We denote by t? the tag of the challenge
phase while t(1), . . . , t(Q) are the tags involved in encryption queries. Namely,
for each j ∈ [Q], t(j) stands for the j-th distinct tag involved in an encryption
query. Since up to ` encryption queries (i,xi, t) are allowed for each tag t,
the adversary can make a total of ` ·Q encryption queries. The game begins
with the challenger initially choosing encryption keys {eki}`i=1 by sampling
eki = si ←↩ DZn,σ for each i ∈ [`]. In addition, the challenger flips a fair coin
b ←↩ U({0, 1}) which will determine the response to challenge queries. At
each corruption query i ∈ [`], the adversary obtains eki and the challenger
updates a set CS := CS ∪ {i}, which is initially empty. At each encryption
query (i,x(j)

i , t(j)), the challenger samples e(j)
i ←↩ DZm,αq and returns

Ct,i = G>0 · x
(j)
i + A(τ (j))> · si + e(j)

i ∈ Zmq ,

where τ (j) = AHF(t(j)). In the challenge phase, the adversary A chooses a
fresh tag t? and two vectors of messages X?

0 = [x?0,1 | . . . | x?0,`] ∈ [−X,X]n0×`

and X?
1 = [x?1,1 | . . . | x?1,`] ∈ [−X,X]n0×` subject to the constraint that, for

any private key query y ∈ [−Y, Y ]` made by A, we must have X?
0 ·y = X?

1 ·y
over Z. In addition, the invariant that x?0,i = x?1,i for any i ∈ CS must
be satisfied at any time during the game. In response to a challenge query
(i,x?0,i,x?1,i, t?), the challenger generates a challenge ciphertext Ct?,i, where

Ct?,i = G>0 · x?b,i + A(τ?)> · si + e?i , (3)

where τ? = AHF(t?) and e?i ←↩ DZm,αq for all i ∈ [`].
When A halts, it outputs b̂ ∈ {0, 1} and the challenger defines b′ := b̂. We
have Adv(A) := |Pr[W0]− 1/2|, where W0 is event that b′ = b.

Game1: This game is identical to Game0 except for the following changes. First,
the challenger runs K ← AdmSmp(1λ, Q, δ) to generate a key K ∈ {0, 1,⊥}L
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for a balanced admissible hash function AHF : {0, 1}`t → {0, 1}L. When the
adversary halts and outputs b̂ ∈ {0, 1}, the challenger checks if the conditions

PK(t(1)) = · · · = PK(t(Q)) = 1 ∧ PK(t?) = 0 (4)

are satisfied. If conditions (4) do not hold, the challenger ignores A’s output
b̂ ∈ {0, 1} and overwrites it with a random bit b′′ ←↩ {0, 1} to define b′ = b′′.
If conditions (4) are satisfied, the challenger sets b′ = b̂. By Lemma 2.8,

|Pr[W1]− 1/2| ≥ γmin ·Adv(A)− 1
2 · (γmax − γmin) = τ,

where τ(λ) is a noticeable function.
Game2: In this game, we modify the generation of mpk in the following way.

Initially, the challenger samples a uniformly random matrix A←↩ U(Zn×mq ).
Next, for each i ∈ [L], it samples Ri,0,Ri,1 ←↩ U({−1, 1})m×m and defines
{Ai,0,Ai,1}Li=1 as follows for all i ∈ [L] and j ∈ {0, 1}:

Ai,j :=
{

A ·Ri,j if (j 6= Ki) ∧ (Ki 6=⊥)
A ·Ri,j + G if (j = Ki) ∨ (Ki =⊥) (5)

Since A ∈ Zn×mq was chosen uniformly, the Leftover Hash Lemma ensures
that {Ai,0,Ai,1}Li=1 are statistically independent and uniformly distributed
over Zn×mq . It follows that |Pr[W2]− Pr[W1]| ≤ L · 2−λ.

We note that, at each encryption query (i,x(j)
i , t(j)), the admissible hash func-

tion maps t(j) to τ (j) = AHF(t(j)), which is itself mapped to a GSW encryption

A(τ (j)) = A ·Rτ(j) + (
L∏
i=1

µi) ·W>, (6)

of a product
∏L
i=1 µi, for some small norm matrix Rτ(j) ∈ Zm×m, where

µi :=
{

0 if (AHF(t(j))i 6= Ki) ∧ (Ki 6=⊥)
1 if (AHF(t(j))i = Ki) ∨ (Ki =⊥)

If conditions (4) are satisfied, at each encryption query (i, x(j)
i , t(j)), the admissible

hash function ensures that τ (j) = AHF(t(j)) satisfies

A(τ (j)) = A ·Rτ(j) ∀j ∈ [Q], (7)

for some small norm Rτ(j) ∈ Zm×m. Moreover, the challenge tag t? is mapped to
an L-bit string τ? = AHF(t?) such that

A(τ?) = A ·Rτ? + W> = A ·Rτ? + V> ·G0 (8)

21



Game3: In this game, we modify the distribution of mpk and replace the uniform
matrix A ∈ Zn×mq by a lossy matrix such that

A> = Â> ·C + E ∈ Zm×nq , (9)

where Â ←↩ U(Zn1×m
q ), C ←↩ U(Zn1×n

q ) and E ←↩ DZm×n,α1q, for n1 � n.
The matrix (9) is thus “close” to a matrix Â> ·C of much lower rank than n.
Under the LWE assumption in dimension n1 with error rate α1, this change
should not significantly affect A’s behavior and a straightforward reduction
B shows that |Pr[W3]− Pr[W2]| ≤ n ·AdvLWEq,m,n1,α1

B (λ), where the factor
n comes from the use of an LWE assumption with n secrets.

Game4: In this game, we modify the encryption oracle. At each encryption query
(i,x(j)

i , t(j)), the challenger generates the ciphertext by computing:

Ct,i = G>0 · x
(j)
i + R>τ(j) · Â> ·C · si + e(j)

i ∈ Zmq , (10)

and for each challenge query (i,x?0,i,x?1,i, t?) the challenger replies with:

Ct?,i = G>0 · x?b,i +
(
R>τ? · Â> ·C + G>0 ·V

)
· si + e?i ∈ Zmq (11)

where e(j)
i ←↩ DZm,αq and e?i ←↩ DZm,αq. The only difference between Game3

and Game4 is thus that the terms R>
τ(j) ·E · si + e(j)

i and R>τ? ·E · si + e?i are
replaced by e(j)

i and e?i respectively, at each encryption or challenge query.
However, the smudging lemma (Lemma 2.4) ensures that the two distributions
are statistically close as long as α is sufficiently large with respect to α1 and
σ. Concretely, Lemma 3.3 implies |Pr[W4]− Pr[W3]| ≤ ` · (Q+ 1) · 2−Ω(λ).

Game5: This game is like Game4 but we modify the challenge oracle. Instead
of encrypting X?

b = [x?b,1 | . . . | x?b,`] as in (11), the challenger encrypts a
linear combination of X?

0 and X?
1. It initially chooses a uniformly random

γ ←↩ U(Zq) and, at each challenge query (i,x?0,i,x?1,i, t?), computes Ct?,i as

Ct?,i = G>0 ·
(
(1− γ) · x?b,i + γ · x?1−b,i

)
+
(
R>τ? · Â> ·C + G>0 ·V

)
· si + e?i ,

with e?i ←↩ DZm,αq, for all i ∈ [`]. Lemma 3.4 shows that Game4 and Game5
are negligibly far part as |Pr[W5]− Pr[W4]| ≤ 2−Ω(λ).

In Game5, we clearly have Pr[W5] = 1/2 since the challenge ciphertexts
(C?

t,1, . . . ,C?
t,`) reveal no information about b ∈ {0, 1}. ut

Lemma 3.3. Let Rτ ∈ Zm×m be as in equation (6). Let E ←↩ DZm×n,α1q and
s←↩ DZn,σ. If α1q = ω(

√
logn), σ = ω(

√
logn) and α ≥ 2λ ·L·m4 ·n3/2 ·α1 ·σ, we

have the statistical distance upper bound ∆
(
DZm,αq, R>τ ·E · s +DZm,αq

)
≤ 2−λ.

(The proof is given in Appendix C.2.)
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Lemma 3.4. We have |Pr[W5]− Pr[W4]| ≤ 2−Ω(λ).

Proof. To prove the result, we resort to a technique of guessing in advance the
difference X?

1−b −X?
b , which was previously used in [69,14] and can be seen as

complexity leveraging with respect to a statistical argument. We consider the
following variants of Game4 and Game5, respectively.

We define Game′4 and Game′5 simultaneously by using an index k ∈ {4, 5}:

Game′k: This game is like Gamek with one difference in the setup phase. To gen-
erate mpk, the challenger B generates a statistically uniform U ∈ Z(n0+n1)×n

q

with a trapdoor TU for the lattice Λ⊥(U). Then, B parses U as

U =
[
V
C

]
∈ Z(n0+n1)×n

q ,

where V ∈ Zn0×n
q and C ∈ Zn1×n

q are statistically independent and uniform
over Zq. Next, it computes

A> = Â> ·C + E ∈ Zm×nq ,

where Â←↩ U(Zn1×m
q ) and E←↩ DZm×n,α1q. The obtained matrix A ∈ Zn×mq

is then used to generate {Ai,j}i∈[L],j∈{0,1} as per (20). The upper part
V ∈ Zn0×n

q of U is included in mpk, the distribution of which is statistically
close to that of Gamek: we indeed have |Pr[W ′k]− Pr[Wk]| ≤ 2−Ω(λ).
We do the same as above and define Game′′4 and Game′′5 simultaneously by
using an index k ∈ {4, 5}:

Game′′k: This game is identical to Game′k with the following difference. At the out-
set of the game, the challenger randomly chooses ∆X←↩ U([−2X, 2X]n0×`)
as a guess for the difference X?

1−b − X?
b between the challenge messages

X?
0,X?

1. In the challenge phase, the challenger checks if ∆X = X?
1−b−X?

b . If
not, it aborts and replaces A’s output b̂ with a random bit b′′ ←↩ U({0, 1}).
If the guess for X?

1−b − X?
b was successful (we call Guess this event), the

challenger proceeds exactly as it did in Game′k.

Since the choice of ∆X←↩ U([−2X, 2X]n0×`) is completely independent of
A’s view, we clearly have Pr[Guess] = 1/(4X)n0`. Since Game′′4 is identical to
Game′4 when Guess occurs, this implies Adv4′(A) = (4X)n0` ·Adv4′′(A). Indeed,

Adv4′′(A) := 1
2 · |Pr[b′ = 1 | b = 1,Guess] · Pr[Guess] + 1

2 · Pr[¬Guess]

−Pr[b′ = 1 | b = 0,Guess] · Pr[Guess]− 1
2 · Pr[¬Guess]|

= 1
2 · Pr[Guess] · |Pr[b′ = 1 | b = 1,Guess]− Pr[b′ = 1 | b = 0,Guess]|

= Pr[Guess] ·Adv4′(A) = 1
(4X)n0`

·Adv4′(A)

and we can similarly show that Adv5′(A) = (4X)n0` ·Adv5′′(A).
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Game′′′5 : This game is identical to Game′′4 except that encryption keys {eki}`i=1
are replaced by alternative encryption keys {ek′i}`i=1, which are generated as
follows. After having sampled eki = si ←↩ DZn,σ for all i ∈ [`], the challenger
B chooses γ ←↩ U(Zq) and uses the trapdoor TU for Λ⊥(U) to sample a
small-norm matrix T ∈ Zn×n0 satisfying

U ·T =
[
γ · In0

0n1×n0

]
mod q, (12)

so that V ·T = γ · In0 mod q and C ·T = 0n1×n0 mod q. For each i ∈ [`], B
then defines the alternative key ek′i = s′i of user i to be

s′i = si + T ·∆xi ∈ Zn ∀i ∈ [`], (13)

where ∆xi is the i-th column of ∆X (i.e., the guess for x?1−b,i−x?b,i). These
modified encryption keys {ek′i = s′i}`i=1 are used to answer all encryption
queries and to generate the challenge ciphertext. At each corruption query i,
the adversary is also given ek′i instead of eki.

We first claim that, conditionally on Guess, Game′′′5 is statistically close to Game′′4 .
To see this, we first argue that trading {eki}`i=1 for {ek′i}`i=1 has no incidence on
queries made by a legitimate adversary:
- We have C · s′i = C · si mod q, so that encryption queries obtain the same
responses no matter which key set is used among {eki}`i=1 and {ek′i}`i=1.

- We have
∑`
i=1 s′i · yi =

∑`
i=1 si · yi so long as the adversary only obtains

private keys for vectors y ∈ Z` such that (X?
0 −X?

1) · y = 0 (over Z).
- For any corrupted user i ∈ CS, it should be the case that x?0,i = x?1,i, meaning
that s′i = si as long as Guess occurs.

This implies that Game′′′5 is identical to Game′′4 , except that users’ secret keys are
defined via (13) and thus have a slightly different distribution. Lemma 3.5 shows
that the statistical distance between the distributions of {s′i}`i=1 and {si}`i=1 is at
most 2−λ · (4X)−n0`. This implies that Game′′4 and Game′′′5 are statistically close
assuming that Guess occurs. When Guess does not occur, both games output a
random b′ ←↩ U({0, 1}), so that |Pr[W ′′′5 ]− Pr[W ′′4 ]| ≤ 2−λ · (4X)−n0`.

We finally claim that, from the adversary’s view Game′′′5 is identical to Game′′5 .
Indeed, our choice of T ensures that V · T = γ · In0 mod q, so that we have
V · s′i = V · si + γ · (x?1−b,i − x?b,i) mod q. This implies

Ct?,i = G>0 · x?b,i + (R>τ? · Â> ·C + G>0 ·V) · s′i + ei?

= G>0 ·
(
(1− γ) · x?b,i + γ · x?1−b,i

)
+ (R>τ? · Â> ·C + G>0 ·V) · si + ei?

which is exactly the distribution from Game′′5 .

Putting the above altogether, we find |Pr[W ′′4 ]−Pr[W ′′5 ]| ≤ 2−Ω(λ) · (4X)−n0`,
which in turn implies |Pr[W4]− Pr[W5]| ≤ 2−Ω(λ), as claimed.

ut
Lemma 3.5. If σ ≥ 2λ ·n0 ·(4X)n0`+1 ·ω(n2√logn), then we have the inequality
∆ (DZn,σ,T ·∆xi +DZn,σ) ≤ 2−λ · (4X)−n0`. (The proof is in Appendix C.3.)
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4 A DMCFE Scheme for Linear Functions

As in [28], our DMCFE scheme combines two instances of the underlying cen-
tralized scheme of Section 3. While the second instance is used exactly in the
same way as in the centralized construction, the first instance is used for the sole
purpose of generating partial functional secret keys without having the senders
communicate with one another. As in [28], the senders have to initially run an
interactive protocol in order to jointly generate public parameters for the two
schemes. Note that this protocol is the only step that requires interaction among
senders and it is only executed once. This interactive step ends with each sender
holding an encryption key eki = (si, ti) comprised of encryption keys for the
two MCFE instances. The distributed protocol also ensures that a functional
secret key t =

∑`
i=1 ti for the all-one vector (1, 1, . . . , 1)> ∈ Z` be made publicly

available for the first MCFE instance. Later on, when a decryptor wishes to
obtain a partial functional secret key dkf,i for a vector y = (y1, . . . , y`)> from
the i-th sender Si, the latter can generate an MCFE encryption of the vector
yi · si ∈ Zn under his secret key ti. Having obtained partial functional secret keys
dkf,i from all senders {Si}`i=1, the decryptor can then use the functional secret
key t =

∑`
i=1 ti to compute sy =

∑`
i=1 yi · si ∈ Zn.

4.1 Description

We assume global public parameters

cp :=
(
λ, `max, X, X̄, Y, Ȳ , n0, n1, n̄1, n, n̄, , m, m̄, α,

α1, ᾱ1, σ, σ̄, `t, `f , L, q, q̄, AHFt, AHFf
)
,

which specify a security parameter λ and the following quantities

- Let `max = λk, n1 = λd, d̄ = 3d+ k − 1, q = 2λd−1+λ, q̄ = 2λd̄−1+λ, n̄1 = λd̄,
α1 = 2−λd−1+d logλ, ᾱ1 = 2−λd̄−1+d̄ logλ, α = 2−

√
λ, n0 · `max = O(λd−2),

n0 = O(λd−2), n = O(λ2d−1), n̄ = O(λ4d+k−2), X = 1, Ȳ = 1, σ = 2λd−1−2λ,
σ̄ = 2λd̄−1−2λ, X̄ = 2` · Y · σ

√
n and the rest of the parameters Y,m, m̄ are

all in poly(λ)
- A tag length `t ∈ Θ(λ) and a length `f ∈ Θ(λ) of function labels.
- Dimensions n,m, n0, n1, n̄, m̄ ∈ poly(λ) such that n > 3 · (n0 + n1) · dlog qe,
m > 2 · n · dlog qe, n̄ > 3 · (n+ n̄1) · dlog q̄e and m̄ > 2 · n̄ · dlog q̄e.

- The description of balanced admissible hash functions AHFt : {0, 1}`t →
{0, 1}L and AHFf : {0, 1}`f → {0, 1}L, for a suitable L ∈ Θ(λ).

- A real α > 0 and a Gaussian parameter σ > 0, which will specify an interval
[−β, β] = [−σ

√
n, σ
√
n] where the coordinates of the secret will live (with

probability exponentially close to 1).

We define Ḡ ∈ Zn×m̄q̄ to be the gadget matrix

Ḡ = [In ⊗ (1, 2, 4, . . . , 2dlog q̄e) | 0n | . . . | 0n] ∈ Zn×m̄q̄
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where In ⊗ (1, 2, 4, . . . , 2dlog q̄e) is padded with m̄− n · dlog q̄e zero columns.

Setup(cp, 1`): On input of a number of users ` < `max, the senders {Si}`i=1 run
an interactive protocol at the end of which the following quantities are made
publicly available.

- Random matrices Ai,b ←↩ U(Zn×mq ), for each i ∈ [L], b ∈ {0, 1}.
- Random matrices Bi,b ←↩ U(Zn̄×m̄q̄ ), for each i ∈ [L], b ∈ {0, 1}.
- Random matrices V←↩ U(Zn0×n

q ), V̄←↩ U(Zn×n̄q̄ ).
- The sum t =

∑`
i=1 ti ∈ Zn̄ of Gaussian vectors ti ←↩ DZn̄,σ̄ for i ∈ [`].

In addition, for each i ∈ [`], the i-th sender Si privately obtains the following:

- The i-th term ti ∈ Zn̄ of the sum t =
∑`
i=1 ti.

- A Gaussian vector si ←↩ DZn,σ, which is used to define Si’s encryption key
eki = si ∈ Zn and the corresponding secret key ski = (si, ti) ∈ Zn × Zn̄.

The master public key is defined to be

mpk :=
(

cp, V, V̄, {Ai,0,Ai,1 ∈ Zn×mq }Li=1,

{Bi,0,Bi,1 ∈ Zn̄×m̄q̄ }Li=1, t
)
,

while Si obtains eki = si ∈ Zn and ski = (si, ti) ∈ Zn × Zn̄ for each i ∈ [`].

DKeygenShare(ski, tf ) : Given the secret key ski = (si, ti) ∈ Zn × Zn̄ and
the label tf of a linear function fy : Zn0×` → Zn0 described by a vector
y = (y1, . . . , y`)> ∈ [−Y, Y ]`, conduct the following steps.

1. Compute τf = τf [1] . . . τf [L] = AHFf (tf ) ∈ {0, 1}L as well as

B(τf ) = BL,τf [L]·Ḡ−1
(
BL−1,τf [L−1]·Ḡ−1(. . .B2,τf [2]·Ḡ−1(B1,τf [1]

)))
· Ḡ−1(W̄>) ∈ Zn̄×m̄q̄ , (14)

where W̄ = Ḡ> · V̄ ∈ Zm̄×n̄q̄ .
2. Sample a noise vector ef,i ←↩ DZm̄,αq̄. Then, compute

dkf,i = Ḡ> · (yi · si) + B(τf )> · ti + ef,i ∈ Zm̄q̄ . (15)

Output the partial functional decryption key dkf,i ∈ Zm̄q̄ .

DKeygenComb({dkf,i}i, tf ) : Given the label of a function described by a vector
y = (y1, . . . , y`) ∈ [−Y, Y ]` and ` partial functional keys {dkf,i}`i=1 where
dkf,i ∈ Zm̄q̄ for each i ∈ [`], conduct the following steps.

1. Compute τf = AHFf (tf ) ∈ {0, 1}L and parse it as τf = τf [1] . . . τf [L].
2. Compute B(τf ) ∈ Zn̄×m̄q̄ as per (14).
3. Compute dtf =

∑`
i=1 dkf,i −B(τf )> · t mod q̄, where t ∈ Zn̄ is taken

from mpk.
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4. Interpret dtf ∈ Zm̄q̄ as a vector of the form dtf = Ḡ> · sy + ẽf mod q̄, for
some error vector ẽf ∈ [−B̄, B̄]m̄. Using the public trapdoor of Λ⊥(Ḡ),
compute the underlying sy ∈ [−` · β · Y, ` · β · Y ]n.

Output the functional secret key dky = (y, sy).

Encrypt(eki,xi, t) : Given eki = si ∈ Zn, xi ∈ [−X,X]n0 , and t ∈ {0, 1}`t ,

1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Letting W = G>0 ·V ∈ Zm×nq , compute

A(τ) = AL,τ [L] ·G−1
(
AL−1,τ [L−1] ·G−1(. . .A2,τ [2] ·G−1(A1,τ [1]

)))
·G−1(W>) ∈ Zn×mq . (16)

3. Sample a noise vector ei ←↩ DZm,αq. Then, compute and output

Ct,i = G>0 · xi + A(τ)> · si + ei ∈ Zmq .

Decrypt(dky, t,Ct) : On input of a functional secret key dky = (y, sy) for a
vector y = (y1, . . . , y`)> ∈ [−Y, Y ]`, a tag t ∈ {0, 1}`t , and an `-vector of
ciphertexts Ct = (Ct,1, . . . ,Ct,`) ∈ (Zmq )`, conduct the following steps.
1. Compute τ = AHF(t) ∈ {0, 1}L and parse it as τ = τ [1] . . . τ [L].
2. Compute A(τ) ∈ Zn×mq as per (16).
3. Compute ft,y =

∑`
i=1 yi ·Ct,i −A(τ)> · sy mod q.

4. Interpret ft,y ∈ Zmq as a vector of the form ft,y = G>0 · z + ẽ mod q, for
some error vector ẽ ∈ [−B,B]m. Using the public trapdoor of Λ⊥(G0),
compute and output the underlying vector z ∈ [−` ·X · Y, ` ·X · Y ]n0 .

The scheme’s correctness is implied by that of the two underlying centralized
schemes. In turn, these are correct by Lemma 3.1 and the choice of parameters.

4.2 Security

The proof of Theorem 4.1 is given in Appendix D. It proceeds with a sequence of
games where the first (resp. last) game is the real experiment of Definition 2.14
where the challenger’s bit is b = 0 (resp. b = 1).

In order to reduce the security of the centralized scheme to that of its
decentralized variant, the proof first moves to a game where the partial functional
key generation oracle of Definition 2.14 can be simulated using the functional
key generation oracle of Definition 2.11. To this end, it relies on the security of
the first MCFE instance. The reduction has the particularity that it has to send
dummy encryption queries to its challenger in order to comply with Condition
2 of the “finalize” step in Definition 2.11. The next step is to move to a game
where encryption queries (i,xi,0,xi,1, t) are answered by returning encryptions
of xi,1 instead of xi,0. For this purpose, we rely on the security of the second
MCFE instance, which is possible since the partial key generation oracle can be
simulated using the centralized key generation oracle. In order to make sure that
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the simulation does not break Condition 3 in the “finalize” step of Definition
2.11, the reduction only invokes its centralized key generation oracle in the very
last partial key generation query involving an uncorrupted user. We note that a
similar technique was used in [28], where keys were computed modulo a prime.
Here, our reduction has to apply the same strategy over the integers. However,
the technique still works as long as the message space of the first MCFE instance
is large enough to contain functional secret keys

∑
i=1 yi · si in each coordinate.

The final transition restores the partial key generation oracle of Definition 2.14
to its original output distribution. To this end, we invoke again the security of
the first MCFE instance and reverse the transition of the first step.

Theorem 4.1. The above DMCFE scheme provides sta-IND-sec security under
the LWE assumption.
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A One-or-less MCFE Compiler

In the definition of 1-challenge IND-sec security, (i.e., Definition 2.12), the adver-
sary has to make the challenge encryption queries CQEncrypt(j, x?0j , x?1j , t?) for all
uncorrupted slots j ∈ HS as long as a query of the form CQEncrypt(i, x?0i , x?1i , t?)
is made for some slot i ∈ HS. Hence, it is not allowed to use the partial informa-
tion that could be revealed by incomplete challenge queries.

It is desirable to strengthen the security definition and prove security even
when the adversary is allowed to obtain partial ciphertexts by making challenge
queries {CQEncrypt(i, x?0i , x?1i , t?)}i∈I for a proper subset I ⊂ HS. In this section,
we recall the definition of this security requirement and provide a compiler that
takes a secure MCFE satysfying 1-challenge IND-sec security and upgrades it so
as to achieve security in the sense of the stronger definition. The transformation
relies on pseudorandom generators and adaptively secure multi-instance PRFs. A
definition of the latter notion is given in this subsection.

Definition A.1 (1-or-less-challenge IND-sec). For an MCFE scheme with `
senders, we consider the following game between an adversary A and a challenger
C. The game involves a set HS (initialized to HS := [`]), of honest senders and
a set CS (initialized to CS := ∅), of corrupted senders.

Initialization: The challenger C generates cp and runs (mpk,msk, {eki}`i=1)←
Setup(cp, 1`). Then, it chooses a random bit b← {0, 1} and gives the master
public key mpk to the adversary A.

Encryption queries: The adversary can adaptively make encryption queries
QEncrypt(i, x, t), to which the challenger replies with Encrypt(eki, x, t). Any
further query involving the same pair (i, t) is ignored.

Challenge queries: The adversary adaptively makes challenge queries of the
form CQEncrypt(i, x?0i , x?1i , t?). The challenger replies with Encrypt(eki, x?bi , t?).
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Only one tag t? can be involved in a challenge query. If t? denotes the tag of
the first query, the challenger only answers subsequent challenge queries for
the same t?. Moreover, only one query (i, t?) is allowed for each i ∈ [`] and
subsequent queries involving the same i ∈ [`] are ignored.

Functional decryption key queries: The adversary can adaptively obtain
functional decryption keys via queries QDKeygen(f). At each query, the
challenger returns dkf ← DKeygen(msk, f).

Corruption queries: For any user i ∈ HS, the adversary can adaptively make
queries QCorrupt(i), to which the challenger replies with eki and updates HS
and CS by setting CS := CS ∪ {i} and HS := HS \ {i}.

Finalize: The adversary outputs a bit b′ ∈ {0, 1}. The adversary A wins if β = b,
where β is defined as β := b′, unless one of the situations below occurred.
1. A challenge query CQEncrypt(i, x?0i , x?1i , t?) has been made for an index

i ∈ CS with x?0i 6= x?1i .
2. An encryption query QEncrypt(i, x, t?) has been made for the challenge

tag t? and an index i ∈ [`]
3. For the challenge tag t? and some function f queried to QDKeygen, there

exists a pair of vectors (x?0,x?1) such that f(x?0) 6= f(x?1), where
- x?0i = x?1i for all i ∈ CS;
- CQEncrypt(i, x?0i , x?1i , t?) have been asked for all i ∈ HS.

If any of these events occurred, A’s output is overwritten by β ← U({0, 1}).

We say that an MCFE scheme provides ≤ 1Ch-IND security if, for any efficient
adversary A, we have Adv≤1Ch-IND(A) :=

∣∣Pr[β = b]− 1
2
∣∣ ∈ negl(λ).

The definition of 1-or-less IND security is identical to the 1Ch-IND definition,
except that we removed Condition 3 of the Finalize step in Definition 2.12. In
Definition A.1, we insist that the last condition of the Finalize step does not
impose any restriction on the functions queried to QDKeygen if there exists a
single index i ∈ HS for which no challenge query CQEncrypt(i, ·, ·, t?) was made.

In order to achieve security in the sense of Definition A.1, our compiler uses
as a building block a pseudorandom function family that satisfies a definition of
adaptive multi-instance PRF. This notion is defined as follows.

Definition A.2 (ad-mi-PRF). An efficiently computable function F : K×X →
Y is an adaptively secure N-instance PRF, for some N ∈ poly(λ), if no PPT
adversary A has non-negligible advantage in winning the following game.

Initialization: The challenger C samples N secret keys k1, k2, . . . kN ←↩ K and
a uniformly random bit d←↩ U({0, 1}).

Queries. The adversary A adaptively interleaves the following kinds queries:
Evaluation: Upon receiving a query Eval(i,X), where i ∈ [N ] and X ∈ X ,

the challenger returns ⊥ if it previously replied to a challenge query for
the same pair (i,X). Otherwise, it replies with Fki(X) ∈ Y.

Corruption: When the adversary makes a query Corrupt(i), the challenger
returns ⊥ if it previously replied to a challenge query for i. Otherwise,
the challenger returns ki ∈ K.
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Challenge: A makes challenge queries Challenge(i?, X?) for a unique ar-
bitrary input X? (any subsequent challenge query involving a different
input X 6= X? is ignored). If Eval(i?, X?) or Corrupt(i?) was queried
before, the challenger returns ⊥. Else, it returns Fki? (X?) if d = 1 and a
uniformly random value from Y if d = 0.

Guess. A outputs a guess d′ ∈ {0, 1} and wins if d′ = d.

The adversary’s advantage is Advad-mi-PRF
A (λ) :=

∣∣Pr[d′ = d]− 1
2
∣∣ .

It is possible to show that any PRF that provides single-instance security in the
sense of a “find-then-guess” definition is also secure in the sense of Definition A.2.
In short, the proof proceeds using a hybrid argument over the challenge queries
and guesses the index of an uncorrupted index in each hybrid. However, this
reduction incurs a quadratic security loss in N . Since Lemma A.4 uses a reduction
with N = `2 PRF instances, this would translate into a degradation factor `4,
which would eventually become `5 because of the bound (17). In Appendix A.2,
we show that a PRF construction described in [56] can be proven secure in the
sense of Definition A.2 without a O(N2) loss in the reduction, so that our security
loss is only linear in the number of slots `. In comparison, the compiler of [1]
loses a factor O(`2) but relies on any PRF.

A.1 The Transformation

The compiler is similar to the random-oracle-based transformation of Abdalla
et al. [2, Section 4.2] – which is itself inspired by [4] – and its intuition is
the following. The ciphertexts of individual slots contain partial MCFE cipher-
texts Encrypt′(ek′i, xi, t) which are super-encrypted using a symmetric encryption
scheme with secret key Kt,i. The partial ciphertexts of the compiled scheme also
contain shares kijt of the secret key Ki,t in such a way that, once all the partial
ciphertexts are gathered for a given tag t, the decryptor can recover the secret
Kt,i =

⊕`
j=1 kijt and thus the encryption Encrypt′(ek′i, xi, i). If only one such

ciphertext is missing, then the secret key Kt,i remains computationally hidden
because the decryptor does not have all the shares. The symmetric encryption
layer thus hides all the information that could leak when the adversary does not
make encryption queries for all uncorrupted slots.

Given an MCFE schemeMCFE ′ = (Setup′,Encrypt′,DKeygen′,Decrypt′), an
adaptively secure `2-instances ad-mi-PRF F : K × T → {0, 1}λ and a PRG
G : {0, 1}λ → {0, 1}|ct′|, where |ct′| is the length of the output of the algorithm
Encrypt′, we obtain the following compiled schemeMCFE .

Setup(cp, 1`) : Runs (mpk′,msk′, {ek′i}`i=1) ← Setup′(cp, 1λ). Samples `2 secret
keys kij ←↩ K for all i, j ∈ [`]. Then, set mpk := mpk′ msk := msk′ and
eki := (ek′i, {kij , kji}j∈[`])

Encrypt(eki, xi, t) : Given eki = (ek′i, {kij , k′ji}`j=1) it computes kijt := Fkij (t),
kjit := Fkji(t) for all j ∈ [`], C ′t,i := Encrypt′(ek′i, xi, t) and Kt,i :=

⊕`
j=1 kijt.

Next, it computes Ct,i := C ′t,i ⊕G(Kt,i). It outputs ctt,i =
(
Ct,i, {kjit}`j=1

)
.
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DKeygen(msk, f) : Given msk and an `-argument function f : M` → R. It
outputs a functional decryption key dkf := DKeygen′(msk′, f).

Decrypt(dkf , t, {ctt,1, ctt,2, . . . , ctt,`}) : Takes as input a functional decryption
key dkf , a tag t ∈ T , and an `-vector of ciphertexts C = (ctt,1, . . . , ctt,`). For
all i ∈ [`] it computes Kt,i =

⊕`
j=1 kijt and C ′t,i := Ct,i ⊕G(Kt,i) and runs

Decrypt′(dkf , t, {C ′t,1, C ′t,2, . . . , C ′t,`})

The security proof relies on the idea that, if the adversary A does not make all
the allowed challenge encryptions queries, there must exist an honest slot j0 ∈ HS
such that CQEncrypt(j0, x0?

j0
, x1?
j0
, t?) is never asked. This ensures that none of

the PRF values {kij0t? = Fkij0 (t?)}i∈HS is ever exposed to the adversary, which
implies that {kij0t?}i∈HS are pseudorandom in the adversary’s view since F is a
PRF. This implies that secret keys Kt?,i :=

⊕`
j=1 kijt? are also pseudorandom

for all i ∈ HS. Hence, the ciphertexts Ct?,i = Encrypt′(ek′i, xi, i) ⊕ G(Kt?,i)
computationally hide the xi’s for all uncorrupted slots i. To translate this intuition
into a formal security proof, we need a PRF family that provides security in the
sense of Definition A.2.

Theorem A.3. IfMCFE ′ is 1Ch-IND secure then the compiledMCFE scheme
is ≤ 1Ch-IND secure.

Proof. Given an adversary A that breaks the MCFE scheme by winning the
game of Definition A.1 with non-negligible probability, we give a construction
of an adversary B that wins with the game of Definition 2.12 with noticeable
advantage, thus breaking theMCFE ′ scheme. The adversary B works as follows.

Initialization: The challenger C gives B the public parameters mpk′ and keeps
to itself the secret keys (msk′, {ek′i}`i=1). In order to initialize the game with
A, the reduction B samples `2 secret keys kij ←↩ K for all i, j ∈ [`]. Then
gives A the public parameters mpk := mpk′.

Encryption queries: For each encryption query QEncrypt(i, x, t) made by A,
B sends to same query to its challenger and obtains C ′t,i = Encrypt′(ek′i, x, t).
Then, B computes

{
kijt := Fkij (t), kjit := Fkji(t)

}`
j=1, Kt,i :=

⊕`
j=1 kijt,

Ct,i := C ′t,i ⊕G(Kt,i) and gives ctt,i := (Ct,i, {kjit}`j=1) to A.
Challenge queries: If A makes a query CQEncrypt(i, x?0i , x?1i , t?), B relays it

to its challenger and obtains C ′t?,i := Encrypt′(ek′i, x?bi , t?). Then, B com-
putes {kijt? := Fkij (t?), kjit? := Fkji(t?)}`j=1, Kt?i :=

⊕`
j=1 kijt? , as well as

Ct?,i := C ′t?,i ⊕G(Kt?i). The adversary A is given ctt?i := (Ct?i, {kjit?}`j=1).
Functional decryption key queries: Each query QDKeygen(f) made by A

is relayed by B to its challenger, which replies with dk′f . Then, B gives
dkf := dk′f to A.

Corruption queries: For each corruption query QCorrupt(i) that A makes,
B replies with eki := (ek′i, {kij , kji}`j=1), where ek′i is the key given by its
challenger in response to the same corruption query.

Finalize: When A outputs a result b′, B distinguishes two situations.
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- IfAmakes queries CQEnc(i, ?, ?, t?) for all slots i ∈ HS and the conditions
of the Finalize step in Definition A.1 are all satisfied (i.e., A’s output is
not overwritten by a random bit β), B outputs the same bit b̃ := b′ as A.

- Otherwise, B outputs a random b̃←↩ U({0, 1}). We call this event abort.

Next, we analyze the probability of B winning the game.

Pr[b̃ = b] = Pr[b̃ = b|abort] · Pr[abort] + Pr[b̃ = b|abort] · Pr[abort]

= 1
2 · Pr[abort] + Pr[b′ = b|abort] · Pr[abort]

= Pr[b′ = b] +
(

1
2 − Pr[b′ = b|abort]

)
· Pr[abort]

= Pr[b′ = b] +
(

1
2 − Pr[b′ = b|Ab]

)
· Pr[Ab]

where Ab is the event that A does not make encryption queries for all honest
slots in the challenge phase and the conditions in the finalize step of Definition
A.1 are all satisfied.

In order to finish the proof, we need to prove the following claim.

Claim. If F is a ad-mi-PRF and G a PRG, then
∣∣Pr[b′ = b|Ab]− 1

2
∣∣ is negligible.

Proof. We will prove this claim via a series of games. For each i ∈ {0, 1, 2}, we
call Wi the event that the challenger outputs 1 in Gamei.

Game0: This is the original game in the one-or-less security experiment (cf. Defi-
nition A.1) for the compiled scheme. The challenger runs the setup algorithm
of MCFE′ to obtain (mpk,msk′, {ek′i}`i=1), samples kij ←↩ K, for all i, j ∈ [`]
and sets mpk := mpk′, msk := msk′ and eki := (ek′i, {kij , kji}`j=1). It gives
mpk to A and handles queries QCorrupt(i) using eki := (ek′i, {kij , kji}`j=1). To
answer queries QEnc(i, xi, t), it computes

{
kijt := Fkij (t), kjit := Fkji(t)

}`
j=1

andKt,i :=
⊕`

j=1 kijt. Then, it computes Ct,i := Encrypt′(ek′i, xi, t)⊕G(Kt,i).
The adversary A is given ctt,i := (Ct,i, {kjit}`j=1). To answer challenge encryp-
tion queries CQEncrypt(i, x0

i , x
1
i , t

?), it replies with the result of QEnc(i, xbi , t?).
As for functional decryption queries QDKeygen(f,msk), the challenger replies
with dkf ← DKeygen(msk′, f). When A halts, it outputs a bit b′ and the
challenger outputs 1 if and only if b′ = b, so that Pr[W0] = Pr[b′ = b|Ab].

Game1: The challenger interacts with A exactly as in Game0 except that, upon
receiving a challenge query CQEncrypt(i, x0

i , x
1
i , t

?), it does the following. If
x0
i = x1

i , it replies as in Game0. Otherwise, for each slot i ∈ [`] such that
x0
i 6= x1

i , it samples a uniform value for Kt?,i ←↩ U({0, 1}λ) which it uses as
a seed for the pseudorandom generator G in order to compute Ct?,i.

For any index i such that x0
i 6= x1

i , corruption queries Corrupt(i) are disallowed
by the conditions of the Finalize step which must be satisfied (recall that we are
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conditioning on event Ab). The only information that A can gather about Kt?,i

is thus obtained from QEnc(j, xj , t) and CQEnc(j, x0
j , x

1
j , t

?) queries. By making
these types of queries, A only learns the evaluations {kijt = Fkij (t)}j∈[`], for any
t ∈ T \ {t?}, and

{
Fkij (t?)

}
j∈HS\{j0}

, respectively. Since we are conditioning on
Ab, there exists an index j0 ∈ HS which is never the input of a query of the form
CQEnc(j0, ·, ·, t?). In order to prove that Game0 and Game1 are computationally
indistinguishable, we define Game′0 and Game′1 in the following way.

Gameb’ (b ∈ {0, 1}): This game is identical to Gameb with the difference that
the challenger initially chooses j0 ←↩ U([`]) as a guess for the smallest index
j0 ∈ HS such that no challenge query CQEnc(j0, ·, ·, t?) is ever made. The
challenger aborts and outputs 0 if the guess eventually turns out to be wrong.
For each b ∈ {0, 1}, we have Pr[Wb] = ` · Pr[W ′b].

Lemma A.4 shows that Game′0 and Game′1 are computationally indistin-
guishable if F is a secure PRF in the multi-instance setting. This implies
|Pr[W0]− Pr[W1]| ≤ ` ·Advad-mi-PRF

B (λ).

Game2: This game identical to Game1 except that, at each challenge query
CQEncrypt(i, x0

i , x
1
i , t

?) for which x0
i 6= x1

i , it also sets Ct?,i uniformly random.
In this game, we have Pr[W2] = Pr[b′ = b|Ab] = 1

2 .

To see that Game1 and Game2 are computationally indistinguishable, recall
that Ct?,i = Ct?,i ⊕ G(Kt?,i). When the seed Kt?,i is uniformly generated the
value G(Kt?,i) is pseudorandom, thus Game1 and Game2 are computationally
indistinguishable. We thus obtain |Pr[W2]− Pr[W1]| ≤ AdvPRG(λ).

When combining the above, we obtain

|Pr[W0]− Pr[W2]| ≤ ` ·Advad-mi-PRF(λ) + AdvPRG(λ), (17)

which proves the result. ut

Lemma A.4. If F is secure in the ad-mi-PRF sense, then Game′0 and Game′1 are
computationally indistinguishable. More precisely, there exists a PRF adversary
B such that |Pr[W ′0]− Pr[W ′1]| ≤ Advad-mi-PRF

B (λ).

Proof. Suppose that A is an adversary that is able to distinguish between the
two games. We construct an adversary B that breaks the ad-mi-PRF security of
F when the challenger samples N = `2 secret keys kij ←↩ K for all i, j ∈ [`] in
the game of Definition A.2. Algorithm B proceeds in the following way.

Initialization: B starts by drawing j0 ←↩ U([`]) as a guess that j0 is the smallest
index such that no challenge query CQEncrypt(j0, ·, ·, t?) is made. Then, it
runs (mpk′,msk′, {ek′i}`i=1)← Setup(1λ) and mpk := mpk′ is given to A.

Corruption queries: In order to answer a corruption query Corrupt(j), the
reduction B aborts if j = j0 since its guess for j0 was incorrect. Otherwise,
it obtains the values {kjτ , kτj}`τ=1 by making corruption queries to its PRF
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challenger. Then, it replies with (ek′j , {kjτ , kτj}`τ=1). Notice that, if j0 is a
correct guess, we have j0 ∈ HS, which implies that the adversary never learns
{kj0i, kij0}i∈HS from corruption queries.

Encryption queries: To answer QEncrypt(i, x, t) queries, B asks its PRF chal-
lenger for the evaluations

{
kijt := Fkij (t), kjit := Fkji(t)

}`
j=1 and computes

Kt,i :=
⊕`

j=1 kijt. Then, it computes C ′t,i = Encrypt′(ek′i, x, t) as well as
Ct,i := C ′t,i ⊕G(Kt,i). The ciphertext ctt,i := (Ct,i, {kjit}`j=1) is given to A.

Challenge queries: When receiving a challenge query CQEncrypt(i, x0?
i , x

1?
i , t

?),
B aborts if i = j0. Otherwise, it considers the following two cases.

- If x0?
i = x1?

i = x?i , then B responds as it would answer the encryption
query QEncrypt(i, x?i , t?).

- If x0?
i 6= x1?

i (which is only possible if i ∈ HS), the reduction B asks its
challenger for the PRF evaluations {kijt? := Fkij (t?)}j 6=j0 . It also makes
a challenge query for the input t? and the secret key kij0 . The challenger
replies with a value yij0t? , which is either the evaluation Fkij0 (t?) for the
unknown secret key kij0 chosen by the PRF challenger or a random value.
Then, B computes Kt?,i := (

⊕
j 6=j0 kijt?)⊕ yij0t? and uses Kt?,i as a seed

for the PRG, by computing Cbt?,i := Cb′t?,i ⊕G(Kt?,i). The adversary A is
given ctt,i := (Cbt,i, {kjit?}`j=1).

Guess: When A halts, it outputs a bit b′. At this point, B aborts and outputs
0 if j0 is not the smallest i ∈ [`] such that no query CQEncrypt(i, ·, ·, t?) is
made. Otherwise, B outputs 1 (meaning that its challenger always outputs
pseudorandom values) if b′ = b and 0 otherwise.

If j0 is not a correct guess, Game′0 and Game′1 have the same outcome since the
challenger outputs 0 in both games. We thus assume that j0 is a correct guess, in
which case we know that j0 ∈ HS. Moreover, if x0?

i 6= x1?
i , we necessarily have

i ∈ HS. Therefore the reduction B never obtains the secret key kij0 by making a
Corrupt(·) query in the game of Definition A.2. In the same game, we also observe
that the value Fkij0 (t?) is never asked by B to its PRF evaluation oracle. Indeed,
encryption queries QEncrypt(·, ·, t?) are not allowed on the challenge tag t? and
the constraint Ab implies that no challenge query CQEncrypt(j0, ·, ·, t?) can be
made for the index j0.

We now observe that, if B’s challenger always returns truly random values
yij0t? at each challenge query, then A’s view is identical to that of Game1. If B’s
challenger always returns pseudorandom values, A’s view is as in Game0. We
thus conclude that Advad-mi-PRF

B (λ) ≥ |Pr[W ′0]− Pr[W ′1]|. ut

A.2 A PRF Construction With Multi-Instance Security in the
Adaptive Corruption Setting

We show that the centralized version of the distributed PRF of Libert et al. [56]
provides security in the sense of Definition A.2. We first recall the construction.
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Let λ be a security parameter and let ` ∈ Θ(λ), L ∈ Θ(λ). The scheme uses
public parameters consisting of prime moduli p and q such that q/p > 2L+λ ·N ·r,
dimensions n,m, k ∈ poly(λ) such that m ≥ 2n · dlog qe, an integer β > 0, a real
α > 0 and a rounding parameter r = mL+2 · n · β · αq. The PRF family relies on
the following building blocks.

• A balanced admissible hash function AHF : {0, 1}` → {0, 1}L.
• A family Πλ of ξ-wise independent hash functions πi : Zmp → Zkp for a suitable
ξ > 0 that will be determined later on. Let a random member π of Πλ.

Let a Gaussian parameter σ > 0 such that the interval [−β, β] = [−σ
√
n, σ
√
n]

contains the coordinates of the secret key with overwhelming probability. The
PRF family assumes the availability of public parameters

pp :=
(
q, π, A0, {Ai,0,Ai,1 ∈ Zn×mq }Li=1, AHF, r, σ

)
,

where A0 ∼ U(Zn×mq ) and Ai,0,Ai,1 ∼ U(Zn×mq ) for each i ∈ [L]. Importantly,
{Ai,0,Ai,1}Li=1 should be chosen in such a way that G−1(Ai,b) ∈ Zm×m is
Zq-invertible for all i ∈ [L] and b ∈ {0, 1} (see [56, Section 3.1] for details).

Keygen(pp): Given pp, sample a vector s ←↩ DZn,σ so that ‖s‖∞ < β = σ
√
n

with overwhelming probability. The secret key is SK := s ∈ [−β, β]n.
Eval(pp, SK,X): Given SK = s ∈ Zn and an input X ∈ {0, 1}`,

1. Compute x = AHF(X) ∈ {0, 1}L and parse it as x = x1 . . . xL.
2. Compute A(x) = A0 ·

∏L
i=1 G−1(Ai,xi

)
and

z =
⌊(

A(x)
)> · s⌋

p
∈ Zmp , (18)

and output y = π(z) ∈ Zkp.

We now prove that this construction is secure in the sense of Definition A.2
under the LWE assumption. The proof of Theorem A.5 is essentially identical
to that of [56, Theorem 3.2]. Intuitively, it exploits the fact that the reduction
knows the secret key at any time, which makes it easy to consistently answer
adaptive corruption queries.

Theorem A.5. The above construction provides adaptive multi-instance security
under the LWE assumption.

The proof relies on the following lemmas.

Lemma A.6 (Adapted from [59, Lemma 4.4]). For any n-dimensional
lattice Λ, x′, c ∈ Rn and symmetric positive definite Σ ∈ Rn×n satisfying
σn(
√

Σ) ≥ η2−n(Λ), we have

ρΣ,c(Λ+ x′) ∈ [1− 2−n, 1 + 2−n] · det(Σ)1/2
/det(Λ).
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Lemma A.7 ([36, Lemma 5.3]). Let m ≥ 2n · log q and q ≥ 2 prime and let
A←↩ U(Zn×mq ). With probability ≥ 1− 2−Ω(n), we have λ∞1 (Λ(A)) ≥ q/4.

Lemma A.8 ([32, Corollary 3]). Fix any integers n̄, m, M , any real ε < 1
and any collection X of M distributions over {0, 1}m̄ of min-entropy n̄ each.
Define

ξ = n̄+ logM, k̄ = n̄−
(

2 log 1
ε

+ log logM + log n̄+O(1)
)
,

and let F be any family of ξ-wise independent functions from m̄ bits to k̄ bits.
With probability at least (1 − 1/M), a random function f ←↩ U(F) is a good
deterministic extractor for the collection X . Namely, the distribution f(X) is
ε-close to U({0, 1}k̄) for any distribution X ∈ X .

Lemma A.9. Let F be a family of δ-sure ε-extractor for the finite collection X
of distributions over the input space of F : namely, F satisfies

Pr
f←↩F

[∀X ∈ X : ∆(f(X), U) ≤ ε] ≥ 1− δ,

where F is the uniform distribution over F and U is the uniform distribution
over the range of F . For any independent distributions Z1, Z2, . . . , Z` ∈ X , we
have ∆ ((F, F (Z1), F (Z2), . . . , F (Z`)), (F,U1, U2, . . . U`)) ≤ ` · ε+ δ.

Proof. For any function f ∈ F , the distributions f(Z1), f(Z2), . . . , f(Z`) are
independent since the initial distributions Z1, Z2, . . . , Z` are independent. This
implies that for, any function f ∈ F , we have

∆(f(Z1), f(Z2), . . . , f(Z`), (U1, U2, . . . , U`)) ≤
∑̀
j=1

∆(f(Zj), Uj).

Let U1` := (U1, U2, . . . , U`). For any f ∈ F , we also define the distribution
Zf := (f(Z1), f(Z2), . . . , f(Z`)). Since F is a δ-sure ε-extractor for the collection
X , it follows that

Pr
f←↩F

[∆(Zf , U1`) ≤ ` · ε] ≥ 1− δ.

By using the identity ∆ ((F,ZF ), (F,U1`)) = Expf←↩F [∆(Zf , U1`)], we obtain
that ∆ ((F,ZF ), (F,U1`)) ≤ `ε · (1− δ) + δ < ` · ε+ δ. ut

Lemma A.10 ([10, Lemma 2.7]). Let p, q be positive integers such that p < q.
Given R > 0 an integer, the probability that there exists e ∈ [−R,R] such that
bycp 6= by + ecp, when y ←↩ U(Zq), is smaller than 2Rp

q .

Proof (of Theorem A.5). The proof considers a sequence of hybrid games. In
each game, we call Wi the event that b′ = b.
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Game0: This is the real experiment of Definition A.2, where the challenger
initially samples N secret keys SKj = sj ←↩ DZn,σ which are revealed to the
adversary A in case of corruption queries. At each evaluation query (j,X),
the challenger replies by returning

yj = π
(⌊

(A(x))> · sj
⌋
p

)
∈ Zkp,

where A(x) = A0 ·
∏L
i=1 G−1(Ai,xi

)
. When A halts, it outputs d̂ ∈ {0, 1}

and the challenger defines d′ := d̂. By definition, the adversary’s advantage
is Adv(A) := |Pr[W0]− 1/2|, where W0 is event that d′ = d.

Game1: This game is like Game0 with some changes. First, the challenger runs
K ← AdmSmp(1λ, Q, δ) to generate a key K ∈ {0, 1,⊥}L for a balanced
admissible hash function AHF : {0, 1}` → {0, 1}L. When the adversary
eventually outputs d̂ ∈ {0, 1}, the challenger checks if the conditions

PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X?) = 0 (19)

are satisfied, where X? is the challenge input and X(1), . . . , X(Q) are the
evaluation queries. If these conditions do not hold, the challenger ignores
A’s output d̂ ∈ {0, 1} and replaces it by a random bit d′′ ←↩ {0, 1} to define
d′ = d′′. If the conditions of (19) are satisfied, the challenger sets d′ = d̂. By
Lemma 2.8, we have

|Pr[W1]− 1/2| = |Pr[d′ = d]− 1/2|

≥ γmin ·Adv(A)− 1
2 · (γmax − γmin) = τ,

where τ(λ) is a noticeable function.
Game2: In this game, we modify the generation of pp. Initially, the challenger

samples a uniformly random matrix A ←↩ U(Zn×mq ). For each i ∈ [L], it
samples Ri,0,Ri,1 ←↩ U({−1, 1})m×m and defines {Ai,0,Ai,1}Li=1 as follows
for all i ∈ [L] and b ∈ {0, 1}:

Ai,b :=
{

A ·Ri,b if (b 6= Ki) ∧ (Ki 6=⊥)
A ·Ri,b + G if (b = Ki) ∨ (Ki =⊥) (20)

It also defines A0 = A ·R0 + G for a random R0 ←↩ U({−1, 1}m×m). Since
A ∼ U(Zn×mq ), the Leftover Hash Lemma implies that {Ai,0,Ai,1}Li=1 are
statistically independent and uniformly distributed over Zn×mq . The challenger
keeps sampling Rib until G−1(Aib) is Zq-invertible in such a way that the
simulated Aib are statistically uniform under the constraint that G−1(Aib)
be invertible over Zq. The analysis of [56] shows that the probability that

G−1(Aib) is invertible in Zq is roughly
(

exp(−3
√

exp(1))
)2

, so that the public
parameters can be simulated in polynomial time. Since the distribution of pp
is statistically unchanged, it follows that |Pr[W2]− Pr[W1]| ≤ L · 2−λ.
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At each query X, we can view A(x) as a GSW encryption

A(x) = A ·Rx + (
L∏
i=1

µi) ·G,

for some small norm Rx ∈ Zm×m, where

µi :=
{

0 if (AHF(X)i 6= Ki) ∧ (Ki 6=⊥)
1 if (AHF(X)i = Ki) ∨ (Ki =⊥)

If the conditions (19) are satisfied, at each evaluation query (j,X(i)), the admis-
sible hash function ensures that x(i) = AHF(X(i)) satisfies

A(x(i)) = A ·Rx(i) , (21)

for some small norm Rx(i) ∈ Zm×m. Moreover, the unique challenge input X? is
mapped to an L-bit string x? = AHF(X?) such that

A(x?) = A ·Rx? + G. (22)

Game3: We modify the distribution of pp and replace the uniform A ∈ Zn×mq

by a lossy matrix of the form

A> = Ā> ·C + E ∈ Zm×nq , (23)

where Ā ←↩ U(Zn′×mq ), C ←↩ U(Zn′×nq ) and E ←↩ DZm×n,αq, for n′ � n.
Under the LWE assumption in dimension n′, this change should not affect A’s
output distribution and we can easily build an LWE distinguisher B shows
that |Pr[W3] − Pr[W2]| ≤ n ·AdvLWEq,m,n′,α

B (λ), where the factor n comes
from the use of an LWE assumption with n secrets.

Due to the modification introduced in Game3, if the conditions (19) are
satisfied, each evaluation query (j,X(i)) obtains a response of the form⌊(

A ·Rx(i)
)> · sj⌋

p
=
⌊(

R>x(i) · Ā> ·C + R>x(i) ·E
)
· sj
⌋
p
. (24)

Note that the right-hand-side member of (24) uniquely determines C · sj with
high probability: observe that R>

x(i) · Ā> is statistically uniform over Zm×n′q , so
by Lemma A.7, the quantity bR>

x(i) · Ā> · (C · sj)cp is an injective function of
C · s mod q. It comes that evaluation queries (j,X) information-theoretically
reveal C · sj mod q.

Game4: We modify the evaluation oracle and introduce a bad event. We define
badx to be the event that for the input x ∈ {0, 1}L such that A(x) = A ·Rx,
for some small-norm Rx ∈ Zm×m, we have⌊(

A ·Rx

)> · sj⌋
p
6=
⌊(

R>x · Ā> ·C
)
· sj
⌋
p
. (25)
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for some j ∈ [N ]. We also define BAD as the event that A makes an evaluation
query (j,X) such that the event badx occurs. Note that the challenger can
detect badx since it knows Ā ∈ Zn′×mq , C ∈ Zn′×nq and E ∈ Zm×n satisfying
(23). If badx occurs, the challenger replaces A’s output d̂ by a random
d′′ ←↩ {0, 1} and sets d′ = d′′. Otherwise, it sets d′ = d̂ as before.

The proof of the following claim is adapted from [56, Appendix D].
Claim. If q/p > 2L+λ ·N · r, where r = mL+2 · n · β · αq, we have the inequality

|Pr[W4]− Pr[W3]| ≤ Pr[BAD] ≤ 2−Ω(λ).

Proof. We use the fact that, for each query x = x1 . . . xL, the matrix Rx ∈ Zm×m
is of the form

Rx = R0 ·
L∏
i=1

G−1(Ai,xi

)
+R1,x1 ·

L∏
i=2

G−1(Ai,xi)

+µ1,x1 ·R2,x2 ·
L∏
i=3

G−1(Ai,xi

)
...

+µ1,x1µ2,x2 · · ·µL−2,xL−2 ·RL−1,xL−1 ·G−1(AL,xL

)
+µ1,x1µ2,x2 · · ·µL−1,xL−1 ·RL,xL .

In order to bound Pr[badx], we note that, as argued in [10, Proof of Theorem 7.3],
R>0 · Ā> is statistically uniform over Zm×n′q , conditionally on R>0 · E ∈ Zm×n.
Hence, for a fixed choice of j ∈ [N ] and x ∈ {0, 1}L, the product R>x · Ā> · (C ·sj)
contains a term ( L∏

i=1
G−1(Ai,xi)

)>
︸ ︷︷ ︸

G>x

·R>0 · Ā> · (C · sj),

for which we know that G>x ·R>0 · Ā> is statistically uniform over Zm×n′q since
G>x is a Zq-invertible matrix by construction. We know that G>x ·R>0 ·Ā> ·(C ·sj)
is statistically close to the uniform distribution over Zmq . We thus have

Pr[badx] = Pr
[⌊(

A ·Rx

)> · sj⌋
p
6=
⌊(

R>x · Ā> ·C
)
· sj
⌋
p

]
≤ m · 2rp

q
. (26)

where r = mL+2 · n · β · αq. Indeed, we have ‖R>x ‖∞ ≤
m(mL+1−1)

m−1 , ‖sj‖∞ ≤ β
and

‖E‖∞ = max
i∈[m]

 n∑
j=1
|ei,j |

 ≤ √nmax
i∈[m]

‖ei‖ ≤ n · αq.
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The conditions of Lemma A.10 are satisfied since

‖R>x ·E · sj‖∞ ≤ ‖R>x ‖∞ · ‖E‖∞ · ‖sj‖∞ ≤
m(mL+1 − 1)

m− 1 · n · αq · β ≤ r,

which yields inequality (26).
By taking the union bound over all possible inputs x ∈ {0, 1}L and all indexes

j ∈ [N ], we can bound the probability Pr[BAD] ≤ N · 2L ·m · 2rp
q .

Since Game3 and Game4 are identical if BAD does not occur, we obtain the
inequality

|Pr[W4]− Pr[W3]| ≤ Pr[BAD] ≤ 2L ·N ·m · 2rp
q

= 2m · 2−λ

which is negligible in λ. ut

Recall that, if BAD does not occur, we have⌊(
A ·Rx(i)

)> · sj⌋
p

=
⌊(

R>x(i) · Ā> ·C
)
· sj
⌋
p
. (27)

at each query (j,X(i)). We note that the right-hand-side member of (27) is
completely determined by R>

x(i) · Ā> and the product C · sj ∈ Zn′q . This means
that, for each uncorrupted index j ∈ [N ], A’s evaluation queries (j,X) always
reveal the same n′ · log q bits of information about sj ∈ Zn. Consequently, each
uncorrupted SKj = sj ∈ Zn retains a lot of entropy after all evaluation queries.

Game5: We modify the challenge oracle. If d = 1, at each challenge query
(j,X), the adversary obtains a fresh random y?j ←↩ U(Zkp) instead of the real
evaluations y = π

(⌊
(A(x))> · sj

⌋
p

)
. Clearly, we have Pr[W5] = 1/2 since the

output distribution of the challenge oracle does not depend on d ∈ {0, 1}. In
Game4, if d = 1, each challenge query (j,X?) obtains a response

y?j = π
(⌊(

A(x?)
)> · sj⌋

p

)
= π

(⌊(
A ·Rx? + G

)> · sj⌋
p

)
. (28)

The same arguments as in [56, Appendix D] show that the right-hand-side
member of (28) is statistically close to U(Zkp). Indeed, z?j =

⌊
(A ·Rx? + G)> · sj

⌋
p

depends on a term G> · sj ∈ Zmq , which is an injective function of sj . More
precisely, if BAD does not occur and SKj = sj has not been corrupted, A obtains
at most n′ · log q bits of information about sj .

We also note that z?j can be written

z?j =
⌊(

A ·Rx? + G
)> · sj⌋

p
=
⌊
R>x? ·A> · sj

⌋
p

+
⌊
G> · sj

⌋
p

+ es,j,x? , (29)

for some es,j,x? ∈ {0, 1}m. Moreover, the proof of the claim implies that⌊
R>x? ·A> · sj

⌋
p

=
⌊
R>x? · Ā> ·C · sj

⌋
p

43



since it considers a union bound to show that equality (25) holds for all x ∈ {0, 1}L
and j ∈ [N ] with overwhelming probability. This implies H∞

(
bR>x? ·A> · sjcp |

C · sj
)

= 0 with high probability. In the right-hand-side member of (29), we also
observe that bG> · sjcp + es,j,x? is an injective function of sj . Indeed, we have

bG> · sjcp + es,j,x? = (p/q) ·G> · sj − ts,j,x? + es,j,x?

for some es,j,x? ∈ (0, 1)m, so that

(q/p) · (bG> · sjcp + es,j,x?) = G> · sj + e′s,j,x? (30)

for some e′s,j,x? ∈ (−q/p, 2 · q/p)m.
When assessing the entropy of z?j conditionally on A’s view, we thus obtain

H∞(z?j | C · sj) = H∞
(
bR>x? ·A> · sjcp + bG> · sjcp + es,x? | C · s

)
= H∞

(
bG> · sjcp + es,x? | C · sj

)
(31)

= H∞(sj | C · sj) ≥ n · log σ − n′ · log q − 1.

Here, the second equality follows from the fact that, for any random variables
X,Y, Z defined over an additive group, we have H∞(Y + Z | X) = H∞(Z|X) if
H∞(Y |X) = 0. The last inequality follows from Lemma A.6: the distribution
of sj ∈ Zn conditionally on C · sj is sj,0 + DΛ⊥(C),σ,−sj,0 , where sj,0 ∈ Znq
is an arbitrary solution of C · sj,0 = C · sj . Then, Lemma A.6 implies that
the point with highest probability in DΛ⊥(C),σ,−sj,0 occurs with probability
≤ 2 det(Λ⊥(C))/σn. Since det(Λ⊥(C)) = qn

′ with probability 1− 2Ω(λ), we have
H∞(sj | C · sj) ≥ n · log σ − n′ · log q − 1.

To extract statistically uniform bits from each uncorrupted z?j , we need to take
into account the fact that x? may depend on pp. Assuming that PK(X?) = 0, for
each uncorrupted j ∈ [N ], the source z?j is taken from a distribution determined
by X? within a collection of less than 2` distributions (i.e., those for which
PK(X?) = 0), which all have min-entropy n̄ = n · log σ − n′ · log q − 1. Moreover,
the {z?j}j∈[N ] are independent since they are obtained by applying the same
function to N independent variables. If we call C ⊂ [N ] the subset of corrupted
indexes, by applying Lemma A.9 and Lemma A.8 with ε = 2−λ for a collection
X of at most M = 2` distributions, we obtain that the joint distribution of
{π(z?j )}j∈[N ]\C is (` ·2−λ+ 2−`)-close to the uniform distribution over (Zkp)|[N ]\C|.

ut

B Relation Between Definitions 2.11 and 2.12

Proposition B.1. For any MCFE scheme, 1Ch-IND security implies IND secu-
rity.
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Proof. Let us consider an efficient MCFE adversary A in the IND security game.
We show that A implies an MCFE adversary in the 1Ch-IND game.

Suppose that A makes encryption queries for Q distinct tags during the game.
The proof uses a standard hybrid argument over the distinct tags that A queries
throughout the attack. Let Hk with k ∈ {0, 1, . . . , Q} be the game in which the
challenger replies to encryption queries QEncrypt(i, x0

i , x
1
i , t) in the following way.

– If the tag t is one of the first k distinct tags appearing in A’s encryption
queries, it replies with Encrypt(eki, x0

i , t).
– Otherwise, it replies with Encrypt(eki, x1

i , t).

Note that an IND adversaryA in the sense of Definition 2.11 implies a distinguisher
between H0 and HQ.

We claim that, for any k ∈ {0, . . . , Q−1}, an efficient distinguisherAk between
Hk and Hk+1 implies the existence of an efficient adversary Bk in 1Ch-IND game
and such that Adv1Ch-IND(Bk) = Advk,k+1(Ak). This adversary Bk proceeds as
follows.

Initialization: Having received mpk, Bk runs Ak by feeding it with the same
public parameters mpk.

Encryption queries: For each query QEncrypt(i, x0
i , x

1
i , t) sent by Ak, Bk does

the following.
– If t is among the first k distinct tags queried by Ak, Bk sends the query

QEncrypt(i, x0
i , t) to its own challenger in the 1Ch-IND game and relays

the answer back to Ak.
– If t coincides with (k + 1)-th distinct tag queried by Ak, Bk makes the

challenge query QCEncrypt(i, x0
i , x

1
i , t) and transmits the response to Ak.

– Otherwise, Bk sends the encryption query QEncrypt(i, x1
i , t) to its 1Ch-IND

challenger and forwards the answer to Ak.
Functional decryption queries: For each query QDKeygen(f) made by Ak,
Bk sends the same query to its own challenger and passes the answer to Ak.

Corruption queries: For each query QCorrupt(i) made by Ak, Bk makes the
same query to its own challenger and forwards the answer to Ak.

Finalize: When Ak halts, Bk outputs the same bit b′ as Ak.

We can conclude that, for any efficient IND adversary A, there exists an
efficient 1Ch-IND adversary B such that

AdvIND(A) ≤ Q ·Adv1Ch-IND(B).

ut

Proposition B.2. 1Ch-IND security is equivalent to 1Ch-IND′ security.

Proof. Recall that 1Ch-IND′ refers to the same security notion as described in
Definition 2.12, except that Condition 2 in the Finalize step is replaced by
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2′: Both QEncrypt(i, x, t?) and CQEncrypt(i, x?0i , x?1i , t?) have been made for
an index i and the challenge label t?, such that x0?

i 6= x1?
i .

The non-trivial implication to prove is that 1Ch-IND security implies 1Ch-IND′
security. Towards a contradiction, suppose that there exists an adversary A′ that
wins the 1Ch-IND′ game with noticeable advantage. We build an adversary A that
breaks the 1Ch-IND security game. Our adversary A answers both corruption and
functional decryption key queries made by A′ by relaying them to its challenger
and forwarding the responses to A′. For a query QEncrypt(i, x, t) made by A′,
A checks if a challenge query CQEncrypt(i, x?0i , x?1i , t) was made earlier. If no
challenge query has been made so far for the pair (i, t), the reduction sends the
same QEncrypt(i, x, t) query to its challenger and passes the the answer to A′.
Otherwise, it makes a Corrupt(i) query to its challenger and thereby obtains the
encryption key eki. To answer any subsequent query for slot i, the reduction
simply uses eki.

To answer a challenge query QCEncrypt(i, x?0i , x?1i , t?), the reduction A for-
wards the query to its challenger and transmits the answer to A’ if it did not
previously make an encryption QEncrypt(i, x, t?) for the pair (i, t?). If A previ-
ously made an encryption query for the pair (i, t?), it also invokes its challenger
and sends it the query Corrupt(i). Upon receiving eki, A is able to answer any
query concerning the i-th slot.

Notice that the adversary A′ is only allowed to make both encryption and
challenge queries on the same pair (i, t?) if x?0i = x?1i . This implies that the
reduction is allowed to make the query Corrupt(i) to its challenger, which allows
it to answer all queries concerning the i-th slot. ut

C Deferred Proofs for the Scheme in Section 3

C.1 Proof of Lemma 3.1 (Correctness)

Proof. Suppose that Ct,i = G>0 · xi + A(τ)> · si + ei ∈ Zmq , with each error
vector ei ← DZm,αq and τ = AHF(t). Defining E = [e1| · · · |e`] ∈ Zm×`, we have

ft,y =
∑̀
i=1

yi ·Ct,i −A(τ)> · sy = G>0 ·X · y + E · y mod q.

We know that Λ⊥(G0) has a public trapdoor T0 ∈ Zm×m such that G0 ·T0 = 0
mod q and ‖T>0 ‖∞ ≤ log q where ‖T>0 ‖∞ := supx6=0

‖T>0 ·x‖∞
‖x‖∞ . By using this short

trapdoor, we are able to recover X · y ∈ Zn0 in the following way: observe that
T>0 ·ft,y = T>0 ·E·y mod q. By [59, Lemma 4.4], we can bound the Euclidean norm
of a Gaussian vector e←↩ DZ`,αq by ‖e‖ ≤

√
` ·αq with probability exponentially

close to 1. It comes that

‖E‖∞ = max
i∈[m]

∑̀
j=1
|ei,j | ≤

√
` · max

i∈[m]

√√√√∑̀
j=1

e2
i,j ≤ ` · αq.
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Moreover, the hypotheses imply

‖T>0 ·E · y‖∞ ≤ ‖T>0 ‖∞ · ‖E‖∞ · ‖y‖∞ ≤ log q · ` · αq · Y < q/2.

Hence, T>0 · ft,y mod q actually reveals T>0 ·E ·y over Zm. Since T>0 is a Z-basis,
it comes that we can recover E · y ∈ Zm, at which point we also get X · y mod q.
Since ‖X ·y‖∞ ≤ ` ·X ·Y < q/2 by hypothesis, the modular product X ·y mod q
is nothing but X · y ∈ Zn0 . ut

C.2 Proof of Lemma 3.3

Proof. If the matrices Ai,b = A ·Ri,b+µi,b ·G ∈ Zn×m, for i ∈ [L] and b ∈ {0, 1},
with Ri,b ← {−1, 1}m×m and µi,b ∈ {0, 1}, defined as in equation (20), then
Rτ = R′τ ·G−1(W>), where R′τ is given below:

R′τ = RL,τ [L] ·G−1 (AL−1,τ [L−1] ·G−1 (AL−2,τ [L−2] ·
(
· · ·G−1 (A1,τ [1]

))))
+µL,τ [L] ·RL−1,τ [L−1] ·G−1 (AL−2,τ [L−2] ·

(
· · ·G−1 (A1,τ [1]

)))
+µL,τ [L] · µL−1,τ [L−1] ·RL−2,τ [L−2] ·G−1 (AL−3,τ [L−3] ·

(
· · ·G−1 (A1,τ [1]

)))
...

+µL,τ [L]µL−1,τ [L−1] · · ·µ3,τ [3] ·R2,τ [2] ·G−1(A1,τ [1]
)

+µL,τ [L]µL−1,τ [L−1] · · ·µ2,τ [2] ·R1,τ [1]

R>τ is thus a sum of L terms of products of at most 3 binary matrices. Since
each binary matrix has infinity norm less than m we obtain the upper bound
‖R>τ ‖∞ ≤ L ·m3. By [59, Lemma 4.4], we can bound the Euclidean norm of a
Gaussian vector e←↩ DZn,α1q by ‖e‖ ≤

√
n · α1q, with probability exponentially

close to 1. We thus obtain

‖E‖∞ = max
i∈[m]

n∑
j=1
|ei,j | ≤

√
n · max

i∈[m]

√√√√ n∑
j=1

e2
i,j ≤ n · α1q,

so that ‖R>τ ·E ·s‖∞ ≤ ‖R>τ ‖∞ ·‖E‖∞ ·‖s‖∞ ≤ Lm3 ·nα1q ·σ
√
n. By Lemma 2.4,

the statistical distance to be bounded is at most ≤ m · Lm
3·nα1q·σ

√
n

αq = 2−λ. ut

C.3 Proof of lemma 3.5

Proof. By Remark 2.3, each column of T has norm smaller than

‖ti‖ ≤ O(
√
n · (n0 + n1) log q) · ω(

√
logn) = ω(n

√
logn),

so that ‖T · ∆xi‖∞ ≤ ‖T · ∆xi‖ ≤ 2Xn0 · ω(n
√

logn). By Lemma 2.4, the
considered distance is smaller than n · 2Xn0·ω(n

√
logn)

σ ≤ 2−λ · (4X)−n0`. ut
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D Proof of Theorem 4.1

Proof. The proof considers a sequence of games. The first game corresponds to
the real sta-IND-sec game where the challenger’s bit is b = 0. The final game is
the sta-IND-sec game where b = 1. We will prove that they are computationally
indistinguishable assuming that the scheme of Section 3 provides IND-sec security
in the sense of Definition 2.11. For each i, we denote by Wi the event that the
adversary outputs β = 1 in Gamei.

Game0: This is the real security sta-IND-sec security game, which corresponds
to the game of Definition 2.14 with the sets CS and HS chosen before the
initialization phase. Letting `h = |HS| and |CS| = `− `h, we assume w.l.o.g.
that A chooses to corrupt the last ` − `h senders: i.e., HS = {1, . . . , `h}
and CS = {`h + 1, . . . , `}. By definition, the adversary outputs β = 1 with
probability Pr[W0].

Game1: In this game, we modify the QDKeygen(·, ·) oracle, which generates
partial functional decryption keys. At each partial functional decryption key
query QDKeygen(i, f) for an index i ∈ HS and a function f described by a
vector y = (y1, . . . , y`) ∈ [−Y, Y ]`, the challenger C responds as follows:
- If the pair (i, f) is such that not all indexes j ∈ HS \ {i} have been the
input of a query QDKeygen(j, f) for the same function f , C samples a
Gaussian vector s′i ←↩ DZn,σ and encrypts yi · s′i ∈ Zn as

dkf,i = Ḡ> · (yi · s′i) + B(τf )> · ti + ef,i ∈ Zm̄q̄ ,

where ef,i ←↩ DZm̄,αq.
- If the pair (i, f) is such that similar queries (j, f) have been made earlier
for the same function f and for all indexes j ∈ HS \ {i}, C recalls
the vectors {s′j}j∈HS\{i} that were chosen to answer earlier queries. It
computes sy =

∑`
i=1 si · yi ∈ Zn as in the centralized scheme of Section

3. Then, it defines

s′f,i = sy −
∑

j∈HS\{i}

yj · s′j −
∑̀

i=`h+1
si · yi over Z, (32)

The challenger C then responds the query QDKeygen(i, f) by encrypting
s′f,i ∈ Zn and returning

dkf,i = Ḡ> · s′f,i + B(τf )> · ti + ef,i ∈ Zm̄q̄ , (33)

where ef,i ←↩ DZm̄,αq̄.
We note that the vectors s′j sampled at each query do not have to be consistent
across partial key generation queries for distinct functions (they just have
to be consistent across queries QDKeygen(·, f) involving the same function
f). This will not be necessary since we are just seeking to simulate the
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partial key generation oracle QDKeygen(·, ·) in a way that is computationally
indistinguishable from the previous game. We also note that the vector
s′f,i ∈ Zn encrypted in (33) may not even be in the lattice yi ·Zn (in contrast
with a vector encrypted by the real DKeygenShare algorithm). However,
this will not be a problem here. Indeed, our goal is solely to simulate the
QDKeygen(·, ·) oracle in such a way that Game1 remains computationally
indistinguishable from Game0 and, in the next transition from Game1 to
Game2, allows reducing the security of the scheme in Section 3 to that of our
DMCFE scheme.

Lemma D.1 shows that Game1 is computationally indistinguishable from Game0
as long as the centralized MCFE scheme of Section 3 is secure in the sense of
Definition 2.11. We note that a weaker security definition than Definition 2.11
would be sufficient: as a centralized MCFE adversary, the reduction only needs
to: (i) send a single functional secret key query for the vector (1, 1, . . . , 1)> ∈ Z`
to its centralized MCFE challenger; (ii) make all its corruption queries at once
after having received the master public key.

Game2: In this game, we modify the encryption oracle. At each encryption
query QEncrypt(i,x0,i,x1,i, t), the challenger CH encrypts x1,i ∈ [−X,X]n0

instead of x0,i ∈ [−X,X]n0 (we assume that either x0,i = x1,i or i ∈ HS
since, otherwise, A’s output is eventually replaced by a random bit). Namely,
it sample ei ←↩ DZm,αq and computes

Ct,i = G>0 · x1,i + A(τ)> · si + ei ∈ Zmq .

where

A(τ) = AL,τ [L] ·G−1
(
AL−1,τ [L−1] ·G−1(. . .A2,τ [2] ·G−1(A1,τ [1]

)))
·G−1(W>) ∈ Zn×mq ,

with τ = AHF(t) ∈ {0, 1}L.

Lemma D.2 relies on the IND-sec security of the scheme in Section 3 to
show that Game2 is computationally indistinguishable from Game2 under the
LWEq,m,n1,α1 assumption.

Game3: In this game, we modify again the QDKeygen(·, ·) oracle and restore it
to its original behavior, which is that of the real scheme. This game transition
is exactly identical to the one from Game0 to Game1, but in the converse
direction. Lemma D.3 states that, as long as the MCFE scheme of Section 3
provides IND-sec security in the sense of Definition 2.11, Game3 and Game2
are computationally indistinguishable.

In Game3, it is easy to see that C and A are playing the actual sta-IND-sec game
where the challenge bit of C is b = 1.

Putting the above altogether, we find that Game0 and Game3 are computa-
tionally indistinguishable so long as the centralized MCFE scheme of Section 3
provides security in the sense of Definition 2.11. ut
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Lemma D.1. Game0 and Game1 are computationally indistinguishable assum-
ing that the MCFE scheme of Section 3 provides IND-sec security. Under the
LWEq̄,m̄,n̄,ᾱ1 assumption, we have |Pr[W1]− Pr[W0]| ∈ negl(λ).

Proof. Let us assume that an adversary A can distinguish Game1 from Game0
with noticeable advantage ε. We construct a IND-sec adversary B against the
centralized MCFE scheme with the same advantage ε.

Our MCFE adversary B obtains from its IND-sec challenger a master public
key

m̃pk :=
(

cp, V̄, {Bi,0,Bi,1 ∈ Zn̄×m̄q̄ }Li=1

)
,

where the common public parameters

cp :=
(
λ, `max, 2` · β · Y, 1, n, n̄1, n̄, m̄, α, σ̄, `t, L, q̄, AHFf

)
.

specify the message space M = [−2`βY, 2`βY ]n and the functional secret key
space [−1, 1]`. Then, B first sends its challenger a unique functional secret key
query for the vector (1, 1, . . . , 1)> and obtains in return t =

∑`
i=1 ti ∈ Zn̄. Next,

B chooses random matrices Ai,b ←↩ U(Zn×mq ), for each i ∈ [L], b ∈ {0, 1}. It
also chooses random matrices V←↩ U(Zn0×n

q ). For each i ∈ [`], it chooses users’
secret keys si ←↩ DZn,σ in the second MCFE instance. This allows B to create a
master public key

mpk :=
(

cp, V, V̄, {Ai,0,Ai,1 ∈ Zn×mq }Li=1, {Bi,0,Bi,1 ∈ Zn̄×m̄q }Li=1, t
)
,

where

cp :=
(
λ, `max, X, Y, n0, n1, n, m, n̄, m̄, α, σ, σ̄,

`t, `f , L, q, q̄, AHFt, AHFf
)
,

is augmented with a description of a second balanced admissible hash function
family AHFt : {0, 1}`t → {0, 1}L.

Before handing mpk to A, our centralized MCFE adversary B waits until
A chooses the set CS ⊂ [`] of players it wants to corrupt. We assume w.l.o.g.
that A chooses CS = {`h + 1, . . . , `}. At this point, B sends corruption queries
QCorrupt(i) to its own challenger for all i ∈ CS. The MCFE challenger replies by
sending {ti}i∈CS , at which point B gives {ski = (si, ti)}i∈CS and mpk to A.

At any time, B can make a query QDKeygen(i, f) for an index i ∈ HS and a
function f described by a vector y = (y1, . . . , y`)> ∈ Z`. At each such query, B
proceeds as follows:

- If the pair (i, f) is such that not all indexes j ∈ HS \ {i} have been the input
of a query (j, f) for the same function f , B samples s′i ←↩ DZn,σ and defines
s′f,i = yi · s′i ∈ Zn.
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- If the pair (i, f) is such that queries QDKeygen(j, f) have been made before
for the same function f on all indexes j ∈ HS \ {i}, C recalls the vectors
{s′j}j∈HS\{i} and {s′f,j}j∈HS\{i} that were chosen to handle earlier queries
for f . It then defines sy =

∑`
i=1 yi · si ∈ Zn which is the secret key that

would be computed for y ∈ [−Y, Y ]` using the real master secret key {si}`i=1
in the centralized scheme of Section 3. It finally defines

s′f,i = sy −
∑

j∈HS\{i}

s′f,j −
∑̀

i=`h+1
si · yi over Z, (34)

Then, B sends the query QEncrypt(i, yi · si, s′f,i, tf ) to its encryption oracle in
the IND-sec game. Depending on the value of its secret bit b ∈ {0, 1}, the MCFE
challenger replies with either

dkf,i = Ḡ> · (yi · si) + B(τf )> · ti + ef,i

or

dkf,i = Ḡ> · s′f,i + B(τf )> · ti + ef,i, (35)

where ef,i ←↩ DZm̄,αq, and the response dkf,i is returned to A as a partial
functional secret key for the vector y.

At each encryption query (i,x0,i,x1,i, t) made by A, B can compute

Ct,i = G>0 · x0,i + A(τ)> · si + ei ∈ Zmq , (36)

itself by faithfully running the encryption algorithm as it knows {si}`i=1.
When A terminates, B checks if A made a query QDKeygen(i, f) for a function

f such that not all indexes j ∈ HS\{i} were the input of a query QDKeygen(j, f).
If so, B makes the missing queries for itself. Namely, for each such function f ,
B parses the corresponding vector as y = (y1, . . . , y`) ∈ [−Y, Y ]` and defines
Qf ⊂ HS to be the set of indexes j for which no query QDKeygen(j, f) was made
by A. For each j ∈ Qf , B does the following.

- If j is not the last unqueried index for f , B samples a Gaussian s′j ←↩ DZn,σ
and sends the query QEncrypt(j, yj · sj , yj · s′j , tf ) to its MCFE challenger.

- If j is the last unqueried index for f , B defines

s′f,j =
∑
i∈HS

yi · si −
∑

i∈HS\{j}

yi · s′i (37)

and makes the encryption query QEncrypt(j, yj · sj , s′f,j , tf ). Since the only
functional secret key query made by B is for the vector 1 = (1, 1, . . . , 1)>, B
only needs to make sure that dummy encryption queries are made for pairs
of vectors that sum to the same value over indexes in HS. This is ensured by
defining the last term as (37).
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In both cases, B just ignores the responses of its challenger as these dummy
encryption queries are only made to make sure that B’s advantage will not be
annihilated by Condition 2 in Definition 2.11.

Finally, B halts and outputs whatever A outputs. We observe that B strictly
complies with the rules of the IND-sec game at any time. In particular:

- It never makes a QEncrypt(i, ·, ·, ·) query or a corrupted index i ∈ CS.
- By construction, B’s encryption queries QEncrypt(i, yi ·si, s′f,i, tf ) are all made
for message pairs (y1 ·s1, . . . , y` ·s`) and (s′f,1, . . . , s′f,`h , y`h+1 ·s`h+1, . . . , y` ·s`)
such that ∑̀

i=1
yi · si =

`h∑
i=1

s′f,i +
∑̀

i=`h+1
yi · si (over Z)

The lemma’s claim follows from the fact that, if the secret bit of B’s MCFE
challenger is b = 0, A’s view is exactly the same as in Game0. If b = 1, the
distribution of partial functional secret keys is given by (35), which corresponds
to Game1. ut

Lemma D.2. Game2 and Game1 are computationally indistinguishable assuming
that the MCFE scheme of Section 3 provides security in the IND-sec sense. Under
the LWEq,m,n1,α1 assumption, we have |Pr[W2]− Pr[W1]| ∈ negl(λ).

Proof. Let A be an adversary that can distinguish between Game1 and Game2
with noticeable advantage ε. We build an adversary B against the centralized
scheme that wins the IND-sec game (cf. Definition 2.11) with the same advantage.

The reduction B begins by obtaining from its challenger a master public key

m̃pk :=
(

cp,V, {Ai,0,Ai,1 ∈ Zn×mq }Li=1

)
,

where the common public parameters

c̃p :=
(
λ, `max, X, Y, n0, n1, n, m, α, σ, `t, L, q, AHFt

)
.

The adversary A declares the set CS of corrupted senders, as mandated by the
static security game. Then, B makes the relevant queries QCorrupt(i) for each
i ∈ CS to its challenger and the latter replies with {si ∈ Zn}i∈CS .

Next, B chooses V̄ ←↩ U(Zn×n̄q̄ ) and Bi,b ←↩ U(Zn̄×m̄q̄ ) for each i ∈ [L] and
b ∈ {0, 1}. It also samples ti ←↩ DZn̄,σ̄ for i ∈ [`] and computes t =

∑`
i=1 ti. This

allows B to answer A’s static corruption queries by revealing (si, ti) ∈ Zn × Zn̄
for all i ∈ CS. In addition, B can feed A with the public parameters for the
decentralized scheme, which consist of mpk := ( m̃pk, m̄pk, t), where

c̄p :=
(
λ, `max, X̄, Ȳ , n, n̄1, n̄, m̄, ᾱ, σ̄, `f , L, q̄, AHFf

)
,

where X̄ = 2`βY , and

m̄pk :=
(

c̄p, V̄, {Bi,0, Bi,1 ∈ Zn̄×m̄q̄ }Li=1

)
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For each encryption query QEncrypt(i,x0,i,x1,i, t) made by A for some honest
sender i ∈ HS, B passes the same encryption query to its challenger and relays
the response back to A. This response is of the form

Ct,i := G>0 · xb,i + A(τ)> · si + ei, (38)

where ei ←↩ DZm,αq and b ∈ {0, 1} is the MCFE challenger’s random bit.
When A makes an functional decryption query QDKeygen(i, fy), B parses

the corresponding vector as y = (y1, . . . , y`) ∈ [−Y, Y ]` and does the following:

– If there exists j ∈ HS \ {i} such that QDKeygen(j, fy) has not been asked
yet, then B samples s′i ← DZn,σ and returns

dkf,i := Ḡ> · (yi · s′i) + B(τf )> · ti + ef,i

with ef,i ← DZm̄,ᾱq̄.
– If QDKeygen(j, fy) queries have been made for all j ∈ HS \ {i}, B makes

the functional decryption query QDKeygen(fy) to its centralized MCFE
challenger. The challenger replies with sy ∈ Zn. Using the s′j ∈ Zn that were
previously chosen for the function f , B computes

s′f,i = sy −
∑

j∈HS\{i}

yj · s′j −
∑̀

i=`h+1
yi · si ∈ Zn,

and returns
dkf,i := Ḡ> · s′f,i + B(τf )> · ti + ef,i

with ef,i ← DZm̄,ᾱq̄

When A halts, B outputs whatever A outputs. We observe that we have
yj · s′j ∈ [−X̄, X̄]n, X̄ = 2`Y β, for all j ∈ HS. We also observe that, if A makes
all encryption queries QEncrypt(j,x0,j ,x1,j , t) for all indexes j ∈ HS for a given
tag t, so does B for the same tag t.

By construction, B only makes a functional decryption query QDKeygen(fy)
for a function fy when A makes a partial functional key query QDKeygen(j, fy)
for the last honest sender’s index j ∈ HS. In the Finalize step of Definition 2.14,
Condition 3 requires that, for any function fy involved in queries QDKeygen(i, fy)
for all honest senders’ indexes i ∈ HS, the condition fy(X0) = fy(X1) be satisfied
for any pair of messages X0 = [x0,1| · · · |x0,`] and X1 = [x1,1| · · · |x1,`] satisfying
the two sub-conditions of Condition 3. This ensures that B’s functional key
queries never break the rules imposed by Condition 3 of the Finalize step of the
game described by Definition 2.11.

From (38), it follows that, if secret bit of B’s challenger is b = 0, B is playing
Game1 with A. Similarly, they are playing Game2 if b = 1. ut

Lemma D.3. Game3 and Game2 are computationally indistinguishable as long
as that the MCFE scheme of Section 3 provides IND-sec security. Under the
LWEq,m,n1,α1 assumption, we have |Pr[W3]− Pr[W2]| ∈ negl(λ).
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Proof. The proof is almost identical to that of Lemma D.1, the only difference
being that, at each encryption query (i,x0,i,x1,i, t) made by A, the reduction B
encrypts x1,i (instead of x0,i in (36)). The details are omitted. ut
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