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Abstract. The learning with errors (LWE) problem (STOC’05) introduced
by Regev is one of the fundamental problems in lattice-based cryptogra-
phy. One standard strategy to solve the LWE problem is to reduce it to a
unique SVP (uSVP) problem via Kannan’s embedding and then apply a
lattice reduction to solve the uSVP problem. There are two methods for
estimating the cost for solving LWE via this strategy: the first method
considers the largeness of the gap in the uSVP problem (Gama-Nguyen,
Eurocrypt’08) and the second method (Alkim et al., USENIX’16) consid-
ers the shortness of the projection of the shortest vector to the Gram-
Schmidt vectors. These two estimates have been investigated by Albrecht
et al. (Asiacrypt’16) who present a sound analysis and show that the lat-
tice reduction experiments fit more consistently with the second estimate.
They also observe that in some cases the lattice reduction even behaves
better than the second estimate perhaps due to the second intersection
of the projected vector with the Gram-Schmidt vectors. In this work, we
revisit the work of Alkim et al. and Albrecht et al. We first report further
experiments providing more comparisons and suggest that the second
estimate leads to a more accurate prediction in practice. We also present
empirical evidence confirming the assumptions used in the second es-
timate. Furthermore, we examine the gaps in uSVP derived from the
embedded lattice and explain why it is preferable to use µ = 1 for the
embedded lattice. This shows there is a coherent relation between the
second estimate and the gaps in uSVP. Finally, it has been conjectured
by Albrecht et al. that the second intersection will not happen for large
parameters. We will show that this is indeed the case: there is no second
intersection as β→ ∞.
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1 Introduction

A lattice is a discrete additive subgroup of Rn. A lattice L of dimension n (of
full-rank) can be described using a basis B consisting of linearly independent
vectors b1, · · · , bn ∈ Rn through integeral combinations L(B) = ∑n

i=1 Zbi.
Given a lattice basis B as input, one can apply lattice reduction algorithms
such as [22,29,43,26,20,39] to find new bases made of relatively short and more
orthogonal vectors. One quality measurement for a lattice basis B is the so-
called Hermite factor HF(B) = ‖b1‖/(Vol(L(B)))1/n. Lattice reduction algo-
rithms output reduced lattice bases with HF(B) = δn where δ is a function of
the input parameter to the reduction algorithm. The number δ is also known
as the root Hermite factor.

Lattices have attracted considerable interest in recent years as they can be
used to construct cryptographic constructions (so-called lattice-based cryptog-
raphy) which are believed to be quantum-resistant. Two fundamental compu-
tation problems in lattice-based cryptography are the short integer solution
problem (SIS) [1,38] and the learning with errors problem (LWE) [40,41,37,17].
With parameters (m, n, q, B), the SIS problem is defined as follows: sample
A ←↩ U(Zn×m

q ) (typically, n ≤ m), the goal is to find non-zero x ∈ Zm such
that Ax ≡ 0 (mod q) and ‖x‖ ≤ B. Ajtai’s seminal work [1] first established a
worst-to-average connection for lattice-based primitives using the SIS problem.
It then serves as a security foundation for numerous cryptographic primitives,
including, among many others, hash functions [1] and signatures [25,35]. The
LWE problem is introduced by Regev [40,41] and has been extensively used
as a security foundation, for encryption schemes [41,25], fully homomorphic
encryption schemes [18], signatures [25,21,35,10] and pseudo-random func-
tions [15], and many others. The search version of the LWE problem with pa-
rameters (m, n, q, χ) is: sample A←↩ U(Zm×n

q ) (typically n ≤ m), the goal is to
find the vector s ∈ Zn given samples b where b ≡ As+ e (mod q) and e ∈ Zm

q
is a “short” error vector sampled from the given distribution χ. In this paper,
we focus on χ which is a discrete Gaussian distribution of deviation αq. χ
returns a vector x ∈ Zm

q with probability proportional to exp(−‖x‖2/(2α2q2)).
Using lattice reduction, a standard method to solve the LWE problem is to

first reduce it to an Unique Shortest Vector Problem (uSVP) via Kannan’s em-
bedding technique [30] and then apply a lattice reduction algorithm to solve
the uSVP problem. For example, we describe the so-called primal lattice at-
tack [2,7,5]. Given the matrix LWE instance (A, b ≡ As + e (mod q)), we con-
struct the lattice L = {x ∈ Zm+n+1 | (A | Im | b) · x ≡ 0 mod q}. This is a
lattice of rank d = m + n + 1 and volume qm. It is expected that (s, e,−1) is
the unique shortest vector in the lattice. Thus it boils down to find the shortest
vector in the lattice which can be done by a lattice reduction algorithm. The
goal is to estimate the cost of lattice reduction for solving the uSVP problem
constructed from LWE.

There are two methods for estimating the cost for solving LWE using the
aforementioned LWE-to-uSVP strategy. The first method is proposed by Gama
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and Nguyen [23] and further investigated in subsequent works [2,6,28]. The
main idea is to estimate the gap (between the first and second minima) in the
uSVP lattice. As it is expected that (s, e,−1) is the unique shortest vector in

the lattice, the first minimum λ1 of the uSVP lattice is about
√
‖e‖2 + ‖s‖2.

The second minimum λ2 of the uSVP lattice is estimated from the Gaussian
heuristic on random lattices: the expected first minimum of a lattice L of full
rank d is about

√
d/(2πe)Vol(L)1/d. One assumes that the λ2 of the uSVP

lattice is about the same as the λ1 of a random lattice with the same de-
terminant and rank. Suppose a lattice reduction algorithm produces a re-
duced basis of root Hermite factor δ: for example, if a Block-Korkine-Zolotarev
(BKZ) [42,44,43,26,20] algorithm of blocksize β is used, the root Hermite factor
is about [19]:

δ(β) ≈
(

β

2πe
· (πβ)1/β

) 1
2(β−1)

. (1)

For large β, this is about β1/(2β) which we will use for asymptotic analysis. It
then requires the uSVP gap γ := λ2/λ1 ≥ τ · δd for a successful attack where
τ is an experimental constant depending on the algorithm (and parameters).
Finally, the running-time can be derived from the required δ given the gap γ
which depends on the lattice reduction algorithm used. For the BKZ example,
one can work out the blocksize β required and hence the running-time which
is asymptotically 2O(β) using the core-SVP model [7,3].

A second method is given in the New Hope key exchange paper [7]. Instead
of looking at the gap of the uSVP directly, it considers the evolution of the
Gram-Schmidt coefficients of the unique shortest vector in the BKZ tours. More
precisely, it compares the expected length of the projection of the shortest
vector orthogonally to the first d − β Gram-Schmidt vectors with the length
of b∗d−β+1 estimated using the GSA assumption. The justification is that, if this
happens, the last β Gram-Schmidt coefficients of the shortest vector can be
recovered during the local SVP of the last block.

These two estimates have been investigated extensively by Albrecht et al.
in work [5]. They show that the lattice reduction experiments fits more consis-
tently with the second estimate. They also present a sound analysis to show
that, after the last β Gram-Schmidt coefficients of the shortest vector is recov-
ered, a further size reduction is often sufficient to recover the complete secret.
Interestingly, they also observe that in several cases the lattice reduction even
behaves better than the second estimate for certain parameters. It is outlined
that this may be caused by the occurrence of a second intersection of the pro-
jected vector with the Gram-Schmidt vectors.

1.1 Contribution

In this work, we revisit the analysis and experiments on estimating the cost
for solving LWE via the uSVP approach. The experimental results are derived
using the open-source lattice reduction libraries FPLLL and FPYLLL [46,47].
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In Section 3, we first recall the two estimates from [23,7] and the analysis
in [5]. Compared to [5], we expand the comparison of the two estimates with
a larger set of LWE parameters (q, n, α). This complements the analysis and
comparison in the Figure 1 of [5]. Furthermore, we verify the accuracy of the
second estimate on the smaller dimension regime (Subsection 3.3), where the
first estimate could lead to a smaller blocksize. For the second contribution
(Subsection 3.4), we examine the projection length of the shortest vector on the
reduced bases with different BKZ blocksize . This confirms that the assump-
tion on the projection length is valid. Our third contribution (Section 4) is a
concrete investigation of the uSVP gap in the embedded lattices with µ = 1
and µ = dist(t,L(B)), given BDD instance (B, t) as input. It has been a com-
mon practice (e.g. [2,7]) to use µ = 1 in the embedded lattice, albeit the reduc-
tion of BDD to uSVP [36] works only with µ = dist(t,L(B)) in theory. We show
that the gap in the uSVP instances on average behaves much better than the
worst-case guarantee. Finally, it has been observed in [5] that in several cases
the lattice reduction even behaves better than the second estimate for some
parameters. It is conjectured that the second intersection will not happen for
large parameters. We show in Section 5 that this is true: we provide numerical
experiments to confirm the impacts of the second intersection and present an
analysis that the position/length of the second intersection approaches 0 as
β→ ∞.

2 Preliminaries

In this section, we recall some basic facts on lattices, lattice reduction, and
computational problems based on lattices. We first introduce the notations
used throughout the paper.

Notations. We let lower-case bold letters denote column vectors and upper-
case bold letters denote matrices. For a vector x, we use ‖x‖ to denote its `2-
norm. Similarly, a matrix B = (b1, · · · , bn) is also presented in a column-wise
way.

2.1 Euclidean lattices

Let B ∈ Rn×n be a full rank matrix. The lattice L generated by B is defined
as L(B) = {Bx | x ∈ Zn}, and the matrix B is called a basis of L (or L(B)).
We let B∗ = (b∗1 , · · · , b∗n) denote the Gram–Schmidt orthogonalization of B.
The determinant of a lattice L(B) is defined as Vol(L(B)) = ∏i≤n ‖b∗i ‖. The
`2-norm of a shortest non-zero vector in a lattice L is denoted by λ1(L) which
is called the minimum of L. This can be extended successively:

Definition 1 (Successive minima). For any lattice L, the i-th minimum λi(L) is
the radius of the smallest ball with center the origin and containing i linearly indepen-
dent lattice vectors:

λi(L) = inf{r : dim(span(L ∩ B(0, r))) ≥ i}.
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In subsequent sections, we will consider the ratio between λ2 and λ1. Minkowski’s
convex body theorem states that λ1(L) ≤ 2 · v−1/n

n ·Vol(L)1/n where vn is the
volume of an n-dimensional Euclidean ball of radius 1. The average version of
the Minkowski’s theorem is often known as the Gaussian heuristic: the λ1 of a
random n-dimensional lattice is asymptotically

GH(L) = v−1/n
n ·Vol(L)1/n. (2)

For i ≤ n, we let πi(v) denote the orthogonal projection of v onto the linear
subspace (b1, · · · , bi−1)

⊥. For i < j ≤ n, we let B[i,j] denote the local block
(πi(bi), · · · , πi(bj)), and L[i,j] denote the lattice generated by B[i,j].

2.2 Lattice problems

Two fundamental computation problems in lattice-based cryptography are the
short integer solution problem (SIS) [1,38] and the learning with errors prob-
lem (LWE) [40,41,37,17]. They are defined as follows.

Definition 2 (Search LWEm,n,q,χ). With input parameters n ≥ 1, modulus q ≥ 2
and distribution χ, the search version of LWEm,n,q,χ problem consists of m samples of
the form (a, b) ∈ Zn

q ×Zq, with a ←↩ U(Zn
q ), b = 〈a, s〉+ e (mod q) and e ←↩ χ.

Typically m ≥ n. We say that an algorithm solves the search LWEm
n,q,χ if it outputs s

with probability poly(1/(n log q)) in time poly(n log q).

If the number of samples is not restricted, we denote it as the LWEn,q,χ prob-
lem. In this work, χ is a discrete Gaussian of deviation αq. For convenience,
we will also present the LWE in its the matrix form (A, b) where b ≡ As + e
(mod q).

A dual problem of LWE is the so-called short integer solution problem
(SIS) [1,38]. We will mainly use its inhomogeneous version (ISIS) in this work.

Definition 3 (Search ISISm,n,q,B). Given A uniformly sampled from Zn×m
q and a

vector b ∈ Zn, find non-zero x ∈ Zm such that Ax ≡ b (mod q) and ‖x‖ ≤ B.
Typically m ≥ n. If b = 0, it is the SISm,n,q,B problem.

Note that one can view the LWE problem (A, As + e) as an SIS-like problem
by writing A′ ·

(
s|e
)
≡ 0 (mod q) where A′ = (A|I). This also provide an

alternative method for analyzing LWE via the SIS-like problem. The learning
with errors problem (LWE) can be considered as an average version of the
BDD problem:

Definition 4 (Bounded Distance Decoding: BDDα). Let 0 < α < 1
2 . Given a

lattice basis B and a vector t such that dist(t,L(B)) ≤ α · λ1(B), find a lattice vector
v ∈ L(B) closest to t. We will denote the α as the gap of the BDDα problem.

A dual problem of BDD is the so-called Unique Shortest Vector Problem (uSVP).
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Definition 5 (Unique Shortest Vector Problem: uSVPγ). Let γ ≥ 1. Given as
input a lattice basis B such that λ2(L(B)) ≥ γ · λ1(L(B)), the goal is to find a
non-zero vector v ∈ L(B) of norm λ1(L(B)). We will denote the γ as the gap of the
uSVPγ problem.

In some cryptographic applications (e.g., lattice-based signatures [21,35,10]),
it is preferred to use LWE problems where the secret s comes from the same
distribution as the error e. This is known as the normal form LWE. We will as-
sume this is the case in this work. Notice that there exists a polynomial time
reduction from LWE with secret from arbitrary distribution to LWE in normal
form [8].

2.3 Lattice reduction

The security of lattice-based cryptography relies on the assumed hardness
of solving the aforementioned geometric problems such as BDD and uSVP
on high-dimensional lattices. The lattice reduction algorithms such as Block-
Korkine-Zolotarev (BKZ) [42,44,43,20,27] are the most efficient methods for
solving such problems currently known. Lattice reduction aims to compute a
basis made of relatively short vectors from an arbitrary input basis. Quan-
titatively, one measure of quality is the so-called Hermite factor HF(B) =

‖b1‖/Vol1/n(L(B)). Lattice reduction algorithms output reduced lattice bases
with HF(B) = δn where δ is a function of the input parameter to the reduction
algorithm. The δ is also known as the root Hermite factor (RHF).

We review some notions on lattice reduction. A lattice basis B is called size-
reduced, if it satisfies |µi,j| ≤ 1/2 for j < i ≤ n where µi,j = 〈bi, b∗j 〉/〈b∗j , b∗j 〉.
A basis B is HKZ-reduced if it is size-reduced and further satisfies:

‖b∗i ‖ = λ1(L[i,n]), ∀i ≤ n.

A basis B is BKZ-β reduced for blocksize β ≥ 2 if it is size-reduced and satis-
fies:

‖b∗i ‖ = λ1(L[i,min(i+β−1,n)]), ∀i ≤ n.

The work [19] shows that a BKZ-β reduced basis B satisfies ‖b1‖ = δnVol(L(B))
where

δ(β) ≈
(

β

2πe
· (πβ)1/β

) 1
2(β−1)

.

The Schnorr-Euchner BKZ algorithm [42,44,43] takes as inputs a blocksize β
and a basis B = (b1, · · · , bn) of a lattice L(B), and outputs a basis which is
approximately BKZ-β-reduced, up to numerical inaccuracies. BKZ starts by
LLL-reducing the input basis, then calls an SVP-solver of dimension β on
consecutive local blocks B[k,min(k+β−1,n)] for k = 1, · · · , n− 1. This is referred
to as one BKZ tour. Right after the local SVP at index k, if the found vector
λ1(L[k,min(k+β−1,n)]) < ‖b∗k‖, then BKZ updates the block B[k,min(k+β−1,n)] by
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inserting the vector found between indices k− 1 and k and does an LLL reduc-
tion. Otherwise, it moves to the next block. The procedure terminates when
no change occurs at all during a tour. In practice, one prefers to terminate the
BKZ when the changes between tours becomes less significant. This is called
the early-abort BKZ [27]: Hanrot et al. showed that BKZ can be terminated
long before its completion, while still providing bases of good quality.

It remains to estimate the running-time of BKZ-β given β. In the litera-
ture [6,20,7,3], there are several approaches to estimate the running-time of
BKZ. The main differences come from two aspects: is sieving or enumera-
tion used for the local SVP? and how many calls to the local SVP oracle are
expected? For convenience, we will use the “core-sieving” model of [7,3]. Es-
sentially it considers a single SVP call of dimension β using sieving, which can
be modeled by a running-time of 2O(β).
Heuristics. Lattice reduction algorithms and their analyses often rely on heuris-
tic assumptions. A common heuristic is the aforementioned Gaussian heuristic
(see Equation (2)). Let L be an n-dimensional lattice and S a measurable set
in the real span of L. The Gaussian Heuristic states that the number of lattice
points in S , denoted |L ∩ S|, is about vol(S)/Vol(L). In particular, taking S as
a centered n-ball of radius R, the number of lattice points contained in the n-
ball is about Vn(R)/Vol(L). Thus by setting Vn(R) ≈ Vol(L), we see that λ1(L)
is about GH(L) = v−1/n

n ·Vol(L)1/n. Note that this is a factor of 2 smaller than
the rigorous upper bound provided by Minkowski’s theorem.

Another useful heuristic is the so-called Geometric Series Assumption (GSA)
introduced in [45], which states that the Gram-Schmidt norms {‖b∗i ‖}i≤n of a
BKZ-reduced basis behave as a geometric series, i.e., there is a constant r > 1
such that ‖b∗i ‖/‖b∗i+1‖ ≈ r for all i < n.

2.4 Lattice attack for LWE

In this subsection, we recall several methods that are used to solve the LWE
problem using lattices. In these methods, the main idea is to treat the LWE
problem as a BDD/uSVP problem and then apply a lattice reduction algorithm
to solve the BDD/uSVP problem.

The first method is to view the LWE problem as an ISIS-like problem: given
(A, b ≡ As + e (mod q)) one can form an ISIS-like instance

(A|Im)

(
s
e

)
≡ b (mod q)

where Im is the m × m identity matrix. We can then solve this ISIS instance
using either a BDD solver or uSVP solver via embedding. For example, we
may use the lattice generated by

B =

(
In 0
A qIm

)
.

7



This is often known as the “primal attack”. Usually matrix A has rank n. The
L(B) is a lattice of rank m + n and has volume qm. We can then solve the BDD
of L(B) with respect to the target point

(
0
b

)
which reveals

( s
−e
)
. Alternatively,

we can reduce this BDD to uSVP; we will describe this method later.
The second method is to consider the lattice Lq(A) = {y ∈ Zm : y ≡ Ax

(mod q), ∀x ∈ Zn}. Note that the lattice Lq(A) contains a point which is close
to the target point b within distance ‖e‖. One can hence solve the BDD of
the lattice Lq(A) to the target point b. The lattice Lq(A) has rank m and has
volume qm−n. This is equivalent to the “dual attack” where we multiply the
left-kernel A⊥ of A on both sides of the equation b ≡ As + e (mod q). This
leads to an ISIS-like problem of the form A⊥b ≡ A⊥e (mod q) which we can
solve using a BDD/uSVP solver.

These methods are sometimes equivalent, but not always, depending on
the parameters given. For example, it has been investigated in [11,5] that for
the binary secret LWE case, the first method leads to a better result since it uses
the information about the smallness of s. Furthermore, the allowed samples in
cryptanalytic effort varies depending on the scheme considered. When there
are not sufficiently enough samples, the first method might lead to a better
complexity since it provides more “dimensions” for the lattice.

Reducing BDD to uSVP

We can solve the BDD using Kannan’s embedding technique [30], Babai’s
nearest plane algorithm [9], or Lindner-Peikert’s randomized nearest plane
algorithm [33]. These algorithms have been further investigated by Liu and
Nguyen [34] who show they can be considered as cases of pruned enumera-
tion algorithms.

For the analysis of this paper we use Kannan’s embedding technique. We
describe it as follows. Given a BDD instance (B, t) where L(B) has rank d and
e is the “shift”, we consider the following basis matrix

B′ =

(
B t
0 1

)
.

This is a lattice of rank d + 1 and volume Vol(L(B)). Observe that

B′
(

x
−1

)
=

(
Bx− t
−1

)
=

(
e
−1

)
.

Hence, the lattice generated by the columns of B′ contains a short vector re-
lated to the potential solution of the BDD problem. Usually the lattice L(B′)
derived from embedding is a uSVP problem of sufficiently large gap, albeit
there is no theoretical proof for this. To solve this problem, we can use the
aforementioned lattice reduction algorithms such as the BKZ algorithm.
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In [36], Lyubashevsky and Micciancio provide a reduction, which can re-
duce any BDD1/γ instance (B, t) to an uSVPγ/2 instance with basis:

B′ =

(
B t
0 µ

)
∈ Qn+1,

with µ set to be the distance d = dist(t,L) ≤ λ1(L)/(2γ), where L is the
lattice spanned by B. In more detail, if c denotes a closest vector to t in L then
it is shown that the vector s′ = ((c− t)T,−d)T is a shortest non-zero vector of
lattice L′ of basis B′.

Later, Bai et al. [13] propose to preprocess the lattice L(B) using Khot’s
sparsification technique [31] before resorting to the Kannan’s embedding: the
component µ is decreased to be O(d/n), and the losing factor in the reduction
is improved from 2 to

√
2.

However, on the practical side [2,7,5], one usually sets µ = 1 in the em-
bedded lattice and assumes there is no losing factor in the reduction. To be
more precise, one assume that the first minimum and the second minimum
of the embedded lattice are ≈ d and λ1(L(B)), respectively. We assume this
is true for the moment, but will have a detailed investigation on this topic in
subsequent sections.

Other attacks

In this work, we focus on the expected cost of solving LWE by regarding it
as BDD and then reducing it to uSVP. There are other types of algorithms
for solving LWE such as the combinatorial attacks. These algorithms usually
require exponential memory and a large number of LWE samples. We do not
consider these attacks in this work but refer the reader to [16,4,32,12].

3 Revisiting the cost of solving uSVP

In this section, we first revisit the two approaches of [23,7] for estimating the
cost of solving uSVP and the analysis in [5]. Then we expand the comparison
in [5] of the two estimates with a larger set of LWE parameters. Furthermore,
we verify the accuracy of the second estimate on the smaller dimension regime,
where the first estimate could lead to a smaller blocksize.

3.1 Two estimates

Recall that we can view the LWE problem as a BDD problem. For simplicity,
we will use the lattice Lq(A) = {y ∈ Zm : y ≡ Ax (mod q), ∀x ∈ Zn}
defined in Subsection 2.4. The lattice Lq(A) with the target point b defines
a BDD instance: note this is a BDD1/γ instance with γ = λ1(Lq(A))/‖e‖.
The lattice Lq(A) has rank m and volume qm−n. By Gaussian Heuristic, we
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have λ1(Lq(A)) ≈
√

m
2πe q(m−n)/m. On the other hand, the LWE error e has

length about
√

mαq. Thus we obtain a BDD1/γ instance where

γ ≈
min

(
q,
√

m
2πe q(m−n)/m

)
√

mαq
. (3)

For convenience, we assume that q is not too small and hence γ ≈ q−n/m/α.
We first recall the estimate for solving uSVP by Gama and Nguyen [23]

(we will refer to it as the first estimate or the 2008 estimate). First, one assumes
that the above BDD1/γ reduces to uSVPγ, where γ ≈ q−n/m/α. Then Gama
and Nguyen [23] show that the shortest vector in the uSVPγ problem can be
recovered as soon as γ ≥ τ · δm where δ is root Hermite factor of the algorithm
used. Here τ < 1 is an empirical constant determined by experiments: it has
been investigated that τ lies in between 0.3 and 0.4 when using the BKZ algo-
rithm [2,5]. For simplicity, we will omit the constant τ in the asymptotic analy-
sis (but set it to be 0.3 in actual experiments). As noted in Equation (1), the δ(β)
is a decreasing function of β and therefore we want to maximize δ. The optimal
m is asymptotically 2n log q

log(1/α)
which leads to maximum δ ≈ αlog α/(4n log q). The

running time of BKZ-β is 2O(β) using the core-SVP model. In terms of LWE
parameters this is asymptotically

exp

ct ·
n log q
log2 α

· log

(
n log q
log2 α

) (4)

for some constant ct.
In the New Hope key exchange paper [7], another method for estimating

the cost for solving LWE is given. We will refer to it as the second estimate or
the 2016 estimate. Instead of looking at the gap of the uSVP directly, it con-
siders the evolution of the Gram-Schmidt coefficients of the unique shortest
vector in the BKZ tours. More precisely, it compares the expected length of
the projected (expected) shortest vector v = (e,−1) with the Gram-Schmidt
lengths estimated by the GSA assumption. The key observation is that partial
information of shortest vector v will be recovered in the last block, when the
orthogonal projection of v to the first d− β Gram-Schmidt vectors is shorter
than the expected b∗d−β+1 predicated by the GSA assumption. Thus the success
condition for recovering (e,−1) can be formulated as follows.√

βαq ≤ δ2β−mq(m−n)/m (5)

where δ depends on β. Here we simply take the rank of the lattice to be m ≈ d.
These two estimates have been investigated extensively by Albrecht et al. in

work [5]. They show that the lattice reduction experiments largely follow the
behaviour expected from the second estimate. Furthermore, they also present

10



a sound analysis to show that, after the last β Gram-Schmidt coefficients of
the shortest vector is recovered, a further size reduction is often sufficient to
recover the complete secret immediately. In fact, this can happen at indices
smaller than the d− β + 1. As noted in [5], they observe an interesting phe-
nomenon that in several cases the lattice reduction even behaves better than the
second estimate for some parameters: the BKZ algorithm recovers a projection
πi(v) at index following a distribution with a center smaller than d − β + 1.
It is outlined in [5] that this may be caused by the occurrence of a second
intersection of the projected vector with the Gram-Schmidt vectors.

3.2 Comparison of estimates with various (n, q, α)

In this subsection, we expand the comparison in [5] on the two estimates with
a larger set of LWE parameters. Note that a numerical comparison of two esti-
mates is already given in the work [5]. Here we expand the range of the LWE
parameters to the single-exponential regime: observe that the comparison in
the Figure 1 of [5] fixes q, α and increases n. This compares the two estimates
for LWE parameters in the super-exponential regime because of the estimate
in Equation (4). Here we assumed that the optimal m in the 2006 estimate is
asymptotically the same as the 2008 estimate. Note that the 2008 estimate (e.g.
Equation (5)) can be re-formulated as

β1/(2β) ≤
(

q−n/m

α

)1/m

β1/(2m).

This can be compared to the uSVP gap argument in the 2008 estimate [23]
where we have β1/(2β) ≤ (q−n/m/α)1/m instead. We want to minimize the β in
Equation (5). This is a constraint optimization problem which seems tedious.
Instead we find the optimal m and β numerically. In setting the LWE parame-
ters (n, q, α), we maintain the relation that

log q/ log2 α · log(n log q/(log2 α)) (6)

being a constant c. Note that this corresponds to the multiplier in front of n
in the Equation (4). This roughly means the running-time for solving LWE is
asymptotically single-exponential.

We describe the parameters we used in the comparison. We set c = 0.25
and 0.35 respectively. For each c, we take q = n2 and q = n4 (thus four sets of
parameters). Such parameters simulate commonly used conservative param-
eters (e.g. q not too large). Then we compute the corresponding α. For each
set of parameters (n, q, α), we find the optimal m that leads to the smallest β
using the 2016 estimate and the 2008 estimate (we set the empirical constant
τ = 0.3) respectively. We denote the smallest blocksize required from the two
estimates as β2008 and β2016. For each set of parameters, we plot the blocksize
β required as an (increasing) function of n; we also plot the normalised block-
size difference which records (β2008 − β2016)/β2008: this roughly illustrates the
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“improvement percentage”. If this value is negative, we simply denote it by 0
but we will further consider these cases later. We plot the comparison on the
four sets of parameters in Figures 1-8.

It can be observed that the impacts of (the difference of) the two methods
increases with the decrement of q. Similarly, the difference of the two methods
increases with the decrement of α. This also confirms the comparison of the
two methods in [5] in the single-exponential region.

400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0.0

200.0

400.0

600.0

800.0

LWE n

β

β2008 β2016

Fig. 1: Comparison of blocksize β of two
estimates when c = 0.25 and q = n2.
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Fig. 2: Same as left hand side, but com-
pares the improvement percentage of the
blocksize.
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Fig. 3: Comparison of blocksize β of two
estimates when c = 0.25 and q = n4.
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Fig. 4: Same as left hand side, but com-
pares the improvement percentage of the
blocksize.

3.3 Smaller dimension

Note that in the small dimension (in terms of LWE n) regime (some of which
might be still relevant to practical schemes), the first estimate leads to a smaller
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Fig. 5: Comparison of blocksize β of two
estimates when c = 0.35 and q = n2.

400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0.00

0.05

0.10

0.15

LWE n

β

Improvement percentage

Fig. 6: Same as left hand side, but com-
pares the improvement percentage of the
blocksize.
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Fig. 7: Comparison of blocksize β of two
estimates when c = 0.35 and q = n4.
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Fig. 8: Same as left hand side, but com-
pares the improvement percentage of the
blocksize.

blocksize. This is due to the empirical constant τ set to be 0.3. There might be
a tendency to use the first estimate as it produces more conservative estimates.
We further confirm the accuracy of the second estimate for these smaller di-
mensions. Note that for tiny blocksizes (e.g. β ≤ 30), it has been observed
in [14] that the Gaussian heuristic in local blocks is not accurate in BKZ; nor
such blocksize matter the running-time of BKZ too much. Thus we do not con-
sider these tiny blocksizes. We choose parameters n, q, α such that the block-
sizes are ≥ 40 and compare the two methods in such region. Using the same
approach as the last subsection, we set c = 0.5 and q = n2. Then we find the
corresponding α for the error rate. For each (n, q, α), we find the optimal m that
leads to the smallest β using the 2016 estimate and the 2008 estimate respec-
tively. For the 2008 estimate, we set the empirical constant τ = 0.3: approx-
imately we are comparing the two estimates in terms of δd ≈ q−n/m/(0.3α)
with δm ≈ q−n/m/α

√
β.

In Figure 9 we can observe, for small LWE dimension n, the first estimate
gives a smaller blocksize due to the empirical constant 0.3. Then we look at the
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concrete experiments with LWE parameters n = 110, q = 12101, σ = αq = 7.2
of 100 instances. Using the 2008 estimate, the optimal m = 277 which leads
to the β = 39. Using the 2016 estimate, the optimal m = 294 which leads to
the β = 66. In Figure 10, the experiments using BKZ of various blocksize as
well as different number of samples are tabulated. It can be seen that the 2016

estimate indeed provides a more accurate estimate: all BKZ instances using
β = 66 succeed with m = 294 as predicated by the 2016 estimate. We note that
many instances even succeeded with smaller blocksize β = 60. This is perhaps
due to the second intersection phenomenon as observed in [5]. We will look at
this phenomenon later.
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Fig. 9: Comparison of blocksize β of two
estimates when c = 0.5 and q = n2 for
small n region.

LWE parameters: n = 110, q = 12101, σ = 7.21
2008 estimate Sample m Blocksize β Succ. prob.

(smallest β = 39 277 40 0%
with m = 277) 277 50 0%
2016 estimate optimal m blocksize β Succ. prob.

(smallest β = 66 294 50 0%
with m = 294) 294 60 52%

294 66 100%

Fig. 10: Experimental comparison of two
estimate for small n region.

3.4 Further experiments on the projection length

The success condition for recovering the shortest vector in Equation (5) de-
pends mainly on two heuristics: first, the norm of the Gram-Schmidt vectors
in a BKZ reduced basis follows from the GSA assumption; second, the norm
of the projection of the shortest vector onto the vector space spanned by the
last β Gram-Schmidt vector is about αq

√
β.

In practice, it is known [23,14] that the GSA assumption does not quite
fit the BKZ experiments. However, the GSA assumption is optimistic from an
attacker’s point of view, which leads to a more conservative estimate. Hence
we will assume this is the case. We will look at the second heuristic on the
projection length. Denote the shortest vector to be v. The heuristic on the
project length essentially requires that v, when expanded in terms of Gram-
Schmidt vectors, have similar length on all components. This follows true if
the Heuristic 2 described in work [24] is true: The distribution of the coordi-
nates of the target vector v, when written in the normalized Gram-Schmidt
basis (b∗1/

∥∥b∗1
∥∥ , b∗2/

∥∥b∗2
∥∥ , · · · , b∗m/

∥∥b∗m
∥∥) of the input basis, looks like a uni-
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formly distributed vector of norm ‖v‖. Observe that the heuristic depends on
the shape of the input basis. For example, when the input basis is strongly
reduced, the shortest vector v may already appear in the basis and hence the
heuristic will not be true.

An experimental study has been presented in Figure 2 of [5] using 16 LLL
reduced bases. We conduct further experiments on the length of projected
shortest vector on BKZ reduced bases of various blocksizes. We use the same
parameters as Figure 2 of [5]: we generate 200 LWE instances of n = 65, m =

182, q = 521 and σ = 8/
√

2π (the results are averaged over these instances).
We reduce the embedded bases using LLL and BKZ-β for β = 10, 20, 30, 40, 45.
Note here we choose the largest blocksize to be 45 since this prevents the
shortest vector from being recovered with high probability. Similarly, in the
reduced bases, we do not consider those where the shortest vector has already
been found. The experimental results are illustrated in Figures 11 and 12. It
can be seen that the projection norms of the shortest vector indeed follow a
similar shape in all LLL/BKZ-reduced bases. When the lattice is more reduced,
the projected norm seems to follow more closely to the theoretical estimate
except the last few indices. As a conclusion, it seems even plausible to use
the theoretical estimate

√
m− i + 1 αq except for the last several indices. This

might cause a problem for estimating the γ for the second intersection. We
will consider such problem in a later section.
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Fig. 11: Logarithmic norm of the projec-
tion of v on BKZ-β reduced bases for
β = 10, 20, 30, 40, 45.
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Fig. 12: Same as left hand side, but
zoomed-in for only LLL and BKZ-
45. Furthermore, theoretical estimate
log2(

√
m− i + 1 αq) is plotted.

4 Gap in uSVP from LWE

In this section, we study the practical behavior of the reduction from the BDD
problem to the uSVP problem. Note that in practice, we usually use the Kan-
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nan’s embedding with µ = 1. However, in theory, it is not known that whether
the gap γ of the embedded uSVP lattice in this case is optimal. But this seems
to be the preferable setting in practice. As shown experimentally in [48], de-
creasing the embedding height is advantageous in solving LWE via the em-
bedding technique. In this section we further explain why µ = 1 is preferable
by investigating the concrete gaps in the uSVP problem.

Let the BDD problem arise from LWE be BDD1/γ. We recall the reduc-
tion from BDD1/γ to uSVPγ/2 by Lyubashevsky and Micciancio [36]. Given
the BDD1/γ instance (B, t), the following embedded lattice is contructed

B′ =

(
B t
0 µ

)
∈ Qn+1,

where µ is set to be the distance d = dist(t,L(B)). Since this is a BDD1/γ

instance, we know that d ≤ λ1(L)/γ. Let c ∈ L(B) denote a closest vector to
the target point t. Lyubashevsky and Micciancio [36] show that the vector s′ =
((c − t)T,−µ)T is a shortest non-zero vector in the lattice L(B′) and other
independent vectors are at least γ times larger than this. The reduction cares
about the worst-case behaviors. In practice, it may be quite possible that all
other independent vectors are more than γ/2 times larger and hence leads to
a uSVP problem with larger gap. In fact, we will show that this is indeed the
case in practice and investigate to what extent it is better than the γ/2-gap.
Note that there is a natural upper-bound for the reduction. Precisely, the gap
in the uSVP problem cannot be larger than

√
2γ/2 since a shortest vector in

the BDD lattice also resides in the embedded lattice and s′ has length
√

2d/2.
On the other hand, in practice, we just take µ = 1 in the embedded lattice.
We assume that the vector ((c− t)T,−1)T is a shortest non-zero vector in the
lattice L(B′) and such that there is a sufficiently large gap between all other
independent vectors and this shortest non-zero vector. In the 2008 estimate,
this is equivalently assumed to be that the uSVP problem derived from µ = 1
has a gap of γ (although this is not supported theoretically in the worst case).
In fact, such γ-gap already implies the reduction has reached its natural upper
bound – note that the shortest vector in the given BDD lattice L(B) is about γ
times larger than d as defined.

In this section, we investigate concretely the gap in the uSVP problem in
experiments. Perhaps surprisingly, we show that the gap in the uSVP instance
are somewhat close to the upper-bound γ in practice, even though this is not
guaranteed in the worst-case. This also explains that why it is preferable to
use µ = 1 in practice. We set up the following experiments to investigate the
gap in the resulted uSVP instance in practice. For each set of parameters, we
generate 100 LWE instances. For each instance, we construct the embedded
lattices in two ways, with µ = 1 and µ = d where d = b‖e‖e. In experiments,
we compute and compare the gaps in the resulted uSVP instances.

We explain the notations in Table 1. For each parameter n, m, q in LWE,
we use error deviation σ = 3.1925 ≈ 8√

2π
. For each LWE/BDD instance,
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n m q BDD lattice uSVP lattice µ = 1 uSVP lattice µ = ‖e‖
Theory Experiment Theoretical upper Experiment Ratio Theoretical upper Experiment Ratio

16 32 1031 2.71 2.78 2.78 . 2.55 0.92 1.97 . 1.96 0.71
16 48 1031 8.40 8.49 8.49 . 7.81 0.92 6.00 . 5.99 0.71
32 48 8101 1.65 1.68 1.68 . 1.58 0.94 1.19 . 1.19 0.71
32 64 8101 7.23 7.33 7.33 . 6.95 0.94 5.18 . 5.16 0.70

Table 1: Experimental comparison on the gap of uSVP derived from two embeddings.

we calculate the theoretical gap in the BDD problem from min
(

q, (Γ(1 +

m/2)1/m)/
√

π · q(m−n)/m
)

/(σ
√

m). Note that we can measure in a better way:
since we know the errors, we use the average norm of the errors in the de-
nominator (instead of the estimate σ

√
m). This is tabulated in the “Theory”

sub-column under “BDD”. Then we use BKZm to find the λ1(L(B)) and divide
that by the norm of error in LWE. This is recorded in the “Experiment” sub-
column under “BDD”. Note that the experimental values obtained is slightly
larger than the theory; this is perhaps due to the solver only finding the ap-
proximate shortest vector in practice. Then we construct the embedded uSVP
lattices with µ = 1 and µ = d, respectively. The sub-columns “Theoretical
upper” under “uSVP lattice” denote the upper bound of the gap in the uSVP
instances one can achieve using the values in the “Experiment” (not “The-
ory") sub-column under “BDD”, for each type of embedding, respectively. For
example, the experiment value 2.78 under n = 16, m = 32, q = 1031 implies
that the corresponding uSVP instances with µ = ‖e‖ can at most have a gap
of 1.97. The sub-column “Experiment” under “uSVP lattice” gives the experi-
mental values for the gaps between the norm of a second shortest vector and∥∥∥(eT,−µ)T

∥∥∥. Note that here we approximate the norm of a second shortest
vector by considering the second shortest vector in a reduced basis using BKZ
of blocksize m. This is not necessarily the λ2 but hopefully a close approxima-
tion. Thus we denote “.” in the table. For the lattice reduction, we use BKZ in
FPLLL until exhaustion with full enumeration for m = 32 and pruned enumer-
ation for other m. The sub-column “Ratio” under “uSVP lattice” computes the
ratio between the uSVP gap and the BDD gap. That is, it reflects the practical
behavior of the reduction from BDD1/x to uSVPy where the sub-column “Ra-
tio” is computed as y/x. The larger the ratio, the better (larger gap) the uSVP
instance is. All the figures in the table are averaged over 100 instances.

From a theoretical perspective, it is perhaps surprising to see that the BDD-
uSVP reduction works pretty well in practice with both µ. In particular, with
µ = 1, it seems that BDD1/γ already reduces to uSVP0.9γ in practice. In theory
for such case (µ = 1), it is possible that there exists a lattice point c′ ∈ L(B)
that is closer to k · t for some multiple k, and therefore (c′ − k · t,−k) decreases
the desirable gap. However, experiments in Table 1 seems to imply that such
bad points are rare in practice. Note that such cases can be provably elimi-
nated by setting a larger µ = ‖e‖ as shown in [36]. Specifically for such µ, it
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is guaranteed that the uSVP gap is γ/2 (from BDD1/γ) in the worst case. Sim-
ilarly, the practical/average behavior seems to be much better: with µ = ‖e‖,
the BDD1/γ problem reduces to uSVP0.7γ in practice.

We do not know how to explain such average behavior in theory. It may
be related to the difference on the natural upper-bounds in two embeddings:
with µ = 1, the natural upper-bound of the gap in the uSVP problem is γ. This
is larger than that (e.g. γ/

√
2) derived from the lattice using µ = ‖e‖. Thus it

may be due to a larger upper-bound providing larger “room” for the reduction,
together with annoying “extremely close” lattice points (to multiple of target
vector t) being rare in practice. It may be interesting to further investigate this,
e.g. by trying more µ between 1 and ‖e‖ and observe the impacts to the uSVP
gap. We leave more investigations on this for future work.

So far, we’ve only discussed the gap appeared in the embedded uSVP in-
stance under different embedding parameters. We further look at the impacts
on the cost estimate under different embedding heights. In the 2008 estimate, it
is assumed that given as input a BDD1/γ problem, one can reduce to a uSVPγ

problem. Then the root Hermite factor δ can be derived from the gap γ and
hence the blocksize & running-time. It is also natural to see that when using
the 2008 estimate, it is preferable to use µ = 1 since it leads to a larger gap in
the uSVP problem. In the 2016 estimate, the gap of the uSVP problem is not
used explicitly. But one can see that the estimate is asymptotically equivalent

to δm ≤
√

β
√

mq(m−n)/m

‖(e|µ)‖ . The fractional part of the equation corresponds to the

gap in the uSVP problem. Note that the difference on the gap using µ = 1
and µ = ‖e‖ is at most a scaling factor of

√
2. It seems to be a small factor

however it may affect the concrete security level of schemes with moderate
size.

5 Second intersection

An interesting phenomenon observed in [5] shows that in several cases the
lattice reduction behaves even better than the 2016 estimate for some param-
eters. First, the BKZ algorithm recovers a projection πi(v) at index following
a distribution with a center below d− β + 1. After that, a size reduction usu-
ally immediately recovers the full secret. It is outlined in [5] that this may
be caused by the occurrence of a second intersection of the projected vec-
tor with the Gram-Schmidt vectors. For example, to solve LWE parameter
n = 65, m = 182, q = 521 and αq = 8/

√
2π, it runs BKZ with blocksize β = 56

according to Equation (5). Since β = 56 satisfies Equation (5), a projection of
our error should be found at index d − β + 1 = 128, recovering the last 56

coefficients of the error which leads to size reduction recovering the rest. In
experiments the projection is found earlier (at index ≈ 124.76) and the coeffi-
cients of the error are found after one more call to size reduction. Second, the
blocksize required to recover the secret (on average) is actually smaller than
that estimated from Equation (5). For the LWE parameter mentioned above, it
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requires to run BKZ using blocksize 56 according to Equation (5). However, as
noted in [5], using blocksize 51 is sufficient to recover more than half of the
instances. Some justification has been outlined in Subsection 4.3 of [5], mainly
on the size reduction at index ≤ d− β + 1. We will provide a refined analysis
of why a smaller blocksize may work.
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Fig. 13: Comparison between G-S
norms of BKZ56 under GSA and the
expected length of πi(v).
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Fig. 14: Same as LHS, but zoomed-in to
the last several indices. Furthermore, a
BKZ simulator is used to estimate the
log ‖b∗i ‖.

We first recall the phenomenon in more detail as well as a brief expla-
nation given in [5]. According to Equation (5), the projection of the shortest
vector should be recovered at position d− β + 1 when running the BKZ with
blocksize β on the uSVP instance over a d-dimensional lattice (recall that in
our description, the d = m + 1). However, it is observed that the existence of
a second intersection on the expected projection length of the shortest vector
and the Gram-Schmidt norms under GSA assumption may speed-up the re-
covery of v. For example, Figure 13 compares the (logarithmic) Gram-Schmidt
norms of BKZ56 reduced basis under GSA assumption and the expected length
of πi(v). Note there are 5 indexes in which ‖πi(v)‖ is smaller than the Gram-
Schmidt norms, thus in this case, we denote κ = 5. In particular, after the
second intersection, the expected length of πi(v) will be less than the ‖b∗i ‖ for
κ indexes in the end. Hence the projection is likely to be the smallest vector of
the projected lattice L(πd−κ+1(bd−κ+1), · · · , πd−κ+1(bd)) of dimension κ. The
SVP oracle will find this projection and the BKZ algorithm will then insert
it at index d − κ + 1. As a result, bd−κ+1 is updated to be (the lifted vector
of) the projection of the vector v over the last κ Gram-Schmidt vectors. Fur-
ther, it is likely that πd−β−κ+1(v) is the shortest vector of the projected lattice
L(πd−β−κ+1(bd−β−κ+1), · · · , πd−β−κ+1(bd−κ+1)) of size β after which v can be
recovered by a size reduction according to [5]. Therefore, assuming a projec-
tion of our vector πd−κ+1(v) has already been found, an SVP oracle will find
πd−β−κ+1(v) in the lattice L(πd−β−κ+1(bd−β−κ+1), · · · , πd−β−κ+1(bd−κ+1)).
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5.1 On smaller blocksize

A related interesting phenomenon is that often a smaller blocksize may be
already sufficient to solve the uSVP problem. This has been observed in [5]
where a blocksize of β′ = β − κ is sufficient to recover the secret with high
probability. We give a heuristic justification of this based on the second in-
tersection. Suppose now β is the smallest blocksize that satisfies Equation (5)
with a nonzero κ depending on β.

Denote β′ = β − κ. Suppose BKZβ′ is run (instead of BKZβ). For conve-
nience, let δβ denote the value of δ given blocksize β. Let κ′ be the amount of
indices where the projection of v is smaller than the GSA predicated Gram-
Schmidt norm. Due to the second intersection, a projection of v is likely to
be found at index d− κ′ + 1 so after SVP the vector bd−κ′+1 will contain the
last κ′ coefficients of v. Therefore the norm of v, if decomposed in terms of
the Gram-Schmidt vectors bi, will concentrate on the first d − κ′ + 1 compo-
nents. More precisely, ‖v‖2 = ∑d−κ′+1

i=1 c2
i

∥∥b∗i
∥∥2 where ci are the coefficients in

the decomposition. Following the same reasoning as in [5], we look at the β′

dimensional lattice L(πd−β′−κ′+1(bd−β′−κ′+1), ..., πd−β′−κ′+1(bd−κ′+1)). If the
projected shortest vector has a smaller norm than the GSA predicated norm of
blocksize β′, then we would be able to recover the last β′ + κ coefficients. The
success condition can be phrased as√

β′ + κ′αq ≤ δ
2β′−d+2κ′

β′ Vol(L)1/d. (7)

Equation (7) is sometimes satisfied, but not always, depending on the relation
between κ and κ′. It seems plausible to assume that κ′ ≈ κ for the analysis,
albeit this may not be true in practice. (This can be seen from experiments
the newly found β′ will not recover as many error vectors as the original β.
For example, β′ = 51 in the aforementioned LWE parameters can only recover
half of the instances.) Note that if κ ≈ κ′, the left-hand side of Equation (7)
is the same as

√
βαq and the right-hand side is larger, hence πd−β′−κ′+1(v) is

the shortest vector in the local lattice. By recovering β′ + κ coefficients of v, a
following size reduction will find the rest with a high probability.

5.2 Experiments on κ

In the experiments to follow, we consider the last projection of our vector
v that was found before it is completely recovered in the next tour by size
reduction. This confirms the existence of κ in practice. With LWE parame-
ters n = 65, m = 182, q = 521 in both parameter sets, we consider two different
choices of αq that produces different κ. The first is αq = 3.192 and requires
β = 56 while the second is αq = 2.469 and requires β = 42. We run 800 in-
stances in total and take the average for both parameter sets. The distribution
of κ found are plotted in Figures 15 and 16. The y axis represents the counts
over 800 where a projection of v was found at index d− κ + 1 before the tour
it was completely recovered and the x axis is the value κ. In both cases, we did
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not consider projections of v that were found at an index less than or equal
to d− β + 1 as this will probably be where v is recovered by size reduction.
The experiment that required β = 56 was allowed to run for at most 20 tours
while the experiment requiring β = 42 is allowed 60 tours.
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Fig. 15: Blocksize β = 56 required in
Equation (5) and κ = 5.
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Fig. 16: Blocksize β = 42 required in
Equation (5) and κ = 7.

We notice that the experimental values for κ indeed follow approximately
from the theoretical predicate from Equation (5). However, we also notice that
the experimental value for κ seems to be slightly less than the predicted value.
This could be due to the inaccuracy of GSA when predicting the length of
the last few projections. It is known that the simulator-based approach [23,14]
provides a better estimation for the behavior of the lengths ‖b∗i ‖. We consid-
ered the average simulated ‖b∗i ‖ over 1000 instances with blocksize 56 and 200
tours. By comparing the simulator to the expected length of our projection (see
Figure 14), we see that fewer projections of v are below the simulator after the
second intersection: There are 3 (resp. 5) indexes in which ‖πi(v)‖ is smaller
than the simulator’s (resp. GSA’s) value for ‖b∗i ‖ (comparing Figure 15 with
Figure 14).

5.3 Convergence of κ

It has been conjectured [5] that the second intersection will not happen for
cryptographic meaningful parameters. We first show that the position of the
second intersection approaches 0 as β → ∞. We will also provide a numerical
analysis for the index of the second intersection using both GSA assumption
and simulator. We first take the logarithm of both the Gram-Schmidt norm at
index x and the norm of πx(v):

log(πx(‖v‖)) ≈ log(
√

d− x + 1 · αq),
log(‖b∗x‖) ≈ (x− 1) log(α) + log(‖b1‖)

21



where α ≈ δ−2 is the constant ratio in GSA. Note that ‖b1‖ ≈ δdVol(L)1/d.
Assuming Equation (5) is satisfied so that αq ≈ δ2β−dVol(L)1/d/β1/2, the in-
equality can be represented as

log(
κ

β
) ≤ −4 log(δ)(−κ + β) (8)

where κ = d− x+ 1. If there a nontrivial second intersection, the above relation
has to be true for at least κ = 1. Using δ ≈ v−1/(β(β−1))

β , one could see that for
large enough blocksize, this relation can not be satisfied and hence the second
intersection will not happen for large blocksize. This shows that the second
intersection approaches 0 as β → ∞. Further, we numerically investigate the
evolution of κ in terms of β using relation (8). Figure 17 considers the values
of κ given by relation (8) for different values of β. Notice that Figure 17 shows
that β = 278 is the smallest blocksize where κ already becomes 0. This suggests
there is no second intersection when β ≥ 278 is needed to satisfy equation
Equation (5). However, this could be an over-estimate from the attacker’s point
of view since the GSA assumption is used here.
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Fig. 17: Maximal κ satisfying Equa-
tion (8) given β.
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Fig. 18: Maximal κ satisfying Equa-
tion (8) given β.

To get a more accurate estimation of the value κ, we further compare that
with the BKZ simulator. The next figure considered several different parameter
sets (n = 65, m = 182, q = 521) only varying in αq and necessary β (averaged
over α and LWE instances). We simulate 200 tours of BKZ-β using the BKZ
simulator and averaged 1000 instances of each parameter set. Figure 18 shows
that the value of κ derived by comparing the simulated ‖b∗i ‖ to ‖πi(v)‖ sug-
gests there is no second intersection for blocksizes larger than 120. One can
also see this produces slightly smaller κ for a given β than the comparison
assuming GSA. This seems reasonable since the GSA assumption is known to
be optimistic from an attacker’s point of view. In conclusion, this further sug-
gests that a second intersection will only affect the results of running BKZ-β
on smaller parameter sets.
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