
Towards Practical Microcontroller
Implementation of the Signature Scheme Falcon

Tobias Oder1, Julian Speith1, Kira Höltgen1, and Tim Güneysu1,2

1 Ruhr-University Bochum, Germany
2 DFKI, Germany

{tobias.oder,julian.speith,kira.hoeltgen,tim.gueneysu}@rub.de

Abstract. The majority of submissions to NIST’s recent call for Post-
Quantum Cryptography are encryption schemes or key encapsulation
mechanisms. Signature schemes constitute a much smaller group of sub-
missions with only 21 proposals. In this work, we analyze the practica-
bility of one of the latter category – the signature scheme Falcon with
respect to its suitability for embedded microcontroller platforms.
Falcon has a security proof in the QROM in combination with smallest
public key and signature sizes among all lattice-based signature scheme
submissions with decent performance on common x86 computing archi-
tectures. One of the specific downsides of the scheme is, however, that
according to its specification it is “non-trivial to understand and delicate
to implement”.
This work aims to provide some new insights on the realization of Falcon
by presenting an optimized implementation for the ARM Cortex-M4F
platform. This includes a revision of its memory layout as this is the
limiting factor on such constrained platforms. We managed to reduce
the dynamic memory consumption of Falcon by 43% in comparison to
the reference implementation. Summarizing, our implementation requires
682 ms for key generation, 479 ms for signing, and only 3.2 ms for veri-
fication for the n = 512 parameter set.

Keywords: Ideal lattices, Falcon, Cortex-M, Microcontroller, NIST PQC

1 Introduction

With the progress on quantum computing that has been made in recent years,
the possibility of a powerful quantum computer being build in the coming years
seems as likely as never before. The impact of the sheer existence of such a
machine to current real world cryptography would be disastrous. Of special sig-
nificance in that regard is Shor’s algorithm for prime factorization and discrete
logarithms [32], which, given a powerful quantum computer, allows for polyno-
mial time attacks on almost all public-key algorithms that are in use today.

As a result, research in the area of post-quantum cryptography has signifi-
cantly picked up in speed for the last couple of years. A lot of work is currently
being put into the construction of quantum-secure cryptographic schemes that

one day could replace today’s most widely distributed algorithms. This effort
culminated in the NISTs call for post-quantum cryptographic algorithms [27]
that ended in November 2017. While most of the first round submissions focus
on key exchange or key encapsulation schemes (KEMs), a few are dealing with
the problem of generating cryptographically sound digital signatures. These in-
clude the lattice-based schemes pqNTRUsign [10], qTESLA [7], Dilithium [12],
DRS [28], and Falcon [15], but also hash-based algorithms such as SPHINCS+ [21]
or schemes based on multivariate quadratics.

There are two competing approaches to realize lattice-based signature schemes.
While the majority of them is constructed by applying the Fiat-Shamir transform
to an authentication scheme, Falcon is based on the so-called hash-and-sign ap-
proach. The major difference is that while Fiat-Shamir schemes in general have
a better performance, hash-and-sign ones can be proven to be secure in the
Random Oracle Model (ROM) and even the Quantum Random Oracle Model
(QROM). Another advantage of hash-and-sign signatures is that it is possible
to construct identity-based encryption schemes out of a signature scheme like
Falcon [13].

In particular in IoT infrastructures with critical requirements for long-term
security, it is important to identify solutions that can still be deployed on con-
temporary small devices. Embedded systems found in automotive, consumer,
or medical applications, for instance, demand an alternative solution that can
withstand future attacks in the long run. With the implementation presented in
this work, we show that Falcon can be a solution in this context.

1.1 Related Work

The majority of practical work on lattice-based NIST PQC candidates for em-
bedded devices focuses on encryption schemes or key encapsulation mechanisms.
An implementation of Saber [11] for ARM Cortex-M microcontroller platforms
by Karmakar et al. [23] has been published in TCHES’18 and has since then been
further optimized by Kannwischer et al. in [22]. There is also a microcontroller
and FPGA implementation of Frodo [3] by Howe et al. [20]. Albrecht et al. de-
veloped an implementation of Kyber [5] that exploits existing RSA co-processors
[2]. Finally, there is a Cortex-M4 implementation of Round5 [6], a scheme that
resulted from the merger of Round2 [17] and HILA5 [30], by Saarinen et al. [31].

A detailed list of publications related to microcontroller implementations of
NIST PQC candidates is available at the PQCzoo [19]. The most comprehen-
sive collection of ARM Cortex-M4 implementations can be found in the pqm4

[1] library. Most of these implementations are rather straight-forward portings
of their respective reference implementations, but it also features implementa-
tions that are described in dedicated publications. The library pqm4 contains
ten KEMs and only three signature schemes, namely Dilithium, qTESLA, and
SPHINCS+. Falcon has not been included in pqm4.

2

1.2 Contribution

The Falcon web page [16] mentions that the comparatively low memory con-
sumption of Falcon is one of the highlights of the algorithm and states that
“Falcon is compatible with small, memory-constrained embedded devices”. The
reference implementation of the Falcon submission however paints a different
picture as it uses 210 kB of dynamic RAM memory during the signing step. In
this work, we want to verify the claim of the Falcon submission to be well suited
for memory-constrained embedded devices by presenting the first embedded mi-
crocontroller implementation of the signature scheme Falcon.

To do so, we apply a number of memory-saving techniques to reduce the
dynamic memory consumption in comparison to the reference implementation
by 43%. Our implementation on an ARM Cortex-M4 requires 64 kB of RAM
and has a runtime of 682 ms for key generation, 479 ms for signing, and only 3.2
ms for verification using Falcon-512.

In its Call for Proposals [27] NIST explicitly states that the flexibility of a
proposed scheme is one major evaluation criterion for the standardization pro-
cess. The document furthermore defines flexibility to include that “algorithms
can be implemented securely and efficiently on a wide variety of platforms, in-
cluding constrained environments”. In our work, we show that Falcon fulfills
this requirement to some extent and also highlight the limitations of the scheme
regarding its implementation on embedded platforms.

2 Preliminaries

In this chapter, we discuss the mathematical background that is crucial for the
understanding of this paper.

2.1 Notation

We follow the notation of the Falcon specification [15]. Matrices are written
as bold uppercase letter, vectors as bold lowercase letter, and scalars and poly-
nomials as italic letters. An asterisk marks the component-wise adjoint of the
transpose of a matrix. Sampling a value a from a Gaussian distribution is written
as a ← DZ,x,σ where x denotes the center of the distribution and σ denotes its
standard deviation.

2.2 The Falcon Signature Scheme

Due to the complexity of Falcon, a detailed description of all its components
is out of the scope of this work. In the following we will broadly describe the
key generation, signing, and verification procedures of Falcon and refer to the
official specification [15] for more details.

Key generation, as shown in Algorithm 1, can be separated into two distinct
parts. First, it generates polynomials f, g, F,G ∈ Z[x]/(φ) that fulfill the NTRU

3

equation fG − gF = q mod φ using the algorithm NTRUGen. The second part
deals with the construction of the Falcon tree T using the LDL∗ decomposition
of the matrix G = BB∗. Since our optimizations strongly depend on the tree
generation algorithm, it can be found in Appendix A. Keygen then returns a
public key pk = h = gf−1 mod q and a secret key sk = (B̂,T).

Algorithm 1 Keygen(φ, q)

Require: A monic polynomial φ ∈ Z[x], a modulus q
Ensure: A secret key sk, a public key pk
1: f, g, F,G, γ ← NTRUGen(φ, q) . Solving the NTRU equation

2: B←
[
g −f
G −F

]
3: B̂← FFT(B)
4: G← B̂× B̂∗

5: T← ffLDL∗(G) . Computing the LDL∗ tree
6: if φ is binary then
7: σ ← 1.55

√
q

8: else if φ is ternary then
9: σ ← 1.32 · 21/4√q

10: for each leaf leaf of T do . Normalization step
11: leaf.value← σ/

√
leaf.value

12: sk← (B̂,T)
13: h← gf−1 mod q
14: pk← h
15: return sk, pk

For signature generation, Algorithm 2 summarizes the required steps. First it
computes a hash value c ∈ Zq[x]/(φ) of the message m and a salt r. It then uses
the secret key sk to compute short values s1, s2 such that s1 + s2h = c mod q by
leveraging its knowledge of f, g, F,G. This is done using the ffSampling algorithm,
which is also given in Appendix A. Since s1 can be reconstructed from s2, the
hash c, and public key h, it suffices to output a compressed version of s2 as the
signature, which also includes the random seed r.

4

Algorithm 2 Sign(m, sk, β)

Require: A message m, a secret key sk, a bound β
Ensure: A signature sig of m
1: r← {0, 1}320 uniformly
2: c← HashToPoint(r‖m)
3: t← (FFT(c),FFT(0)) · B̂−1

4: do
5: z← ffSamplingn(t,T)
6: s = (t− z)B̂
7: while ‖s‖ > β
8: (s1, s2)← invFFT(s)
9: s← Compress(s2)

10: return sig = (r, s)

Signature verification as shown in Algorithm 3 is rather straightforward and
starts by hashing m and r into the hash value c again. Next, s1 is recomputed
and the algorithm checks whether ||(s1, s2)|| ≤ β is satisfied with β being some
predefined acceptance bound. Only if that bound holds for the given signature,
it is accepted as valid.

Algorithm 3 Verify(m, sig, pk, β)

Require: A message m, a signature sig = (r, s), a public key pk = h ∈ Zq[x]/(φ), a
bound β

Ensure: Accept or reject
1: c← HashToPoint(r‖m, q, n)
2: s2 ← Decompress(s)
3: s1 ← c− s2h mod q
4: if ‖(s1, s2)‖ ≤ β then
5: accept
6: else
7: reject

3 Microcontroller Implementation

This section deals with two approaches to implement the Falcon signature
scheme on our target architecture. The first one combines the tree generation
with the fast Fourier sampler to reduce memory requirements, while the sec-
ond one excludes the key generation from the microcontroller entirely and uses
precomputed keys instead.

3.1 Target Platform

The STM32F4DISCOVERY board serves as a constrained target platform for
our implementation. Its microcontroller has an 32-bit ARM Cortex-M4F core

5

that runs with a clock frequency of up to 168 MHz. The board offers 192 kB of
RAM as well as 1 MB of flash memory. Furthermore, it features a true random
number generator (TRNG) based on analog circuitry and a floating-point unit
(FPU). But as the FPU only works with single-precision floating point values,
we cannot employ it for our implementation.

3.2 Analysis of the Reference Implementation

The analysis of the reference implementation from the Falcon submission pack-
age is our starting point for the development of our optimized ARM Cortex-M4
implementation. We first measured the dynamic memory consumption of the
reference implementation in terms of stack and heap usage. We determine the
stack usage with the help of stack canaries. To employ this technique, we start
by filling the stack with a magic number before the operation to be measured is
executed. Afterwards we check up to which point the magic numbers have been
overwritten and therefrom conclude the stack usage. We determine the heap us-
age by counting the malloc() calls in the reference implementation manually as
there are only a few of them in the source code.

The resulting dynamic memory consumption of the reference implementation
can be seen in Table 1. The first point to note is that 210 kB are required for the
signing operation for n = 1024 what clearly would not fit into the 192 kB RAM
of our STM32F4DISCOVERY development board. Another issue is that in most
use cases cryptographic algorithms are subcomponents of a main application on
the microcontroller that employes the security functions to securely transmit,
receive, or store data. As a result it is not sufficient to make the implementation
barely fit the memory of our target platform, but we also need to reserve space
for the main application that will be also placed the microcontroller.

Table 1. Dynamic memory usage of the reference implementation in bytes for n = 512
and n = 1024.

Operation Stack Memory Heap Memory Total Memory

n = 512

Key Generation 18,624 14,777 33,401
Sign 22,632 94,040 116,672
Verify 13,456 2,464 15,920

n = 1024

Key Generation 24,200 29,113 53,313
Sign 28,696 181,080 209,776
Verify 19,080 2,464 21,544

6

We identify the large Falcon tree used in the fast Fourier sampler during
signature generation as the memory bottleneck. Considering the case n = 1024,
that tree takes up 90 kB of the RAM. To execute Falcon on the target archi-
tecture, we present two possible solutions: We can either adapt the algorithm
in a way that is more memory-conserving, or we may implement only the sig-
nature generation and verification while using those algorithms in combination
with precomputed keys, which include the Falcon tree. The keys can then be
stored in Flash memory to unburden the RAM. The latter approach is rather
straightforward since one only needs to precompute the keys and load them onto
the device. However, for many use cases this is not a satisfiable solution, as we
may want to generate new keys over time. Therefore we focus on algorithmic
changes for the remainder of this section.

To reduce the memory footprint, our implementation will merge the tree
generation and the fast Fourier sampling (cf. Appendix A) into a single algorithm
ffSampling∗

n that is described in Algorithm 4. Referring to signature generation as
shown in Algorithm 2, we then replace ffSamplingn with ffSampling∗

n. The Falcon
tree is therefore no longer part of the secret key sk and is instead computed on-
the-fly during sampling. As the matrix G is required for the computation of
the tree, we additionally need to compute it prior to the sampling step. We can
therefore exclude the computation of G from key generation, since it has no use
in that algorithm anymore. That way we only need to keep a small subtree in
memory, which is generated whenever the respective part of the tree is required.
As a consequence of this memory tradeoff we have to recompute the entire tree
for each signature generation with a negative impact on the overall performance.
Finally, our embedded implementation natively only supports Falcon-512 and
Falcon-1024, though the same concepts can be directly applied for Falcon-768
as well.

3.3 Memory Optimizations

Our fast Fourier sampler with integrated tree generation is the most expensive
operation in terms of memory requirements during the signing procedure. We
optimized our implementation such that it only needs 8 kB of temporary space
(i.e. n double elements), as the in- and outputs alone already take up 56 kB
of RAM for n = 1024. The flowchart in Figure 1 shows that it is not possible
to perform this operation in-place without overriding the inputs. For the sake
of simplicity, the flowchart does not include splitting and merging operations.
After the first call to ffSampling∗

n, the first output is already calculated and
we therefore cannot use its memory to store intermediate results. Hence we
leverage the memory, which in the end will contain the second output, to keep
the intermediate results in the meantime. However, we still need to store L10

as output of the LDL∗ somewhere. Therefore it is inevitable to use temporary
memory within the sampler without major algorithmic changes.

7

Algorithm 4 ffSampling∗
n(t,G)

Require: t = (t0, t1) ∈ FFT(Q[x](xn + 1))2 and a full-rank Gram matrix G ∈
FFT(Q[x](xn + 1))2×2, σ ← 1.55

√
q

Ensure: z = (z0, z1) ∈ FFT(Z[x](xn + 1))2

1: if (n = 1) then
2: σ′ ← σ

√
G00

3: z0 ← DZ,t0,σ′

4: z1 ← DZ,t1,σ′

5: return z = (z0, z1)

6: (L,D)← LDL∗(G) . L =

[
1 0

L10 1

]
,D =

[
D00 0

0 D11

]
7: d10, d11 ← splittfft2(D11) . Handle right child
8: t1 ← splittfft2(t1)

9: G1 ←
[
d10 d11
xd11 d10

]
10: z1 ← ffSamplingn/2(t1,G1)
11: z1 ← mergefft2(z1)
12: t′0 ← t0 + (t1 − z1)� L10 . Handle left child
13: d00, d01 ← splittfft2(D00)
14: t0 ← splittfft2(t′0)

15: G0 ←
[
d00 d01
xd01 d00

]
16: z0 ← ffSamplingn/2(t0,G0)
17: z0 ← mergefft2(z0)
18: return z = (z0, z1)

LDL*

ffSampling*

ffSampling*

G0 G1

t0

t1

+ . -

.

.

.

z0 z1

L10 D11

Fig. 1. Flowchart of our fast Fourier sampler with integrated tree generation
ffSampling∗n.

8

3.4 Timing Analysis

Timing attacks are a fundamental threat to every cryptographic operation in-
volving secret values [25]. With a timing attack an adversary obtains information
about the secret key by observing the execution time of the secret key opera-
tion, i.e., the signing operation in signature schemes. Timing attacks even work
remotely over networks as shown in [8]. The most basic countermeasure against
these attacks is to make sure that the execution time of an implementation is
completely independent of the secret key, typically referred to as a constant-
time implementation. Our implementation is currently designed for being not
constant-time for two reasons. First, many embedded use-cases only require the
verification of signatures (e.g., for the verification of authentic firmware updates
or other applications where the embedded device is used as authenticated mes-
sage sink only). Hence, constant time is not an issue for those embedded imple-
mentations for which only public data (i.e., the public key) is used. Second, there
are particular components in the design of Falcon that make a constant-time
implementation of the signature generation challenging:

1. Falcon requires to draw samples according to some Gaussian distribution.
A lot of research has been focused on developing efficient algorithms for
Gaussian sampling [9,26,14,24]. One major difference in comparison to other
lattice-based schemes, like KEMs based on the Learning with Errors (LWE)
problem, is that in Falcon the standard deviation of the Gaussian distri-
bution varies between 1.2 and 1.9 with a precision of 53 bits. Therefore
we cannot use constant-time table-based approaches like [24] as a sampling
algorithm. Because of the required precision of the sampler, it is also not
possible to use the constant-time binomial approach that is utilized in many
lattice-based KEMs. The authors of Falcon propose to employ a rejection-
based approach that is rather inefficient but has an execution time that is
independent of the output.

2. Another, more critical obstacle in achieving a constant-time implementation
is the use of floating-point arithmetic in Falcon. We cannot make use of
the floating point unit build into the ARM Cortex-M4F to perform these
floating-point operations of Falcon as it only works with single precision,
while Falcon requires double precision operations. Therefore floating point
calculations are handled by C runtime library functions, which in turn are
usually not constant-time, especially in the case of division or square root
operations that are also present in Falcon. There are attempts to realize
constant-time floating point arithmetic for x86 processors at USENIX’16 [29]
and CCS’18 [4]. These works however report a massive performance penalty
when their constant-time floating point libraries are utilized resulting in the
software being up to one order of magnitude slower than the standard C
library functions. However, we are not aware of such libraries for microcon-
troller platforms and therefore this timing behavior of Falcon is one major
challenge for its deployment in embedded applications.

9

4 Results and Comparison

In this section, we discuss the results of our implementation and compare it with
others.

4.1 Evaluation Methodology

We evaluate our work by using the OpenSTM32 System Workbench (version 2.6),
which is based on the development environment Eclipse and has specifically
been designed to support the development for ARM-based STM32 boards. The
IDE uses the GNU ARM Embedded Toolchain (version 7.2) and we set the
optimization level to -O3. Determining the performance of our implementation
is done by using the cycle count register DWT_CYCCNT of the Data Watchpoint and
Trace unit that the Cortex-M4F offers. We assess dynamic RAM consumption
by making use of stack canaries as described in Section 3.2.

4.2 Results

Table 2 summarizes the cycle counts of our implementations. We can see from
the table that the Falcon verification is two orders of magnitude faster than
the signing operation or the key generation. For comparability with the pqm4

library [1] the measurements were obtained at 24 MHz. Translated to 168 MHz,
verification would take only 3.2 ms while signing takes 479 ms for n = 512
without precomputed keys. Key generation even exceeds the signing operation
and requires 682 ms to complete. The cost of the signing operation is dominated
by the cost of the fast Fourier sampler as this component accounts for 92% of its
total cycle count. In turn, the cost of the fast Fourier sampler heavily depends
on the performance of the Gaussian sampler that is executed 2n times during
the fast Fourier sampling. The 2n calls to the Gaussian sampler account for 73%
of the cycle count of the entire signature generation.

The Gaussian sampler is therefore the main bottleneck in terms of cycle
count of the scheme. Using fixed keys increases the performance of the signing
by approximately 10%. This is mainly because we do not have to compute the
Falcon tree in this case. However, fixed keys do not impact the verification. An-
other observation is that the FFT, which operates on complex double-precision
floating point numbers and is required only during signing and key generation,
is one order of magnitude more expensive than the NTT that works on plain
integers. Nonetheless, the cost of the FFT is still negligible in comparison to the
fast Fourier sampling.

In Table 3 we furthermore present the dynamic memory consumption of
our implementations. The signing operation has the highest memory consump-
tion and therefore the total memory consumption of the scheme is equal to the
memory requirements of the signing operation. In contrast to the reference im-
plementation we do not allocate memory on the heap and the dynamic memory
consumption is therefore entirely determined by the stack usage of the implemen-
tation. We reduce the memory requirements of the scheme by 43% for n = 1024

10

in comparison to the reference implementation. Using fixed keys further increases
the RAM savings to a total of 55% in comparison to the reference implementa-
tion as the keys are stored in Flash memory instead.

Table 2. Clock cycle counts for our ARM implementations of Falcon at 24 MHz. All
results are averaged over 100 runs. The fast Fourier sampling cycle counts marked with
† include the generation of the Falcon tree.

Falcon Falcon with fixed keys
Operation n = 512 n = 1024 n = 512 n = 1024

Key Generation 114,546,135 365,950,978 - -
Sign 80,503,242 165,800,855 72,261,930 147,330,702
Verify 530,900 1,046,700 529,900 1,083,100

solveNTRU 65,240,266 209,500,594 - -

Fast Fourier Sampling 74, 433, 097† 148, 600, 140† 64,354,464 130,468,405
2n Gaussian samples 58,541,540 116,768,948 57,947,926 115,855,189
Compute G 583,800 1,131,800 - -
FFT 772,200 1,716,300 772,800 1,645,100
NTT 75,900 157,700 75,900 159,700

Table 3. Dynamic memory usage in bytes for our ARM Cortex-M4 implementations
in comparison with the reference implementation. For our ARM implementations, we
only use the stack. We do not allocate extra memory on the heap.

Reference M4 Fixed Keys M4
Operation n = 512 n = 1024 n = 512 n = 1024 n = 512 n = 1024

Key Gen 33,401 53,313 40,560 51,704 - -
Sign 116,672 209,776 63,652 120,596 50,508 94,260
Verify 15,920 21,544 6,261 11,893 5,364 10,100

4.3 Comparison

In Table 4 we compare our work with ARM Cortex-M4 implementations of other
post-quantum schemes that were either taken from the pqm4 library [1] or the
work of Oder et al. [18]. The security level is given according to the NIST clas-
sifications in the Call for Proposals [27]. In this comparison Falcon has the
lowest execution time for the verification. Even the high-security n = 1024

11

instantiation of Falcon verifies signed messages in about the same time as
qTESLA instantiated at a lower security level. Dilithium and qTESLA both have
a faster signing and key generation. The major advantage of Falcon over these
schemes however is that Falcon comes with a security proof in the ROM and
QROM while Dilithium does not have such a proof. qTESLA can be instanti-
ated with “provably-secure” parameters or “heuristic” parameters. The numbers
in Table 4 refer to the heuristic instantiation. The minimal security assump-
tions of SPHINCS+ make it the most conservative choice. The implementation
of SPHINCS+ is also the only one from the table that has a data-independent
execution time. The signing performance however is four orders of magnitude
worse than the signing performance of qTESLA at the same security level. We
therefore consider Falcon to be a reasonable trade-off between performance and
security.

Table 4. Comparison of our implementation with ARM implementations of other
schemes. The given security levels refer to the security categories defined by NIST
[27]. For our work, a security level of 1 means that n = 512 and level 5 translates to
n = 1024. The stack memory is given in bytes. The runtime of the key generation,
signing, and verification is given in cycles. Our fixed-key implementations are marked
by †.

Impl. Sec. Stack Key Gen Sign Verify

This work
Level 1 63,652 114,546,135 80,503,242 530,900
Level 5 120,596 365,950,978 165,800,855 1,046,700

This work†
Level 1 50,508 - 72,261,930 529,900
Level 5 94,260 - 147,330,702 1,083,100

Dilithium [12] Level 2 86,568 2,320,362 8,348,349 2,342,191

qTESLA [1]
Level 1 29,336 17,545,901 6,317,445 1,059,370
Level 3 58,112 30,720,411 11,987,079 2,225,296

SPHINCS+ [1] Level 1 10,768 4,439,815,208 61,665,898,904 72,326,283

5 Conclusion

In this work, we presented a microcontroller implementation of the lattice-based
signature scheme Falcon. Our implementation is memory-efficient and, in con-
trast to the reference implementation, does fit into the memory of our target
platform. We also show that the implementation can be further optimized in
terms of performance and memory consumption if the use case does not require
to generate a key pair on the device itself. The extremely high performance of
the verification makes Falcon a suitable scheme for use cases in which the target
device does not have to generate a signature, e.g., for the verification of software

12

updates. For future work, optimizations of the Gaussian sampler may result in
a huge performance gain during signature generation. One obstacle however is
that the signing operation cannot easily be realized in constant-time due to the
required floating-point operations.

Acknowledgement

We would also like to thank the anonymous reviewers for their very valuable and
helpful feedback. The research in this work was supported in part by the Euro-
pean Unions Horizon 2020 program under project number 644729 SAFEcrypto
and 780701 PROMETHEUS.

References

1. pqm4 - Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4, accessed: 2018-11-13

2. Albrecht, M.R., Hanser, C., Höller, A., Pöppelmann, T., Virdia, F., Wallner, A.:
Learning with errors on RSA co-processors. IACR Cryptology ePrint Archive 2018,
425 (2018), https://eprint.iacr.org/2018/425

3. Alkim, E., Bos, J.W., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Niko-
laenko, V., Peikert, C., Raghunathan, A., Stebila, D., Easterbrook, K., LaMacchia,
B.: FrodoKEM Learning With Errors key encapsulation. https://frodokem.org/
files/FrodoKEM-specification-20171130.pdf, accessed: 2018-11-13

4. Andrysco, M., Nötzli, A., Brown, F., Jhala, R., Stefan, D.: Towards verified,
constant-time floating point operations. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. pp. 1369–1382. ACM (2018), http://doi.acm.org/10.1145/3243734.
3243766

5. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schnack, J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/submissions/CRYSTALS_Kyber.zip, accessed: 2018-11-30

6. Bhattacharya, S., Garćıa-Morchón, Ó., Laarhoven, T., Rietman, R., Saarinen,
M.O., Tolhuizen, L., Zhang, Z.: Round5: Compact and fast post-quantum public-
key encryption. IACR Cryptology ePrint Archive 2018, 725 (2018), https://

eprint.iacr.org/2018/725

7. Bindel, N., Akleylek, S., Alkim, E., Barreto, P.S.L.M., Buchmann, J.,
Eaton, E., Gutoski, G., Kramer, J., Longa, P., Polat, H., Ricardini, J.E.,
Zanon, G.: Submission to NIST’s post-quantum project: lattice-based digi-
tal signature scheme qTESLA. https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/submissions/qTESLA.zip, ac-
cessed: 2018-11-26

8. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks
48(5), 701–716 (2005), https://doi.org/10.1016/j.comnet.2005.01.010

13

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://eprint.iacr.org/2018/425
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
http://doi.acm.org/10.1145/3243734.3243766
http://doi.acm.org/10.1145/3243734.3243766
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/CRYSTALS_Kyber.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/CRYSTALS_Kyber.zip
https://eprint.iacr.org/2018/725
https://eprint.iacr.org/2018/725
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/qTESLA.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/qTESLA.zip
https://doi.org/10.1016/j.comnet.2005.01.010

9. Buchmann, J.A., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.: Discrete ziggu-
rat: A time-memory trade-off for sampling from a Gaussian distribution over the in-
tegers. In: Lange, T., Lauter, K.E., Lisonek, P. (eds.) Selected Areas in Cryptogra-
phy - SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-
16, 2013, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8282,
pp. 402–417. Springer (2013), https://doi.org/10.1007/978-3-662-43414-7_20

10. Chen, C., Hoffstein, J., Whyte, W., Zhang, Z.: NIST PQ Submission: pqN-
TRUSign - A modular lattice signature scheme. https://csrc.nist.gov/

CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/

submissions/pqNTRUsign.zip, accessed: 2018-11-26
11. D’Anvers, J.P., Karmakar, A., Roy, S.S., Longa, P., Vercauteren, F.: SABER:

Mod-LWR based KEM. https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/submissions/SABER.zip,
accessed: 2018-11-13

12. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018), https://doi.org/10.
13154/tches.v2018.i1.238-268

13. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8874,
pp. 22–41. Springer (2014), https://doi.org/10.1007/978-3-662-45608-8_2

14. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014), https://doi.org/10.1007/s00200-014-0218-3

15. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier lattice-based
compact signatures over NTRU. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/submissions/Falcon.zip, ac-
cessed: 2018-11-26

16. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier lattice-based
compact signatures over NTRU. https://falcon-sign.info/, accessed: 2018-11-
26

17. Garcia-Morchon, O., Zhang, Z., Bhattacharya, S., Rietman, R., Tolhuizen,
L., Torre-Arce, J.L., Baan, H.: Round2: KEM and PKE based on GLWR.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/submissions/Round2.zip, accessed: 2018-11-30
18. Güneysu, T., Krausz, M., Oder, T., Speith, J.: Evaluation of lattice-based signa-

ture schemes in embedded systems. In: 25th IEEE International Conference on
Electronics Circuits and Systems (2018)

19. Howe, J.: PQCzoo. https://pqczoo.com/, accessed: 2018-11-13
20. Howe, J., Oder, T., Krausz, M., Güneysu, T.: Standard lattice-based key encapsu-

lation on embedded devices. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3),
372–393 (2018), https://doi.org/10.13154/tches.v2018.i3.372-393

21. Hulsing, A., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag,
S.L., Kampanakis, P., Kolbl, S., Lange, T., Lauridsen, M.M., Mendel, F.,
Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe, P.: SPHINCS+.

14

https://doi.org/10.1007/978-3-662-43414-7_20
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/pqNTRUsign.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/pqNTRUsign.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/pqNTRUsign.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SABER.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SABER.zip
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/s00200-014-0218-3
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Falcon.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Falcon.zip
https://falcon-sign.info/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Round2.zip
https://pqczoo.com/
https://doi.org/10.13154/tches.v2018.i3.372-393

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/submissions/SPHINCS_Plus.zip, accessed: 2018-11-26

22. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in z
2m[x] on

Cortex-M4 to speed up NIST PQC candidates. IACR Cryptology ePrint Archive
2018, 1018 (2018), https://eprint.iacr.org/2018/1018

23. Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM cca-secure
module lattice-based key encapsulation on ARM. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018(3), 243–266 (2018), https://doi.org/10.13154/tches.v2018.
i3.243-266

24. Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Constant-
time discrete Gaussian sampling. IEEE Trans. Computers 67(11), 1561–1571
(2018), https://doi.org/10.1109/TC.2018.2814587

25. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 1996, Proceedings. Lecture Notes in Computer Science, vol. 1109, pp.
104–113. Springer (1996), https://doi.org/10.1007/3-540-68697-5_9

26. Micciancio, D., Walter, M.: Gaussian sampling over the integers: Efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10402, pp. 455–485. Springer (2017), https://doi.org/10.1007/

978-3-319-63715-0_16

27. National Institute of Standards and Technology: Submission requirements and
evaluation criteria for the post-quantum cryptography standardization process.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf, accessed: 2018-11-14

28. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS : Diagonal domi-
nant Reduction for lattice-based Signature. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.

zip, accessed: 2018-11-26

29. Rane, A., Lin, C., Tiwari, M.: Secure, precise, and fast floating-point opera-
tions on x86 processors. In: Holz, T., Savage, S. (eds.) 25th USENIX Secu-
rity Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
pp. 71–86. USENIX Association (2016), https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/rane

30. Saarinen, M.J.O.: HILA5. https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/submissions/Hila5.zip,
accessed: 2018-11-30

31. Saarinen, M.J.O., Bhattacharya, S., Garćıa-Morchón, Ó., Rietman, R., Tolhuizen,
L., Zhang, Z.: Shorter messages and faster post-quantum encryption with Round5
on Cortex M. IACR Cryptology ePrint Archive 2018, 723 (2018), https://eprint.
iacr.org/2018/723

32. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Review 41(2), 303–332 (1999), https:

//doi.org/10.1137/S0036144598347011

15

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SPHINCS_Plus.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SPHINCS_Plus.zip
https://eprint.iacr.org/2018/1018
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.1109/TC.2018.2814587
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DRS.zip
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/rane
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Hila5.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Hila5.zip
https://eprint.iacr.org/2018/723
https://eprint.iacr.org/2018/723
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011

A Algorithms

A.1 The Falcon Tree

Please note that there is a typo in the Falcon specification [15] in Algorithm
15, Line 3. The description in Algorithm 5 in this section correctly states n = 2
instead of n = 1.

Algorithm 5 ffLDL∗(G)

Require: A full-rank Gram matrix G ∈ FFT(Q[x]/(xn + 1))2×2

Ensure: A binary tree T

1: (L,D)← LDL∗(G) . L =

[
1 0

L10 1

]
,D =

[
D00 0

0 D11

]
2: T.value← L10

3: if (n = 2) then
4: T.leftchild← D00

5: T.rightchild← D11

6: return T
7: d00, d01 ← splittfft2(D00)
8: d10, d11 ← splittfft2(D11)

9: G0 ←
[
d00 d01
xd01 d00

]
10: G1 ←

[
d10 d11
xd11 d10

]
11: T.leftchild← ffLDL∗(G0)
12: T.rightchild← ffLDL∗(G1)
13: return T

16

A.2 Fast Fourier Sampling

The description can be found in Algorithm 6.

Algorithm 6 ffSamplingn(t,T)

Require: t = (t0, t1) ∈ FFT(Q[x]/(xn + 1))2 and a Falcon tree T
Ensure: z = (z0, z1) ∈ FFT(Z[x]/(xn + 1))2

1: if (n = 1) then
2: σ′ ← T.value
3: z0 ← DZ,t0,σ′

4: z1 ← DZ,t1,σ′

5: return z = (z0, z1)

6: (T0,T1)← (T.leftchild,T.rightchild)
7: t1 ← splittfft2(t1)
8: z1 ← ffSamplingn/2(t1,T1)
9: z1 ← mergefft2(z1)

10: t′0 ← t0 + (t1 − z1)� T.value
11: t0 ← splittfft2(t′0)
12: z0 ← ffSamplingn/2(t0,T0)
13: z0 ← mergefft2(z0)
14: return z = (z0, z1)

17

	Towards Practical Microcontroller Implementation of the Signature Scheme Falcon

