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1 Introduction

The goal of this paper is to present new and more efficient ways of proving lin-
ear and multiplicative relations between elements hidden in lattice-based struc-
tures, such as commitment schemes, without revealing any additional informa-
tion about the elements themselves. These kind of proofs play an important role
in many applications, from authentication protocols to electronic voting.

Lattice-based cryptography offers a high level of security. Its assumptions
rely on the hardness of problems for which there is no known efficient quantum
algorithm. This contrasts with classical factorization and discrete logarithm re-
lated problems, as they are quantum efficiently solvable by Shor’s algorithm [20].
When long term privacy is concerned this is specially important, as public com-
munications could be stored until quantum computers are available. To handle
this issue, new protocols whose security is based on post-quantum safe assump-
tions are required. Code-based and lattice-based cryptography are two families
of primitives widely believed to be quantum-resistant, and extensively used in
the literature.

In this article we propose improvements on a classical code-based protocol
to use it in a lattice context based on the Ring Learning With Errors (RLWE)
problem. Then we apply this construction to build exact proofs of knowledge
of a valid opening for a commitment, and to prove that messages inside valid
openings of different commitments satisfy linear or multiplicative relations.

1.1 Related work

In 1993 Stern proposed one of the first post-quantum protocols in his seminal
paper on a new identification scheme based on coding theory [24]. His identifica-
tion protocol was a Zero-Knowledge Proof of Knowledge (ZKPoK) of a solution
of an instance of the Syndrome Decoding problem (SD). The syndrome works as
a public key and the user can authenticate himself interacting with a verifier and
proving knowledge of a solution (a binary vector with small Hamming weight).

The original proposal by Stern was a 3-move protocol with a soundness error
of 2/3, but he also presented alternative variants with 5-moves. One reduced
the computational complexity and the other reduced the soundness error to
almost 1/2. However, the size of the proof increased and it turned out to be less
efficient for practical cases. Many variants and applications have been published
since then, addressing this lack of efficiency and providing new features (different
signature schemes, possibility of building secrets with integers module q instead
of only bits, applications to lattice-based cryptography, commitment schemes,
. . . ). We describe some of them in the following paragraphs.

In 2007 the use of cyclic codes was proposed in [10], later implemented in [6].
It was adapted to lattices in [14] in 2008, preserving a binary secret. Efficiency
was improved in 2010 reducing the soundness error in [9]. And many applications
have used it [7,8,1,4,21].

Nevertheless we are particularly interested in the contributions of Jain et
al. in their paper [12] where they build a commitment scheme based on the
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Learning Parity with Noise (LPN) problem, proving knowledge of openings,
linear and multiplicative relations between committed messages using 3-move
and 2/3 soundness error Stern-based protocols. Then in 2013 Ling et al. showed
in [17] how the original Stern protocol could be run several times in parallel
to prove that a solution has small infinity norm (and not only small Hamming
weight). Xie et al. [26] adapt these techniques to the commitment construction of
[12], to be able to prove linear and multiplicative relations between polynomials
with coefficients in Zq. However the size of their proofs require an overhead
proportional to log2(q). All of them still have a soundness error of 2/3.

In 1997 Véron published a dual version of Stern’s identification scheme [25],
working with the generator matrix instead of the parity check matrix, and
claimed that it was more efficient. We mention it as many subsequent papers
were based on this approach. However its proof was flawed and his protocol
did not achieve Zero-Knowledge, as two probability distributions for the output
were uniformly random but not independent uniformly random as required, and
leaked information about the secret, as was pointed out by Jain et al. in [12],
who correctly used a generator matrix.

In this paper we specially benefit from the adaptation of Stern’s protocol to
lattices from Ling et al. [17], the modification of Cayrel et al. [9] for reducing
the soundness error increasing the number of rounds and the proposals of Jain
et al. [12] and Xie et al. [26] for proving linear and multiplicative relations, that
we further improve.

It is also important to mention the contributions of Benhamouda et al. [3]
and Baum et al. [2], who generalized the commitment idea of [26] without using
Stern’s approach. They instead use Fiat-Shamir with aborts, a technique that
requires relaxing the definition of commitment (so that the set of valid openings is
larger than the set of openings generated by an honest prover, with more elements
and less tighter bounds for the error terms) obtaining more efficient proofs with
the cost of having stronger restrictions that require larger parameters. Therefore
if the relaxed ZKPoK are used as a building block in a different protocol (for
example for proving that an encryption public key is well formed), then the
restrictions on the parameters imposed by the relaxation might have an impact
on the efficiency of other parts of the protocol.

Exact Lattice-Based ZKPoK are therefore an active field of research, with
very recent efficient constructions for some lattice statements including linear
equations with short solutions and matrix-vector relations [27] by Yang et al.,
new techniques when a cyclotomic polynomial fully splits in linear factors [5]
by Bootle et al. and new recent Stern-based contributions for proving integer
relations [15] and matrix-vector relations [16] by Libert et al.

1.2 Our contribution

Our contribution is an improvement over the two Stern-based ZKPoK for linear
and multiplicative relations from [12,26]. Our ideas on proving multiplicative
relations can be easely adapted to any scenario where messages are encoded as
RLWE samples. We show how we are able to prove these relations for messages
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commited using a commitment scheme with Benhamouda et al. notation, as it is
the most natural adaptation of [12] to the RLWE setting, encoding an element
as a lattice point and adding a perturbed random point from a different lattice.

We get rid of the relaxations and limitations that were necessary in Ben-
hamouda et al. commitment scheme without needing the quadratic logarithm
of q overhead from Xie et al. For the linear relation case we apply standard
improvements to the original Stern protocol, but adding some original modifi-
cations to carefully reduce some constants in the communication cost. For the
multiplicative relation we construct a new efficient proof. We achieve this by
asking the verifier for two challenges in order to get soundness. Honest-Verifier
Zero-Knowledge is obtained as we explicitly provide a perfect simulator for each
protocol. Notice that simulations can skip the generation of never opened aux-
iliary commitments, as they can just be computed as commitments to 0, indis-
tinguishable from honestly computed commitments.

Many applications demand to evaluate arbitrary arithmetic circuits on secret
elements. Fully Homomorphic Encryption could be a solution (which can be
achieved with lattices by means of the Gentry et al. scheme [11]). An alternative
is to apply our proofs for linear and multiplicative relations to prove knowledge of
valid evaluations of the gates. The first lattice-based Attributed Based Signature
scheme for unbounded circuits [13] uses this strategy with the ZKPoK from [26].
Directly replacing their construction with our proposal greatly improves the
efficiency of the signature scheme.

Our proposal is a 5-move protocol with a soundness error slightly above 1/2.
It allows us to prove exact knowledge of the secret inside a RLWE sample, that
is, the secret is a polynomial with coefficients in Zq. The proposed commitment
scheme is perfectly binding with overwhelming probability over the choice of
the public key and computationally hiding under the RLWE assumption, widely
believe to be post-quantum.

The organization of this paper is as follows. We explain the notation and the
basic primitives that we are going to use in Section 2. We present the commit-
ment in Section 3, along with a proof of knowledge of a valid opening in 3.1. We
then give proofs of a linear relation and a multiplicative relation in Sections 3.2,
3.3, respectively. We finally end with some conclusions in Section 4.

2 Preliminaries

2.1 Notation

Column vectors are denoted as a and row vectors as aT. We denote by 1n the
vector of dimension n with all its coordinates equal to 1. Matrices are repre-
sented as M . Let q be prime, given a vector v ∈ Znq we define the infinity
norm as ‖v‖∞ = max1≤i≤n |vi| where vi are the coordinates of vector v taking[
−
⌊
q
2

⌋
, . . . , 0, . . . ,

⌊
q
2

⌋]
as representatives.
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When a is sampled uniformly at random from set A we write a
$←− A, a

$←− D
when a is sampled according to a probability distribution D and a

$←− A when a
is the output of a probabilistic algorithm A.

PPT denotes the class of Probabilistic Polynomial-Time algorithms.
A function f is negligible if |f(n)| ∈ O (n−c) , ∀c ∈ Z+.
A function f is overwhelming if |f(n)− 1| ∈ O (n−c) , ∀c ∈ Z+.
When an honest prover should send an element a we denote by ã the element

actually disclosed by the (possibly malicious) prover and we call â to the element
alleged to play the same role in the simulated conversation.

2.2 Zero-Knowledge Proofs

The goal of this paper is to prove the truthness of an statement without revealing
anything else besides what can be efficiently deduced from the fact that the
statement is indeed true. To do so we use Public Coin Honest-Verifier Zero-
Knowledge Proofs of Knowledge. Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation
with one restriction. If (x,w) ∈ R satisfies the relation then the size |w| is at
most p(|x|) for some fixed polynomial p.

Definition 1 (Zero-Knowledge Proofs of Knowledge).
A (2n+1)-move Public Coin Honest-Verifier Zero-Knowledge Proof of Knowl-

edge is a protocol between a prover P and a verifier V in which, given an x, P
tries to convince V that he knows a witness w such that (x,w) ∈ R. We use the
following notation ZKP

[
w
∣∣ (x,w) ∈ R

]
.

P and V engage in an interaction where P consecutively sends a message ai
answered by V with a random challenge bi for i from 1 to n. Finally P gives
a final answer z and V accepts or rejects the proof checking the conversation
(x, {ai}i , {bi}i , z). And has the following properties:

– Completeness: if an honest prover P knows a valid witness w such that
(x,w) ∈ R and follows the protocol, then an honest verifier V always accepts
the conversation.

– k-Special Soundness: from k accepted conversations
{(
x, {ai,j}i , {bi,j}i ,

z
)}k
j=1

, and {bi,j}i 6= {bi,j′}i for j 6= j′, it is possible to efficiently extract a

witness w such that (x,w) ∈ R.
– Honest-Verifier Zero-Knowledge: there exists a polynomial-time simu-

lator that takes as input x and random {bi}i and outputs an accepted conver-
sation (x, {ai}i , {bi}i , z) with the same probability distribution as conversa-
tions between honest P and V.

This is a variant of standard Σ-protocols, as it is also pointed out by of Jain
et al. [12] and Xie et al. [26].

k-Special Soundness means that a prover able to answer k challenges is hon-
est, as in this case a witness could be extracted. If the challenge space is large
enough we get soundness in one shot. In Stern’s protocol and some of its variants
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it is only possible to extract a valid witness from answers to all possible chal-
lenges (three in his particular protocol), then the prover could cheat with all but
one (and therefore the protocol has 2/3 soundness error). Soundness is achieved
repeating the protocol as many times as required until the cheating probability
is negligible. In our case, increasing the number of challenges, we prove how to
obtain a valid witness from valid answers to approximately one half of the possi-
ble challenges, reducing the soundness error and therefore reducing the number
of repetitions required.

2.3 Ring Learning With Errors

Considering a ring R = Z [x] / 〈f(x)〉 and Rq = R/qR, principal ideals 〈a(x)〉 ⊆
Rq can be identified with lattices generated by structured matrices A that only
depend on polynomials a(x) and f(x), called ideal lattices [19].

The ideal lattice L(a) generated by a vector of polynomials a ∈ Rkq is then
L(a) = {ar|r ∈ Rq}. We choose f(x) to be xn + 1, with n a power of 2, and
then Rq = Zq [x] / 〈xn + 1〉, as it gives nice security reductions.

Definition 2 (Ring Learning With Errors (RLWEn,q,χ)). Let χ be a distri-
bution over R (tipically a Gaussian distribution). The decisional ring learning
with errors assumption states that {(ai, ai · s + ei)} is indistinguishable from

{(ai, ui)} for any polynomial number of samples where ai
$←− Rq, ei

$←− χ,

ui
$←− Rq and s ∈ Rq is secret.
The search RLWE assumption states that no PPT adversary can recover s

from a polynomial number of samples with a non-negligible probability.

Hardness of RLWE. If parameters are chosen properly the RLWE problem
becomes as hard as well known hard ideal lattice problems such as the ideal
Shortest Vector Problem (SVP) [18]. With a discrete Gaussian error distribution
χ where its standard deviation σ ≥ ω(

√
log n), and for any ring, there exists a

quantum reduction from the γ(n)-SVP problem to the RLWE problem to within
an approximation factor γ(n) = O(

√
n · q/σ). Additionaly, RLWE becomes no

easier to solve even if the secret s is chosen from the error distribution, rather
than uniformly [18].

2.4 Stern Identification Scheme

The original Zero-Knowledge interactive identification scheme by Stern allows a
prover to convince a verifier that given a parity check matrix H ∈ Fn×m2 and
a syndrome y ∈ Fn2 he knows a binary vector e ∈ Fm2 of small fixed Hamming
weight ‖e‖H = w such that it has this syndrome y = He.

The original Stern protocol [24] hides e with a masking vector x
$←− Fm2 , a

masking syndrome y′ ∈ Fn2 (an honest prover will compute y′ = Hx) and a

permutation π
$←− Sm. Notice that x + e reveals no information about e, while

π(e) only reveals its Hamming weight, which is already known. Then the prover
shows some of the following properties:
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(a) the syndrome of x is y′

(b) the syndrome of x + e is y′ + y
(c) the Hamming weight of π(e) is w

All the properties combined imply that there is an e with Hamming weight w
and syndrome y.

Many of the subsequent variants turn this scheme into a lattice-based setting
by just using a matrix A ∈ Zn×mq and a secret e ∈ Zmq with m/2 entries equal
to 0 and m/2 entries equal to 1, obtaining a special instance of the ISIS problem
Ae = y.

Ling et al. [17] propose to use a bounded infinity norm secret. In order to
prove this restriction on the norm they show that the secret element has a fixed
length binary decomposition. To hide the binary decomposition they extend it
so that it has the same number of −1, 0 and 1. Then running the protocol in
parallel for each of the vectors of the decomposition allows to prove knowledge
of a solution of a general instance of the Inhomogeneous Short Integer Solution
(ISIS) problem. We have to adapt their setting to the dual version and prove
knowledge of a solution of a RLWE problem.

In order to prove that something has small norm we prove that it can be
written with a constant number of bits. An ad-hoc basis could be used, but we
prefer to keep notation simple and decompose the elements in binary assuming
that the bound is a power of two.

The paper of Cayrel et al. [9] combines the secret and the masking element
with a random challenge α ∈ Zq to obtain (π(x + αe)), reducing the commu-
nication cost and the soundness error. We extend their approach with more
challenges so that we can prove knowledge of linear and multiplicative relations.

3 Commitment scheme

Now we define a lattice-based commitment scheme, for this we can encode a
message m ∈ Rq as the coordinates of a point in an ideal lattice defined by
a ∈ Rkq . To hide this lattice point am we add a RLWE sample from another

lattice br + e, where b ∈ Rkq defines this other lattice, the randomness r
$←− Rq

is chosen uniformly at random and the error term e
$←− χnk is chosen from the

appropriate bounded discrete Gaussian distribution.
This structure am + br + e is used by Benhamouda et al. in [3], and it is

very similar to the one proposed by Xie et al. in [26]. As we use their structure
we can use some of the parameters proposed by Benhamouda et al.

The degree of the polynomial n = 2κ is a power of two, usually κ = 9 or
κ = 10. γ is an integer parameter controlling the size of the modulus q, a prime
number such that q ≡ 3 mod 8 and q ≥ nγ . Integer k would be the multiplicative
overhead (the length of a as a vector of polynomials). Finally as in their case our
errors obtained from χ will have a standard deviation σ ∈ O(n3/4) and will be
bounded by n = 2κ. We will restrict our coefficients to [−2κ, . . . , 2κ) but abuse
notation and just write ‖e‖∞ < 2κ.
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While the commitment algorithm Com we present in this paper is the same
as the one that was presented in [3] our proofs of openings and relations do not
require any relaxation (in our case the set of valid openings is exactly the set of
openings obtained following the commitment algorithm). Therefore our proposal
is different as a commitment scheme, our verification algorithm Ver is simpler
and our parameter conditions required to prove security are less strict.

Proposition 1. If n ≥ 256, γ ≥ 3 and k ≥ 8γ+4
2γ−5 then the following is a secure

commitment scheme under the assumption that RLWE is hard.

– Gen: the generator algorithm takes a security parameter 1λ and outputs a

public key pk = (a, b) ∈ (Rkq )
2
, where Rq = Zq [x] / 〈xn + 1〉 and k are

defined so that the difficulty of solving the RLWE problem is related to 1λ.
In particular the size of n is also related to 1λ.

(a, b)
$←− Gen

(
1λ
)

– Com: the commitment algorithm takes as input a message m ∈ Rq and a
public key pk = (a, b) and produces a commitment c = am + br + e and

an opening d = (m, r, e), where r
$←− Rq and e

$←− χnk conditioned to have
infinity norm smaller than n = 2κ.

(c = am+ br + e, d = (m, r, e))
$←− Com (m; pk = (a, b))

– Ver: the verification algorithm takes as input a commitment c, a message
m, an opening d = (m, r, e) and a public key pk = (a, b) and accepts, 1, if
(c = am+ br + e) ∧ (‖e‖∞ < 2κ), or rejects, 0, otherwise.

Ver : {(c,m, d; pk)} → {0, 1}

It satisfies the properties of a secure commitment scheme:

– Correctness: if the commitment has been built correctly and the valid mes-
sage and opening are published the verifier algorithm always accepts:(

pk
$←− Gen

(
1λ
)
, (c, d)

$←− Com (m; pk)
)

=⇒ 1← Ver (c,m, d; pk) .

– Perfectly Binding: a commitment can only be opened to one message:

1← Ver (c,m, d; pk) ∧ 1← Ver (c,m′, d′; pk) =⇒ m = m′.

– Computationally Hiding: a well constructed commitment c does not leak
any relevant information about the message m. For any PPT adversary
(A1,A2):∣∣∣∣∣Pr

[
b = b′

∣∣∣∣∣ pk
$←− Gen(1λ), (m0,m1, aux)

$←− A1(pk)

b
$←− {0, 1}, (c, d)

$←− Com(mb; pk), b′
$←− A2(c, aux)

]
− 1

2

∣∣∣∣∣ ∈ negl(λ).

The proof of this proposition is included in appendix A.
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3.1 Knowledge of a Valid Opening

We first propose an Interactive Honest-Verifier Zero-Knowledge Proof of Knowl-
edge of a valid opening for the commitment presented before. The difficult part
is to prove that the error term is small enough, for which we adapt Stern-based
protocols to this particular RLWE based commitment. While SD problem and
ISIS problem are very similar, in order to prove that the commitment has been
constructed with a RLWE sample we need several auxiliary elements. What we
obtain is a 5-move protocol with a soundness error of q+1

2q , really close to 1/2 as
q is usually a very large prime.

Let a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Rkq , a message m ∈ Rq, a random

element r in Rq and e ∈ Rkq a vector of polynomials with their coefficients
sampled from a discrete Gaussian distribution conditioned to have norm smaller
than n = 2κ. We want to prove knowledge of a valid opening for the commitment
c = am+ br + e.

We identify a polynomial u with a vector u that has as elements the coeffi-
cients of the polynomial. For convenience we also identify a vector of polynomials
with the concatenation of its associated vectors.

ϕ : Znq −→ Rq

u = (u0, u1, . . . , un−1) 7−→ u = u0 + u1x+ · · ·+ un−1x
n−1

φ : Znkq −→ Rkq

u = (u0, . . . , unk−1) 7−→ u = (ϕ(u0, . . . , un−1), . . . , ϕ(un(k−1), . . . , unk−1))

Lets consider the vector ē = φ−1(e) + 2κ1nk and its binary decomposition
ē =

∑κ
j=0 2j ēj , ēj ∈ {0, 1}nk (notice that ē has only positive representatives

because we have added 2κ1nk). From now on index j will always belong to [0, . . . ,
κ]. Choose extensions e′j = (ēj ||e′′j ) ∈ Bnk, where Bnk ⊂ {0, 1}2nk are vectors

with the same number of 0 and 1’s. The extended error term is e′ =
∑
j 2je′j .

Let I ′ be an nk-identity matrix attached to nk columns of 0’s.
Then we have: c = am+ br + φ((I ′

∑
j 2je′j)− 2κ1nk).

With this notation we can define an interactive protocol to prove knowledge
of a valid opening for commitment c. This extension is an adaptation of the
idea from Ling et al. in [17] to the dual ring setting (we also shift the error
to only have 0’s and 1’s, while their protocol also included −1’s, this way we
only have a factor two overhead instead of a factor three). Notice that each
error decomposition element in Bnk with the same number of 0 and 1’s can be
completely randomized with a permutation, as it was done in the original Stern
protocol with fixed Hamming weight vectors.

The complex structure of the commitment scheme requires more subtle de-
tails than the original Stern proposal, but the underlying intuition is the same.
We want to prove knowledge of some elements m, r, e, of some masking elements
µ, ρ,f and a of vector of polynomials y such that:

(a) πj(e
′
j) ∈ Bnk

(b) y = aµ+ bρ+ f
(c) y + c = a(µ+m) + b(ρ+ r) + (f + e), where e = φ(I ′

∑
j 2je′j − 2κ1nk)
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All three properties imply knowledge of a valid opening for the commitment.
In order to improve efficiency we can add one more round where we ask the
verifier for an element α ∈ Zq and then prove only these two properties:

(a) πj(e
′
j) ∈ Bnk

(b’) y + αc = a(µ+ αm) + b(ρ+ αr) + (f + αe), where e = φ(I ′
∑
j 2je′j − 2κ1nk)

Since the relevant elements were commited in the first round (using an auxil-
iary commitment scheme) before α was chosen we can ensure with high probabil-
ity that property (b’) implies both properties (b) and (c). This is an adaptation
of the idea used in [9] and allows us to reduce the soundness error to almost 1/2.

With this intuition in mind we can provide our protocol (1) for proving
knowledge of valid openings. Let (aCom, aVer) denote an auxiliary commitment
scheme that can be instantiated using our construction or a different one.

The prover P chooses κ+ 1 permutations π0, . . . , πκ
$←− S2nk, κ+ 1 random

vectors f0, . . . ,fκ
$←− Z2nk

q and 2 random polynomials µ, ρ
$←− Rq.

Then computes the following commitments:

c1 = aCom
(
{πj}j ,aµ+ bρ+ φ(I ′

∑
j 2jf j)

)
c2 = aCom

(
{πj(f j)}j , {πj(e′j)}j

)
The prover sends these commitments to the verifier. The verifier V chooses an
integer α ∈ Zq and sends it to the prover. Then the prover computes:

gj = πj(f j + αe′j)

The prover sends {gj}j to the verifier. The verifier V chooses a bit b
$←− {0, 1}

and sends it to the prover.

Case b = 0.

– P reveals {π̃j = πj}j , ỹ = aµ + bρ + φ(I ′
∑
j 2jf j), s̃ = ρ + αr and an

opening of commitment c1 to ({π̃j}j , ỹ).

– V checks c1.

He also checks that ỹ+α(c+φ(2κ1nk))−bs̃−φ(I ′
∑
j 2j π̃−1j (gj)) ∈ L(a)

and writes it as at̃.

Case b = 1.

– P reveals {ẽ′j = πj(e
′
j)}j and openings of commitments c2 to ({gj−αẽ′j}j ,

{ẽ′j}j).
– V checks c2 and that each ẽ′j belongs to Bnk.

ZKP

[
m,r,e

∣∣∣∣∣ c=am+br+e

‖e‖∞<2κ

]
(1)
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P((a,b),c;m,r,e) V((a,b),c))

π0,...,πκ
$←−S2nk

f0,...,fκ
$←−Z2nk

q

µ,ρ
$←−Rq

(c1,d1)=aCom
(
{πj}j ,aµ+bρ+φ(I′

∑
j2
jfj)

)
(c2,d2)=aCom

(
{πj(fj)}j ,{πj(e′j)}j

)
c1,c2−−−−−−−−−−−−−→

α
$←−Zq

α←−−−−−−−−−−−−−
gj=πj(fj+αe

′
j)

{gj}j−−−−−−−−−−−−−→
b

$←−{0,1}
b←−−−−−−−−−−−−−

if b=0

π̃j=πj

ỹ=aµ+bρ+φ(I′
∑
j2
jfj)

s̃=ρ+αr

d̃=d1

ans=({π̃j}j ,ỹ,s̃,d̃)
if b=1

ẽ′j=πj(e
′
j)

d̃=d2

ans=({ẽ′j}j ,d̃)
ans−−−−−−−−−−−−−→

if b=0

1
?←−aVer

(
c1,({π̃j}j ,ỹ),d̃

)
ỹ+α(c+φ(2κ1nk))−bs̃−φ(I′

∑
j2
j π̃−1
j (gj))

?
∈L(a)

if b=1

1
?←−aVer

(
c2,({gj−αẽ′j}j ,{ẽ

′
j}j),d̃

)
ẽ′j

?
∈Bnk

Completeness: If P knows a valid witness and both the prover and the ver-
ifier correctly follow the protocol then the verifier always accepts at the end,
immediate as all relations hold by construction.

Soundness: If a (possibly malicious) prover P̃ is able to provide accepted
answers to δ rounds of interaction with an honest verifier V with probability
(q + 1/2q)

δ
+ ε, were ε is non-negligible, then he is able to efficiently extract a wit-

ness with probability 2(ε/3)3. Details on how to find valid answers to the required
number of different challenges are skipped here and explained in appendix B.

By the pigeonhole principle we can find commitments c1, c2, two α, α′ and
gj , g

′
j that induce accepted answers. Define ∆α = α − α′ 6= 0. The binding
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property of c1, c2 ensures that openings to π̃j , ỹ and ẽ′j are fixed.

at̃ = ỹ + α(c + φ(2κ1nk))− bs̃− φ(I ′
∑
j 2j π̃−1

j (gj))

at̃′ = ỹ + α′(c + φ(2κ1nk))− bs̃′ − φ(I ′
∑
j 2j π̃−1

j (g′j))

∆αc = a(t̃− t̃′) + b(s̃− s̃′) + φ(I ′
∑
j 2j π̃−1

j (gj − g′j)−∆α2κ1nk)

c = a(∆−1
α (t̃− t̃′)) + b(∆−1

α (s̃− s̃′)) + φ(I ′
∑
j 2j π̃−1

j (∆−1
α (gj − g′j))− 2κ1nk)

gj − αẽ′j = g′j − α′ẽ′j
ẽ′j = ∆−1

α (gj − g′j)

c = a(∆−1
α (t̃− t̃′)) + b(∆−1

α (s̃− s̃′)) + φ(I ′
∑
j 2j π̃−1

j (ẽ′j)− 2κ1nk)

As these elements come from accepted answers we know that ẽ′j ∈ Bnk ⊂
{0, 1}2nk and therefore φ(I ′

∑
j 2j π̃−1j (ẽ′j) − 2κ1nk) has norm smaller than 2κ.

Then (∆−1α (t̃− t̃′), ∆−1α (s̃− s̃′), φ(I ′
∑
j 2j π̃−1j (ẽ′j)− 2κ1nk)) is a valid opening.

Zero-Knowledge:

Case b = 0

t̂, ŝ
$←− Rq, ĝj

$←− Z2nk
q , π̂j

$←− S2nk

c1 = aCom({π̂j}j ,at̂+ bŝ

+φ(I ′
∑
j

2j π̂−1
j (ĝj))− α(c + φ(2κ1nk)))

P reveals {ĝj}j , {π̃j = π̂j}j ,
ỹ = at̂+bŝ+φ(I ′

∑
j 2j π̂−1j (ĝj))−αc,

s̃ = ŝ. Indistinguishable from a real
conversation with the same πj = π̂j
and where µ = t̂ − αm, ρ = ŝ − αr
and f j = π̂−1j (ĝj)− αe′j .

gj = πj(f j + αe′j)

= πj(π̂
−1
j (ĝj)) + πj(αe

′
j − αe′j)

= ĝj

aµ+ bρ+ φ(I ′
∑
j 2jf j) =

= a(t̂− αm) + b(ŝ− αr)
+ φ(I ′

∑
j 2j(π̂−1

j (ĝj)− αe′j))

= at̂+ bŝ+ φ(I ′
∑
j 2j π̂−1

j (ĝj))

− α(am+ br + φ(I ′
∑
j 2je′j))

= at̂+ bŝ+ φ(I ′
∑
j 2j π̂−1

j (ĝj))

− α(c + φ(2κ1nk))

Case b = 1

ê′j
$←− Bnk, f̂ j

$←− Z2nk
q , π̂j

$←− S2nk

c2 = aCom({π̂j(f̂ j)}j , {π̂j(ê
′
j)}j)

ĝj = π̂j(f̂ j + αê′j)

P reveals {ĝj}j , {ẽ
′
j = π̂j(ê

′
j)}j . Equiv-

alent to an honest conversation were
πj is such that πj(e

′
j) = π̂j(ê

′
j) and

f j = π−1j (π̂j(f̂ j)).

gj = πj(f j + αe′j)

= πj(π
−1
j (π̂j(f̂ j))) + απ̂j(ê

′
j)

= π̂j(f̂ j + αê′j)

= ĝj

Notice that in both cases simulated conversations follow the same distribution
as honest conversations.
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3.2 Linear relation

The analyzed commitment scheme is not homomorphic, since the sum of two
commitments may not be a commitment to the sum as the errors may grow.
However it is possible to prove knowledge of openings to different commitments
proving that the committed messages satisfy a given linear relation. As in the
proof for the opening we have a, b ∈ Rkq , messages m1,m2,m3 ∈ Rq such that
m3 = λ1m1 + λ2m2 with λ1, λ2 ∈ Rq, random elements r1, r2, r3 in Rq and
e1, e2, e3 ∈ Rkq vectors of polynomials with their coefficients sampled from a
discrete Gaussian distribution conditioned to have norm smaller than n = 2κ.
We want to prove knowledge of valid openings for the commitments ci = ami +
bri + ei satisfying the relation. From now on index i will belong to {1, 2, 3}.

Consider the extended error decomposition terms e′ij ∈ Bnk so that:

ci = ami + bri + φ(I ′
∑
j

2je′ij − 2κ1nk).

With this notation we can define the interactive protocol (2) to prove knowl-
edge of valid openings for commitments ci holding the required relation.

This can be done analogously as the previous case, reproducing protocol (1)
three times in parallel imposing that the message masking elements hold the
same linear relation. µ3 is computed as µ3 = λ1µ1 + λ2µ2 and in case b = 0 the
verifier needs to check whether t̃3 = λ1t̃1 + λ2t̃2.

ZKP

[
mi, ri, ei

∣∣∣∣ ci = ami + bri + ei
‖ei‖∞ < 2κ, m3 = λ1m1 + λ2m2

]
.

Completeness: The relation t̂3 = λ1t̂1 + λ2t̂2 is satisfied as t̂i = µi + αmi, mi

hold the relation and µ3 is computed such that it holds the relation too.

Soundness: If a (possibly malicious) prover P̃ is able to provide accepted
answers to δ rounds of interaction with an honest verifier V with probability
(q + 1/2q)

δ
+ ε, were ε is non-negligible, then he is able to efficiently extract a

witness. The same argument for the knowledge of a valid opening applies here
and provides us with three valid openings

{(∆−1α (t̃i − t̃′i), ∆−1α (s̃i − s̃′i), φ(I ′
∑
j 2j π̃−1ij (ẽ′ij)− 2κ1nk))}i.

We know that t̃3 = λ1t̃1 + λ2t̃2 and the same applies to t̃′3 = λ1t̃
′
1 + λ2t̃

′
2.

Therefore we have that the required linear relation holds:
∆−1α (t̃3 − t̃′3) = λ1∆

−1
α (t̃1 − t̃′1) + λ2∆

−1
α (t̃2 − t̃′2).

Zero-Knowledge: The same simulator for protocol 1 works repeated 3 times,

with the only exception that in case b = 0 we randomly choose t̂1, t̂2
$←− Rq but

t̂3 is computed as t̂3 = λ1t̂1 + λ2t̂2.
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3.3 Multiplicative relation

In this subsection we present the main contribution of this paper, an efficient
proof of knowledge of a multiplicative relation. That is, index i belongs again to
{1, 2, 3} and we have ci = ami + bri + ei three valid commitments where m3 =
m1 ·m2. We want to prove knowledge of valid openings for the commitments ci
satisfying this relation.

If we mask the messages (m1 +µ1) and (m2 +µ2) with random µ1, µ2
$←− Rq,

as we did before, and then multiply them, some crossed terms appear: (m1 +
µ1)(m2 +µ2) = m3 + (m1µ2 +m2µ1) +µ1µ2. Following the notation from [3] we
define m+ = m1µ2 + m2µ1 and m× = µ1µ2. If we want to get m3 = m1m2 we

need to prove a similar equality involving two challenges α, β
$←− Zq chosen by

the verifier. In [3] they use a challenge to prove the relation, while [9] introduces
the challenge to reduce the soundness error of each round as we did in section
3.1. The particular requirements of our proofs, where we try to achieve both
goals at the same time, imply that we need a much more involved analysis in
order to prove the soundness of this strategy. This efficient interactive protocol
to prove knowledge of a valid opening for commitments ci holding the required
relation is the main contribution of this paper.

The prover P chooses 3(κ+1) permutations πi0, . . . , πiκ
$←− S2nk, 3(κ+1) ran-

dom vectors f i0, . . . ,f iκ
$←− Z2nk

q and 6 random polynomials µ1, µ2, µ3, ρ1, ρ2, ρ3
$←−

Rq. P computes m× = µ1µ2 and m+ = µ1m2 + µ2m1. Then he chooses 2 addi-

tional random polynomials µ×, µ+
$←− Rq.

Then computes the following commitments:

c1 = aCom
(
{πij}i,j , {aµi + bρi + φ(I ′

∑
j 2jf ij}i)

)
c2 = aCom

(
µ3, µ×, µ+

)
c3 = aCom

(
{πij(f ij)}i,j , {πij(e′ij)}i,j

)
c4 = aCom

(
µ× +m×, µ+ +m+

)
The prover sends these commitments to the verifier. The verifier V chooses a

pair of integers (α, β)
$←− Z2

q and sends it to the prover.
Lets define the following auxiliary constants to simplify notation:

δi =

{
α, for i ∈ {1, 2}
β, for i ∈ {3}

Now P computes the following elements and sends them to V:

gij = πij(f ij + δie
′
ij)

c5 = aCom
(

(βµ×) + α(βµ+) + α2(µ3)
)
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The prover sends {gij}i,j and c5 to the verifier. The verifier V chooses a bit

b
$←− {0, 1} and sends it to the prover.
Case b = 0.

– P reveals {π̃ij = πij}i,j , {ỹi = aµi + bρi + φ(I ′
∑
j 2jf ij)}i, t̃× = µ× +

m×, t̃+ = µ+ + m+, {s̃i = ρi + δiri}i. The prover could also compute
t̃i = µi + δimi, but does not send them as the verifier can compute them
as the coordinates of ỹi+δi(ci+φ(2κ1nk))−bs̃i−φ(I ′

∑
j 2j π̃−1ij (gij)) ∈

L(a). Then he sends openings of commitments c1 to ({π̃ij}i,j , {ỹi}i), c4
to (t̃×, t̃+) and c5 to βt̃× + αβt̃+ + α2t̃3 − βt̃1t̃2.

– V checks that ỹi + δi(ci + φ(2κ1nk))− bs̃i − φ(I ′
∑
j 2j π̃−1ij (gij)) ∈ L(a)

and writes them as at̃i. Then V checks c1, c4 and c5.
Case b = 1.

– P reveals {ẽ′ij = πij(e
′
ij)}i,j , µ̃3 = µ3, µ̃× = µ×, µ̃+ = µ+ and openings

of commitments c2 to (µ̃3, µ̃×, µ̃+), c3 to ({gij − δiẽ′ij}i,j , {ẽ
′
ij}i,j) and c5

to (βµ̃×) + α(βµ̃+) + α2(µ̃3).
– V checks c2,c3,c5 and that each ẽ′ij belongs to Bnk.

The multiplicative relation protocol (3) can also be seen as parallel executions
of protocol (1), this time taking into account the crossed terms.

Completeness: We should check the alternative openings of commitment c5.

βt̃× + αβt̃+ + α2t̃3 − βt̃1t̃2 =

= β(µ× +m×) + αβ(µ+ +m+) + α2(µ3 + βm3)− β(µ1 + αm1)(µ2 + αm2)

= β(µ× +m× − µ1µ2) + αβ(µ+ +m+ − µ1m2 − µ2m1) + α2(µ3 + β(m3 −m1m2))

= (βµ×) + α(βµ+) + α2(µ3)

Soundness: If a (possibly malicious) prover P̃ is able to provide accepted
answers to δ rounds of interaction with an honest verifier V with probability(
(q2 + 3q − 2)/(2q2)

)δ
+ ε, were ε is non-negligible, then he is able to efficiently

extract a witness. If q is such that log(q2/(q2 + 3q − 2)) ≥ −1/9 (which is true
if q ≥ 37) we should be able to find more than q2 + 3q− 2 accepted answers (by
an argument analogous to that of appendix B).

Then the pigeonhole principle ensures that we can find six pairs (α(1), β(1)),
(α(2), β(2)), (α(3), β(3)), (α(4), β(4)), (α(5), β(5)), (α(6), β(6)), with all α(l) different
for l ∈ {1, 2, 3}, all α(l) different for l ∈ {4, 5, 6} and β(1) = β(2) = β(3) 6= β(4) =
β(5) = β(6) that induce accepted answers for both b = 0 and b = 1.

Assume there only exist one β for which there exists at least 3 different α(i)

with accepted answers for b = 0 and b = 1. This particular β belongs to at most
2q answers, 2 for each possible α. All other β′ contribute each of them with at
most q + 2, only one b accepted for each possible α except two of them. If we
add everything up we get 2q + (q − 1)(q + 2) = q2 + 3q − 2, but we had strictly
more valid answers.
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ZKP

mi,ri,ei

∣∣∣∣∣∣∣
ci=ami+bri+ei

‖ei‖∞<2κ,

m3=λ1m1+λ2m2

 (2)

P((a,b),ci;mi,ri,ei) V((a,b),ci))

πi0,...,πiκ
$←−S2nk

f i0,...,f iκ
$←−Z2nk

q

µ1,µ2,ρ1,ρ2,ρ3
$←−Rq

µ3=λ1µ1+λ2µ2

(c1,d1)=aCom
(
{πij}i,j ,{aµi+bρi+φ(I

′∑
j2
jf ij)}i

)
(c2,d2)=aCom

(
{πij(f ij)}i,j ,{πij(e′ij)}i,j

)
c1,c2−−−−−−−−−−−−−→

α
$←−Zq

α←−−−−−−−−−−−−−
gij=πij(f ij+αe

′
ij)

{gij}i,j−−−−−−−−−−−−−→
b

$←−{0,1}
b←−−−−−−−−−−−−−

if b=0

π̃ij=πij

ỹi=aµi+bρi+φ(I
′∑

j2
jf ij)

s̃i=ρi+αri

d̃=d1

ans=({π̃ij}i,j ,{ỹi}i,{s̃i}i,d̃)
if b=1

ẽ′ij=πij(e
′
ij)

d̃=d2

ans=({ẽ′ij}i,j ,d̃)
ans−−−−−−−−−−−−−→

if b=0

1
?←−aVer

(
c1,({π̃ij}i,j ,{ỹi}i),d̃

)
ỹi+α(ci+φ(2

κ
1nk))−bs̃i−φ(I′

∑
j2
j π̃−1
ij (gij))

?
∈L(a)

t̃3
?
=λ1 t̃1+λ2 t̃2

if b=1

1
?←−aVer

(
c2,({gij−αẽ′ij}i,j ,{ẽ

′
ij}i,j),d̃

)
ẽ′ij

?
∈Bnk

ZKP

[
mi,ri,ei

∣∣∣∣∣ ci=ami+bri+ei

‖ei‖∞<2κ,m3=m1m2

]
(3)

P((a,b),ci;mi,ri,ei) V((a,b),ci)

πi0,...,πiκ
$←−S2nk

f i0,...,f iκ
$←−Z2nk

q

µi,µ×,µ+,ρi
$←−Rq

m×=µ1µ2, m+=µ1m2+µ2m1

(c1,d1)=aCom
(
{πij}i,j ,{aµi+bρi+φ(I

′∑
j2
jf ij)}i

)
(c2,d2)=aCom

(
µ3,µ×,µ+

)
(c3,d3)=aCom

(
{πij(f ij)}i,j ,{πij(e′ij)}i,j

)
(c4,d4)=aCom

(
µ×+m×,µ++m+

)
c1,c2,c3,c4−−−−−−−−−−−−−→

α,β
$←−Zq

α,β
←−−−−−−−−−−−−−

δ1=α, δ2=α, δ3=β

gij=πij(f ij+δie
′
ij)

(c5,d5)=aCom
(
(βµ×)+α(βµ+)+α2(µ3)

)
{gij}i,j ,c5−−−−−−−−−−−−−→

b
$←−{0,1}

b←−−−−−−−−−−−−−
if b=0

π̃ij=πij

ỹi=aµi+bρi+φ(I
′∑

j2
jf ij)

t̃×=µ×+m×, t̃+=µ++m+, s̃i=ρi+δiri

d̃1=d1, d̃4=d4, d̃5=d5

ans=({π̃ij}i,j ,{ỹi}i,t̃×,t̃+,{s̃i}i,d̃1,d̃4,d̃5)
if b=1

ẽ′ij=πij(e
′
ij)

µ̃3=µ3, µ̃×=µ×, µ̃+=µ+

d̃2=d2, d̃3=d3, d̃5=d5

ans=({ẽ′ij}i,j ,µ̃3,µ̃×,µ̃+,d̃2,d̃3,d̃5)
ans−−−−−−−−−−−−−→

if b=0

1
?←−aVer

(
c1,({π̃ij}i,j ,{ỹi}i),d̃1

)
1

?←−aVer
(
c4,(t̃×,t̃+),d̃4

)
1

?←−aVer
(
c5,βt̃×+αβt̃++α2 t̃3−βt̃1 t̃2,d̃5

)
ỹi+δi(ci+φ(2

κ
1nk))−bs̃i−φ(I′

∑
j2
j π̃−1
ij (gij))

?
∈L(a)
if b=1

1
?←−aVer

(
c2,(µ̃3,µ̃×,µ̃+),d̃2

)
1

?←−aVer
(
c3,({gij−αẽ′ij}i,j ,{ẽ

′
ij}i,j),d̃3

)
1

?←−aVer
(
c5,(βµ̃×)+α(βµ̃+)+α2(µ̃3),d̃5

)
ẽ′ij

?
∈Bnk

The binding property of all commitments ensures that openings to the same
elements are equal. Therefore we have fixed π̃ij , ỹi, µ̃3, µ̃×, µ̃+, ẽ′ij , t̃× and t̃+.

For each pair (α(l), β(l)) we have g
(l)
ij .
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We know that ỹi+ δ
(l)
i (ci+φ(2κ1nk))−bis̃

(l)
i −φ(I ′

∑
j 2j π̃−1ij (g

(l)
ij )) ∈ L(a)

and call t̃
(l)
i to its coordinates. Let l and l′ in {1, 2, 3, 4, 5, 6} such that ∆δi =

δ
(l)
i − δ

(l′)
i 6= 0. Then we will be able to compute valid openings of ci:

at̃
(l)
i = ỹi + δ

(l)
i (ci + φ(2κ1nk))− bs̃

(l)
i − φ(I ′

∑
j 2j π̃−1

ij (g
(l)
ij ))

at̃
(l′)
i = ỹi + δ

(l′)
i (ci + φ(2κ1nk))− bs̃

(l′)
i − φ(I ′

∑
j 2j π̃−1

ij (g
(l′)
ij ))

∆δici = a(t̃
(l)
i − t̃

(l′)
i ) + b(s̃

(l)
i − s̃

(l′)
i ) + φ(I ′

∑
j 2j π̃−1

ij (g
(l)
ij − g

(l′)
ij )−∆δi2

κ
1nk)

ci = a(∆−1
δi

(t̃
(l)
i − t̃

(l′)
i )) + b(∆−1

δi
(s̃

(l)
i − s̃

(l′)
i )) + φ(I ′

∑
j 2j π̃−1

ij (∆−1
δi

(g
(l)
ij − g

(l′)
ij ))− 2κ1nk)

g
(l)
ij − δ

(l)
i ẽ′ij = g

(l′)
ij − δ

(l′)
i ẽ′ij

ẽ′ij = ∆−1
δi

(g
(l)
ij − g

(l′)
ij )

ci = a(∆−1
δi

(t̃
(l)
i − t̃

(l′)
i )) + b(∆−1

δi
(s̃

(l)
i − s̃

(l′)
i )) + φ(I ′

∑
j 2j π̃−1

ij (ẽ′ij)− 2κ1nk)

As these elements come from accepted answers we know that ẽ′ij ∈ Bnk ⊂
{0, 1}2nk and therefore φ(I ′

∑
j 2j π̃−1ij (ẽ′ij)− 2κ1nk) has norm smaller than 2κ.

This implies that (∆−1δi (t̃
(l)
i − t̃

(l′)
i ), ∆−1δi (s̃

(l)
i − s̃

(l′)
i ), φ(I ′

∑
j 2j π̃−1ij (ẽ′ij)−2κ1nk))

are valid openings.
We know that these openings do not depend on (l) and (l′), as the commit-

ment scheme is binding. Therefore we can call them (mi = ∆−1δi (t̃
(l)
i − t̃

(l′)
i ), r̃i =

∆−1δi (s̃
(l)
i − s̃

(l′)
i ), ẽi = φ(I ′

∑
j 2j π̃−1ij (ẽ′ij) − 2κ1nk)). It only remains to prove

that m3 = m1m2.
We can define µ

(l)
i = t̃

(l)
i − δ

(l)
i mi and ρ̃

(l)
i = s̃

(l)
i − δ

(l)
i r̃i.

Claim. This newly defined elements do not depend on l and we can omit the

superindex (l) as µi = µ
(l)
i = µ

(l′)
i and ρ̃i = ρ̃

(l)
i = ρ̃

(l′)
i for any pair l and l′.

Proof. Assume that we have l and l′ such that µ
(l)
i 6= µ

(l′)
i or ρ̃

(l)
i 6= ρ̃

(l′)
i .

We could rewrite the expression of at̃
(l)
i in terms of this new variables.

at̃
(l)
i = ỹi + δ

(l)
i (ci + φ(2κ1nk))− bs̃

(l)
i − φ(I ′

∑
j 2j π̃−1

ij (g
(l)
ij ))

a(µ
(l)
i + δ

(l)
i mi) = ỹi + δ

(l)
i (ami + br̃i + φ(I ′

∑
j 2j π̃−1

ij (ẽ′ij)))

− b(ρ̃
(l)
i + δ

(l)
i r̃i)− φ(I ′

∑
j 2j π̃−1

ij (g
(l)
ij ))

aµ
(l)
i + bρ̃

(l)
i = ỹi − φ(I ′

∑
j 2j π̃−1

ij (g
(l)
ij − δ

(l)
i ẽ′ij))

Notice that g
(l)
ij − δ

(l)
i ẽ′ij is open to f̃ ij , that was commited before α(l) and β(l)

were chosen and therefore does not depend on l:

aµ
(l)
i + bρ̃

(l)
i = ỹi − φ(I ′

∑
j 2j π̃−1

ij (f̃ ij)).

Since the right handside does not depend on l nor l′ from two equations we get:

a(µ
(l)
i − µ

(l′)
i ) + b(ρ̃

(l)
i − ρ̃

(l′)
i ) = 0. (4)
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We can apply a similar argument as we do in appendix A to prove that the
commitment was binding. In this particular case there exist nonzero elements
satisfying equation (4) with probability:

Pr
(a,b)

[
∃µ, ρ (not both 0)

∣∣∣aµ+ bρ = 0
]
≤ q2n

qkn/2
∈ negl(1λ).

Then both differences have to be 0 and the elements do not depend on l.

We can also define m̃× = t̃× − µ̃×, m̃+ = t̃+ − µ̃+. This time there is no
dependence with l as the elements were committed previously. With all these
discussions now we are ready to prove the relation m3 = m1m2.

α(l)2(µ̃3) + α(l)(β(l)µ̃+) + (β(l)µ̃×) = β(l)t̃× + α(l)β(l)t̃+ + α(l)2t̃3 − β(l)t̃1t̃2

=

(
β(l)(µ̃× + m̃×) + α(l)β(l)(µ̃+ + m̃+) + α(l)2(µ3 + β(l)m3)

−β(l)(µ1 + α(l)m1)(µ2 + α(l)m2)

)
α(l)2(µ̃3 − µ3 + β(l)(m1m2 −m3))

+α(l)(β(l)(µ1m2 + µ2m1 − m̃+))

+(β(l)(µ1µ2 − m̃×))

 = 0

If we restrict ourselves to the cases with equal β we can see this expression
as a two degree polynomial in α (the coefficients were committed before the
challenges were chosen), that is equal to 0 for three evaluations α(1), α(2), α(3) or
α(4), α(5), α(6). This implies that it is the 0 polynomial and that all its coefficients
are 0, providing us with the equalities µ̃3−µ3+β(l)(m1m2−m3) = 0. Given that
this equality is satisfied by two different β we have that (β(l) − β(l′))(m1m2 −
m3) = 0 and finally m3 = m1m2 as we wanted to prove, the relation holds for
the extracted witness.

Zero-Knowledge :

Case b = 0

t̂i, ŝi
$←− Rq, t̂×, t̂+

$←− Rq

ĝij
$←− Z2nk

q , π̂ij
$←− S2nk

c1 = aCom
(
{π̂ij}i,j , {at̂i + bŝi

+ φ(I ′
∑
j 2j π̂−1

ij (ĝij))

− δi(ci + φ(2κ1nk))}i
)

c4 = aCom(t̂×, t̂+)

c5 = aCom(βt̂× + αβt̂+ + α2t̂3 − βt̂1t̂2)

P reveals {ĝij}i,j , {π̃ij = π̂ij}i,j , {ỹi =

at̂i+bŝi+φ(I ′
∑
j 2j π̂−1ij (ĝij))−δi(ci+

φ(2κ1nk))}i,t̃×,t̃+, {s̃i}i.

Case b = 1

µ̂3,µ̂×, µ̂+
$←− Rq, ê′ij

$←− Bnk

f̂ ij
$←− Z2nk

q , π̂ij
$←− S2nk

c2 = aCom(µ̂3, µ̂×, µ̂+)

c3 = aCom({π̂ij(f̂ ij)}i,j , {π̂ij(ê
′
ij)}i,j)

c5 = aCom(βµ̂× + αβµ̂+ + α2µ̂3)

ĝij = π̂ij(f̂ ij + δiê
′
ij)

P reveals {ĝij}i,j , {ẽ
′
ij = π̂ij(ê

′
ij)}i,j ,

µ̃3 = µ̂3, µ̃× = µ̂×, µ̃+ = µ̂+.
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Indistinguishable from a real con-
versation with the same πij = π̂ij and
where µi = t̂i − δimi, µ× = t̂× −m×,
µ+ = t̂+ − m+, ρi = ŝi − δiri and
f ij = π̂−1ij (ĝij)− δie′ij .

gij = πij(f ij + δie
′
ij)

= πij(π̂
−1
ij (ĝij))

= ĝij

aµi + bρi + φ(I ′
∑
j 2jf ij) =

= a(t̂i − δimi) + b(ŝi − δiri)
+ φ(I ′

∑
j 2j(π̂−1

ij (ĝij)− δie′ij))

= at̂i + bŝi + φ(I ′
∑
j 2j π̂−1

ij (ĝij))

− δi(ami + bri + φ(I ′
∑
j 2je′ij))

= at̂i + bŝi + φ(I ′
∑
j 2j π̂−1

ij (ĝij))

− δi(ci + φ(2κ1nk))

Equivalent to an honest conversation
with equal µ3 = µ̂3, µ× = µ̂×, µ+ = µ̂+

and were πij is such that πij(e
′
ij) =

π̂ij(ê
′
ij) and f ij = π−1ij (π̂ij(f̂ ij)).

gij = πij(f ij + δie
′
ij)

= πij(π
−1
ij (π̂ij(f̂ ij))) + δiπ̂ij(ê

′
ij)

= π̂ij(f̂ ij + δiê
′
ij)

= ĝij

Notice again that simulated conversations follow the proper distributions.

4 Conclusions

To sum up, we have proposed a new protocol for proving linear and multiplica-
tive relations between secret elements hidden inside RLWE samples. The direct
applications are new Zero-Knowledge Proofs for proving knowledge of the eval-
uations of arithmetic circuits with committed inputs.

Xie et al. [26] proposed exact Stern-based proofs for lattice-based commit-
ments, but they had a factor log(q)2 overhead to the messages. We are able to
build exact proofs with a constant factor overhead, thus further improving effi-
ciency. Besides that, our scheme is compatible with the techniques that reduce
the soundness error to 1/2, so that it requires less repetitions to achieve the same
confidence level. Several constructions using Xie et al. Zero-Knowledge Proofs for
relations between committed messages (as the recently presented lattice-based
Attributed Based Signature scheme for unbounded circuits [13]) could benefit
from this improvement directly replacing their proofs with our proposal.

Our scheme can be directly compared to the one proposed by Benhamouda
et al. [3]. While their proofs do not require repetitions our proposal achieves the
same security level with smaller commitments, as we do not generalize the defini-
tion of opening of the commitment. It is also more robust and easy to implement,
as in our protocol the prover is always able to answer with a valid response, with-
out any abort probability. And finally we require a significantly smaller modulus
q for our construction to be sound. This implies that our schemes can still be
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used as a building block in larger protocols where it would be much less efficient
(or even unfeasible) to increase the modulus q for the whole protocol. That could
be the case for electronic voting, where heavy ZKPoK could be performed on
some servers but votes have to be encrypted using resource constrained voting
devices. More detailed comparisons and cost analysis can be found in appendix
C.

We think that these properties represent a major improvement on construc-
tions based on Stern protocol and might be useful in applications that heavily
require this kind of proofs, as electronic voting. We think that our ideas are
flexible enough to be applied as building blocks for other different construc-
tions besides commitment schemes. We consider that it would be interesting to
implement the protocol presented in this paper and leave it as future work.
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A Commitment security proof

Proposition 2. If n ≥ 256, γ ≥ 3 and k ≥ 8γ+4
2γ−5 then the following is a secure

commitment scheme under the assumption that RLWE is hard.

– Gen: the generator algorithm takes a security parameter 1λ and outputs a

public key pk = (a, b) ∈ (Rkq )
2
, where Rq = Zq [x] / 〈xn + 1〉 and k are

defined so that the difficulty of solving the RLWE problem is related to 1λ.
In particular the size of n is also related to 1λ.

(a, b)
$←− Gen

(
1λ
)

– Com: the commitment algorithm takes as input a message m ∈ Rq and a
public key pk = (a, b) and produces a commitment c = am + br + e and

an opening d = (m, r, e), where r
$←− Rq and e

$←− χnk conditioned to have
infinity norm smaller than n = 2κ.

(c = am+ br + e, d = (m, r, e))
$←− Com (m; pk = (a, b))

– Ver: the verification algorithm takes as input a commitment c, a message
m, an opening d = (m, r, e) and a public key pk = (a, b) and accepts, 1, if
(c = am+ br + e) ∧ (‖e‖∞ < 2κ), or rejects, 0, otherwise.
Ver : {(c,m, d; pk)} → {0, 1}

Proof. We can check that all properties are verified.

– Correctness: it immediate follows by the definitions of Com and Ver.
– Binding: a commitment can only be correctly opened to one message.

It is perfectly binding with overwhelming probability as:

1← Ver (c,m′, d′; pk) ∧ 1← Ver (c,m′′, d′′; pk) =⇒ m′ = m′′

We redo here the proof from [3] since our simpler verification algorithm
implies that we require less restrictions on the parameters.
Two accepted openings to the same commitment would be:

c = am′ + br′ + e′

c = am′′ + br′′ + e′′

Therefore if m′ 6= m′′ we have that a(m′ −m′′) + b(r′ − r′′) + (e′ − e′′) = 0.
If q ≡ 3 mod 8, with overwhelming probability over the choice of a and b,
there are no m, r ∈ Rq and e ∈ Rkq small such that am + br + e = 0 holds
and m 6= 0.

We bound the probability that this solution exists. For a fixed m, r and e
we count the proportion of pairs (a, b) for which the equality holds. In order
to estimate the overall probability of choosing a pair (a, b) such that there
exists a solution we use a union bound adding up all previous probabilities.
We finally see that it is negligible if parameters are carefully selected.

Fixed m, r and e for each b we have am = −br − e. In each component
ajm = −bjr−ej . q ≡ 3 mod 8 implies that xn+1 splits into two irreducible
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polynomials p1(x), p2(x) of degree n/2 (lemma 3 in [22]). We know that
m 6≡ 0 mod xn + 1, therefore m 6≡ 0 mod p1(x) or m 6≡ 0 mod p2(x).

In either case we know that ajm takes at least qn/2 different values. There
are qn/2 equivalence classes mod pi(x) and only one of them is −bjr − ej
mod pi(x), therefore at most 1/qn/2 of the possible aj hold the equation. As
this is independently true for each j we have that the probability of (a, b)
to fit the equation for these particular m, r and e is at most 1/qnk/2.

If we want to consider the possibility that there exists a solution we can
bound this probability with a union bound. There are qn possible m, qn

possible r and (4n)nk possible e. Therefore if (a, b)
$←− Gen(1λ):

Pr
(a,b)

[
∃m, r, e

∣∣∣∣am+ br + e = 0
∧‖e‖∞ ≤ n

]
≤ q2n(4n)nk

qnk/2
∈ negl(1λ).

The condition n ≥ 256 implies (4n) ≤ n5/4:

q2n(4n)nk

qnk/2
≤ q2nn5nk/4

qnk/2

≤ q2nq5nk/(4γ)

qnk/2

= qn(2+5k/(4γ)−k/2)

because γ ≥ 3 and k ≥ 8γ+4
2γ−5 ≥

8γ
2γ−5 we know that 2 + 5k/(4γ)− k/2 ≤ 0:

qn(2+5k/(4γ)−k/2) ≤ nnγ(2+5k/(4γ)−k/2)

because γ ≥ 3 and k ≥ 8γ+4
2γ−5 we know that γ(2 + 5k/(4γ)− k/2) ≤ −1:

nnγ(2+5k/(4γ)−k/2) ≤ n−n = 2−nκ

≤ 1

2n

– Hiding: a well constructed commitment c does not leak any relevant infor-
mation about the message m.

It is computationally hiding as br + e are k RLWE samples, indistinguish-
able from independent uniformly random polynomials under the RLWEn,q,χ
assumption. Any adversary able to break the hiding property would then
also be able to solve the decisional RLWEn,q,χ. Notice that the probability

that e
$←− χnk has ‖e‖∞ > n is negligible and then original and conditioned

probability distributions are statistically indistinguishable.
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B Soundness extractor

Let ω ∈ Ω be the random coins used by the prover in its interaction with the
verifier. We call T (ω) to the execution tree of all possible interactions between

P̃ and V depending on the verifier challenges. Many authors [9] that face similar

problems simply argue that a probability larger than
(
q+1
2q

)δ
+ ε implies that

there is a node with at least q+2 accepted answers, meaning that there exist c1,
c2, two α, α′ and gj , g

′
j that induce accepted answers for both b = 0 and b = 1,

from which it is possible to extract a witness.
However, merely proving existence implies that the extractor should explore

the whole tree rewinding the prover P̃ until he finds this particular node. It is
possible to do so in polynomial-time if q is polynomial in the security parameter
and the number of nodes in T (ω) is O(qδ), but is very inefficient and provides
us bounds O(qδ/ε) that are far from tight.

We prefer to analyze it as Stern did in an extension of its original paper [23],
that gives us a more detailed insight and requires at most an expected number
of O(1/ε3) attempts to find such a node and extract a witness. For this to be

true we have to assume that q is large enough so that log
(

q
q+1

)
> −1/9 (which

only implies q ≥ 13).
We start defining a subset of the possible random coins:

X =
{
ω ∈ Ω

∣∣∣ T (ω) has at least (q + 1)δ +
ε

2
(2q)δ branches at level δ

}
Claim. X has probability at least ε/2.

Proof. Assume Pr[X] < ε
2 . Then we arrive at a contradiction with the fact that

P̃ has a success probability of more than
(
q+1
2q

)δ
+ ε.

Pr
[
P̃(ω)

]
= Pr

[
P̃(ω)

∣∣∣ω ∈ X]Pr
[
X
]

+ Pr
[
P̃(ω)

∣∣∣ω 6∈ X]Pr
[
Ω \X

]
≤ Pr

[
X
]

+ Pr
[
P̃(ω)

∣∣∣ω 6∈ X]
We are under the assumption of Pr[X] < ε/2:

<
ε

2
+ Pr

[
P̃(ω)

∣∣∣ω 6∈ X]
If ω 6∈ X there are less than (q + 1)δ + ε

2 (2q)δ branches and (2q)δ possible
challenges:

<
ε

2
+

(
q + 1

2q

)δ
+
ε

2

(
2q

2q

)δ
=

(
q + 1

2q

)δ
+ ε

And we have found the contradiction. Therefore Pr[X] ≥ ε/2.
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From now on consider T (ω) with ω ∈ X. For any index 0 ≤ d ≤ δ we denote by
nd the number of vertices at level d, and for 0 ≤ d < δ we define γd = nd+1/nd.

δ−1∏
d=0

γd ≥ (q + 1)δ +
ε

2
(2q)δ

Taking binary logarithms:
δ−1∑
d=0

log(γd) ≥ log
(

(q + 1)δ +
ε

2
(2q)δ

)
≥ log

((
1− ε

2

)
(q + 1)δ +

ε

2
(2q)δ

)
By convexity of the log function:

≥ δ
((

1− ε

2

)
log (q + 1) +

ε

2
log (2q)

)
This implies that there exists an 0 ≤ i ≤ δ − 1 such that:

log(γi) ≥
(

1− ε

2

)
log(q + 1) +

ε

2
log(2q)

= log(q + 1) +
ε

2

(
1 + log

(
q

q + 1

))
Given that log

(
q
q+1

)
≥ −1/9:

≥ log(q + 1) +
4ε

9
Undoing logarithms:

γi ≥ 2log(q+1)+4ε/9

= (q + 1)24ε/9

≥ (q + 1)(1 +
4ε

9
ln(2))

≥ (q + 1) +
8(q + 1)ε

27

≥ (q + 1) +
8(q − 1)ε

27

If we define ni,≤q+1 as the number of nodes on level i that have less or equal
than q+1 children and ni,>q+1 as the number of nodes on level i that have more
than q + 1 children we can also bound γi:

γi ≤
(q + 1)ni,≤q+1 + (2q)ni,>q+1

ni,≤q+1 + ni,>q+1

= (q + 1) + (q − 1)
ni,>q+1

ni,≤q+1 + ni,>q+1
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Combining all we have:

(q + 1) +
8(q − 1)ε

27
≤ (q + 1) + (q − 1)

ni,>q+1

ni,≤q+1 + ni,>q+1

8ε

27
≤ ni,>q+1

ni,≤q+1 + ni,>q+1

That is, the fraction of nodes with q + 2 children or more is larger than 8ε/27.

Therefore, we know that ω belongs to X with probability at least ε/2. We
know that T (ω) has at least (q+ 1)δ + ε/2(2q)δ branches, that is, the probability

of choosing a successful branch is
(
q+1
2q

)δ
+ ε

2 . Once we have chosen at random a

successful branch, if we look at its level i the probability of finding a node with
at least q+ 2 children is at least 8ε/27. Combining all these probabilities we have
that the probability of a success is greater than (ε/2)(ε/2)(8ε/27) = 2(ε/3)3.

C Comparisons with other proposals

In this appendix we compare our proposal of Zero-Knowledge proofs for com-
mitments with those presented by Xie et al. [26] and Benhamouda et al. [3]. All
these commitments are adaptations of the LPN commitment scheme of Jain et
al. [12] to the RLWE problem.

We first compare the size of the commitments (table 1). Benhamouda et
al. directly adapt the structure from [12], and we use their same notation for
commiting to a polynomial of degree n with coefficients in Zq. The commitment is
a vector of k polynomials. Xie et al. do not commit to a single polynomial but to
l polynomials of smaller degree d. Their commitment is made of m polynomials
of degree d, but as their construction requires m to be linear in l, the size is
asymptotically the same.

Table 1: Commitment size

Xie et al. Benhamouda et al. our proposal

Commitment Size (in bits) md log q kn log q kn log q

In order to be able to relate these sizes we have to compare the restrictions
on the parameters (table 2). Xie et al. impose that the overhead factor (the ratio
between the size of the commitment and the size of the original message) has
to be of the order of the logarithm of the security parameter. We can directly
compare our and Benhamouda et al. proposal as we both require this ratio k to
be greater than a quotient related to a constant γ, where q ≥ nγ . Our restriction
is weaker and we also require a smaller minimum value for γ. This is really
important as it allows us to choose the size of q with more flexibility.
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Table 2: Parameter restrictions

Xie et al. Benhamouda et al. our proposal

overhead factor m/l ∈ ω (log λ) k > 18γ
3γ−16

k > 8γ+4
2γ−5

n and q relation – γ ≥ 6 γ ≥ 3

In figure 1, for a fixed value n = 210, we represent the size of the commitment
of Xie et al., Benhamouda et al. and ours for different values of γ (that is, different
values of q since q ≥ nγ).

Fig. 1: Commitment’s size of Xie et al. ( ), Benhamouda et al. ( ) and our
proposal ( )
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Finally we can compare the communication cost of the Zero-Knowledge
Proofs of multiplicative relations (table 3), as this is the most interesting case
and the major contribution of this paper. In table 4 we compare soundness and
completeness properties for one round of each protocol.

We separately show what are the initial communication costs (in bits), the
cost per round (in bits), the number of auxiliary commitments, the number
of openings of these auxiliary commitments and the number of seeds for the
pseudorandom generation of the permutations. The last three items depend on
the final implementation. Random seeds could be 256 bit strings. If the auxiliary
commitment scheme is implemented using a hash function (secure in the random
oracle model) then the size of each of these auxiliary commitments could also
be 256 bits.

It should be taken into account that the cost per round has to be multiplied
by the number of rounds required to achieve soundness, that depends on the
desired level of soundness and the soundness error per round exposed in table 4.
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In this final table we also include what we call the extracted error gap, that is,
the quotient between the bound on the error of the RLWE samples obtained by
the extractor and the original bound on the error known by the prover.

Compared with the Stern-based protocol of Xie et al. we have a similar
commitment size but significantly reduce the cost of the proofs. Notice that md
is comparable to kn, therefore we reduce the size of the proof by a factor log2 q
and we also improve the constants. We also reduce the number of rounds, as our
soundness error per round is aproximately 1/2 instead of 2/3. Xie et al. needed
to decompose the original message into bits, while we only need to decompose
the error. Then we do not need any initial communication (they had to commit
to the decompositions of the messages before starting the rounds), and we also
reduce in the same proportion the number of auxiliar commitments, openings of
auxiliar commitments and random seeds for the permutations, that are common
in all Stern-based protocols.

On the other hand our commitment scheme is smaller than Benhamouda et
al. for the same value of n and q, but they have a smaller communication cost,
as its proof has a smaller cost per round and only needs one round. There is
a trade-off between the size of the commitment and the communication cost.
The running time of their proofs depends on the secret elements that are used,
and that has to be taken into account in an interactive setting to avoid timing
attacks. We don’t have this issue, which makes the implementation more direct.

We only need the modulus q to be greater than n3 while they require q ≥ n6.
Just taking into account the size of the proofs it could still be more efficient to use
a larger q and their negligible soundness error technique, however, if these proofs
are just part of a different protocol then being forced to use a larger q for the
whole protocol might not be compensated by their more efficient commitment
proofs and our more flexible scheme could be the best option.

The same applies if the relation proofs are used not just for commitments but
for any messages hidden in RLWE samples where the bounds on the size of the
error matters (for example in proofs about public keys of encryption schemes).
One could increase the size of all parameters in order to take into account the
extracted error gap, or one could use our slightly more expensive but exact
ZKPoK and avoid modifications on the parameters of the rest of the protocol.

Table 3: Communication cost (in bits)

Benhamouda et al. Xie et al. our proposal

initial com. – md log3 q + 2md log2 q –

round cost
(8k + 7)n log q (12κ+ 2)md log3 q + 8ld log3 q (3(κ+ 1)k + 1.5k + 4)n log q

+n/2 + 16κ/3− 8 +κ2+2κ+3
3 (14md log q) +6(κ+ 1)kn+ 2 log q + 1

aux. com. 1 3(log2 q + 1) 5

openings 1 2(log2 q + 1) 3

seeds – 2(κ log2 q + log2 q + κ) 3(κ+ 1)



30 R. Mart́ınez and P. Morillo

Table 4: Soundness and completeness

Benhamouda et al. Xie et al. our proposal

soundness error negligible 2
3

q2+3q−2
2q2

extracted error gap O
(
n4/3/2

)
1 1

It would be interesting to study the benefits and costs of applying our proofs
to other constructions that currently use Fiat-Shamir with aborts, such as the
commitment scheme using more structured lattice assumptions (Module-LWE
and Module-SIS) from [2], and we left it as future work.
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